1
|
Moraes JR, Barrinha A, Gonçalves de Lima LS, Vidal JC, Costa Catta-Preta CM, de Souza W, Zuma AA, Motta MCM. Endosymbiosis in trypanosomatids: The bacterium division depends on microtubule dynamism. Exp Cell Res 2024; 440:114126. [PMID: 38857838 DOI: 10.1016/j.yexcr.2024.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Microtubules are components of the cytoskeleton that perform essential functions in eukaryotes, such as those related to shape change, motility and cell division. In this context some characteristics of these filaments are essential, such as polarity and dynamic instability. In trypanosomatids, microtubules are integral to ultrastructure organization, intracellular transport and mitotic processes. Some species of trypanosomatids co-evolve with a symbiotic bacterium in a mutualistic association that is marked by extensive metabolic exchanges and a coordinated division of the symbiont with other cellular structures, such as the nucleus and the kinetoplast. It is already established that the bacterium division is microtubule-dependent, so in this work, it was investigated whether the dynamism and remodeling of these filaments is capable of affecting the prokaryote division. To this purpose, Angomonas deanei was treated with Trichostatin A (TSA), a deacetylase inhibitor, and mutant cells for histone deacetylase 6 (HDAC6) were obtained by CRISPR-Cas9. A decrease in proliferation, an enhancement in tubulin acetylation, as well as morphological and ultrastructural changes, were observed in TSA-treated protozoa and mutant cells. In both cases, symbiont filamentation occurred, indicating that prokaryote cell division is dependent on microtubule dynamism.
Collapse
Affiliation(s)
- Júlia Ribeiro Moraes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Azuil Barrinha
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Luan Santana Gonçalves de Lima
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Juliana Cunha Vidal
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Carolina Moura Costa Catta-Preta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil
| | - Aline Araujo Zuma
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil.
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão (CPMP), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro-UFRJ, 21491-590, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, RJ, Brazil.
| |
Collapse
|
2
|
Hlaváčková K, Šamaj J, Ovečka M. Cytoskeleton as a roadmap navigating rhizobia to establish symbiotic root nodulation in legumes. Biotechnol Adv 2023; 69:108263. [PMID: 37775072 DOI: 10.1016/j.biotechadv.2023.108263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
Legumes enter into symbiotic associations with soil nitrogen-fixing rhizobia, culminating in the creation of new organs, root nodules. This complex process relies on chemical and physical interaction between legumes and rhizobia, including early signalling events informing the host legume plant of a potentially beneficial microbe and triggering the nodulation program. The great significance of this plant-microbe interaction rests upon conversion of atmospheric dinitrogen not accessible to plants into a biologically active form of ammonia available to plants. The plant cytoskeleton consists in a highly dynamic network and undergoes rapid remodelling upon sensing various developmental and environmental cues, including response to attachment, internalization, and accommodation of rhizobia in plant root and nodule cells. This dynamic nature is governed by cytoskeleton-associated proteins that modulate cytoskeletal behaviour depending on signal perception and transduction. Precisely localized cytoskeletal rearrangements are therefore essential for the uptake of rhizobia, their targeted delivery, and establishing beneficial root nodule symbiosis. This review summarizes current knowledge about rhizobia-dependent rearrangements and functions of the cytoskeleton in legume roots and nodules. General patterns and nodule type-, nodule stage-, and species-specific aspects of actin filaments and microtubules remodelling are discussed. Moreover, emerging evidence is provided about fine-tuning the root nodulation process through cytoskeleton-associated proteins. We also consider future perspectives on dynamic localization studies of the cytoskeleton during early symbiosis utilizing state of the art molecular and advanced microscopy approaches. Based on acquired detailed knowledge of the mutualistic interactions with microbes, these approaches could contribute to broader biotechnological crop improvement.
Collapse
Affiliation(s)
- Kateřina Hlaváčková
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| | - Miroslav Ovečka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Montiel J, García-Soto I, James EK, Reid D, Cárdenas L, Napsucialy-Mendivil S, Ferguson S, Dubrovsky JG, Stougaard J. Aromatic amino acid biosynthesis impacts root hair development and symbiotic associations in Lotus japonicus. PLANT PHYSIOLOGY 2023; 193:1508-1526. [PMID: 37427869 PMCID: PMC10517252 DOI: 10.1093/plphys/kiad398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Legume roots can be symbiotically colonized by arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria. In Lotus japonicus, the latter occurs intracellularly by the cognate rhizobial partner Mesorhizobium loti or intercellularly with the Agrobacterium pusense strain IRBG74. Although these symbiotic programs show distinctive cellular and transcriptome signatures, some molecular components are shared. In this study, we demonstrate that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 1 (DAHPS1), the first enzyme in the biosynthetic pathway of aromatic amino acids (AAAs), plays a critical role in root hair development and for AM and rhizobial symbioses in Lotus. Two homozygous DAHPS1 mutants (dahps1-1 and dahps1-2) showed drastic alterations in root hair morphology, associated with alterations in cell wall dynamics and a progressive disruption of the actin cytoskeleton. The altered root hair structure was prevented by pharmacological and genetic complementation. dahps1-1 and dahps1-2 showed significant reductions in rhizobial infection (intracellular and intercellular) and nodule organogenesis and a delay in AM colonization. RNAseq analysis of dahps1-2 roots suggested that these phenotypes are associated with downregulation of several cell wall-related genes, and with an attenuated signaling response. Interestingly, the dahps1 mutants showed no detectable pleiotropic effects, suggesting a more selective recruitment of this gene in certain biological processes. This work provides robust evidence linking AAA metabolism to root hair development and successful symbiotic associations.
Collapse
Affiliation(s)
- Jesús Montiel
- Departamento de Genómica Funcional de Eucariotas. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| | - Ivette García-Soto
- Departamento de Genómica Funcional de Eucariotas. Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Euan K James
- Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Selene Napsucialy-Mendivil
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Shaun Ferguson
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
4
|
Cao L, Wang W, Zhang W, Staiger CJ. Lipid Signaling Requires ROS Production to Elicit Actin Cytoskeleton Remodeling during Plant Innate Immunity. Int J Mol Sci 2022; 23:ijms23052447. [PMID: 35269589 PMCID: PMC8910749 DOI: 10.3390/ijms23052447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 01/22/2023] Open
Abstract
In terrestrial plants a basal innate immune system, pattern-triggered immunity (PTI), has evolved to limit infection by diverse microbes. The remodeling of actin cytoskeletal arrays is now recognized as a key hallmark event during the rapid host cellular responses to pathogen attack. Several actin binding proteins have been demonstrated to fine tune the dynamics of actin filaments during this process. However, the upstream signals that stimulate actin remodeling during PTI signaling remain poorly characterized. Two second messengers, reactive oxygen species (ROS) and phosphatidic acid (PA), are elevated following pathogen perception or microbe-associated molecular pattern (MAMP) treatment, and the timing of signaling fluxes roughly correlates with actin cytoskeletal rearrangements. Here, we combined genetic analysis, chemical complementation experiments, and quantitative live-cell imaging experiments to test the role of these second messengers in actin remodeling and to order the signaling events during plant immunity. We demonstrated that PHOSPHOLIPASE Dβ (PLDβ) isoforms are necessary to elicit actin accumulation in response to flg22-associated PTI. Further, bacterial growth experiments and MAMP-induced apoplastic ROS production measurements revealed that PLDβ-generated PA acts upstream of ROS signaling to trigger actin remodeling through inhibition of CAPPING PROTEIN (CP) activity. Collectively, our results provide compelling evidence that PLDβ/PA functions upstream of RBOHD-mediated ROS production to elicit actin rearrangements during the innate immune response in Arabidopsis.
Collapse
Affiliation(s)
- Lingyan Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (L.C.); (C.J.S.)
| | - Wenyi Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA;
- Center for Plant Biology, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (L.C.); (C.J.S.)
| |
Collapse
|
5
|
Zhao W, Qu X, Zhuang Y, Wang L, Bosch M, Franklin-Tong VE, Xue Y, Huang S. Villin controls the formation and enlargement of punctate actin foci in pollen tubes. J Cell Sci 2020; 133:jcs237404. [PMID: 32051284 DOI: 10.1242/jcs.237404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/01/2020] [Indexed: 11/20/2022] Open
Abstract
Self-incompatibility (SI) in the poppy Papaver rhoeas triggers dramatic alterations in actin within pollen tubes. However, how these actin alterations are mechanistically achieved remains largely unexplored. Here, we used treatment with the Ca2+ ionophore A23187 to mimic the SI-induced elevation in cytosolic Ca2+ and trigger formation of the distinctive F-actin foci. Live-cell imaging revealed that this remodeling involves F-actin fragmentation and depolymerization, accompanied by the rapid formation of punctate actin foci and subsequent increase in their size. We established that actin foci are generated and enlarged from crosslinking of fragmented actin filament structures. Moreover, we show that villins associate with actin structures and are involved in this actin reorganization process. Notably, we demonstrate that Arabidopsis VILLIN5 promotes actin depolymerization and formation of actin foci by fragmenting actin filaments, and controlling the enlargement of actin foci via bundling of actin filaments. Our study thus uncovers important novel insights about the molecular players and mechanisms involved in forming the distinctive actin foci in pollen tubes.
Collapse
Affiliation(s)
- Wanying Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhui Zhuang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ludi Wang
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Vernonica E Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology
| |
Collapse
|
7
|
Henty-Ridilla JL, Li J, Day B, Staiger CJ. ACTIN DEPOLYMERIZING FACTOR4 regulates actin dynamics during innate immune signaling in Arabidopsis. THE PLANT CELL 2014; 26:340-52. [PMID: 24464292 PMCID: PMC3963580 DOI: 10.1105/tpc.113.122499] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 12/30/2013] [Accepted: 01/08/2014] [Indexed: 05/19/2023]
Abstract
Conserved microbe-associated molecular patterns (MAMPs) are sensed by pattern recognition receptors (PRRs) on cells of plants and animals. MAMP perception typically triggers rearrangements to actin cytoskeletal arrays during innate immune signaling. However, the signaling cascades linking PRR activation by MAMPs to cytoskeleton remodeling are not well characterized. Here, we developed a system to dissect, at high spatial and temporal resolution, the regulation of actin dynamics during innate immune signaling in plant cells. Within minutes of MAMP perception, we detected changes to single actin filament turnover in epidermal cells treated with bacterial and fungal MAMPs. These MAMP-induced alterations phenocopied an ACTIN DEPOLYMERIZING FACTOR4 (ADF4) knockout mutant. Moreover, actin arrays in the adf4 mutant were unresponsive to a bacterial MAMP, elf26, but responded normally to the fungal MAMP, chitin. Together, our data provide strong genetic and cytological evidence for the inhibition of ADF activity regulating actin remodeling during innate immune signaling. This work is the first to directly link an ADF/cofilin to the cytoskeletal rearrangements elicited directly after pathogen perception in plant or mammalian cells.
Collapse
Affiliation(s)
| | - Jiejie Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Brad Day
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824-6254
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
- The Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
8
|
Molesini B, Cecconi D, Pii Y, Pandolfini T. Local and Systemic Proteomic Changes in Medicago Truncatula at an Early Phase of Sinorhizobium meliloti Infection. J Proteome Res 2013; 13:408-21. [DOI: 10.1021/pr4009942] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Barbara Molesini
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Daniela Cecconi
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Youry Pii
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Tiziana Pandolfini
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| |
Collapse
|
9
|
Pii Y, Molesini B, Pandolfini T. The involvement of Medicago truncatula non-specific lipid transfer protein N5 in the control of rhizobial infection. PLANT SIGNALING & BEHAVIOR 2013; 8:e24836. [PMID: 23656864 PMCID: PMC3909036 DOI: 10.4161/psb.24836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/26/2013] [Accepted: 04/26/2013] [Indexed: 05/29/2023]
Abstract
Cysteine-rich proteins seem to play important regulatory roles in Medicago truncatula/Sinorhizobium meliloti symbiosis. In particular, a large family of nodule-specific cysteine-rich (NCR) peptides is crucial for the differentiation of nitrogen-fixing bacteroids. The Medicago truncatula N5 protein (MtN5) is currently the only reported non-specific lipid transfer protein necessary for successful rhizobial symbiosis; in addition, MtN5 shares several characteristics with NCR peptides: a small size, a conserved cysteine-rich motif, an N-terminal signal peptide for secretion and antimicrobial activity. Unlike NCR peptides, MtN5 expression is not restricted to the root nodules and is induced during the early phases of symbiosis in root hairs and nodule primordia. Recently, MtN5 was determined to be involved in the regulation of root tissue invasion; while, it was dispensable for nodule primordia formation. Here, we discuss the hypothesis that MtN5 participates in linking the progression of bacterial invasion with restricting the competence of root hairs for infection.
Collapse
|
10
|
Henty-Ridilla JL, Shimono M, Li J, Chang JH, Day B, Staiger CJ. The plant actin cytoskeleton responds to signals from microbe-associated molecular patterns. PLoS Pathog 2013; 9:e1003290. [PMID: 23593000 PMCID: PMC3616984 DOI: 10.1371/journal.ppat.1003290] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 02/21/2013] [Indexed: 12/15/2022] Open
Abstract
Plants are constantly exposed to a large and diverse array of microbes; however, most plants are immune to the majority of potential invaders and susceptible to only a small subset of pathogens. The cytoskeleton comprises a dynamic intracellular framework that responds rapidly to biotic stresses and supports numerous fundamental cellular processes including vesicle trafficking, endocytosis and the spatial distribution of organelles and protein complexes. For years, the actin cytoskeleton has been assumed to play a role in plant innate immunity against fungi and oomycetes, based largely on static images and pharmacological studies. To date, however, there is little evidence that the host-cell actin cytoskeleton participates in responses to phytopathogenic bacteria. Here, we quantified the spatiotemporal changes in host-cell cytoskeletal architecture during the immune response to pathogenic and non-pathogenic strains of Pseudomonas syringae pv. tomato DC3000. Two distinct changes to host cytoskeletal arrays were observed that correspond to distinct phases of plant-bacterial interactions i.e. the perception of microbe-associated molecular patterns (MAMPs) during pattern-triggered immunity (PTI) and perturbations by effector proteins during effector-triggered susceptibility (ETS). We demonstrate that an immediate increase in actin filament abundance is a conserved and novel component of PTI. Notably, treatment of leaves with a MAMP peptide mimic was sufficient to elicit a rapid change in actin organization in epidermal cells, and this actin response required the host-cell MAMP receptor kinase complex, including FLS2, BAK1 and BIK1. Finally, we found that actin polymerization is necessary for the increase in actin filament density and that blocking this increase with the actin-disrupting drug latrunculin B leads to enhanced susceptibility of host plants to pathogenic and non-pathogenic bacteria.
Collapse
Affiliation(s)
- Jessica L. Henty-Ridilla
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Masaki Shimono
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jiejie Li
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, and Molecular and Cellular Biology Program and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Brad Day
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: (BD); (CJS)
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (BD); (CJS)
| |
Collapse
|
11
|
Pii Y, Molesini B, Masiero S, Pandolfini T. The non-specific lipid transfer protein N5 of Medicago truncatula is implicated in epidermal stages of rhizobium-host interaction. BMC PLANT BIOLOGY 2012; 12:233. [PMID: 23217154 PMCID: PMC3564872 DOI: 10.1186/1471-2229-12-233] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 12/03/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The symbiotic interaction between leguminous plants and rhizobia involves two processes: bacterial infection, resulting in the penetration of bacteria in epidermal and cortical cells, and root nodule organogenesis. Root nodule symbiosis is activated by rhizobial signalling molecules, called Nodulation factors (NFs). NF perception induces the expression of several genes called early nodulins. The early nodulin N5 of Medicago truncatula is a lipid transfer protein that has been shown to positively regulate nodulation although it displays in vitro inhibitory activity against Sinorhizobium meliloti. The purpose of this work was to investigate the role of MtN5 by studying its spatial and temporal pattern of expression during the symbiotic interaction, also in relation to known components of the symbiotic signalling pathway, and by analysing the phenotypic alterations displayed by rhizobia-inoculated MtN5-silenced roots. RESULTS We show here that MtN5 is a NF-responsive gene expressed at a very early phase of symbiosis in epidermal cells and root hairs. MtN5 expression is induced in vitro by rhizobial effector molecules and by auxin and cytokinin, phytohormones involved in nodule organogenesis. Furthermore, lipid signaling is implicated in the response of MtN5 to rhizobia, since the activity of phospholipase D is required for MtN5 induction in S. meliloti-inoculated roots. MtN5-silenced roots inoculated with rhizobia display an increased root hair curling and a reduced number of invaded primordia compared to that in wild type roots, but with no impairment to nodule primordia formation. This phenotype is associated with the stimulation of ENOD11 expression, an early marker of infection, and with the down-regulation of Flotillin 4 (FLOT4), a protein involved in rhizobial entry. CONCLUSIONS These data indicate that MtN5 acts downstream of NF perception and upstream of FLOT4 in regulating pre-infection events. The positive effect of MtN5 on nodule primordia invasion is linked to the restriction of bacterial spread at the epidermal level. Furthermore, MtN5 seems to be dispensable for nodule primordia formation. These findings provide new information about the complex mechanism that controls the competence of root epidermal cells for rhizobial invasion.
Collapse
Affiliation(s)
- Youry Pii
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Barbara Molesini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| | - Simona Masiero
- Department of Biology, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Tiziana Pandolfini
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona, 37134, Italy
| |
Collapse
|
12
|
The Role of Diffusible Signals in the Establishment of Rhizobial and Mycorrhizal Symbioses. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Maekawa-Yoshikawa M, Murooka Y. Root hair deformation of symbiosis-deficient mutants of Lotus japonicus by application of Nod factor from Mesorhizobium loti. Microbes Environ 2009; 24:128-34. [PMID: 21566365 DOI: 10.1264/jsme2.me09103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the model leguminous plant Lotus japonicus, the reception of a symbiotic signal called Nod factor (NF), which is secreted by the symbiont bacterium Mesorhizobium loti, induces wavy shaped root hairs. This is called root hair deformation. To dissect the root hair deformation process, we studied symbiosis- deficient mutants of L. japonicus, castor, nup85, ccamk and nsp2. The CASTOR, NUP85, and CCaMK genes are also required for mycorrhizal infection and thus called common symbiotic genes. On the global application of NF, all the mutants except nsp2 exhibited extensive branching of root hairs. The actin cytoskeleton was also observed as a marker for NF-dependent responses in mutant root hairs. At 2 hours of NF treatment, the ccamk mutant showed exaggerated swelling compared with the other mutants, indicating CCaMK to be required to terminate the swelling. In the nsp2 mutant, two hours of NF treatment remarkably induced swelling at root hair tips, although root hair deformation was not apparent at 24 hours of NF treatment. These results showed that common symbiotic components are involved in root hair deformation, which is regulated by a fine tuning mechanism early in the symbiosis between leguminous plants and rhizobia.
Collapse
Affiliation(s)
- Makoto Maekawa-Yoshikawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | |
Collapse
|
14
|
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 2007; 5:619-33. [PMID: 17632573 PMCID: PMC2766523 DOI: 10.1038/nrmicro1705] [Citation(s) in RCA: 540] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nitrogen-fixing rhizobial bacteria and leguminous plants have evolved complex signal exchange mechanisms that allow a specific bacterial species to induce its host plant to form invasion structures through which the bacteria can enter the plant root. Once the bacteria have been endocytosed within a host-membrane-bound compartment by root cells, the bacteria differentiate into a new form that can convert atmospheric nitrogen into ammonia. Bacterial differentiation and nitrogen fixation are dependent on the microaerobic environment and other support factors provided by the plant. In return, the plant receives nitrogen from the bacteria, which allows it to grow in the absence of an external nitrogen source. Here, we review recent discoveries about the mutual recognition process that allows the model rhizobial symbiont Sinorhizobium meliloti to invade and differentiate inside its host plant alfalfa (Medicago sativa) and the model host plant barrel medic (Medicago truncatula).
Collapse
Affiliation(s)
- Kathryn M Jones
- Department of Biology, Massachusetts Institute of Technology, Building 68, Room 633, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
15
|
Iwano M, Shiba H, Matoba K, Miwa T, Funato M, Entani T, Nakayama P, Shimosato H, Takaoka A, Isogai A, Takayama S. Actin dynamics in papilla cells of Brassica rapa during self- and cross-pollination. PLANT PHYSIOLOGY 2007; 144:72-81. [PMID: 17337527 PMCID: PMC1913780 DOI: 10.1104/pp.106.095273] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 02/17/2007] [Indexed: 05/14/2023]
Abstract
The self-incompatibility system of the plant species Brassica is controlled by the S-locus, which contains S-RECEPTOR KINASE (SRK) and S-LOCUS PROTEIN11 (SP11). SP11 binding to SRK induces SRK autophosphorylation and initiates a signaling cascade leading to the rejection of self pollen. However, the mechanism controlling hydration and germination arrest during self-pollination is unclear. In this study, we examined the role of actin, a key cytoskeletal component regulating the transport system for hydration and germination in the papilla cell during pollination. Using rhodamine-phalloidin staining, we showed that cross-pollination induced actin polymerization, whereas self-pollination induced actin reorganization and likely depolymerization. By monitoring transiently expressed green fluorescent protein fused to the actin-binding domain of mouse talin, we observed the concentration of actin bundles at the cross-pollen attachment site and actin reorganization and likely depolymerization at the self-pollen attachment site; the results correspond to those obtained by rhodamine-phalloidin staining. We further showed that the coat of self pollen is sufficient to mediate this response. The actin-depolymerizing drug cytochalasin D significantly inhibited pollen hydration and germination during cross-pollination, further emphasizing a role for actin in these processes. Additionally, three-dimensional electron microscopic tomography revealed the close association of the actin cytoskeleton with an apical vacuole network. Self-pollination disrupted the vacuole network, whereas cross-pollination led to vacuolar rearrangements toward the site of pollen attachment. Taken together, our data suggest that self- and cross-pollination differentially affect the dynamics of the actin cytoskeleton, leading to changes in vacuolar structure associated with hydration and germination.
Collapse
Affiliation(s)
- Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dauphin A, Gérard J, Lapeyrie F, Legué V. Fungal hypaphorine reduces growth and induces cytosolic calcium increase in root hairs of Eucalyptus globulus. PROTOPLASMA 2007; 231:83-8. [PMID: 17370110 DOI: 10.1007/s00709-006-0240-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 06/06/2006] [Indexed: 05/14/2023]
Abstract
Root hairs are tubular cells resulting from a tip-localized growth in which calcium ions play a key role. Hypaphorine, an indole alkaloid secreted by the fungus Pisolithus microcarpus during the formation of ectomycorrhizae with the host plant Eucalyptus globulus, inhibits root hair tip growth. Hypaphorine-induced inhibition is linked to a transient depolarization of the plasma membrane and a reorganization of the actin and microtubule cytoskeletons. Here we investigated the activity of hypaphorine on calcium distribution in E. globulus root hairs with the ratiometric fluorochrome calcium indicator Indo-1. In 85% of actively growing root hairs, a significant but modest calcium gradient between the apex and the base was observed due to an elevated cytoplasmic calcium concentration at the apical tip. Following exposure to 1 mM hypaphorine, the apical and basal cytoplasmic Ca(2+) concentration increased in 70 and 77% of the hairs, respectively, 10 min after treatment. This led to a reduced calcium gradient in 81% of the cells. The hypothetical links between calcium concentration elevation, regulation of actin cytoskeleton dynamics, and root hair growth inhibition in response to hypaphorine treatment are discussed.
Collapse
Affiliation(s)
- A Dauphin
- Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Faculté des Sciences, Université Henri Poincaré, Vandoeuvre, France
| | | | | | | |
Collapse
|
17
|
Blancaflor EB, Wang YS, Motes CM. Organization and function of the actin cytoskeleton in developing root cells. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 252:219-64. [PMID: 16984819 DOI: 10.1016/s0074-7696(06)52004-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The actin cytoskeleton is a highly dynamic structure, which mediates various cellular functions in large part through accessory proteins that tilt the balance between monomeric G-actin and filamentous actin (F-actin) or by facilitating interactions between actin and the plasma membrane, microtubules, and other organelles. Roots have become an attractive model to study actin in plant development because of their simple anatomy and accessibility of some root cell types such as root hairs for microscopic analyses. Roots also exhibit a remarkable developmental plasticity and possess a delicate sensory system that is easily manipulated, so that one can design experiments addressing a range of important biological questions. Many facets of root development can be regulated by the diverse actin network found in the various root developmental regions. Various molecules impinge on this actin scaffold to define how a particular root cell type grows or responds to a specific environmental signal. Although advances in genomics are leading the way toward elucidating actin function in roots, more significant strides will be realized when such tools are combined with improved methodologies for accurately depicting how actin is organized in plant cells.
Collapse
Affiliation(s)
- Elison B Blancaflor
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401, USA
| | | | | |
Collapse
|
18
|
Skorpil P, Broughton WJ. Molecular interactions between Rhizobium and legumes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:143-64. [PMID: 16623393 DOI: 10.1007/3-540-28221-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Peter Skorpil
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, Université de Genève, 1212 Genève 4, Switzerland
| | | |
Collapse
|
19
|
Lipka V, Panstruga R. Dynamic cellular responses in plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:625-31. [PMID: 16182598 DOI: 10.1016/j.pbi.2005.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 09/13/2005] [Indexed: 05/04/2023]
Abstract
Encounters between plant cells and both 'friendly' and 'hostile' microbes (such as those in symbiotic and pathogenic interactions, respectively) trigger a range of highly dynamic plant cellular responses. These include reorganization of the cytoskeleton, organelle translocation, vesicle trafficking, and alterations in subcellular protein localization. Recent progress in this borderland that bridges the fields of plant-microbe interactions and cell biology heralds the transition from descriptive phenomenology to the identification and characterization of key molecules that are involved in these processes. Intriguingly, molecular events that occur in plant cells in response to microbes also take place upon abiotic wounding and during fundamental plant developmental processes, such as the tip growth of pollen, root hairs and trichomes. Thus, elementary 'activity modules' that are required for the generation of cell polarity in plant morphogenesis appear to be re-used in both abiotic and biotic stress response pathways.
Collapse
Affiliation(s)
- Volker Lipka
- Zentrum für Molekularbiologie der Pflanzen (ZMBP), Pflanzenbiochemie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | | |
Collapse
|
20
|
Sieberer BJ, Timmers ACJ, Emons AMC. Nod factors alter the microtubule cytoskeleton in Medicago truncatula root hairs to allow root hair reorientation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:1195-204. [PMID: 16353554 DOI: 10.1094/mpmi-18-1195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The microtubule (MT) cytoskeleton is an important part of the tip-growth machinery in legume root hairs. Here we report the effect of Nod factor (NF) on MTs in root hairs of Medicago truncatula. In tip-growing hairs, the ones that typically curl around rhizobia, NF caused a subtle shortening of the endoplasmic MT array, which recovered within 10 min, whereas cortical MTs were not visibly affected. In growth-arresting root hairs, endoplasmic MTs disappeared shortly after NF application, but reformed within 20 min, whereas cortical MTs remained present in a high density. After NF treatment, growth-arresting hairs were swelling at their tips, after which a new outgrowth formed that deviated with a certain angle from the former growth axis. MT depolymerization with oryzalin caused a growth deviation similar to the NF; whereas, combined with NF, oryzalin increased and the MT-stabilizing drug taxol suppressed NF-induced growth deviation. The NF-induced disappearance of the endoplasmic MTs correlated with a loss of polar cytoarchitecture and straight growth directionality, whereas the reappearance of endoplasmic MTs correlated with the new set up of polar cytoarchitecture. Drug studies showed that MTs are involved in determining root hair elongation in a new direction after NF treatment.
Collapse
Affiliation(s)
- Björn J Sieberer
- Laboratory of Plant Cell Biology, Wageningen University, The Netherlands
| | | | | |
Collapse
|
21
|
Sieberer BJ, Ketelaar T, Esseling JJ, Emons AMC. Microtubules guide root hair tip growth. THE NEW PHYTOLOGIST 2005; 167:711-9. [PMID: 16101908 DOI: 10.1111/j.1469-8137.2005.01506.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The ability to establish cell polarity is crucial to form and function of an individual cell. Polarity underlies critical processes during cell development, such as cell growth, cell division, cell differentiation and cell signalling. Interphase cytoplasmic microtubules in tip-growing fission yeast cells have been shown to play a particularly important role in regulating cell polarity. By placing proteins that serve as spatial cues in the cell cortex of the expanding tip, microtubules determine the site where exocytosis, and therefore growth, takes place. Transport and the targeting of exocytotic vesicles to the very tip depend on the actin cytoskeleton. Recently, endoplasmic microtubules have been identified in tip-growing root hairs, which are an experimental system for plant cell growth. Here, we review the data that demonstrate involvement of microtubules in hair elongation and polarity of the model plants Medicago truncatula and Arabidopsis thaliana. Differences and similarities between the microtubule organization and function in these two species are discussed and we compare the observations in root hairs with the microtubule-based polarity mechanism in fission yeast.
Collapse
Affiliation(s)
- Björn J Sieberer
- Laboratory of Plant Cell Biology, Wageningen University, Arborteumlaan 4, 6703 BD Wageningen, the Netherlands
| | | | | | | |
Collapse
|
22
|
Wan J, Torres M, Ganapathy A, Thelen J, DaGue BB, Mooney B, Xu D, Stacey G. Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:458-67. [PMID: 15915644 DOI: 10.1094/mpmi-18-0458] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infection of soybean root hairs by Bradyrhizobium japonicum is the first of several complex events leading to nodulation. In the current proteomic study, soybean root hairs after inoculation with B. japonicum were separated from roots. Total proteins were analyzed by two-dimensional (2-D) polyacrylamide gel electrophoresis. In one experiment, 96 protein spots were analyzed by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to compare protein profiles between uninoculated roots and root hairs. Another 37 spots, derived from inoculated root hairs over different timepoints, were also analyzed by tandem MS (MS/MS). As expected, some proteins were differentially expressed in root hairs compared with roots (e.g., a chitinase and phosphoenolpyruvate carboxylase). Out of 37 spots analyzed by MS/MS, 27 candidate proteins were identified by database comparisons. These included several proteins known to respond to rhizobial inoculation (e.g., peroxidase and phenylalanine-ammonia lyase). However, novel proteins were also identified (e.g., phospholipase D and phosphoglucomutase). This research establishes an excellent system for the study of root-hair infection by rhizobia and, in a more general sense, the functional genomics of a single, plant cell type. The results obtained also indicate that proteomic studies with soybean, lacking a complete genome sequence, are practical.
Collapse
Affiliation(s)
- Jinrong Wan
- National Center for Soybean Biotechnology, Department of Plant Microbiology and Pathology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Takemoto D, Hardham AR. The cytoskeleton as a regulator and target of biotic interactions in plants. PLANT PHYSIOLOGY 2004; 136:3864-76. [PMID: 15591444 PMCID: PMC535820 DOI: 10.1104/pp.104.052159] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2004] [Revised: 10/15/2004] [Accepted: 10/18/2004] [Indexed: 05/18/2023]
Affiliation(s)
- Daigo Takemoto
- Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| | | |
Collapse
|
24
|
Feijó JA, Costa SS, Prado AM, Becker JD, Certal AC. Signalling by tips. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:589-98. [PMID: 15337103 DOI: 10.1016/j.pbi.2004.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
New molecules, including protein kinases, lipids and molecules that have neurotransmitter activities in animals have emerged as important players in tip-growing cells. Transcriptomics analysis reveals that the largest single class of genes expressed in pollen tubes encode signal transducers, reflecting the necessity to decode complex and diverse pathways that are associated with tip growth. Many of these pathways may use common intracellular second messengers, with ions and reactive oxygen species emerging as two major common denominators in many of the processes involved in tip growth. These second messengers might influence the actin cytoskeleton through known interactions with actin-binding proteins. In turn, changes in the dynamic properties of the cytoskeleton would define the basic polarity events needed to shape and modify tip-growing cells.
Collapse
Affiliation(s)
- José A Feijó
- Centro de Biologia do Desenvolvimento, Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal.
| | | | | | | | | |
Collapse
|
25
|
Nowak P, Soupas L, Thomas-Oates J, Lindström K. Acacia senegal and Prosopis chilensis-nodulating rhizobia Sinorhizobium arboris HAMBI 2361 and S. kostiense HAMBI 2362 produce tetra- and pentameric LCOs that are N-methylated, O-6-carbamoylated and partially sulfated. Carbohydr Res 2004; 339:1061-7. [PMID: 15063192 DOI: 10.1016/j.carres.2004.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 02/06/2004] [Accepted: 02/16/2004] [Indexed: 10/26/2022]
Abstract
Sinorhizobium arboris and S. kostiense are rhizobia that nodulate the tropical leguminous trees Acacia senegal and Prosopis chilensis. The lipochito-oligosaccharidic signalling molecules (LCOs) of S. arboris HAMBI 2361 and S. kostiense HAMBI 2362 were analyzed by mass spectrometry. The major LCOs produced by the strains were shown to be pentameric, acylated with common fatty acids, N-methylated, O-6-carbamoylated and partially sulfated, as are the LCOs characterized to date for other Acacia-nodulating rhizobia. Besides the major LCOs the two strains produced (i) tetrameric LCOs, (ii) LCOs acylated with fatty acids other than those commonly found, (iii) LCOs with only an acyl substituent and (iv) noncarbamoylated LCOs. Production of LCOs (i) to (iii) are novel among Acacia-nodulating rhizobia. The roles of the different structural characteristics of LCOs in the rhizobium-A. senegal symbiosis are discussed. Specific structural features of the LCOs are proposed to be important in the selection of effective nitrogen-fixing rhizobia by A. senegal.
Collapse
Affiliation(s)
- Petri Nowak
- Department of Applied Chemistry and Microbiology, PO Box 56, 00014 University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
26
|
Patriarca EJ, Tatè R, Ferraioli S, Iaccarino M. Organogenesis of legume root nodules. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 234:201-62. [PMID: 15066376 DOI: 10.1016/s0074-7696(04)34005-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The N(2)-fixing nodules elicited by rhizobia on legume roots represent a useful model for studying plant development. Nodule formation implies a complex progression of temporally and spatially regulated events of cell differentiation/dedifferentiation involving several root tissues. In this review we describe the morphogenetic events leading to the development of these histologically well-structured organs. These events include (1) root hair deformation, (2) development and growth of infection threads, (3) induction of the nodule primordium, and (4) induction, activity, and persistence of the nodular meristem and/or of foci of meristematic activities. Particular attention is given to specific aspects of the symbiosis, such as the early stages of intracellular invasion and to differentiation of the intracellular form of rhizobia, called symbiosomes. These developmental aspects were correlated with (1) the regulatory signals exchanged, (2) the plant genes expressed in specific cell types, and (3) the staining procedures that allow the recognition of some cell types. When strictly linked with morphogenesis, the nodulation phenotypes of plant and bacterial mutants such as the developmental consequence of the treatment with metabolic inhibitors, metabolic intermediates, or the variation of physical parameters are described. Finally, some aspects of nodule senescence and of regulation of nodulation are discussed.
Collapse
Affiliation(s)
- Eduardo J Patriarca
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80125 Naples, Italy
| | | | | | | |
Collapse
|