1
|
Thorat YE, Dutta TK, Jain PK, Subramaniam K, Sirohi A. A nematode-inducible promoter can effectively drives RNAi construct to confer Meloidogyne incognita resistance in tomato. PLANT CELL REPORTS 2023; 43:3. [PMID: 38117317 DOI: 10.1007/s00299-023-03114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/30/2023] [Indexed: 12/21/2023]
Abstract
KEY MESSAGE Heterologous expression of a nematode-responsive promoter in tomato successfully driven the RNAi constructs to impart root-knot nematode resistance. The root-knot nematode Meloidogyne incognita seriously afflicts the global productivity of tomatoes. Nematode management options are extremely reliant on chemical methods, however, only a handful of nematicides are commercially available. Additionally, nematodes have developed resistance-breaking phenotypes against the commercially available Mi gene-expressing tomatoes. Nematode resistance in crop plants can be enhanced using the bio-safe RNAi technology, in which plants are genetically modified to express nematode gene-specific dsRNA/siRNA molecules. However, the majority of the RNAi crops conferring nematode tolerance have used constitutive promoters, which have many limitations. In the present study, using promoter-GUS fusion, we functionally validated two nematode-inducible root-specific promoters (pAt1g74770 and pAt2g18140, identified from Arabidopsis thaliana) in the Solanum lycopersicum-M. incognita pathosystem. pAt2g18140 was found to be nematode-responsive during 10-21 days post-inoculation (dpi) and became non-responsive during the late infection stage (28 dpi). In contrast, pAt1g74770 remained nematode-responsive for a longer duration (10-28 dpi). Next, a number of transgenic lines were developed that expressed RNAi constructs (independently targeting the M. incognita integrase and splicing factor genes) driven by the pAt1g74770 promoter. M. incognita parasitic success (measured by multiplication factor ratio) in pAt1g74770:integrase and pAt1g74770:splicing factor RNAi lines were significantly reduced by 60.83-74.93% and 69.34-75.31%, respectively, compared to the control. These data were comparable with the RNAi lines having CaMV35S as the promoter. Further, a long-term RNAi effect was evident, because females extracted from transgenic lines were of deformed shape with depleted transcripts of integrase and splicing factor genes. We conclude that pAt1g74770 can be an attractive alternative to drive localized expression of RNAi constructs rather than using a constitutive promoter. The pAt1g74770-driven gene silencing system can be expanded into different plant-nematode interaction models.
Collapse
Affiliation(s)
- Yogesh E Thorat
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Biological Control Centre, ICAR-Indian Institute of Sugarcane Research, Ahmednagar, Maharashtra, 413712, India
| | - Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Pradeep K Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | | | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
2
|
Joshi I, Kumar A, Kohli D, Bhattacharya R, Sirohi A, Chaudhury A, Jain PK. Gall-specific promoter, an alternative to the constitutive CaMV35S promoter, drives host-derived RNA interference targeting Mi-msp2 gene to confer effective nematode resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:1007322. [PMID: 36426141 PMCID: PMC9679145 DOI: 10.3389/fpls.2022.1007322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
One of the major obligate plant parasites causing massive economic crop losses belongs to the class of root-knot nematodes (RKNs). Targeting of major nematode parasitism genes via Host Delivered-RNAi (HD-RNAi) to confer silencing is established as one of the most effective approaches to curb nematode infection. Utilizing nematode-responsive root-specific (NRRS) promoters to design a dsRNA molecule targeting approach to hamper nematode parasitism. Here, a previously validated peroxidase gall specific promoter, pAt2g18140, from Arabidopsis was employed to express the dsRNA construct of the nematode effector gene Mi-msp2 from Meloidogyne incognita. Arabidopsis RNAi lines of CaMV35S::Mi-msp2-RNAi and pAt2g18140::Mi-msp2-RNAi were compared with control plants to assess the decrease in plant nematode infection. When subjected to infection, the maximum reductions in the numbers of galls, females and egg masses in the CaMV35S::Mi-msp2-RNAi lines were 61%, 66% and 95%, respectively, whereas for the pAt2g18140::Mi-msp2-RNAi lines, they were 63%, 68% and 100%, respectively. The reduction in transcript level ranged from 79%-82% for CaMV35S::Mi-msp2-RNAi and 72%-79% for the pAt2g18140::Mi-msp2-RNAi lines. Additionally, a reduction in female size and a subsequent reduction in next-generation fecundity demonstrate the efficacy and potential of the gall specific promoter pAt2g18140 for utilization in the development of HD-RNAi constructs against RKN, as an excellent alternative to the CaMV35S promoter.
Collapse
Affiliation(s)
- Ila Joshi
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Bio and Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Anil Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Deshika Kohli
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashok Chaudhury
- Department of Bio and Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Pradeep K. Jain
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
3
|
Chamkhi I, El Omari N, Balahbib A, El Menyiy N, Benali T, Ghoulam C. Is the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement? Saudi J Biol Sci 2022; 29:1246-1259. [PMID: 35241967 PMCID: PMC8864493 DOI: 10.1016/j.sjbs.2021.09.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023] Open
Abstract
The plant faces different pedological and climatic challenges that influence its growth and enhancement. While, plant-microbes interactions throught the rhizosphere offer several privileges to this hotspot in the service of plant, by attracting multi-beneficial mutualistic and symbiotic microorganisms as plant growth-promoting bacteria (PGPB), archaea, mycorrhizal fungi, endophytic fungi, and others…). Currently, numerous investigations showed the beneficial effects of these microbes on growth and plant health. Indeed, rhizospheric microorganisms offer to host plants the essential assimilable nutrients, stimulate the growth and development of host plants, and induce antibiotics production. They also attributed to host plants numerous phenotypes involved in the increase the resistance to abiotic and biotic stresses. The investigations and the studies on the rhizosphere can offer a way to find a biological and sustainable solution to confront these environmental problems. Therefore, the interactions between microbes and plants may lead to interesting biotechnological applications on plant improvement and the adaptation in different climates to obtain a biological sustainable agricultures without the use of chemical fertilizers.
Collapse
Key Words
- AMF, Arbuscular Mycorrhizal Fungi
- AOA, Ammonia-Oxidizing Archaea
- BMV, Brome Mosaic Virus
- C, Carbon
- CMV, Cucumber mosaic virus
- LDH, Layered double hydroxides
- MF, Mycorrhizal fungi
- Microorganisms
- P, Phosphorus
- PAL, L-Phenylalanine Ammonia Lyase
- PCA, Phenazine-1-Carboxylic Acid
- PGPR, Plant Growth-Promoting Rhizobacteria
- POX, Peroxidase
- PPO, Polyphenol Oxidase
- Plant growth promoting microbes
- Plant-microbes interactions
- Rhizosphere
Collapse
Affiliation(s)
- Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Morocco.,University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Naoual El Menyiy
- Faculty of Science, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Cherki Ghoulam
- University Mohammed VI Polytechnic, Agrobiosciences Program, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.,Cadi Ayyad University, Faculty of Sciences and Techniques, PO Box 549, Gueliz, Marrakech,Morocco
| |
Collapse
|
4
|
Sung YW, Lee IH, Shim D, Lee KL, Nam KJ, Yang JW, Lee JJ, Kwak SS, Kim YH. Transcriptomic changes in sweetpotato peroxidases in response to infection with the root-knot nematode Meloidogyne incognita. Mol Biol Rep 2019; 46:4555-4564. [PMID: 31222458 DOI: 10.1007/s11033-019-04911-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
A previous transcriptomic analysis of the roots of susceptible and resistant cultivars of sweetpotato (Ipomoea batatas) identified genes that were likely to contribute to protection against infection with the root-knot nematode Meloidogyne incognita. The current study examined the roles of peroxidase genes in sweetpotato defense responses during root-knot nematode infection, using the susceptible (cv. Yulmi) and resistant (cv. Juhwangmi) cultivars. Differentially expressed genes were assigned to gene ontology categories to predict their functional roles and associated biological processes. Comparison with Arabidopsis peroxidases identified a group of genes orthologous to Arabidopsis PEROXIDASE 52 (AtPrx52). An analysis of sweetpotato peroxidase genes determined their roles in protecting plants against root-knot nematode infection and enabled identification of important peroxidases. The interactions involved in sweetpotato resistance to nematode infection are discussed.
Collapse
Affiliation(s)
- Yeon Woo Sung
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, 660-701, Republic of Korea.,Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, Republic of Korea
| | - Il Hwan Lee
- Department of Forest Bio-resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Donghwan Shim
- Department of Forest Bio-resources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Kang-Lok Lee
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Ki Jung Nam
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Jung-Wook Yang
- National Institute of Crop Science, Rural Development Administration, Suwon, Republic of Korea
| | - Jeung Joo Lee
- Department of Plant Medicine, IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yun-Hee Kim
- Department of Biology Education, IALS, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
5
|
Czobor Á, Hajdinák P, Németh B, Piros B, Németh Á, Szarka A. Comparison of the response of alternative oxidase and uncoupling proteins to bacterial elicitor induced oxidative burst. PLoS One 2019; 14:e0210592. [PMID: 30629714 PMCID: PMC6328269 DOI: 10.1371/journal.pone.0210592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/25/2018] [Indexed: 12/03/2022] Open
Abstract
Plant UCPs are proved to take part in the fine-tuning of mitochondrial ROS generation. It has emerged that mitochondrion can be an important early source of intracellular ROS during plant-pathogen interaction thus plant UCPs must also play key role in this redox fine-tuning during the early phase of plant-pathogen interaction. On the contrary of this well-established assumption, the expression of plant UCPs and their activity has not been investigated in elicitor induced oxidative burst. Thus, the level of plant UCPs both at RNA and protein level and their activity was investigated and compared to AOX as a reference in Arabidopsis thaliana cells due to bacterial harpin treatments. Similar to the expression and activity of AOX, the transcript level of UCP4, UCP5 and the UCP activity increased due to harpin treatment and the consequential oxidative burst. The expression of UCP4 and UCP5 elevated 15-18-fold after 1 h of treatment, then the activity of UCP reached its maximal value at 4h of treatment. The quite rapid activation of UCP due to harpin treatment gives another possibility to fine tune the redox balance of plant cell, furthermore explains the earlier observed rapid decrease of mitochondrial membrane potential and consequent decrease of ATP synthesis after harpin treatment.
Collapse
Affiliation(s)
- Ádám Czobor
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Péter Hajdinák
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Bence Németh
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Borbála Piros
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Áron Németh
- Department of Applied Biotechnology and Food Science, Fermentation Pilot Plant Laboratory, Budapest University of Technology and Economics, Budapest, Hungary
| | - András Szarka
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
6
|
Kakrana A, Kumar A, Satheesh V, Abdin MZ, Subramaniam K, Bhattacharya RC, Srinivasan R, Sirohi A, Jain PK. Identification, Validation and Utilization of Novel Nematode-Responsive Root-Specific Promoters in Arabidopsis for Inducing Host-Delivered RNAi Mediated Root-Knot Nematode Resistance. FRONTIERS IN PLANT SCIENCE 2017; 8:2049. [PMID: 29312363 PMCID: PMC5733009 DOI: 10.3389/fpls.2017.02049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/15/2017] [Indexed: 05/27/2023]
Abstract
The root-knot nematode (RKN), Meloidogyne incognita, is an obligate, sedentary endoparasite that infects a large number of crops and severely affects productivity. The commonly used nematode control strategies have their own limitations. Of late, RNA interference (RNAi) has become a popular approach for the development of nematode resistance in plants. Transgenic crops capable of expressing dsRNAs, specifically in roots for disrupting the parasitic process, offer an effective and efficient means of producing resistant crops. We identified nematode-responsive and root-specific (NRRS) promoters by using microarray data from the public domain and known conserved cis-elements. A set of 51 NRRS genes was identified which was narrowed down further on the basis of presence of cis-elements combined with minimal expression in the absence of nematode infection. The comparative analysis of promoters from the enriched NRRS set, along with earlier reported nematode-responsive genes, led to the identification of specific cis-elements. The promoters of two candidate genes were used to generate transgenic plants harboring promoter GUS constructs and tested in planta against nematodes. Both promoters showed preferential expression upon nematode infection, exclusively in the root in one and galls in the other. One of these NRRS promoters was used to drive the expression of splicing factor, a nematode-specific gene, for generating host-delivered RNAi-mediated nematode-resistant plants. Transgenic lines expressing dsRNA of splicing factor under the NRRS promoter exhibited upto a 32% reduction in number of galls compared to control plants.
Collapse
Affiliation(s)
- Atul Kakrana
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, United States
| | - Anil Kumar
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard University, New Delhi, India
| | | | - M. Z. Abdin
- Department of Biotechnology, Faculty of Science, Centre for Transgenic Plant Development, Jamia Hamdard University, New Delhi, India
| | | | | | | | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pradeep K. Jain
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, India
| |
Collapse
|
7
|
Choi HW, Klessig DF. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC PLANT BIOLOGY 2016. [PMID: 27782807 DOI: 10.1186/s12870-016-0921-232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
BACKGROUND Multicellular organisms have evolved systems/mechanisms to detect various forms of danger, including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via cell-surface receptors activates an ancient and evolutionarily conserved innate immune system. RESULT Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs), plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called Damage-Associated Molecular Patterns (DAMPs). CONCLUSIONS This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3, which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context of plant MAMPs and NAMPs, as well as animal DAMPs.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Daniel F Klessig
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Choi HW, Klessig DF. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC PLANT BIOLOGY 2016; 16:232. [PMID: 27782807 PMCID: PMC5080799 DOI: 10.1186/s12870-016-0921-2] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/19/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND Multicellular organisms have evolved systems/mechanisms to detect various forms of danger, including attack by microbial pathogens and a variety of pests, as well as tissue and cellular damage. Detection via cell-surface receptors activates an ancient and evolutionarily conserved innate immune system. RESULT Potentially harmful microorganisms are recognized by the presence of molecules or parts of molecules that have structures or chemical patterns unique to microbes and thus are perceived as non-self/foreign. They are referred to as Microbe-Associated Molecular Patterns (MAMPs). Recently, a class of small molecules that is made only by nematodes, and that functions as pheromones in these organisms, was shown to be recognized by a wide range of plants. In the presence of these molecules, termed Nematode-Associated Molecular Patterns (NAMPs), plants activate innate immune responses and display enhanced resistance to a broad spectrum of microbial and nematode pathogens. In addition to pathogen attack, the relocation of various endogenous molecules or parts of molecules, generally to the extracellular milieu, as a result of tissue or cellular damage is perceived as a danger signal, and it leads to the induction of innate immune responses. These relocated endogenous inducers are called Damage-Associated Molecular Patterns (DAMPs). CONCLUSIONS This mini-review is focused on plant DAMPs, including the recently discovered Arabidopsis HMGB3, which is the counterpart of the prototypic animal DAMP HMGB1. The plant DAMPs will be presented in the context of plant MAMPs and NAMPs, as well as animal DAMPs.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853 USA
| | - Daniel F. Klessig
- Boyce Thompson Institute, Cornell University, 533 Tower Road, Ithaca, NY 14853 USA
| |
Collapse
|
9
|
Manosalva P, Manohar M, von Reuss SH, Chen S, Koch A, Kaplan F, Choe A, Micikas RJ, Wang X, Kogel KH, Sternberg PW, Williamson VM, Schroeder FC, Klessig DF. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat Commun 2015; 6:7795. [PMID: 26203561 PMCID: PMC4525156 DOI: 10.1038/ncomms8795] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/10/2015] [Indexed: 01/27/2023] Open
Abstract
Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture.
Collapse
Affiliation(s)
- Patricia Manosalva
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California 92521, USA
| | - Murli Manohar
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | - Shiyan Chen
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, USA
| | - Aline Koch
- Research Centre for BioSystems, Land Use, and Nutrition, Justus Liebig University, Giessen D-35392, Germany
| | - Fatma Kaplan
- Kaplan Schiller Research, LLC, Gainesville, Florida 32604, USA
| | - Andrea Choe
- Howard Hughes Medical Institute and Biology Division, California Institute of Technology, Pasadena, California 91125, USA
| | - Robert J. Micikas
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Xiaohong Wang
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853, USA
- Robert W. Holley Center for Agriculture and Health, US Department of Agricultural Research Service, Ithaca, New York 14853, USA
| | - Karl-Heinz Kogel
- Research Centre for BioSystems, Land Use, and Nutrition, Justus Liebig University, Giessen D-35392, Germany
| | - Paul W. Sternberg
- Howard Hughes Medical Institute and Biology Division, California Institute of Technology, Pasadena, California 91125, USA
| | - Valerie M. Williamson
- Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Frank C. Schroeder
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| |
Collapse
|
10
|
Melillo MT, Leonetti P, Veronico P. Benzothiadiazole effect in the compatible tomato-Meloidogyne incognita interaction: changes in giant cell development and priming of two root anionic peroxidases. PLANTA 2014; 240:841-54. [PMID: 25085693 DOI: 10.1007/s00425-014-2138-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/28/2014] [Indexed: 05/24/2023]
Abstract
BTH application is effective in root-knot nematode-tomato interaction in a way that involves a delay in the formation of nematode feeding site and triggers molecular responses at several levels. The compatible interaction between root-knot nematodes and their hosts requires the nematode to overcome plant defense systems so that a sophisticated permanent feeding site (giant cells) can be produced within the host roots. It has been suggested that activators of plant defenses may provide a novel management strategy for controlling root-knot nematodes but little is known about the molecular basis by which these elicitors operate. The role of pre-treatment with Benzothiadiazole (BTH), a salicylic acid analog, in inducing resistance against Meloidogyne incognita infection was investigated in tomato roots. A decrease in galling in roots and feeding site numbers was observed following BTH treatment. Histological investigations showed a delay in formation of feeding sites in treated plants. BTH-treated galls had higher H2O2 production, lignin accumulation, and increased peroxidase activity than untreated galls. The expression of two tomato genes, Tap1 and Tap2, coding for anionic peroxidases, was examined by qRT-PCR and in situ hybridization in response to BTH. Tap1 was induced at all infection points, reaching the highest level at 15 dpi. Tap2 expression, although slightly delayed in untreated galls, increased during infection in both treated and untreated galls. The expression of Tap1 and Tap2 was observed in giant cells of untreated roots, whereas the transcripts were localized in both giant cells and in parenchyma cells surrounding the developing feeding sites in treated plants. These results show that BTH applied to tomato plants makes them more resistant to infection by nematodes, which become less effective in overcoming root defense pathway.
Collapse
Affiliation(s)
- Maria Teresa Melillo
- Istituto per la Protezione Sostenibile delle Piante, CNR, Via Amendola 122/D, 70126, Bari, Italy,
| | | | | |
Collapse
|
11
|
Dinh PTY, Knoblauch M, Elling AA. Nondestructive imaging of plant-parasitic nematode development and host response to nematode pathogenesis. PHYTOPATHOLOGY 2014; 104:497-506. [PMID: 24313744 DOI: 10.1094/phyto-08-13-0240-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The secluded lifestyle of endoparasitic plant nematodes hampers progress toward a comprehensive understanding of plant-nematode interactions. A novel technique that enables nondestructive, long-term observations of a wide range of live nematodes in planta is presented here. As proof of principle, Pratylenchus penetrans, Heterodera schachtii, and Meloidogyne chitwoodi were labeled fluorescently with PKH26 and used to infect Arabidopsis thaliana grown in microscopy rhizosphere chambers. Nematode behavior, development, and morphology were observed for the full duration of each parasite's life cycle by confocal microscopy for up to 27 days after inoculation. PKH26 accumulated in intestinal lipid droplets and had no negative effect on nematode infectivity. This technique enabled visualization of Meloidogyne gall formation, nematode oogenesis, and nematode morphological features, such as the metacorpus, vulva, spicules, and cuticle. Additionally, microscopy rhizosphere chambers were used to characterize plant organelle dynamics during M. chitwoodi infection. Peroxisome abundance strongly increased in early giant cells but showed a marked decrease at later stages of feeding site development, which suggests a modulation of plant peroxisomes by root-knot nematodes during the infection process. Taken together, this technique facilitates studies aimed at deciphering plant-nematode interactions at the cellular and subcellular level and enables unprecedented insights into nematode behavior in planta.
Collapse
|
12
|
Goto DB, Miyazawa H, Mar JC, Sato M. Not to be suppressed? Rethinking the host response at a root-parasite interface. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 213:9-17. [PMID: 24157203 DOI: 10.1016/j.plantsci.2013.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 05/11/2023]
Abstract
Root-knot nematodes are highly efficient plant parasites that establish permanent feeding sites within host roots. The initiation of this feeding site is critical for parasitic success and requires an interaction with multiple signaling pathways involved in plant development and environmental response. Resistance against root-knot nematodes is relatively rare amongst their broad host range and they remain a major threat to agriculture. The development of effective and sustainable control strategies depends on understanding how host signaling pathways are manipulated during invasion of susceptible hosts. It is generally understood that root-knot nematodes either suppress host defense signaling during infestation or are able to avoid detection altogether, explaining their profound success as parasites. However, when compared to the depth of knowledge from other well-studied pathogen interactions, the published data on host responses to root-knot nematode infestation do not yet provide convincing support for this hypothesis and alternative explanations also exist. It is equally possible that defense-like signaling responses are actually induced and required during the early stages of root-knot nematode infestation. We describe how defense-signaling is highly context-dependent and that caution is necessary when interpreting transcriptional responses in the absence of appropriate control data or stringent validation of gene annotation. Further hypothesis-driven studies on host defense-like responses are required to account for these limitations and advance our understanding of root-knot nematode parasitism of plants.
Collapse
Affiliation(s)
- Derek B Goto
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan; School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150, Australia.
| | | | | | | |
Collapse
|
13
|
Severino FE, Brandalise M, Costa CS, Wilcken SRS, Maluf MP, Gonçalves W, Maia IG. CaPrx, a Coffea arabica gene encoding a putative class III peroxidase induced by root-knot nematode infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:35-42. [PMID: 22682563 DOI: 10.1016/j.plantsci.2012.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/18/2012] [Accepted: 04/21/2012] [Indexed: 06/01/2023]
Abstract
Class III peroxidases (Prxs) are enzymes involved in a multitude of physiological and stress-related processes in plants. Here, we report on the characterization of a putative peroxidase-encoding gene from Coffea arabica (CaPrx) that is expressed in early stages of root-knot nematode (RKN) infection. CaPrx showed enhanced expression in coffee roots inoculated with RKN (at 12 h post-inoculation), but no significant difference in expression was observed between susceptible and resistant plants. Assays using transgenic tobacco plants harboring a promoter-β-glucuronidase (GUS) fusion revealed that the CaPrx promoter was exclusively active in the galls induced by RKN. In cross sections of galls, GUS staining was predominantly localized in giant cells. Up-regulation of GUS expression in roots of transgenic plants following RKN inoculation was observed within 16 h. Moreover, no increase in GUS expression after treatment with jasmonic acid was detected. Altogether, these results point to a putative role of this peroxidase in the general coffee response to RKN infection.
Collapse
Affiliation(s)
- Fábio E Severino
- UNESP, Instituto de Biociências, Departamento de Genética, Botucatu, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Cesarino I, Araújo P, Sampaio Mayer JL, Paes Leme AF, Mazzafera P. Enzymatic activity and proteomic profile of class III peroxidases during sugarcane stem development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 55:66-76. [PMID: 22551762 DOI: 10.1016/j.plaphy.2012.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/21/2012] [Indexed: 05/11/2023]
Abstract
Class III peroxidases are present as large multigene families in all land plants. This large number of genes together with the diversity of processes catalyzed by peroxidases suggests possible functional specialization of each isoform. However, assigning a precise role for each individual peroxidase gene has continued to be a major bottleneck. Here we investigated the enzyme activity and translational profile of class III peroxidases during stem development of sugarcane as a first step in the estimation of physiological functions of individual isoenzymes. Internodes at three different developmental stages (young, developing and mature) were divided into pith (inner tissue) and rind (outer tissue) fractions. The rind of mature internodes presented the highest enzymatic activity and thus could be considered the ideal tissue for the discovery of peroxidase gene function. In addition, activity staining of 2DE gels revealed different isoperoxidase profiles and protein expression regulation among different tissue fractions. In-gel tryptic digestion of excised spots followed by peptide sequencing by LC-MS/MS positively matched uncharacterized peroxidases in the sugarcane database SUCEST. Multiple spots matching the same peroxidase gene were found, which reflects the generation of more than one isoform from a particular gene by post-translational modifications. The identified sugarcane peroxidases appear to be monocot-specific sequences with no clear ortholog in dicot model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Igor Cesarino
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
15
|
Kyndt T, Nahar K, Haegeman A, De Vleesschauwer D, Höfte M, Gheysen G. Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14 Suppl 1:73-82. [PMID: 22188265 DOI: 10.1111/j.1438-8677.2011.00524.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Complex defence signalling pathways, controlled by different hormones, are known to be involved in the reaction of plants to a wide range of biotic and abiotic stress factors. Here, we studied the differential expression of genes involved in stress and defence responses in systemic tissue of rice infected with the root knot nematode (RKN) Meloidogyne graminicola and the migratory root rot nematode Hirschmanniella oryzae, two agronomically important rice pathogens with very different lifestyles. qRT-PCR revealed that all investigated systemic tissues had significantly lower expression of isochorismate synthase, a key enzyme for salicylic acid production involved in basal defence and systemic acquired resistance. The systemic defence response upon migratory nematode infection was remarkably similar to fungal rice blast infection. Almost all investigated defence-related genes were up-regulated in rice shoots 3 days after root rot nematode attack, including the phenylpropanoid pathway, ethylene pathway and PR genes, but many of which were suppressed at 7 dpi. Systemic shoot tissue of RKN-infected plants showed similar attenuation of expression of almost all studied genes already at 3 dpi, with clear attenuation of the ethylene pathway and methyl jasmonate biosynthesis. These results provide an interesting starting point for further studies to elucidate how nematodes are able to suppress systemic plant defence mechanisms and the effect in multitrophic interactions.
Collapse
Affiliation(s)
- T Kyndt
- Department of Molecular Biotechnology, Ghent University (UGent), Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Characterization of four defense-related genes up-regulated in root nodules of Casuarina glauca. Symbiosis 2009. [DOI: 10.1007/s13199-009-0031-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
de Almeida Engler J, De Veylder L, De Groodt R, Rombauts S, Boudolf V, De Meyer B, Hemerly A, Ferreira P, Beeckman T, Karimi M, Hilson P, Inzé D, Engler G. Systematic analysis of cell-cycle gene expression during Arabidopsis development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:645-60. [PMID: 19392699 DOI: 10.1111/j.1365-313x.2009.03893.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The steady-state distribution of cell-cycle transcripts in Arabidopsis thaliana seedlings was studied in a broad in situ survey to provide a better understanding of the expression of cell-cycle genes during plant development. The 61 core cell-cycle genes analyzed were expressed at variable levels throughout the different plant tissues: 23 genes generally in dividing and young differentiating tissues, 34 genes mostly in both dividing and differentiated tissues and four gene transcripts primarily in differentiated tissues. Only 21 genes had a typical patchy expression pattern, indicating tight cell-cycle regulation. The increased expression of 27 cell-cycle genes in the root elongation zone hinted at their involvement in the switch from cell division to differentiation. The induction of 20 cell-cycle genes in differentiated cortical cells of etiolated hypocotyls pointed to their possible role in the process of endoreduplication. Of seven cyclin-dependent kinase inhibitor genes, five were upregulated in etiolated hypocotyls, suggesting a role in cell-cycle arrest. Nineteen genes were preferentially expressed in pericycle cells activated by auxin that give rise to lateral root primordia. Approximately 1800 images have been collected and can be queried via an online database. Our in situ analysis revealed that 70% of the cell-cycle genes, although expressed at different levels, show a large overlap in their localization. The lack of regulatory motifs in the upstream regions of the analyzed genes suggests the absence of a universal transcriptional control mechanism for all cell-cycle genes.
Collapse
Affiliation(s)
- Janice de Almeida Engler
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Swiecicka M, Filipecki M, Lont D, Van Vliet J, Qin L, Goverse A, Bakker J, Helder J. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis. MOLECULAR PLANT PATHOLOGY 2009; 10:487-500. [PMID: 19523102 PMCID: PMC6640267 DOI: 10.1111/j.1364-3703.2009.00550.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.
Collapse
Affiliation(s)
- Magdalena Swiecicka
- Department of Plant Genetics Breeding and Biotechnology, Warsaw University of Life Sciences, Poland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Cosio C, Dunand C. Specific functions of individual class III peroxidase genes. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:391-408. [PMID: 19088338 DOI: 10.1093/jxb/ern318] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In higher plants, class III peroxidases exist as large multigene families (e.g. 73 genes in Arabidopsis thaliana). The diversity of processes catalysed by peroxidases as well as the large number of their genes suggests the possibility of a functional specialization of each isoform. In addition, the fact that peroxidase promoter sequences are very divergent and that protein sequences contain both highly conserved domains and variable regions supports this hypothesis. However, two difficulties are associated with the study of the function of specific peroxidase genes: (i) the modification of the expression of a single peroxidase gene often results in no visible mutant phenotype, because it is compensated by redundant genes; and (ii) peroxidases show low substrate specificity in vitro resulting in an unreliable indication of peroxidase specific activity unless complementary data are available. The generalization of molecular biology approaches such as whole transcriptome analysis and recombinant DNA combined with biochemical approaches provide unprecedented tools for overcoming these difficulties. This review highlights progress made with these new techniques for identifying the specific function of individual class III peroxidase genes taking as an example the model plant A. thaliana, as well as discussing some other plants.
Collapse
Affiliation(s)
- Claudia Cosio
- Laboratory of Plant Physiology, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
20
|
Li Y, Fester T, Taylor CG. Transcriptomic Analysis of Nematode Infestation. CELL BIOLOGY OF PLANT NEMATODE PARASITISM 2009. [DOI: 10.1007/978-3-540-85215-5_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Fuller VL, Lilley CJ, Atkinson HJ, Urwin PE. Differential gene expression in Arabidopsis following infection by plant-parasitic nematodes Meloidogyne incognita and Heterodera schachtii. MOLECULAR PLANT PATHOLOGY 2007; 8:595-609. [PMID: 20507524 DOI: 10.1111/j.1364-3703.2007.00416.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
SUMMARY Whole genome microarrays were used to study plant gene expression in mature Meloidogyne incognita-induced galls in Arabidopsis. We found 959 genes to be significantly differentially expressed, and two-thirds of these were down-regulated. Microarray results were confirmed by qRT-PCR. The temporal and spatial responses of four differentially expressed genes were analysed using GUS reporter plants following infection with M. incognita and the cyst nematode Heterodera schachtii. The ammonium transporter gene AtAMT1;2 was consistently and locally repressed in response to both nematodes at all developmental stages. The lateral organ boundary domain gene LBD41 showed up-regulation in the feeding sites of both nematode species, although there was variation in expression in saccate H. schachtii female feeding sites. Expression of an actin depolymerizing factor ADF3 and a lipid transfer protein was induced in feeding sites of both nematodes at the fusiform stage and this persisted in feeding sites of saccate M. incognita. These results contribute to the knowledge of how plant gene expression responds to parasitism by these nematodes as well as highlighting further differences in the mechanisms of development and maintenance of these feeding site structures.
Collapse
|
22
|
Ithal N, Recknor J, Nettleton D, Hearne L, Maier T, Baum TJ, Mitchum MG. Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:293-305. [PMID: 17378432 DOI: 10.1094/mpmi-20-3-0293] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Global analysis of gene expression changes in soybean (Glycine max) and Heterodera glycines (soybean cyst nematode [SCN]) during the course of infection in a compatible interaction was performed using the Affymetrix GeneChip soybean genome array. Among 35,611 soybean transcripts monitored, we identified 429 genes that showed statistically significant differential expression between uninfected and nematode-infected root tissues. These included genes encoding enzymes involved in primary metabolism; biosynthesis of phenolic compounds, lignin, and flavonoids; genes related to stress and defense responses; cell wall modification; cellular signaling; and transcriptional regulation. Among 7,431 SCN transcripts monitored, 1,850 genes showed statistically significant differential expression across different stages of nematode parasitism and development. Differentially expressed SCN genes were grouped into nine different clusters based on their expression profiles during parasitism of soybean roots. The patterns of gene expression we observed in SCN suggest coordinated regulation of genes involved in parasitism. Quantitative real-time reverse-transcription polymerase chain reaction confirmed the results of our microarray analysis. The simultaneous genome-wide analysis of gene expression changes in the host and pathogen during a compatible interaction provides new insights into soybean responses to nematode infection and the first profile of transcript abundance changes occurring in the nematode as it infects and establishes a permanent feeding site within a host plant root.
Collapse
|
23
|
Puthoff DP, Ehrenfried ML, Vinyard BT, Tucker ML. GeneChip profiling of transcriptional responses to soybean cyst nematode, Heterodera glycines, colonization of soybean roots. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3407-18. [PMID: 17977850 DOI: 10.1093/jxb/erm211] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Soybean cyst nematode (SCN) is currently the most devastating pathogen of soybean. SCN penetrates the root and migrates toward the central vascular bundle where it establishes a complex multinucleated feeding structure that provides plant-derived nutrients to support the development and growth of the nematode. To identify host genes that play significant roles in SCN development in susceptible roots, RNA from SCN-inoculated and non-inoculated root pieces were hybridized to the Affymetrix soybean genome GeneChips. RNA was collected at 8, 12, and 16 d post-inoculation from root pieces that displayed multiple swollen female SCN and similar root pieces from non-inoculated roots. Branch roots and root tips were trimmed from the root pieces to minimize the amount of RNA contributed by these organs. Of the 35 593 transcripts represented on the GeneChip, approximately 26,500 were expressed in the SCN-colonized root pieces. ANOVA followed by False Discovery Rate analysis indicated that the expression levels of 4616 transcripts changed significantly (Q-value < or =0.05) in response to SCN. In this set of 4616 transcripts, 1404 transcripts increased >2-fold and 739 decreased >2-fold. Of the transcripts to which a function could be assigned, a large proportion was associated with cell wall structure. Other functional categories that included a large number of up-regulated transcripts were defence, metabolism, and histones, and a smaller group of transcripts associated with signal transduction and transcription.
Collapse
Affiliation(s)
- David P Puthoff
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, BARC-West, Beltsville, MD 20705, USA
| | | | | | | |
Collapse
|
24
|
Kim JS. Diaminopimelate Decarboxylase from Arabidopsis Contains Motifs for Pyridoxal-5`-phosphate and Substrate. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/ajps.2006.260.265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Vercesi AE, Borecký J, Maia IDG, Arruda P, Cuccovia IM, Chaimovich H. Plant uncoupling mitochondrial proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:383-404. [PMID: 16669767 DOI: 10.1146/annurev.arplant.57.032905.105335] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Uncoupling proteins (UCPs) are membrane proteins that mediate purine nucleotide-sensitive free fatty acid-activated H(+) flux through the inner mitochondrial membrane. After the discovery of UCP in higher plants in 1995, it was acknowledged that these proteins are widely distributed in eukaryotic organisms. The widespread presence of UCPs in eukaryotes implies that these proteins may have functions other than thermogenesis. In this review, we describe the current knowledge of plant UCPs, including their discovery, biochemical properties, distribution, gene family, gene expression profiles, regulation of gene expression, and evolutionary aspects. Expression analyses and functional studies on the plant UCPs under normal and stressful conditions suggest that UCPs regulate energy metabolism in the cellular responses to stress through regulation of the electrochemical proton potential (Deltamu(H)+) and production of reactive oxygen species.
Collapse
Affiliation(s)
- Aníbal Eugênio Vercesi
- Laboratório de Bioenergética, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
26
|
Klink VP, Alkharouf N, MacDonald M, Matthews B. Laser capture microdissection (LCM) and expression analyses of Glycine max (soybean) syncytium containing root regions formed by the plant pathogen Heterodera glycines (soybean cyst nematode). PLANT MOLECULAR BIOLOGY 2005; 59:965-79. [PMID: 16307369 DOI: 10.1007/s11103-005-2416-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2005] [Accepted: 08/22/2005] [Indexed: 05/05/2023]
Abstract
Roots of soybean, Glycine max cv. Kent L. Merr., plants susceptible to the soybean cyst nematode (SCN), Heterodera glycines Ichinohe, were inoculated and allowed to develop feeding sites (syncytia) for 8 days. Root samples enriched in syncytial cells were collected using laser capture microdissection (LCM). RNA was extracted and used to make a cDNA library and expressed sequence tags (ESTs) were produced and used for a Gene Ontology (GO) analysis. RT-PCR results indicated enhanced expression of an aquaporin (GmPIP2,2), alpha-tubulin (GmTubA1), beta-tubulin (GmTubB4) and several other genes in syncytium-enriched samples as compared to samples extracted from whole roots. While RT-PCR data showed increased transcript levels of GmPIP2,2 from LCM tissue enriched in syncytial cells, in situ hybridization showed prominent GmPIP2,2 hybridization to RNA in the parenchymal cells tightly juxtaposed to the syncytium. Immunolocalization indicated stronger alpha-tubulin signal within the syncytium as compared to surrounding tissue. However, alpha-tubulin labeling appeared diffuse or clumped. Thus, LCM allowed for the isolation of tissue enriched for syncytial cells, providing material suitable for a variety of molecular analyses.
Collapse
Affiliation(s)
- Vincent P Klink
- United States Department of Agriculture, 10300, Baltimore Ave., Bldg. 006, Rm. 118, Beltsville, MD, 20705-2350, USA.
| | | | | | | |
Collapse
|
27
|
Jammes F, Lecomte P, de Almeida-Engler J, Bitton F, Martin-Magniette ML, Renou JP, Abad P, Favery B. Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:447-58. [PMID: 16236154 DOI: 10.1111/j.1365-313x.2005.02532.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During a compatible interaction, root-knot nematodes (Meloidogyne spp.) induce the redifferentiation of root cells into multinucleate nematode feeding cells (giant cells). Hyperplasia and hypertrophy of the surrounding cells leads to the formation of a root gall. We investigated the plant response to root-knot nematodes by carrying out a global analysis of gene expression during gall formation in Arabidopsis, using giant cell-enriched root tissues. Among 22 089 genes monitored with the complete Arabidopsis transcriptome microarray gene-specific tag, we identified 3373 genes that display significant differential expression between uninfected root tissues and galls at different developmental stages. Quantitative PCR analysis and the use of promoter GUS fusions confirmed the changes in mRNA levels observed in our microarray analysis. We showed that a comparable number of genes were found to be up- and downregulated, indicating that gene downregulation might be essential to allow proper gall formation. Moreover, many genes belonging to the same family are differently regulated in feeding cells. This genome-wide overview of gene expression during plant-nematode interaction provides new insights into nematode feeding-cell formation, and highlights that the suppression of plant defence is associated with nematode feeding-site development.
Collapse
Affiliation(s)
- Fabien Jammes
- UMR INRA 1064-UNSA-CNRS 6192, Interactions Plantes-Microorganismes et Santé Végétale, 400 route des Chappes, BP 167, 06903 Sophia Antipolis, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fragoso RDR, Batista JAN, Neto OBO, Grossi de Sá MF. Isolation and characterization of a cDNA encoding a serine proteinase from the root-knot nematode Meloidogyne incognita. Exp Parasitol 2005; 110:123-33. [PMID: 15888294 DOI: 10.1016/j.exppara.2005.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 02/14/2005] [Accepted: 02/16/2005] [Indexed: 11/18/2022]
Abstract
This report describes the first serine proteinase gene isolated from the sedentary nematode Meloidogyne incognita. Using degenerate primers, a 1372bp cDNA encoding a chymotrypsin-like serine proteinase (Mi-ser1) was amplified from total RNA of adult females by RT-PCR and 5' and 3' rapid amplification of cDNA ends. The deduced amino acid sequence of Mi-ser1 encoded a putative signal peptide and a prodomain of 22 and 33 amino acids, respectively, and a mature proteinase of 341 amino acids with a predicted molecular mass of 37,680Da. Sequence identity with the top serine proteinases matches from the databases ranged from 23 to 27%, including sequences from insects, mammals, and other nematodes. Southern blot analysis suggested that Mi-ser1 is encoded by a single or few gene copies. The pattern of developmental expression analyzed by Northern blot and RT-PCR indicated that Mi-ser1 was transcribed mainly in females. The domain architecture composed of a single chymotrypsin-like catalytic domain and the detection of a putative signal peptide suggested a digestive role for Mi-ser1.
Collapse
|
29
|
Tytgat T, Vercauteren I, Vanholme B, De Meutter J, Vanhoutte I, Gheysen G, Borgonie G, Coomans A, Gheysen G. An SXP/RAL-2 protein produced by the subventral pharyngeal glands in the plant parasitic root-knot nematode Meloidogyne incognita. Parasitol Res 2004; 95:50-4. [PMID: 15565464 DOI: 10.1007/s00436-004-1243-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Accepted: 09/23/2004] [Indexed: 10/26/2022]
Abstract
Meloidogyne incognita is a major parasite of numerous plant families, including many crop species. Upon infection of the plant root, it induces several multinucleate giant cells by the injection of pharyngeal gland secretions into the root cells. In order to obtain a better understanding of the nematode-plant interaction, characterization of the pharyngeal gland secretions is a necessity. By differential display, a nematode gene was identified that encodes a new member of the SXP/RAL-2 protein family. The gene is specifically expressed in the subventral pharyngeal glands and the protein is most likely secreted.
Collapse
Affiliation(s)
- Tom Tytgat
- Department of Biology, Section Nematology, Ghent University, K.L. Ledeganckstraat 35, 9000 , Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vercauteren I, Geldhof P, Vercruysse J, Peelaers I, van den Broeck W, Gevaert K, Claerebout E. Vaccination with an Ostertagia ostertagi polyprotein allergen protects calves against homologous challenge infection. Infect Immun 2004; 72:2995-3001. [PMID: 15102812 PMCID: PMC387912 DOI: 10.1128/iai.72.5.2995-3001.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
As an alternative to antihelminthic drugs, we are exploiting vaccination to control infections with the abomasal nematode Ostertagia ostertagi in cattle. Our focus for vaccine targets is excretory-secretory (ES) products of this parasite. One of the most abundant antigens in larval and adult Ostertagia ES products is a protein homologous to nematode polyprotein allergens. We found that the Ostertagia polyprotein allergen (OPA) is encoded by a single-copy gene. OPA comprises three or more repeated units, and only the 15-kDa subunits are found in ES products. The native antigen is localized in the intestinal cells of third-stage larvae and in the hypodermis and cuticle of fourth-stage larvae and adult parasites. Vaccination of cattle with native OPA (nOPA) in combination with QuilA resulted in protection against Ostertagia challenge infections. The geometric mean cumulative fecal egg counts in the nOPA-vaccinated animals were reduced by 60% compared to the counts in the control group during the 2-month course of the experiment. Both male and female adult worms in nOPA-vaccinated animals were significantly shorter than the worms in the control animals. In the abomasal mucus of vaccinated animals the nOPA-specific immunoglobulin G1 (IgG1) and IgG2 levels were significantly elevated compared to the levels in the control animals. Reductions in the Ostertagia egg output and the length of the adult parasites were significantly correlated with IgG1 levels. IgG2 titers were only negatively associated with adult worm length. Protected animals showed no accumulation of effector cells (mast cells, globular leukocytes, and eosinophils) in the mucosa. In contrast to the native antigen, recombinant OPA expressed in Escherichia coli did not stimulate any protection.
Collapse
Affiliation(s)
- Isabel Vercauteren
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
31
|
Vaghchhipawala ZE, Schlueter JA, Shoemaker RC, Mackenzie SA. Soybean FGAM synthase promoters direct ectopic nematode feeding site activity. Genome 2004; 47:404-13. [PMID: 15060594 DOI: 10.1139/g03-110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Soybean cyst nematode (SCN) resistance in soybean is a complex oligogenic trait. One of the most important nematode resistance genes, rhg1, has been mapped to a distal region of molecular linkage group G in soybean. A simplified genetic system to identify soybean genes with modified expression in response to SCN led to the identification of several genes within the nematode feeding sites. The genes were mapped to reveal their linkage relationship to known QTLs associated with soybean cyst nematode (SCN) resistance. One candidate, a phosphoribosyl formyl glycinamidine (FGAM) synthase (EC 6.3.5.3) gene, mapped to the same genomic interval as the major SCN resistance gene rhg1 within linkage group G. Isolation of FGAM synthase from a soybean bacterial artificial chromosome (BAC) library revealed two highly homologous paralogs. The genes appeared to be well conserved between bacteria and humans. Promoter analysis of the two soybean homologs was carried out with the Arabidopsis thaliana - Heterodera schachtii system to investigate gene response to nematode feeding. The two promoters and their derived deletion constructions effected green fluorescent protein (GFP) expression within nematode feeding sites. The 1.0-kb promoter sequence immediately adjacent to the translation start site was sufficient to direct expression of GFP within syncytia. A wound-inducible element and a floral organ expression sequence were also identified within these promoters. Although a nematode-responsive element could not be identified, the observed expression of GFP within feeding sites supports the hypothesis that plant gene expression is redirected within feeding sites to benefit the parasite.
Collapse
|
32
|
Lilley CJ, Urwin PE, Johnston KA, Atkinson HJ. Preferential expression of a plant cystatin at nematode feeding sites confers resistance to Meloidogyne incognita and Globodera pallida. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:3-12. [PMID: 17166138 DOI: 10.1046/j.1467-7652.2003.00037.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The expression patterns of three promoters preferentially active in the roots of Arabidopsis thaliana have been investigated in transgenic potato plants in response to plant parasitic nematode infection. Promoter regions from the three genes, TUB-1, ARSK1 and RPL16A were linked to the GUS reporter gene and histochemical staining was used to localize expression in potato roots in response to infection with both the potato cyst nematode, Globodera pallida and the root-knot nematode, Meloidogyne incognita. All three promoters directed GUS expression chiefly in root tissue and were strongly up-regulated in the galls induced by feeding M. incognita. Less activity was associated with the syncytial feeding cells of the cyst nematode, although the ARSK1 promoter was highly active in the syncytia of G. pallida infecting soil grown plants. Transgenic potato lines that expressed the cystatin OcIDeltaD86 under the control of the three promoters were evaluated for resistance against Globodera sp. in a field trial and against M. incognita in containment. Resistance to Globodera of 70 +/- 4% was achieved with the best line using the ARSK1 promoter with no associated yield penalty. The highest level of partial resistance achieved against M. incognita was 67 +/- 9% using the TUB-1 promoter. In both cases this was comparable to the level of resistance achieved using the constitutive cauliflower mosaic virus 35S (CaMV35S) promoter. The results establish the potential for limiting transgene expression in crop plants whilst maintaining efficacy of the nematode defence.
Collapse
|
33
|
Wang Z, Potter RH, Jones MGK. Differential display analysis of gene expression in the cytoplasm of giant cells induced in tomato roots by Meloidogyne javanica. MOLECULAR PLANT PATHOLOGY 2003; 4:361-71. [PMID: 20569396 DOI: 10.1046/j.1364-3703.2003.00184.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
SUMMARY Giant cells induced by root-knot nematodes are highly specialized cells which function as transfer cells and provide nutrients to support the growth and reproduction of the nematode. Changes in the overall pattern of gene expression in giant cells occur during the formation and maintenance of the nematode feeding cells. Differential display analysis has been carried out to detect changes in gene expression in giant cells induced in tomato roots by Meloidogyne javanica, using mRNA isolated directly from mature giant cell cytoplasm, compared to non-infected root tissue. Eighty-one differential displayed bands were generated, and of these, 73 were up-regulated and 8 were down-regulated. Twenty-seven sequences were obtained by direct sequencing of the bands, and 16 fragments were further analysed by real-time quantitative RT-PCR. The most highly up-regulated transcript increased 56-fold in giant cells, and the greatest down-regulation was 11-fold. A time course of expression of the highest and lowest expressed transcripts was also undertaken by quantitative RT-PCR using giant cell enriched tissue. These showed similar changes in expression, but values were dramatically reduced. This result shows the importance of analysing giant cell cytoplasm directly, rather than starting with giant cell enriched tissue, to obtain accurate information on changes in gene expression in nematode feeding cells. Sequenced transcripts showed significant homology to mitogen-activated protein kinase, S-adenosylmethionine decarboxylase, cysteine synthase, cytochrome c reductase subunit, and ribosomal proteins. The expression analysed reflects the high metabolic rate in mature giant cells rather than processes of giant cell induction.
Collapse
Affiliation(s)
- Zhaohui Wang
- Western Australian State Agricultural Biotechnology Center (SABC), Murdoch University, Perth, WA 6150, Australia
| | | | | |
Collapse
|
34
|
Abstract
Root-knot nematodes and cyst nematodes are obligate, biotrophic pathogens of numerous plant species. These organisms cause dramatic changes in the morphology and physiology of their hosts. The molecular characterization of induced plant genes has provided insight into the plant processes that are usurped by nematodes as they establish their specialized feeding cells. Recently, several gene products have been identified that are secreted by the nematode during parasitism. The corresponding genes have strong similarity to microbial genes or to genes that are found in nematodes that parasitize animals. New information on host resistance genes and nematode virulence genes provides additional insight into this complex interaction.
Collapse
Affiliation(s)
- Valerie M Williamson
- Department of Nematology, One Shields Avenue, University of California, 95616, Davis, California, USA.
| | | |
Collapse
|
35
|
Abad P, Favery B, Rosso MN, Castagnone-Sereno P. Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. MOLECULAR PLANT PATHOLOGY 2003; 4:217-24. [PMID: 20569382 DOI: 10.1046/j.1364-3703.2003.00170.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
UNLABELLED SUMMARY Taxonomy: Eukaryota; Metazoa; Nematoda; Chromadorea; order Tylenchida; Tylenchoidea; Heteroderidae; genus Meloidogyne. Physical properties: Microscopic-non-segmented worms. Meloidogyne species can reproduce by apomixis, facultative meiotic parthenogenesis or obligate mitotic parthenogenesis. Obligate biotrophic parasites inducing the re-differentiation of plant cells into specialized feeding cells. Hosts: Meloidogyne spp. can infest more than 3000 plant species including vegetables, fruit trees, cereals and ornamental flowers. SYMPTOMS Root swellings called galls. Alteration of the root vascular system. Disease control: Cultural control, chemical control, resistant cultivars. Agronomic importance: Major threat to agriculture in temperate and tropical regions.
Collapse
Affiliation(s)
- Pierre Abad
- INRA, Unité Interactions Plantes-Microorganismes et Santé Végétale, 123 Bd. Francis Meilland, BP2078, 06606 Antibes Cedex, France
| | | | | | | |
Collapse
|
36
|
Brandalise M, Maia IG, Borecký J, Vercesi AE, Arruda P. Overexpression of plant uncoupling mitochondrial protein in transgenic tobacco increases tolerance to oxidative stress. J Bioenerg Biomembr 2003; 35:203-9. [PMID: 13678271 DOI: 10.1023/a:1024603530043] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An Arabidopsis thaliana cDNA clone encoding a plant uncoupling mitochondrial protein (AtPUMP1) was overexpressed in transgenic tobacco plants. Analysis of the AtPUMP1 mRNA content in the transgenic lines, determined by Northern blot, revealed variable levels of transgene expression. Antibody probing of Western blots of mitochondrial proteins from three independent transgenic lines showed significant accumulation of AtPUMP1 in this organelle. Overproduction of AtPUMP1 in transgenic tobacco plants led to a significant increase in tolerance to oxidative stress promoted by exogenous hydrogen peroxide as compared to wild-type control plants. These results provide the first biological evidence for a role of PUMP in protection of plant cells against oxidative stress damage.
Collapse
Affiliation(s)
- Marcos Brandalise
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, C.P. 6010, 13083-970, Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
37
|
Puthoff DP, Nettleton D, Rodermel SR, Baum TJ. Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:911-21. [PMID: 12609032 DOI: 10.1046/j.1365-313x.2003.01677.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
With the availability of microarray technology, the expression profiles of thousands of genes can be monitored simultaneously to help determine the mechanisms of these biological processes. We conducted Affymetrix GeneChip microarray analyses of the Arabidopsis-cyst nematode interaction and employed a statistical procedure to analyze the resultant data, which allowed us to identify significant gene expression changes. Quantitative real-time RT-PCR assays were used to confirm the microarray analyses. The results of the expression profiling revealed 128 genes with altered steady-state mRNA levels following infection by the sugar beet cyst nematode (Heterodera schachtii; BCN), in contrast to only 12 genes that had altered expression following infection by the soybean cyst nematode (H. glycines; SCN). The expression of these 12 genes also changed following infection by BCN, i.e. we did not identify any genes regulated exclusively by SCN. The identification of 116 genes whose expression changes during successful cyst nematode parasitism by BCN suggests a potential involvement of these genes in the infection events starting with successful syncytium induction. Further characterization of these genes will permit the formulation of testable hypotheses to explain successful cyst nematode parasitism.
Collapse
Affiliation(s)
- David P Puthoff
- Department of Plant Pathology, 351 Bessey Hall, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
38
|
Vercauteren I, de Almeida Engler J, De Groodt R, Gheysen G. An Arabidopsis thaliana pectin acetylesterase gene is upregulated in nematode feeding sites induced by root-knot and cyst nematodes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:404-7. [PMID: 12026180 DOI: 10.1094/mpmi.2002.15.4.404] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
By using differential display, gene expression was investigated in Arabidopsis thaliana roots shortly after nematode infection, and a putative pectin acetylesterase (PAE) homolog (DiDi 9C-12) was found to be upregulated. PAEs catalyze the deacetylation of pectin, a major compound of primary cell walls. mRNA in situ hybridization experiments showed that the expression of DiDi 9C-12 was enhanced very early after infection in initiating giant-cells and in cells surrounding the nematodes. Later on, the level of DiDi 9C-12 mRNA was lower in giant-cells and transcripts were mainly found in parenchyma, endodermis, and pericycle cells of the root gall. Twenty days after infection, DiDi 9C-12 transcripts could no longer be detected. DiDi 9C-12 transcripts were also found in young syncytia and in the cells surrounding the expanding syncytium. Our results suggest that plant parasitic nematodes can modulate the rapid growth of the feeding cells and the expansion of the root gall by triggering the expression of DiDi 9C-12. PAEs, which probably act together with a range of other pectin-degrading enzymes, could be involved in softening and loosening the primary cell wall in nematode-infected plant roots.
Collapse
Affiliation(s)
- Isabel Vercauteren
- Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
39
|
Abstract
The feeding sites induced by sedentary root-endoparasitic nematodes have long fascinated researchers. Nematode feeding sites are constructed from plant cells, modified by the nematode to feed itself. Powerful new techniques are allowing us to begin to elucidate the molecular mechanisms that produce the ultrastructural features in nematode feeding cells. Many plant genes that are expressed in feeding sites produced by different nematodes have been identified in several plant species. Nematode-responsive plant genes can now be grouped in categories related to plant developmental pathways and their roles in the making of a feeding site can be illuminated. The black box of how nematodes bring about such elaborate cell differentiation in the plant is also starting to open. Although the information is far from complete, the groundwork is set so that the functions of the plant and nematode genes in feeding site development can begin to be assessed.
Collapse
Affiliation(s)
- Godelieve Gheysen
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, K.L. Ledeganckstraat 35, Belgium.
| | | |
Collapse
|