1
|
Yang N, Shan X, Wang K, Lu J, Zhu Y, Regina RS, Rodriguez RJ, Yao J, Martin FM, Yuan Z. A fusarioid fungus forms mutualistic interactions with poplar trees that resemble ectomycorrhizal symbiosis. IMA Fungus 2025; 16:e143240. [PMID: 40093759 PMCID: PMC11909594 DOI: 10.3897/imafungus.16.143240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Fusarium species, recognised as global priority pathogens, frequently induce severe diseases in crops; however, certain species exhibit alternative symbiotic lifestyles and are either non-pathogenic or endophytic. In this study, we characterised the mutualistic relationship between the eFp isolate of F.pseudograminearum and five poplar species, resulting in formation root structures reminiscent of ectomycorrhizal (ECM) symbiosis. This functional symbiosis is evidenced by enhanced plant growth, reciprocal nutrient exchange, improved nitrogen and phosphorus uptake and upregulation of root sugar transporter gene expression (PtSweet1). Comparative and population genomics confirmed that eFp maintains a structurally similar genome, but exhibits significant divergence from ten conspecific pathogenic isolates. Notably, eFp enhanced the growth of diverse plant lineages (Oryza, Arabidopsis, Pinus and non-vascular liverworts), indicating a near-complete loss of virulence. Although this specialised symbiosis has only been established in vitro, it holds significant value in elucidating the evolutionary track from endophytic to mycorrhizal associations.
Collapse
Affiliation(s)
- Ningning Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China Research Institute of Subtropical Forestry, Chinese Academy of Forestry Hangzhou China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry Beijing China
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Hangzhou 311400, China Zhejiang Key Laboratory of Forest Genetics and Breeding Hangzhou China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China Nanjing Forestry University Nanjing China
| | - Xiaoliang Shan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China Nanjing Forestry University Nanjing China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 21004, China Nanjing Agricultural University Nanjing China
| | - Kexuan Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China Nanjing Forestry University Nanjing China
| | - Junkun Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China Research Institute of Subtropical Forestry, Chinese Academy of Forestry Hangzhou China
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China Research Institute of Tropical Forestry, Chinese Academy of Forestry Guangzhou China
| | - Ying Zhu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China Institute of Biology, Gansu Academy of Sciences Lanzhou China
| | - Redman S Regina
- Adaptive Symbiotic Technologies, University of Washington, Seattle, WA 98195, USA University of Washington Seattle United States of America
| | - Russell J Rodriguez
- Adaptive Symbiotic Technologies, University of Washington, Seattle, WA 98195, USA University of Washington Seattle United States of America
| | - Jiajia Yao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China Nanjing Forestry University Nanjing China
| | - Francis M Martin
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China Nanjing Forestry University Nanjing China
- INRA, UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, Champenoux, France INRA-Université de Lorraine 'Interactions Arbres/Microorganismes' Champenoux France
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China Research Institute of Subtropical Forestry, Chinese Academy of Forestry Hangzhou China
- Zhejiang Key Laboratory of Forest Genetics and Breeding, Hangzhou 311400, China Zhejiang Key Laboratory of Forest Genetics and Breeding Hangzhou China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China Nanjing Forestry University Nanjing China
| |
Collapse
|
2
|
Quo vadis: signaling molecules and small secreted proteins from mycorrhizal fungi at the early stage of mycorrhiza formation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Zhao T, Arbelet-Bonnin D, Tran D, Monetti E, Lehner A, Meimoun P, Kadono T, Dauphin A, Errakhi R, Reboutier D, Cangémi S, Kawano T, Mancuso S, El-Maarouf-Bouteau H, Laurenti P, Bouteau F. Biphasic activation of survival and death pathways in Arabidopsis thaliana cultured cells by sorbitol-induced hyperosmotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110844. [PMID: 33691971 DOI: 10.1016/j.plantsci.2021.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Hyperosmotic stresses represent some of the most serious abiotic factors that adversely affect plants growth, development and fitness. Despite their central role, the early cellular events that lead to plant adaptive responses remain largely unknown. In this study, using Arabidopsis thaliana cultured cells we analyzed early cellular responses to sorbitol-induced hyperosmotic stress. We observed biphasic and dual responses of A. thaliana cultured cells to sorbitol-induced hyperosmotic stress. A first set of events, namely singlet oxygen (1O2) production and cell hyperpolarization due to a decrease in anion channel activity could participate to signaling and osmotic adjustment allowing cell adaptation and survival. A second set of events, namely superoxide anion (O2-) production by RBOHD-NADPH-oxidases and SLAC1 anion channel activation could participate in programmed cell death (PCD) of a part of the cell population. This set of events raises the question of how a survival pathway and a death pathway could be induced by the same hyperosmotic condition and what could be the meaning of the induction of two different behaviors in response to hyperosmotic stress.
Collapse
Affiliation(s)
- Tingting Zhao
- Université de Paris, Laboratoire des Energies de Demain, Paris, France
| | | | - Daniel Tran
- former EA3514, Université Paris Diderot, Paris, France
| | - Emanuela Monetti
- former EA3514, Université Paris Diderot, Paris, France; LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy
| | - Arnaud Lehner
- former EA3514, Université Paris Diderot, Paris, France
| | - Patrice Meimoun
- Université de Paris, Laboratoire des Energies de Demain, Paris, France; former EA3514, Université Paris Diderot, Paris, France; Université de Paris, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - Takashi Kadono
- former EA3514, Université Paris Diderot, Paris, France; Graduate School of Environmental Engineering, University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan
| | | | - Rafik Errakhi
- former EA3514, Université Paris Diderot, Paris, France
| | | | - Sylvie Cangémi
- Université de Paris, Laboratoire des Energies de Demain, Paris, France
| | - Tomonori Kawano
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy; Graduate School of Environmental Engineering, University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan; Université de Paris, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - Stefano Mancuso
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan; Université de Paris, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | | | - Patrick Laurenti
- Université de Paris, Laboratoire des Energies de Demain, Paris, France
| | - François Bouteau
- Université de Paris, Laboratoire des Energies de Demain, Paris, France; former EA3514, Université Paris Diderot, Paris, France; LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Viale delle Idee 30, 50019, Sesto Fiorentino (FI), Italy; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu, Japan.
| |
Collapse
|
4
|
Tran D, Zhao T, Arbelet-Bonnin D, Kadono T, Meimoun P, Cangémi S, Noûs C, Kawano T, Errakhi R, Bouteau F. Early Cellular Responses Induced by Sedimentary Calcite-Processed Particles in Bright Yellow 2 Tobacco Cultured Cells. Int J Mol Sci 2020; 21:E4279. [PMID: 32560138 PMCID: PMC7349144 DOI: 10.3390/ijms21124279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Calcite processed particles (CaPPs, Megagreen®) elaborated from sedimentary limestone rock, and finned by tribomecanic process were found to increase photosynthetic CO2 fixation grapevines and stimulate growth of various cultured plants. Due to their processing, the CaPPs present a jagged shape with some invaginations below the micrometer size. We hypothesised that CaPPs could have a nanoparticle (NP)-like effects on plants. Our data show that CaPPs spontaneously induced reactive oxygen species (ROS) in liquid medium. These ROS could in turn induce well-known cellular events such as increase in cytosolic Ca2+, biotic ROS generation and activation of anion channels indicating that these CaPPs could activate various signalling pathways in a NP-like manner.
Collapse
Affiliation(s)
- Daniel Tran
- Agroscope, Institute for Plant Production Systems, 1964 Conthey, Switzerland
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
| | - Tingting Zhao
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
| | - Delphine Arbelet-Bonnin
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
| | - Takashi Kadono
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
- Graduate School of Environmental Engineering, University of Kitakyushu 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan;
| | - Patrice Meimoun
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
| | - Sylvie Cangémi
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
| | | | - Tomonori Kawano
- Graduate School of Environmental Engineering, University of Kitakyushu 1-1, Hibikino, Wakamatsu-ku, Kitakyushu 808-0135, Japan;
- LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu 808-0135, Japan
- International Photosynthesis Industrialization Research Center, The University of Kitakyushu, Kitakyushu 808-0135, Japan
- Paris Interdisciplinary Energy Research Institute (PIERI), Université de Paris, 75013 Paris, France
| | - Rafik Errakhi
- Eurofins Agriscience Service, Casablanca 20000, Morocco;
| | - François Bouteau
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, 75013 Paris, France; (T.Z.); (D.A.-B.); (T.K.); (P.M.); (S.C.); (F.B.)
- LINV Kitakyushu Research Center (LINV@Kitakyushu), Kitakyushu 808-0135, Japan
- International Photosynthesis Industrialization Research Center, The University of Kitakyushu, Kitakyushu 808-0135, Japan
| |
Collapse
|
5
|
Basso V, Kohler A, Miyauchi S, Singan V, Guinet F, Šimura J, Novák O, Barry KW, Amirebrahimi M, Block J, Daguerre Y, Na H, Grigoriev IV, Martin F, Veneault-Fourrey C. An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots. PLANT, CELL & ENVIRONMENT 2020; 43:1047-1068. [PMID: 31834634 DOI: 10.1111/pce.13702] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The phytohormones jasmonate, gibberellin, salicylate, and ethylene regulate an interconnected reprogramming network integrating root development with plant responses against microbes. The establishment of mutualistic ectomycorrhizal symbiosis requires the suppression of plant defense responses against fungi as well as the modification of root architecture and cortical cell wall properties. Here, we investigated the contribution of phytohormones and their crosstalk to the ontogenesis of ectomycorrhizae (ECM) between grey poplar (Populus tremula x alba) roots and the fungus Laccaria bicolor. To obtain the hormonal blueprint of developing ECM, we quantified the concentrations of jasmonates, gibberellins, and salicylate via liquid chromatography-tandem mass spectrometry. Subsequently, we assessed root architecture, mycorrhizal morphology, and gene expression levels (RNA sequencing) in phytohormone-treated poplar lateral roots in the presence or absence of L. bicolor. Salicylic acid accumulated in mid-stage ECM. Exogenous phytohormone treatment affected the fungal colonization rate and/or frequency of Hartig net formation. Colonized lateral roots displayed diminished responsiveness to jasmonate but regulated some genes, implicated in defense and cell wall remodelling, that were specifically differentially expressed after jasmonate treatment. Responses to salicylate, gibberellin, and ethylene were enhanced in ECM. The dynamics of phytohormone accumulation and response suggest that jasmonate, gibberellin, salicylate, and ethylene signalling play multifaceted roles in poplar L. bicolor ectomycorrhizal development.
Collapse
Affiliation(s)
- Veronica Basso
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Annegret Kohler
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Shingo Miyauchi
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Vasanth Singan
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Frédéric Guinet
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Jan Šimura
- Laboratory of Growth, Palacký University, Faculty of Science & The Czech Academy of Sciences, Institute of Experimental Botany, Olomouc, The Czech Republic
| | - Ondřej Novák
- Laboratory of Growth, Palacký University, Faculty of Science & The Czech Academy of Sciences, Institute of Experimental Botany, Olomouc, The Czech Republic
| | - Kerrie W Barry
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Mojgan Amirebrahimi
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Jonathan Block
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
| | - Yohann Daguerre
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
- Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden
| | - Hyunsoo Na
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
| | - Igor V Grigoriev
- Joint Genome Institute (JGI), US Department of Energy, Walnut Creek, California
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California
| | - Francis Martin
- INRA, UMR Interactions Arbres/Microorganismes (IAM), Laboratoire d'excellence Recherches Avancés sur la Biologie de l'Arbre et les Ecosystèmes Forestiers (LabEx ARBRE), Centre INRA Grand-Est, University of Lorraine, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | | |
Collapse
|
6
|
Density functional theory studies of Hypaphorine from Erythrina mildbraedii and Erythrina addisoniae: structural and biological properties. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2228-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
7
|
Tran D, Dauphin A, Meimoun P, Kadono T, Nguyen HTH, Arbelet-Bonnin D, Zhao T, Errakhi R, Lehner A, Kawano T, Bouteau F. Methanol induces cytosolic calcium variations, membrane depolarization and ethylene production in arabidopsis and tobacco. ANNALS OF BOTANY 2018; 122:849-860. [PMID: 29579139 PMCID: PMC6215043 DOI: 10.1093/aob/mcy038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
Background and Aims Methanol is a volatile organic compound released from plants through the action of pectin methylesterases (PMEs), which demethylesterify cell wall pectins. Plant PMEs play a role in developmental processes but also in responses to herbivory and infection by fungal or bacterial pathogens. However, molecular mechanisms that explain how methanol could affect plant defences remain poorly understood. Methods Using cultured cells and seedlings from Arabidopsis thaliana and tobacco BY2 expressing the apoaequorin gene, allowing quantification of cytosolic Ca2+, a reactive oxygen species (ROS) probe (CLA, Cypridina luciferin analogue) and electrophysiological techniques, we followed early plant cell responses to exogenously supplied methanol applied as a liquid or as volatile. Key Results Methanol induces cytosolic Ca2+ variations that involve Ca2+ influx through the plasma membrane and Ca2+ release from internal stores. Our data further suggest that these Ca2+ variations could interact with different ROS and support a signalling pathway leading to well known plant responses to pathogens such as plasma membrane depolarization through anion channel regulation and ethylene synthesis. Conclusions Methanol is not only a by-product of PME activities, and our data suggest that [Ca2+]cyt variations could participate in signalling processes induced by methanol upstream of plant defence responses.
Collapse
Affiliation(s)
- Daniel Tran
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Department of Physiology & Cell Information Systems Group, McGill University, Montréal, Québec, Canada
| | - Aurélien Dauphin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Institut Curie, CNRS UMR3215, INSERM U934, Paris, France
| | - Patrice Meimoun
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Sorbonne Université, UMR7622–IBPS, Paris, France
| | - Takashi Kadono
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Laboratory of Aquatic Environmental Science, Kochi University, Kochi, Japan
| | - Hieu T H Nguyen
- Graduate School of Environmental Engineering, University of Kitakyushu, Wakamatsu-ku, Kitakyushu, Japan
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Tingting Zhao
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Rafik Errakhi
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Eurofins Agriscience Service, Marocco
| | - Arnaud Lehner
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- Normandie Université, UNIROUEN, Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, SFR Normandie végétal, Rouen, France
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, University of Kitakyushu, Wakamatsu-ku, Kitakyushu, Japan
- LINV Kitakyushu Research Center, Kitakyushu, Japan
- Université Paris Diderot, Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
- LINV Kitakyushu Research Center, Kitakyushu, Japan
| |
Collapse
|
8
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
9
|
Yekkour A, Tran D, Arbelet-Bonnin D, Briand J, Mathieu F, Lebrihi A, Errakhi R, Sabaou N, Bouteau F. Early events induced by the toxin deoxynivalenol lead to programmed cell death in Nicotiana tabacum cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:148-57. [PMID: 26259183 DOI: 10.1016/j.plantsci.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin affecting animals and plants. This toxin synthesized by Fusarium culmorum and Fusarium graminearum is currently believed to play a decisive role in the fungal phytopathogenesis as a virulence factor. Using cultured cells of Nicotiana tabacum BY2, we showed that DON-induced programmed cell death (PCD) could require transcription and translation processes, in contrast to what was observed in animal cells. DON could induce different cross-linked pathways involving (i) reactive oxygen species (ROS) generation linked, at least partly, to a mitochondrial dysfunction and a transcriptional down-regulation of the alternative oxidase (Aox1) gene and (ii) regulation of ion channel activities participating in cell shrinkage, to achieve PCD.
Collapse
Affiliation(s)
- Amine Yekkour
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France; Ecole Normale Supérieure de Kouba, Laboratoire de Biologie de Systèmes Microbiens, Alger, Algeria; Institut National de la Recherche Agronomique d'Algérie, Centre de Recherche polyvalent Mehdi Boualem, Alger, Algeria
| | - Daniel Tran
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Joël Briand
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France
| | - Florence Mathieu
- Université de Toulouse, Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/UPS), ENSAT/INP de Toulouse, Castanet-Tolosan Cedex, France
| | - Ahmed Lebrihi
- Université de Toulouse, Laboratoire de Génie Chimique UMR 5503 (CNRS/INPT/UPS), ENSAT/INP de Toulouse, Castanet-Tolosan Cedex, France; Université Moulay Ismail, Marjane 2, BP 298, Meknès, Maroc
| | - Rafik Errakhi
- Université Moulay Ismail, Marjane 2, BP 298, Meknès, Maroc
| | - Nasserdine Sabaou
- Ecole Normale Supérieure de Kouba, Laboratoire de Biologie de Systèmes Microbiens, Alger, Algeria
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain, Paris, France.
| |
Collapse
|
10
|
Plett JM, Kohler A, Khachane A, Keniry K, Plett KL, Martin F, Anderson IC. The effect of elevated carbon dioxide on the interaction between Eucalyptus grandis and diverse isolates of Pisolithus sp. is associated with a complex shift in the root transcriptome. THE NEW PHYTOLOGIST 2015; 206:1423-36. [PMID: 25377589 DOI: 10.1111/nph.13103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/26/2014] [Indexed: 05/15/2023]
Abstract
Using the newly available genome for Eucalyptus grandis, we sought to determine the genome-wide traits that enable this host to form mutualistic interactions with ectomycorrhizal (ECM) Pisolithus sp. and to determine how future predicted concentrations of atmospheric carbon dioxide (CO2 ) will affect this relationship. We analyzed the physiological and transcriptomic responses of E. grandis during colonization by different Pisolithus sp. isolates under conditions of ambient (400 ppm) and elevated (650 ppm) CO2 to tease out the gene expression profiles associated with colonization status. We demonstrate that E. grandis varies in its susceptibility to colonization by different Pisolithus isolates in a manner that is not predictable by geographic origin or the internal transcribed spacer (ITS)-based phylogeny of the fungal partner. Elevated concentrations of CO2 alter the receptivity of E. grandis to Pisolithus, a change that is correlated to a dramatic shift in the transcriptomic profile of the root. These data provide a starting point for understanding how future environmental change may alter the signaling between plants and their ECM partners and is a step towards determining the mechanism behind previously observed shifts in Eucalypt-associated fungal communities exposed to elevated concentrations of atmospheric CO2 .
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Annegret Kohler
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280, Champenoux, France
| | - Amit Khachane
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Kerry Keniry
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Krista L Plett
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| | - Francis Martin
- INRA, UMR 1136 INRA-University of Lorraine, Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRA-Nancy, 54280, Champenoux, France
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, University of Western Sydney, Richmond, NSW, 2753, Australia
| |
Collapse
|
11
|
Plett JM, Tisserant E, Brun A, Morin E, Grigoriev IV, Kuo A, Martin F, Kohler A. The Mutualist Laccaria bicolor Expresses a Core Gene Regulon During the Colonization of Diverse Host Plants and a Variable Regulon to Counteract Host-Specific Defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:261-73. [PMID: 25338146 DOI: 10.1094/mpmi-05-14-0129-fi] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The coordinated transcriptomic responses of both mutualistic ectomycorrhizal (ECM) fungi and their hosts during the establishment of symbiosis are not well-understood. This study characterizes the transcriptomic alterations of the ECM fungus Laccaria bicolor during different colonization stages on two hosts (Populus trichocarpa and Pseudotsuga menziesii) and compares this to the transcriptomic variations of P. trichocarpa across the same time-points. A large number of L. bicolor genes (≥ 8,000) were significantly regulated at the transcriptional level in at least one stage of colonization. From our data, we identify 1,249 genes that we hypothesize is the 'core' gene regulon necessary for the mutualistic interaction between L. bicolor and its host plants. We further identify a group of 1,210 genes that are regulated in a host-specific manner. This variable regulon encodes a number of genes coding for proteases and xenobiotic efflux transporters that we hypothesize act to counter chemical-based defenses simultaneously activated at the transcriptomic level in P. trichocarpa. The transcriptional response of the host plant P. trichocarpa consisted of differential waves of gene regulation related to signaling perception and transduction, defense response, and the induction of nutrient transfer in P. trichocarpa tissues. This study, therefore, gives fresh insight into the shifting transcriptomic landscape in both the colonizing fungus and its host and the different strategies employed by both partners in orchestrating a mutualistic interaction.
Collapse
|
12
|
Bouteau F, Bassaglia Y, Monetti E, Tran D, Navet S, Mancuso S, El-Maarouf-Bouteau H, Bonnaud-Ponticelli L. Could FaRP-Like Peptides Participate in Regulation of Hyperosmotic Stress Responses in Plants? Front Endocrinol (Lausanne) 2014; 5:132. [PMID: 25177313 PMCID: PMC4132272 DOI: 10.3389/fendo.2014.00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
The ability to respond to hyperosmotic stress is one of the numerous conserved cellular processes that most of the organisms have to face during their life. In metazoans, some peptides belonging to the FMRFamide-like peptide (FLP) family were shown to participate in osmoregulation via regulation of ion channels; this is, a well-known response to hyperosmotic stress in plants. Thus, we explored whether FLPs exist and regulate osmotic stress in plants. First, we demonstrated the response of Arabidopsis thaliana cultured cells to a metazoan FLP (FLRF). We found that A. thaliana express genes that display typical FLP repeated sequences, which end in RF and are surrounded by K or R, which is typical of cleavage sites and suggests bioactivity; however, the terminal G, allowing an amidation process in metazoan, seems to be replaced by W. Using synthetic peptides, we showed that amidation appears unnecessary to bioactivity in A. thaliana, and we provide evidence that these putative FLPs could be involved in physiological processes related to hyperosmotic stress responses in plants, urging further studies on this topic.
Collapse
Affiliation(s)
- François Bouteau
- Sorbonne Paris Cité, Institut des Energies de Demain, Université Paris Diderot, Paris, France
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino, Italy
| | - Yann Bassaglia
- Muséum National d’Histoire Naturelle, DMPA, Sorbonne Universités, UMR BOREA MNHN-CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
- Faculté des Sciences and Technologies, Université Paris Est Créteil-Val de Marne (UPEC), Créteil, France
| | - Emanuela Monetti
- Sorbonne Paris Cité, Institut des Energies de Demain, Université Paris Diderot, Paris, France
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino, Italy
| | - Daniel Tran
- Sorbonne Paris Cité, Institut des Energies de Demain, Université Paris Diderot, Paris, France
| | - Sandra Navet
- Sorbonne Paris Cité, Institut des Energies de Demain, Université Paris Diderot, Paris, France
| | - Stefano Mancuso
- LINV-DiSPAA, Department of Agri-Food and Environmental Science, University of Florence, Sesto Fiorentino, Italy
- Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Université Paris Diderot, Paris, France
| | | | - Laure Bonnaud-Ponticelli
- Muséum National d’Histoire Naturelle, DMPA, Sorbonne Universités, UMR BOREA MNHN-CNRS 7208-IRD 207-UPMC-UCBN, Paris, France
| |
Collapse
|
13
|
Pylro VS, de Freitas ALM, Otoni WC, da Silva IR, Borges AC, Costa MD. Calcium oxalate crystals in eucalypt ectomycorrhizae: morphochemical characterization. PLoS One 2013; 8:e67685. [PMID: 23844062 PMCID: PMC3699605 DOI: 10.1371/journal.pone.0067685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/19/2013] [Indexed: 12/02/2022] Open
Abstract
Ectomycorrhizal fungi are ubiquitous in forest ecosystems, benefitting plants principally by increasing the uptake of water and nutrients such as calcium from the soil. Previous work has demonstrated accumulation of crystallites in eucalypt ectomycorrhizas, but detailed morphological and chemical characterization of these crystals has not been performed. In this work, cross sections of acetic acid-treated and cleared ectomycorrhizal fragments were visualized by polarized light microscopy to evaluate the location of crystals within cortical root cells. Ectomycorrhizal sections were also observed by scanning electron microscopy (SEM) coupled with energy dispersive x-ray (EDS) microprobe analysis. The predominant forms of crystals were crystal sand (granules) and concretions. Calcium, carbon and oxygen were detected by EDS as constituent elements and similar elemental profiles were observed between both crystal morphologies. All analyzed crystalline structures were characterized as calcium oxalate crystals. This is the first report of the stoichiometry and morphology of crystals occurring in eucalypt ectomycorrhizas in tropical soils. The data corroborates the role of ectomycorrhizae in the uptake and accumulation of calcium in the form of calcium oxalate crystals in hybrid eucalypt plants.
Collapse
Affiliation(s)
- Victor Satler Pylro
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Wagner Campos Otoni
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ivo Ribeiro da Silva
- Departamento de Solos, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Arnaldo Chaer Borges
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maurício Dutra Costa
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
14
|
Tran D, El-Maarouf-Bouteau H, Rossi M, Biligui B, Briand J, Kawano T, Mancuso S, Bouteau F. Post-transcriptional regulation of GORK channels by superoxide anion contributes to increases in outward-rectifying K⁺ currents. THE NEW PHYTOLOGIST 2013; 198:1039-1048. [PMID: 23517047 DOI: 10.1111/nph.12226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/04/2013] [Indexed: 05/23/2023]
Abstract
· Ion fluxes are ubiquitous processes in the plant and animal kingdoms, controlled by fine-tuned regulations of ion channel activity. Yet the mechanism that cells employ to achieve the modification of ion homeostasis at the molecular level still remains unclear. This is especially true when it comes to the mechanisms that lead to cell death. · In this study, Arabidopsis thaliana cells were exposed to ozone (O₃). Ion flux variations were analyzed by electrophysiological measurements and their transcriptional regulation by RT-PCR. Reactive oxygen species (ROS) generation was quantified by luminescence techniques and caspase-like activities were investigated by laser confocal microscopy. · We highlighted the delayed activation of K(+) outward-rectifying currents after an O₃ -induced oxidative stress leading to programmed cell death (PCD). Caspase-like activities are detected under O₃ exposure and could be decreased by K(+) channel blocker. Molecular experiments revealed that the sustained activation of K(+) outward current could be the result of an unexpected O₂ ·⁻ post-transcriptional regulation of the guard cell outward-rectifying K(+) (GORK) channels. · This consists of a likely new mode of regulating the processing of the GORK mRNA, in a ROS-dependent manner, to allow sustained K(+) effluxes during PCD. These data provide new mechanistic insights into K(+) channel regulation during an oxidative stress response.
Collapse
Affiliation(s)
- Daniel Tran
- Univ Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France
- LEM, Institut de Biologie des Plantes, Bât 630, 91405, Orsay, France
| | | | - Marika Rossi
- LINV - Department of Plant Soil & Environmental Science, University of Florence, Florence, Italy
| | - Bernadette Biligui
- Univ Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France
- LEM, Institut de Biologie des Plantes, Bât 630, 91405, Orsay, France
| | - Joël Briand
- Univ Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France
- LEM, Institut de Biologie des Plantes, Bât 630, 91405, Orsay, France
| | - Tomonori Kawano
- LINV - Department of Plant Soil & Environmental Science, University of Florence, Florence, Italy
- Graduate School of Environmental Engineering, University of Kitakyushu 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, 808-0135, Japan
- Univ Paris Diderot, Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - Stefano Mancuso
- LINV - Department of Plant Soil & Environmental Science, University of Florence, Florence, Italy
- Univ Paris Diderot, Sorbonne Paris Cité, Paris Interdisciplinary Energy Research Institute (PIERI), Paris, France
| | - François Bouteau
- Univ Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France
- LEM, Institut de Biologie des Plantes, Bât 630, 91405, Orsay, France
- LINV - Department of Plant Soil & Environmental Science, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Tran D, Kadono T, Molas ML, Errakhi R, Briand J, Biligui B, Kawano T, Bouteau F. A role for oxalic acid generation in ozone-induced signallization in Arabidopis cells. PLANT, CELL & ENVIRONMENT 2013; 36:569-78. [PMID: 22897345 DOI: 10.1111/j.1365-3040.2012.02596.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ozone (O(3) ) is an air pollutant with an impact increasingly important in our industrialized world. It affects human health and productivity in various crops. We provide the evidences that treatment of Arabidopsis thaliana with O(3) results in ascorbate-derived oxalic acid production. Using cultured cells of A. thaliana as a model, here we further showed that oxalic acid induces activation of anion channels that trigger depolarization of the cell, increase in cytosolic Ca(2+) concentration, generation of reactive oxygen species and cell death. We confirmed that O(3) reacts with ascorbate in the culture, thus resulting in production of oxalic acid and this could be part of the O(3) -induced signalling pathways that trigger programmed cell death.
Collapse
Affiliation(s)
- Daniel Tran
- Université Paris Diderot, Sorbonne Paris Cité, Institut des Energies de Demain (IED), Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hilbert M, Voll LM, Ding Y, Hofmann J, Sharma M, Zuccaro A. Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. THE NEW PHYTOLOGIST 2012; 196:520-534. [PMID: 22924530 DOI: 10.1111/j.1469-8137.2012.04275.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/07/2012] [Indexed: 05/04/2023]
Abstract
Beneficial effects elicited by the root endophyte Piriformospora indica are widely known, but the mechanism by which these are achieved is still unclear. It is proposed that phytohormones produced by the fungal symbiont play a crucial role in the interaction with the plant roots. Biochemical analyses of the underlying biosynthetic pathways for auxin production have shown that, on tryptophan feeding, P. indica can produce the phytohormones indole-3-acetic acid (IAA) and indole-3-lactate (ILA) through the intermediate indole-3-pyruvic acid (IPA). Time course transcriptional analyses after exposure to tryptophan designated the piTam1 gene as a key player. A green fluorescence protein (GFP) reporter study and transcriptional analysis of colonized barley roots showed that piTam1 is induced during the biotrophic phase. Piriformospora indica strains in which the piTam1 gene was silenced via an RNA interference (RNAi) approach were compromised in IAA and ILA production and displayed reduced colonization of barley (Hordeum vulgare) roots in the biotrophic phase, but the elicitation of growth promotion was not affected compared with the wild-type situation. Our results suggest that IAA is involved in the establishment of biotrophy in P. indica-barley symbiosis and might represent a compatibility factor in this system.
Collapse
Affiliation(s)
- Magdalena Hilbert
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| | - Lars M Voll
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Yi Ding
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| | - Jörg Hofmann
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Monica Sharma
- Department of Mycology and Plant Pathology, Dr. YSP UHF, Nauni, Solan, HP, India
| | - Alga Zuccaro
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl von Frisch Str. 10, 35043, Marburg, Germany
| |
Collapse
|
17
|
Haapalainen M, Dauphin A, Li CM, Bailly G, Tran D, Briand J, Bouteau F, Taira S. HrpZ harpins from different Pseudomonas syringae pathovars differ in molecular interactions and in induction of anion channel responses in Arabidopsis thaliana suspension cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 51:168-74. [PMID: 22153254 DOI: 10.1016/j.plaphy.2011.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/31/2011] [Indexed: 05/16/2023]
Abstract
HrpZ, a type three secretion system helper protein from the plant-pathogen Pseudomonas syringae, can be recognized by many plants as a defence elicitor. Responses of Arabidopsis thaliana suspension cells to different HrpZ variants were studied by electrophysiological methods and cell death assay. Purified HrpZ originating from a compatible pathogen P. syringae pv. tomato DC3000 (HrpZ(Pto)) and incompatible P. syringae pv. phaseolicola (HrpZ(Pph)) both promoted Arabidopsis cell death. As an early response, both HrpZ variants induced an increase in time dependent K(+) outward rectifying current. In contrast, the effects of HrpZ proteins on anion currents were different: HrpZ(Pph) had no effect, and HrpZ(Pto) induced an anion current increase. This suggests that the observed responses of the K(+) channels and anion channels resulted from different and separable interactions and that the interaction implied in anion current modulation is host-specific. HrpZ(Pto) and HrpZ(Pph) also had a different sequence preference in phage display screen for peptide-binding. These peptides presumably represent a part of a putative target protein in the host, and HrpZ proteins of different P. syringae pathovars might have different binding specificities to match the allelic variation between plant species. Supporting the idea that the peptide-binding region of HrpZ is important for interactions with host cell components, we found that a mutation in that region changed the anion channel response of Arabidopsis cells.
Collapse
Affiliation(s)
- M Haapalainen
- General Microbiology, Department of Biological and Environmental Sciences, 00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kadono T, Tran D, Errakhi R, Hiramatsu T, Meimoun P, Briand J, Iwaya-Inoue M, Kawano T, Bouteau F. Increased anion channel activity is an unavoidable event in ozone-induced programmed cell death. PLoS One 2010; 5:e13373. [PMID: 20967217 PMCID: PMC2954175 DOI: 10.1371/journal.pone.0013373] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/20/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. PRINCIPAL FINDINGS By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O(3) treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O(3)-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O(3), Ca(2+) influx and NADPH-oxidase generated reactive oxygen species (ROS) in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O(3); namely, H(2)O(2) generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. SIGNIFICANCE Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O(3)-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s) for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka,
Japan
| | - Daniel Tran
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Rafik Errakhi
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Takuya Hiramatsu
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| | - Patrice Meimoun
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Joël Briand
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
| | - Mari Iwaya-Inoue
- Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka,
Japan
| | - Tomonori Kawano
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| | - François Bouteau
- Laboratoire d'Electrophysiologie des Membranes,
Université Paris Diderot-Paris 7, Institut de Biologie des Plantes,
Bât 630, Orsay, France
- Graduate School of Environmental Engineering, University of Kitakyushu
1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Japan
| |
Collapse
|
19
|
Colcombet J, Mathieu Y, Peyronnet R, Agier N, Lelièvre F, Barbier-Brygoo H, Frachisse JM. R-type anion channel activation is an essential step for ROS-dependent innate immune response in Arabidopsis suspension cells. FUNCTIONAL PLANT BIOLOGY : FPB 2009; 36:832-843. [PMID: 32688693 DOI: 10.1071/fp09096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/23/2009] [Indexed: 06/11/2023]
Abstract
Plants are constantly exposed to environmental biotic and abiotic stresses. Plants cells perceive these factors and trigger early responses followed by delayed and complex adaptation processes. Using cell suspensions of Arabidopsis thaliana (L.) as a cellular model, we investigated the role of plasma membrane anion channels in Reactive Oxygen Species (ROS) production and in cell death which occurs during non-host pathogen infection. Protoplasts derived from Arabidopsis suspension cells display two anion currents with characteristics very similar to those of the slow nitrate-permeable (S-type) and rapid sulfate-permeable (R-type) channels previously characterised in hypocotyl cells and other cell types. Using seven inhibitors, we showed that the R-type channel and ROS formation in cell cultures present similar pharmacological profiles. The efficiency of anion channel blockers to inhibit ROS production was independent of the nature of the triggering signal (osmotic stress or general elicitors of plant defence), indicating that the R-type channel represents a crossroad in the signalling pathways leading to ROS production. In a second step, we show that treatment with R-type channel blockers accelerates cell death triggered by the non-specific plant pathogen Xanthomonas campestris. Finally, we discuss the hypothesis that the R-type channel is involved in innate immune response allowing cell defence via antibacterial ROS production.
Collapse
Affiliation(s)
- Jean Colcombet
- Present address: Unité de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Yves Mathieu
- Institut des Sciences du Végétal, CNRS UPR 2355, 22 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Remi Peyronnet
- Institut des Sciences du Végétal, CNRS UPR 2355, 22 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Nicolas Agier
- Present address: CNRS-CGM, 14 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Françoise Lelièvre
- Institut des Sciences du Végétal, CNRS UPR 2355, 22 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Hélène Barbier-Brygoo
- Institut des Sciences du Végétal, CNRS UPR 2355, 22 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Jean-Marie Frachisse
- Institut des Sciences du Végétal, CNRS UPR 2355, 22 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
20
|
Meimoun P, Vidal G, Bohrer AS, Lehner A, Tran D, Briand J, Bouteau F, Rona JP. Intracellular Ca2+ stores could participate to abscisic acid-induced depolarization and stomatal closure in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2009; 4:830-5. [PMID: 19847112 PMCID: PMC2802785 DOI: 10.4161/psb.4.9.9396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 06/30/2009] [Indexed: 05/18/2023]
Abstract
In Arabidopsis thaliana cell suspension, abscisic acid (ABA) induces changes in cytosolic calcium concentration ([Ca(2+)](cyt)) which are the trigger for ABA-induced plasma membrane anion current activation, H(+)-ATPase inhibition, and subsequent plasma membrane depolarization. In the present study, we took advantage of this model to analyze the implication of intracellular Ca(2+) stores in ABA signal transduction through electrophysiological current measurements, cytosolic Ca(2+) activity measurements with the apoaequorin Ca(2+) reporter protein and external pH measurement. Intracellular Ca(2+) stores involvement was determined by using specific inhibitors of CICR channels: the cADP-ribose/ryanodine receptor (Br-cADPR and dantrolene) and of the inositol trisphosphate receptor (U73122). In addition experiments were performed on epidermal strips of A. thaliana leaves to monitor stomatal closure in response to ABA in presence of the same pharmacology. Our data provide evidence that ryanodine receptor and inositol trisphosphate receptor could be involved in ABA-induced (1) Ca(2+) release in the cytosol, (2) anion channel activation and H(+)-ATPase inhibition leading to plasma membrane depolarization and (3) stomatal closure. Intracellular Ca(2+) release could thus contribute to the control of early events in the ABA signal transduction pathway in A. thaliana.
Collapse
Affiliation(s)
- Patrice Meimoun
- LEM (EA 3514), Université Paris Diderot-Paris7, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Splivallo R, Fischer U, Göbel C, Feussner I, Karlovsky P. Truffles regulate plant root morphogenesis via the production of auxin and ethylene. PLANT PHYSIOLOGY 2009; 150:2018-29. [PMID: 19535471 PMCID: PMC2719122 DOI: 10.1104/pp.109.141325] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 06/12/2009] [Indexed: 05/18/2023]
Abstract
Truffles are symbiotic fungi that form ectomycorrhizas with plant roots. Here we present evidence that at an early stage of the interaction, i.e. prior to physical contact, mycelia of the white truffle Tuber borchii and the black truffle Tuber melanopsorum induce alterations in root morphology of the host Cistus incanus and the nonhost Arabidopsis (Arabidopsis thaliana; i.e. primary root shortening, lateral root formation, root hair stimulation). This was most likely due to the production of indole-3-acetic acid (IAA) and ethylene by the mycelium. Application of a mixture of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid and IAA fully mimicked the root morphology induced by the mycelium for both host and nonhost plants. Application of the single hormones only partially mimicked it. Furthermore, primary root growth was not inhibited in the Arabidopsis auxin transport mutant aux1-7 by truffle metabolites while root branching was less effected in the ethylene-insensitive mutant ein2-LH. The double mutant aux1-7;ein2-LH displayed reduced sensitivity to fungus-induced primary root shortening and branching. In agreement with the signaling nature of truffle metabolites, increased expression of the auxin response reporter DR5GFP in Arabidopsis root meristems subjected to the mycelium could be observed, confirming that truffles modify the endogenous hormonal balance of plants. Last, we demonstrate that truffles synthesize ethylene from l-methionine probably through the alpha-keto-gamma-(methylthio)butyric acid pathway. Taken together, these results establish the central role of IAA and ethylene as signal molecules in truffle/plant interactions.
Collapse
Affiliation(s)
- Richard Splivallo
- Department of Crop Sciences, Molecular Phytopathology and Mycotoxin Research , Georg-August University, D-37077 Goettingen, Germany.
| | | | | | | | | |
Collapse
|
22
|
Trouverie J, Vidal G, Zhang Z, Sirichandra C, Madiona K, Amiar Z, Prioul JL, Jeannette E, Rona JP, Brault M. Anion channel activation and proton pumping inhibition involved in the plasma membrane depolarization induced by ABA in Arabidopsis thaliana suspension cells are both ROS dependent. PLANT & CELL PHYSIOLOGY 2008; 49:1495-507. [PMID: 18757862 DOI: 10.1093/pcp/pcn126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In Arabidopsis thaliana suspension cells, ABA was previously shown to promote the activation of anion channels and the reduction of proton pumping that both contribute to the plasma membrane depolarization. These two ABA responses were shown to induce two successive [Ca(2+)](cyt) spikes. As reactive oxygen species (ROS) have emerged as components of ABA signaling pathways especially by promoting [Ca(2+)](cyt) variations, we studied whether ROS were involved in the regulation of anion channels and proton pumps activities. Here we demonstrated that ABA induced ROS production which triggered the second of the two [Ca(2+)](cyt) increases observed in response to ABA. Blocking ROS generation using diphenyleneiodonium (DPI) impaired the proton pumping reduction, the anion channel activation and the RD29A gene expression in response to ABA. Furthermore, H(2)O(2) was shown to activate anion channels and to inhibit plasma membrane proton pumping, as did ABA. However, ROS partially mimicked ABA's effects since H(2)O(2) treatment elicited anion channel activation but not the subsequent expression of the RD29A gene as did ABA. This suggests that expression of the RD29A gene in response to ABA results from the activation of multiple concomitant signaling pathways: blocking of one of them would impair gene expression whereas stimulating only one would not. We conclude that ROS are a central messenger of ABA in the signaling pathways leading to the plasma membrane depolarization induced by ABA.
Collapse
Affiliation(s)
- Jacques Trouverie
- Laboratoire d'Electrophysiologie des Membranes, EA 3514, Université Paris-Diderot, 2 place Jussieu, 75251 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
El-Maarouf-Bouteau H, Moreau E, Errakhi R, Sallé G. A diffusible signal from germinating Orobanche ramosa elicits early defense responses in suspension-cultured Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2008; 3:189-93. [PMID: 19513214 PMCID: PMC2634113 DOI: 10.4161/psb.3.3.5545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/08/2008] [Indexed: 05/10/2023]
Abstract
In plant/parasitic plant interaction, little is known about the host plant response before the establishment of the parasite within the host. In the present work, we focused on host responses to parasitic plant, O. ramosa in the early stage of infection. We used a co-culture system of A. thaliana suspension cells and O. ramosa germinated-seeds to avoid parasite attachment. We showed that O. ramosa induced H(2)O(2) generation and camalexin synthesis by A. thaliana followed by a drastic increase in cell death. We further demonstrated that a heat sensitive diffusible signal is responsible for this cell death. These data indicate that recognition of O. ramosa occurs before the attachment of the parasite and initiates plant defence responses.
Collapse
Affiliation(s)
- Hayat El-Maarouf-Bouteau
- Laboratoire de Parasitologie Végétale (EA3495); Ivry sur Seine, France
- Laboratoire de Physiologie Végétale Appliquée (EA2388); Ivry sur Seine, France
| | - Elisabeth Moreau
- Laboratoire de Parasitologie Végétale (EA3495); Ivry sur Seine, France
| | - Rafik Errakhi
- Laboratoire de Parasitologie Végétale (EA3495); Ivry sur Seine, France
| | - Georges Sallé
- Laboratoire de Parasitologie Végétale (EA3495); Ivry sur Seine, France
| |
Collapse
|
24
|
Errakhi R, Meimoun P, Lehner A, Vidal G, Briand J, Corbineau F, Rona JP, Bouteau F. Anion channel activity is necessary to induce ethylene synthesis and programmed cell death in response to oxalic acid. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3121-9. [PMID: 18612171 DOI: 10.1093/jxb/ern166] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Oxalic acid is thought to be a key factor of the early pathogenicity stage in a wide range of necrotrophic fungi. Studies were conducted to determine whether oxalate could induce programmed cell death (PCD) in Arabidopsis thaliana suspension cells and to detail the transduction of the signalling pathway induced by oxalate. Arabidopsis thaliana cells were treated with millimolar concentrations of oxalate. Cell death was quantified and ion flux variations were analysed from electrophysiological measurements. Involvement of the anion channel and ethylene in the signal transduction leading to PCD was determined by using specific inhibitors. Oxalic acid induced a PCD displaying cell shrinkage and fragmentation of DNA into internucleosomal fragments with a requirement for active gene expression and de novo protein synthesis, characteristic hallmarks of PCD. Other responses generally associated with plant cell death, such as anion effluxes leading to plasma membrane depolarization, mitochondrial depolarization, and ethylene synthesis, were also observed following addition of oxalate. The results show that oxalic acid activates an early anionic efflux which is a necessary prerequisite for the synthesis of ethylene and for the PCD in A. thaliana cells.
Collapse
Affiliation(s)
- Rafik Errakhi
- LEM (EA 3514), Université Paris Diderot, 2 place Jussieu, 75251 Paris cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Errakhi R, Dauphin A, Meimoun P, Lehner A, Reboutier D, Vatsa P, Briand J, Madiona K, Rona JP, Barakate M, Wendehenne D, Beaulieu C, Bouteau F. An early Ca2+ influx is a prerequisite to thaxtomin A-induced cell death in Arabidopsis thaliana cells. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4259-70. [PMID: 19015217 DOI: 10.1093/jxb/ern267] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The pathogenicity of various Streptomyces scabies isolates involved in potato scab disease was correlated with the production of thaxtomin A. Since calcium is known as an essential second messenger associated with pathogen-induced plant responses and cell death, it was investigated whether thaxtomin A could induce a Ca2+ influx related to cell death and to other putative plant responses using Arabidopsis thaliana suspension cells, which is a convenient model to study plant-microbe interactions. A. thaliana cells were treated with micromolar concentrations of thaxtomin A. Cell death was quantified and ion flux variations were analysed from electrophysiological measurements with the apoaequorin Ca2+ reporter protein and by external pH measurement. Involvement of anion and calcium channels in signal transduction leading to programmed cell death was determined by using specific inhibitors. These data suggest that this toxin induces a rapid Ca2+ influx and cell death in A. thaliana cell suspensions. Moreover, these data provide strong evidence that the Ca2+ influx induced by thaxtomin A is necessary to achieve this cell death and is a prerequisite to early thaxtomin A-induced responses: anion current increase, alkalization of the external medium, and the expression of PAL1 coding for a key enzyme of the phenylpropanoid pathway.
Collapse
Affiliation(s)
- R Errakhi
- LEM (EA 3514), Université Paris Diderot-Paris7, 2, place Jussieu, F-75251 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Reboutier D, Frankart C, Briand J, Biligui B, Rona JP, Haapalainen M, Barny MA, Bouteau F. Antagonistic action of harpin proteins: HrpWea from Erwinia amylovora suppresses HrpNea-induced cell death in Arabidopsis thaliana. J Cell Sci 2007; 120:3271-8. [PMID: 17726062 DOI: 10.1242/jcs.011098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Harpins are proteins secreted by the type-three secretion system of phytopathogenic bacteria. They are known to induce a hypersensitive response (HR) in non-host plant leaf tissue. Erwinia amylovora, the fire blight pathogen of pear and apple trees, secretes two different harpins, HrpNea and HrpWea. In the present study, we showed that an Erwinia amylovora hrpWea mutant induces stronger electrolyte leakages in Arabidopsis thaliana foliar disks than the wild-type strain, thus suggesting that HrpWea could function as a HR negative modulator. We confirmed this result by using purified HrpWea and HrpNea. HrpWea has dual effects depending on its concentration. At 200 nM, HrpWea, like HrpNea, provoked the classical defense response--active oxygen species (AOS) production and cell death. However, at 0.2 nM, HrpWea inhibited cell death and AOS production provoked by HrpNea. HrpWea probably inhibits HrpNea-induced cell death by preventing anion channel inhibition, confirming that anion channel regulation is a determinant feature of the plant response to harpins. Collectively our data show that the HrpWea harpin can act antagonistically to the classical HrpNea harpin by suppressing plant defense mechanisms.
Collapse
Affiliation(s)
- David Reboutier
- LEM, EA 3514, Université Paris Diderot, Case 7069, 2 place Jussieu, 75251 Paris cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gauthier A, Lamotte O, Reboutier D, Bouteau F, Pugin A, Wendehenne D. Cryptogein-induced anion effluxes: electrophysiological properties and analysis of the mechanisms through which they contribute to the elicitor-triggered cell death. PLANT SIGNALING & BEHAVIOR 2007; 2:86-95. [PMID: 19516973 PMCID: PMC2633904 DOI: 10.4161/psb.2.2.4015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 02/15/2007] [Indexed: 05/23/2023]
Abstract
Anion effluxes are amongst the earliest reactions of plant cells to elicitors of defence responses. However, their properties and their role in disease resistance remain almost unknown. We previously demonstrated that cryptogein, an elicitor of tobacco defence responses, induces a nitrate (NO(3) (-)) efflux. This efflux is an early prerequisite to the cryptogein-triggered hypersensitive response (HR). Here, we analyzed the electrophysiological properties of the elicitor-mediated NO(3) (-) efflux and clarified the mechanisms through which it contributes to cell death. Application of the discontinuous single electrode voltage-clamp technique in tobacco cells elicited with cryptogein enabled us to record the activation of slow-type deactivating anion channel currents. Cryptogein-induced plasma membrane depolarization and Ca(2+) influx, an essential component of elicitor signalling for HR cell death, were prevented by inhibiting the NO(3) (-) efflux. Similarly, pharmacological blocking of the anion efflux suppressed vacuolar collapse, a hallmark of cell death. The role of NO(3) (-) efflux in mediating proteases activation was further assessed. It is shown that cryptogein induced the activation of three proteases with apparent molecular masses of 95, 190 and 240 kDa. Their activation occurred independently on the anion efflux and, together with cell death, was strongly reduced by cycloheximide and the protease inhibitor PMSF. In contrast, the NO(3) (-) efflux was shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during the HR. Collectively, our data indicate that anion efflux is an early prerequisite to morphological and biochemical events participating to cell death.
Collapse
Affiliation(s)
- Adrien Gauthier
- Université de Bourgogne; Plante-Microbe-Environnement; Dijon, France
| | | | - David Reboutier
- Laboratoire d'Electrophysiologie des Membranes; Université Paris; Paris, France
| | - François Bouteau
- Laboratoire d'Electrophysiologie des Membranes; Université Paris; Paris, France
| | - Alain Pugin
- Université de Bourgogne; Plante-Microbe-Environnement; Dijon, France
| | - David Wendehenne
- Université de Bourgogne; Plante-Microbe-Environnement; Dijon, France
| |
Collapse
|
28
|
Reboutier D, Frankart C, Briand J, Biligui B, Laroche S, Rona JP, Barny MA, Bouteau F. The HrpN(ea) harpin from Erwinia amylovora triggers differential responses on the nonhost Arabidopsis thaliana cells and on the host apple cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:94-100. [PMID: 17249426 DOI: 10.1094/mpmi-20-0094] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Erwinia amylovora is a gram-negative necrogenic bacterium causing fire blight of the Maloideae subfamily of Rosaceae such as apple and pear. It provokes progressive necrosis in aerial parts of susceptible host plants (compatible interaction) and a hypersensitive reaction (HR) when infiltrated in nonhost plants (incompatible interaction). The HrpN(ea) harpin is a type three secretion system effector secreted by E. amylovora. This protein is involved in pathogenicity and HR-eliciting capacity of E. amylovora. In the present study, we showed that, in nonhost Arabidopsis thaliana cells, purified HrpN(ea) induces cell death and H2O2 production, two nonhost resistance responses, but failed to induce such responses in host MM106 apple cells. Moreover, HrpN(ea) induced an increase in anion current in host MM106 apple cells, at the opposite of the decrease of anion current previously shown to be necessary to induce cell death in nonhost A. thaliana cells. These results suggest that HrpN(ea) induced different signaling pathways, which could account for early induced compatible or incompatible interaction development.
Collapse
Affiliation(s)
- David Reboutier
- LEM, EA 3514, Université Paris 7, Case 7069, 2 place Jussieu, 75251 Paris 5, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dauphin A, Gérard J, Lapeyrie F, Legué V. Fungal hypaphorine reduces growth and induces cytosolic calcium increase in root hairs of Eucalyptus globulus. PROTOPLASMA 2007; 231:83-8. [PMID: 17370110 DOI: 10.1007/s00709-006-0240-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 06/06/2006] [Indexed: 05/14/2023]
Abstract
Root hairs are tubular cells resulting from a tip-localized growth in which calcium ions play a key role. Hypaphorine, an indole alkaloid secreted by the fungus Pisolithus microcarpus during the formation of ectomycorrhizae with the host plant Eucalyptus globulus, inhibits root hair tip growth. Hypaphorine-induced inhibition is linked to a transient depolarization of the plasma membrane and a reorganization of the actin and microtubule cytoskeletons. Here we investigated the activity of hypaphorine on calcium distribution in E. globulus root hairs with the ratiometric fluorochrome calcium indicator Indo-1. In 85% of actively growing root hairs, a significant but modest calcium gradient between the apex and the base was observed due to an elevated cytoplasmic calcium concentration at the apical tip. Following exposure to 1 mM hypaphorine, the apical and basal cytoplasmic Ca(2+) concentration increased in 70 and 77% of the hairs, respectively, 10 min after treatment. This led to a reduced calcium gradient in 81% of the cells. The hypothetical links between calcium concentration elevation, regulation of actin cytoskeleton dynamics, and root hair growth inhibition in response to hypaphorine treatment are discussed.
Collapse
Affiliation(s)
- A Dauphin
- Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Faculté des Sciences, Université Henri Poincaré, Vandoeuvre, France
| | | | | | | |
Collapse
|
30
|
Dauphin A, De Ruijter NCA, Emons AMC, Legué V. Actin organization during eucalyptus root hair development and its response to fungal hypaphorine. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:204-11. [PMID: 16547865 DOI: 10.1055/s-2006-923767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The fungus Pisolithus microcarpus establishes an ectomycorrhiza with Eucalyptus globulus. This symbiosis involves a fungal synthesis and secretion of hypaphorine, an indolic compound. Previous studies have shown that hypaphorine induces an alteration in the actin cytoskeleton of elongating root hairs and inhibits hair elongation. Using an alternative approved method, we analyzed the effects of hypaphorine on the E. globulus root hair cyto-architecture and actin configuration in more detail and provide new results. One mM hypaphorine stops root hair elongation within 20 min, and changes the hair cyto-architecture. Semi-quantitative analysis of the actin cytoskeleton before and after treatment with hypaphorine shows that hypaphorine induces a shift from fine F-actin to F-actin bundles in the sub-apex of the hair, which occurs first in the mid-plane of the cell. This creates a sub-apical cell centre free of filamentous actin, an actin configuration that differs from that during developmental growth arrest. The mechanism of action of hypaphorine is discussed.
Collapse
Affiliation(s)
- A Dauphin
- Unité Mixte de Recherche UMR INRA-UHP 1136 Interactions Arbres/Micro-Organismes, Université Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre Cedex, France
| | | | | | | |
Collapse
|
31
|
Bouizgarne B, El-Maarouf-Bouteau H, Frankart C, Reboutier D, Madiona K, Pennarun AM, Monestiez M, Trouverie J, Amiar Z, Briand J, Brault M, Rona JP, Ouhdouch Y, El Hadrami I, Bouteau F. Early physiological responses of Arabidopsis thaliana cells to fusaric acid: toxic and signalling effects. THE NEW PHYTOLOGIST 2006; 169:209-18. [PMID: 16390432 DOI: 10.1111/j.1469-8137.2005.01561.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fusaric acid (FA) is a toxin produced by Fusarium species. Most studies on FA have reported toxic effects (for example, alteration of cell growth, mitochondrial activity and membrane permeability) at concentrations greater than 10(-5) m. FA participates in fungal pathogenicity by decreasing plant cell viability. However, FA is also produced by nonpathogenic Fusarii, potential biocontrol agents of vascular wilt fusaria. The aim of this study was to determine whether FA, at nontoxic concentrations, could induce plant defence responses. Nontoxic concentrations of FA were determined from cell-growth and O2-uptake measurements on suspensions of Arabidopsis thaliana cells. Ion flux variations were analysed from electrophysiological and pH measurements. H2O2 and cytosolic calcium were quantified by luminescence techniques. FA at nontoxic concentrations (i.e. below 10(-6) m) was able to induce the synthesis of phytoalexin, a classic delayed plant response to pathogen. FA could also induce rapid responses putatively involved in signal transduction, such as the production of reactive oxygen species, and an increase in cytosolic calcium and ion channel current modulations. FA can thus act as an elicitor at nanomolar concentrations.
Collapse
Affiliation(s)
- B Bouizgarne
- LEM (EA 3514), Université Paris 7, 2, Place Jussieu, 75251 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 2005; 280:26241-7. [PMID: 15710607 DOI: 10.1074/jbc.m500447200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Piriformospora indica, an endophytic fungus of the Sebacinaceae family, promotes growth of Arabidopsis and tobacco seedlings and stimulates nitrogen accumulation and the expression of the genes for nitrate reductase and the starch-degrading enzyme glucan-water dikinase (SEX1) in roots. Neither growth promotion nor stimulation of the two enzymes requires heterotrimeric G proteins. P. indica also stimulates the expression of the uidA gene under the control of the Arabidopsis nitrate reductase (Nia2) promoter in transgenic tobacco seedlings. At least two regions (-470/-439 and -103/-89) are important for Nia2 promoter activity in tobacco roots. One of the regions contains an element, ATGATAGATAAT, that binds to a homeodomain transcription factor in vitro. The message for this transcription factor is up-regulated by P. indica. The transcription factor also binds to a CTGATAGATCT segment in the SEX1 promoter in vitro. We propose that the growth-promoting effect initiated by P. indica is accompanied by a co-regulated stimulation of enzymes involved in nitrate and starch metabolisms.
Collapse
Affiliation(s)
- Irena Sherameti
- Institute of General Botany and Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Reboutier D, Frankart C, Vedel R, Brault M, Duggleby RG, Rona JP, Barny MA, Bouteau F. A CFTR chloride channel activator prevents HrpN(ea)-induced cell death in Arabidopsis thaliana suspension cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:567-72. [PMID: 15936204 DOI: 10.1016/j.plaphy.2005.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 03/17/2005] [Indexed: 05/02/2023]
Abstract
Erwinia amylovora is a necrogenic bacterium that causes fire blight of the Maloideae subfamily of Roseacae, such as apple and pear. It provokes necrosis in aerial parts of susceptible host plants and the typical hypersensitive reaction in non-host plants. The secreted harpin, HrpN ea, is able by itself to induce an active cell death in non-host plants. Ion flux modulations were shown to be involved early in such processes but very few data are available on the plasma membrane ion channel activities responsible for the pathogen-induced ion fluxes. We show here that HrpN ea induces cell death in non-host Arabidopsis thaliana suspension cells. We further show that two cystic fibrosis transmembrane conductance regulator modulators, glibenclamide and bromotetramisole, can regulate anion channel activities and HrpN ea-induced cell death.
Collapse
Affiliation(s)
- David Reboutier
- LEM, EA 3514, Université Paris 7, Case 7069, 2, place Jussieu, 75251 Paris cedex 5, France.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Jambois A, Ditengou FA, Kawano T, Delbarre A, Lapeyrie F. The indole alkaloids brucine, yohimbine, and hypaphorine are indole-3-acetic acid-specific competitors which do not alter auxin transport. PHYSIOLOGIA PLANTARUM 2004; 120:501-508. [PMID: 15032848 DOI: 10.1111/j.0031-9317.2004.00268.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The indole alkaloids brucine and yohimbine, just like hypaphorine, counteract indole-3-acetic acid (IAA) activity in seedling roots, root hairs and shoots, but do not appear to alter auxin transport in roots or in cultured cells. In roots, the interactions between IAA and these three alkaloids appear competitive and specific since these molecules interact with IAA but with neither 1-naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D), two synthetic auxins. The data reported further support the hypothesis that hypaphorine brucine and yohimbine compete with IAA on some auxin-binding proteins likely to be auxin receptors and that 2,4-D and NAA are not always perceived by the same receptor as IAA or the same component of that receptor. At certain steps of plant development and in certain cells, endogenous indole alkaloids could be involved in IAA activity regulation together with other well-described mechanisms such as conjugation or degradation. Hypaphorine with other active indole alkaloids remaining to be identified, might be regarded as a new class of IAA antagonists.
Collapse
Affiliation(s)
- Anne Jambois
- Unité Mixte de Recherche INRA-UHP Interactions Arbres/Micro-organismes, Institut National de la Recherche Agronomique, F-54280 Champenoux, France
| | | | | | | | | |
Collapse
|