1
|
Hall CA, Conroy GC, Potvin DA. Ex-situ avian sex skews: determinants and implications for conservation. PeerJ 2025; 13:e19312. [PMID: 40260192 PMCID: PMC12011015 DOI: 10.7717/peerj.19312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/21/2025] [Indexed: 04/23/2025] Open
Abstract
With over half of all avian species in decline globally, zoo-based recovery programs are increasingly relied upon to save species from extinction. The success of such programs not only rests with political will, but also in our understanding of species' breeding biology and how individuals and populations respond to changes in their environment. Sex skews, that is, an imbalance in the optimal number of males to females, is an underlying mechanism of population decline in some threatened species. Ex-situ (i.e., zoo-based) management practices will need to become more efficient to support the growing number of conservation reliant species and manage sex skews to amend, repair and restore population stability both in- and ex-situ. In this article, we analysed data from over 182,000 birds in global ex-situ collections. We interpreted sex ratio variation by observing the proportion of males within and between orders, International Union for Conservation of Nature (IUCN) threat status and housing inside and outside of a species' natural range. Overall, our results showed that male-biased sex skews are more prevalent ex-situ than they are in the wild and although they vary greatly at the institutional level, were closer to parity at a global level. The variation amongst threat status and housing outside of range were less significant. These findings have implications for the conservation management of threatened birds and the potential of ex-situ populations to function with maximum effect in an integrated management system.
Collapse
Affiliation(s)
- Clancy A. Hall
- School of Science and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia
| | - Gabriel C. Conroy
- School of Science and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Dominique A. Potvin
- School of Science and Engineering, University of the Sunshine Coast, Petrie, QLD, Australia
- Centre for BioInnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
2
|
Noor Z, Zhao Z, Guo S, Wei Z, Cai B, Qin Y, Ma H, Yu Z, Li J, Zhang Y. A Testis-Specific DMRT1 (Double Sex and Mab-3-Related Transcription Factor 1) Plays a Role in Spermatogenesis and Gonadal Development in the Hermaphrodite Boring Giant Clam Tridacna crocea. Int J Mol Sci 2024; 25:5574. [PMID: 38891762 PMCID: PMC11172331 DOI: 10.3390/ijms25115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The testis-specific double sex and mab-3-related transcription factor 1 (DMRT1) has long been recognized as a crucial player in sex determination across vertebrates, and its essential role in gonadal development and the regulation of spermatogenesis is well established. Here, we report the cloning of the key spermatogenesis-related DMRT1 cDNA, named Tc-DMRT1, from the gonads of Tridacna crocea (T. crocea), with a molecular weight of 41.93 kDa and an isoelectric point of 7.83 (pI). Our hypothesis is that DMRT1 machinery governs spermatogenesis and regulates gonadogenesis. RNAi-mediated Tc-DMRT1 knockdown revealed its critical role in hindering spermatogenesis and reducing expression levels in boring giant clams. A histological analysis showed structural changes, with normal sperm cell counts in the control group (ds-EGFP) but significantly lower concentrations of sperm cells in the experimental group (ds-DMRT1). DMRT1 transcripts during embryogenesis exhibited a significantly high expression pattern (p < 0.05) during the early zygote stage, and whole-embryo in-situ hybridization confirmed its expression pattern throughout embryogenesis. A qRT-PCR analysis of various reproductive stages revealed an abundant expression of Tc-DMRT1 in the gonads during the male reproductive stage. In-situ hybridization showed tissue-specific expression of DMRT1, with a positive signal detected in male-stage gonadal tissues comprising sperm cells, while no signal was detected in other stages. Our study findings provide an initial understanding of the DMRT1 molecular machinery controlling spermatogenesis and its specificity in male-stage gonads of the key bivalve species, Tridacna crocea, and suggest that DMRT1 predominantly functions as a key regulator of spermatogenesis in giant clams.
Collapse
Affiliation(s)
- Zohaib Noor
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Zhen Zhao
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
- Animal Science and Technology College, Guangxi University, Nanning 530004, China
| | - Shuming Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Zonglu Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
- Animal Science and Technology College, Guangxi University, Nanning 530004, China
| | - Borui Cai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Yanping Qin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| |
Collapse
|
3
|
Luo X, Guo J, Zhang J, Ma Z, Li H. Overview of chicken embryo genes related to sex differentiation. PeerJ 2024; 12:e17072. [PMID: 38525278 PMCID: PMC10959104 DOI: 10.7717/peerj.17072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/18/2024] [Indexed: 03/26/2024] Open
Abstract
Sex determination in chickens at an early embryonic stage has been a longstanding challenge in poultry production due to the unique ZZ:ZW sex chromosome system and various influencing factors. This review has summarized the genes related to the sex differentiation of chicken early embryos (mainly Dmrt1, Sox9, Amh, Cyp19a1, Foxl2, Tle4z1, Jun, Hintw, Ube2i, Spin1z, Hmgcs1, Foxd1, Tox3, Ddx4, cHemgn and Serpinb11 in this article), and has found that these contributions enhance our understanding of the genetic basis of sex determination in chickens, while identifying potential gene targets for future research. This knowledge may inform and guide the development of sex screening technologies for hatching eggs and support advancements in gene-editing approaches for chicken embryos. Moreover, these insights offer hope for enhancing animal welfare and promoting conservation efforts in poultry production.
Collapse
Affiliation(s)
- Xiaolu Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jiancheng Guo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jiahang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
4
|
Halgrain M, Bernardet N, Hennequet-Antier C, Réhault-Godbert S. Sex-specific transcriptome of the chicken chorioallantoic membrane. Genomics 2024; 116:110754. [PMID: 38061480 DOI: 10.1016/j.ygeno.2023.110754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Dimorphism between male and female embryos has been demonstrated in many animal species, including chicken species. Likewise, extraembryonic membranes such as the chorioallantoic membrane (CAM) are likely to exhibit a sex-specific profile. Analysis of the previously published RNA-seq data of the chicken CAM sampled at two incubation times, revealed 783 differentially expressed genes between the CAM of male and female embryos. The expression of some of these genes is sex-dependant only at one or other stage of development, while 415 genes are sex-dependant at both developmental stages. These genes include well-known sex-determining and sex-differentiation genes (DMRT1, HEGM, etc.), and are mainly located on sex chromosomes. This study provides evidence that gene expression of extra-embryonic membranes is differentially regulated between male and female embryos. As such, a better characterisation of associated mechanisms should facilitate the identification of new sex-specific biomarkers.
Collapse
Affiliation(s)
| | | | - Christelle Hennequet-Antier
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas 78350, France; Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, Jouy-en-Josas 78350, France
| | | |
Collapse
|
5
|
Luo H, Zhou H, Jiang S, He C, Xu K, Ding J, Liu J, Qin C, Chen K, Zhou W, Wang L, Yang W, Zhu W, Meng H. Gene Expression Profiling Reveals Potential Players of Sex Determination and Asymmetrical Development in Chicken Embryo Gonads. Int J Mol Sci 2023; 24:14597. [PMID: 37834055 PMCID: PMC10572726 DOI: 10.3390/ijms241914597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Despite the notable progress made in recent years, the understanding of the genetic control of gonadal sex differentiation and asymmetrical ovariogenesis in chicken during embryonic development remains incomplete. This study aimed to identify potential key genes and speculate about the mechanisms associated with ovary and testis development via an analysis of the results of PacBio and Illumina transcriptome sequencing of embryonic chicken gonads at the initiation of sexual differentiation (E4.5, E5.5, and E6.5). PacBio sequencing detected 328 and 233 significantly up-regulated transcript isoforms in females and males at E4.5, respectively. Illumina sequencing detected 95, 296 and 445 DEGs at E4.5, E5.5, and E6.5, respectively. Moreover, both sexes showed asymmetrical expression in gonads, and more DEGs were detected on the left side. There were 12 DEGs involved in cell proliferation shared between males and females in the left gonads. GO analysis suggested that coagulation pathways may be involved in the degradation of the right gonad in females and that blood oxygen transport pathways may be involved in preventing the degradation of the right gonad in males. These results provide a comprehensive expression profile of chicken embryo gonads at the initiation of sexual differentiation, which can serve as a theoretical basis for further understanding the mechanism of bird sex determination and its evolutionary process.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (H.Z.); (S.J.); (C.H.); (K.X.); (J.D.); (J.L.); (C.Q.); (K.C.); (W.Z.); (L.W.); (W.Y.); (W.Z.)
| |
Collapse
|
6
|
Zhang X, Li J, Chen S, Yang N, Zheng J. Overview of Avian Sex Reversal. Int J Mol Sci 2023; 24:ijms24098284. [PMID: 37175998 PMCID: PMC10179413 DOI: 10.3390/ijms24098284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Sex determination and differentiation are processes by which a bipotential gonad adopts either a testicular or ovarian cell fate, and secondary sexual characteristics adopt either male or female developmental patterns. In birds, although genetic factors control the sex determination program, sex differentiation is sensitive to hormones, which can induce sex reversal when disturbed. Although these sex-reversed birds can form phenotypes opposite to their genotypes, none can experience complete sex reversal or produce offspring under natural conditions. Promising evidence indicates that the incomplete sex reversal is associated with cell autonomous sex identity (CASI) of avian cells, which is controlled by genetic factors. However, studies cannot clearly describe the regulatory mechanism of avian CASI and sex development at present, and these factors require further exploration. In spite of this, the abundant findings of avian sex research have provided theoretical bases for the progress of gender control technologies, which are being improved through interdisciplinary co-operation and will ultimately be employed in poultry production. In this review, we provide an overview of avian sex determination and differentiation and comprehensively summarize the research progress on sex reversal in birds, especially chickens. Importantly, we describe key issues faced by applying gender control systems in poultry production and chronologically summarize the development of avian sex control methods. In conclusion, this review provides unique perspectives for avian sex studies and helps scientists develop more advanced systems for sex regulation in birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Sirui Chen
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
Clinton M, Zhao D. Avian Sex Determination: A Chicken and Egg Conundrum. Sex Dev 2023; 17:120-133. [PMID: 36796340 PMCID: PMC10659007 DOI: 10.1159/000529754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Primary sex determination is the developmental process that results in the sexual differentiation of the gonads. Vertebrate sex determination is generally considered to follow the model based on the mammalian system, where a sex-specific master regulatory gene activates one of the two different gene networks that underlie testis and ovary differentiation. SUMMARY It is now known that, while many of the molecular components of these pathways are conserved across different vertebrates, a wide variety of different trigger factors are utilized to initiate primary sex determination. In birds, the male is the homogametic sex (ZZ), and significant differences exist between the avian system of sex determination and that of mammals. For example, DMRT1, FOXL2, and estrogen are key factors in gonadogenesis in birds, but none are essential for primary sex determination in mammals. KEY MESSAGE Gonadal sex determination in birds is thought to depend on a dosage-based mechanism involving expression of the Z-linked DMRT1 gene, and it may be that this "mechanism" is simply an extension of the cell autonomous sex identity associated with avian tissues, with no sex-specific trigger required.
Collapse
Affiliation(s)
- Michael Clinton
- Roslin Institute Chicken Embryology (RICE) Group, Gene Function and Development, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Debiao Zhao
- Roslin Institute Chicken Embryology (RICE) Group, Gene Function and Development, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| |
Collapse
|
8
|
Zhang X, Li J, Wang X, Jie Y, Sun C, Zheng J, Li J, Yang N, Chen S. ATAC-seq and RNA-seq analysis unravel the mechanism of sex differentiation and infertility in sex reversal chicken. Epigenetics Chromatin 2023; 16:2. [PMID: 36617567 PMCID: PMC9827654 DOI: 10.1186/s13072-022-00476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Sex determination and differentiation are complex and delicate processes. In female chickens, the process of sex differentiation is sensitive and prone to be affected by the administration of aromatase inhibitors, which result in chicken sex reversal and infertility. However, the molecular mechanisms underlying sex differentiation and infertility in chicken sex reversal remain unclear. Therefore, we established a sex-reversed chicken flock by injecting an aromatase inhibitor, fadrozole, and constructed relatively high-resolution profiles of the gene expression and chromatin accessibility of embryonic gonads. RESULTS We revealed that fadrozole affected the transcriptional activities of several genes, such as DMRT1, SOX9, FOXL2, and CYP19A1, related to sex determination and differentiation, and the expression of a set of gonadal development-related genes, such as FGFR3 and TOX3, by regulating nearby open chromatin regions in sex-reversed chicken embryos. After sexual maturity, the sex-reversed chickens were confirmed to be infertile, and the possible causes of this infertility were further investigated. We found that the structure of the gonads and sperm were greatly deformed, and we identified several promising genes related to spermatogenesis and infertility, such as SPEF2, DNAI1, and TACR3, through RNA-seq. CONCLUSIONS This study provides clear insights into the exploration of potential molecular basis underlying sex differentiation and infertility in sex-reversed chickens and lays a foundation for further research into the sex development of birds.
Collapse
Affiliation(s)
- Xiuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jianbo Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuchen Jie
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Sirui Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Cheng Y, Zhang Z, Zhang G, Chen L, Zeng C, Liu X, Feng Y. The Male-Biased Expression of miR-2954 Is Involved in the Male Pathway of Chicken Sex Differentiation. Cells 2022; 12:cells12010004. [PMID: 36611798 PMCID: PMC9818168 DOI: 10.3390/cells12010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/26/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Many expression data showed miRNAs have a potential function on regulating gonadal differentiation in animals, but their function is rarely studied in vivo, especially in chickens. Using the comprehensive expression profiles analysis, the specific male-biased miR-2954, which is significantly higher expressed in male embryos and gonads at all detected stages, was firstly screened during the early stages of chicken embryogenesis and gonadogenesis. In sex-reversed female gonads treated with aromatase inhibitors, the expression of miR-2954 was increased, which was consistent with the up-regulation of DMRT1 and SOX9. The injection of vivo-morpholino of miR-2954 significantly inhibited the expression of miR-2954 in chicken embryos, and the down-regulation of miR-2954 decreased the expression of testis-associated genes DMRT1 and SOX9, while the expression of ovary-associated genes and the gonadal morphology did not change obviously. These results confirm that miR-2954 coincides with testicular differentiation in chicken embryos, but whether it might be an upstream cell autonomous factor to sex development in birds still need to be further determined.
Collapse
|
10
|
Jin L, Sun W, Bao H, Liang X, Li P, Shi S, Wang Z, Qian G, Ge C. The forkhead factor Foxl2 participates in the ovarian differentiation of Chinese soft-shelled turtle Pelodiscus sinensis. Dev Biol 2022; 492:101-110. [DOI: 10.1016/j.ydbio.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/24/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
11
|
Estermann MA, Smith CA. Fadrozole-mediated sex reversal in the embryonic chicken gonad involves a PAX2 positive undifferentiated supporting cell state. Front Cell Dev Biol 2022; 10:1042759. [PMID: 36438569 PMCID: PMC9684329 DOI: 10.3389/fcell.2022.1042759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 09/08/2024] Open
Abstract
Gonadal sex differentiation among vertebrates involves divergent fates of a common group of progenitor cells present in both presumptive ovaries and testes. The first cell type to differentiate gives rise to pre-Sertoli cells in the testis, and pre-follicular cells in the ovary. These cells derive from a common lineage of so-called "supporting cells". In birds and other egg-laying vertebrates, locally synthesised estrogen has a central role in ovarian development and influences the fate of these supporting cells. Manipulation of estrogen levels during embryonic development induces gonadal sex reversal, providing an experimental setting to evaluate the process of gonadal sex differentiation. Recently, we identified PAX2 as a novel marker of the undifferentiated supporting cell lineage in the chicken embryo, expressed in both sexes prior to overt gonadal sex differentiation. PAX2 expression is downregulated at the onset of gonadal sex differentiation in both males and females. The analysis of this undifferentiated supporting cell marker, together with Sertoli (male) and pre-granulosa (female) will enhance our understanding of supporting cell differentiation. Here we characterized the supporting cells differentiation process and identified undifferentiated supporting cells in estrogen-mediated sex reversal experiments. Female embryos treated with the aromatase inhibitor fadrozole developed into ovotestis, containing pre-granulosa cells, Sertoli cells and PAX2 positive undifferentiated supporting cells. In contrast, male embryos treated with 17β-estradiol showed no PAX2+ undifferentiated gonadal supporting cells. Fadrozole time-course as well as multiple dose analysis suggests that supporting cell transdifferentiation involves a dedifferentiation event into a PAX2+ undifferentiated supporting cell state, followed by a redifferentiation towards the opposite sex lineage.
Collapse
Affiliation(s)
| | - Craig A. Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Nicol B, Estermann MA, Yao HHC, Mellouk N. Becoming female: Ovarian differentiation from an evolutionary perspective. Front Cell Dev Biol 2022; 10:944776. [PMID: 36158204 PMCID: PMC9490121 DOI: 10.3389/fcell.2022.944776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Differentiation of the bipotential gonadal primordium into ovaries and testes is a common process among vertebrate species. While vertebrate ovaries eventually share the same functions of producing oocytes and estrogens, ovarian differentiation relies on different morphogenetic, cellular, and molecular cues depending on species. The aim of this review is to highlight the conserved and divergent features of ovarian differentiation through an evolutionary perspective. From teleosts to mammals, each clade or species has a different story to tell. For this purpose, this review focuses on three specific aspects of ovarian differentiation: ovarian morphogenesis, the evolution of the role of estrogens on ovarian differentiation and the molecular pathways involved in granulosa cell determination and maintenance.
Collapse
Affiliation(s)
- Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States,*Correspondence: Barbara Nicol,
| | - Martin A. Estermann
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Namya Mellouk
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France
| |
Collapse
|
13
|
Li J, Zhang X, Wang X, Sun C, Zheng J, Li J, Yi G, Yang N. The m6A methylation regulates gonadal sex differentiation in chicken embryo. J Anim Sci Biotechnol 2022; 13:52. [PMID: 35581635 PMCID: PMC9115958 DOI: 10.1186/s40104-022-00710-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 01/06/2023] Open
Abstract
Background As a ubiquitous reversible epigenetic RNA modification, N6-methyladenosine (m6A) plays crucial regulatory roles in multiple biological pathways. However, its functional mechanisms in sex determination and differentiation during gonadal development of chicken embryos are not clear. Therefore, we established a transcriptome-wide m6A map in the female and male chicken left gonads of embryonic day 7 (E7) by methylated RNA immunoprecipitation sequencing (MeRIP-seq) to offer insight into the landscape of m6A methylation and investigate the post-transcriptional modification underlying gonadal differentiation. Results The chicken embryonic gonadal transcriptome was extensively methylated. We found 15,191 and 16,111 m6A peaks in the female and male left gonads, respectively, which were mainly enriched in the coding sequence (CDS) and stop codon. Among these m6A peaks, we identified that 1013 and 751 were hypermethylated in females and males, respectively. These differential peaks covered 281 and 327 genes, such as BMP2, SMAD2, SOX9 and CYP19A1, which were primarily associated with development, morphogenesis and sex differentiation by functional enrichment. Further analysis revealed that the m6A methylation level was positively correlated with gene expression abundance. Furthermore, we found that YTHDC2 could regulate the expression of sex-related genes, especially HEMGN and SOX9, in male mesonephros/gonad mingle cells, which was verified by in vitro experiments, suggesting a regulatory role of m6A methylation in chicken gonad differentiation. Conclusions This work provided a comprehensive m6A methylation profile of chicken embryonic gonads and revealed YTHDC2 as a key regulator responsible for sex differentiation. Our results contribute to a better understanding of epigenetic factors involved in chicken sex determination and differentiation and to promoting the future development of sex manipulation in poultry industry. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00710-6.
Collapse
Affiliation(s)
- Jianbo Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Xiuan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Xiqiong Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Congjiao Sun
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.
| |
Collapse
|
14
|
Estermann MA, Mariette MM, Moreau JLM, Combes AN, Smith CA. PAX 2 + Mesenchymal Origin of Gonadal Supporting Cells Is Conserved in Birds. Front Cell Dev Biol 2021; 9:735203. [PMID: 34513849 PMCID: PMC8429852 DOI: 10.3389/fcell.2021.735203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
During embryonic gonadal development, the supporting cell lineage is the first cell type to differentiate, giving rise to Sertoli cells in the testis and pre-granulosa cells in the ovary. These cells are thought to direct other gonadal cell lineages down the testis or ovarian pathways, including the germline. Recent research has shown that, in contrast to mouse, chicken gonadal supporting cells derive from a PAX2/OSR1/DMRT1/WNT4 positive mesenchymal cell population. These cells colonize the undifferentiated genital ridge during early gonadogenesis, around the time that germ cells migrate into the gonad. During the process of somatic gonadal sex differentiation, PAX2 expression is down-regulated in embryonic chicken gonads just prior to up-regulation of testis- and ovary-specific markers and prior to germ cell differentiation. Most research on avian gonadal development has focused on the chicken model, and related species from the Galloanserae clade. There is a lack of knowledge on gonadal sex differentiation in other avian lineages. Comparative analysis in birds is required to fully understand the mechanisms of avian sex determination and gonadal differentiation. Here we report the first comparative molecular characterization of gonadal supporting cell differentiation in birds from each of the three main clades, Galloanserae (chicken and quail), Neoaves (zebra finch) and Palaeognathe (emu). Our analysis reveals conservation of PAX2+ expression and a mesenchymal origin of supporting cells in each clade. Moreover, down-regulation of PAX2 expression precisely defines the onset of gonadal sex differentiation in each species. Altogether, these results indicate that gonadal morphogenesis is conserved among the major bird clades.
Collapse
Affiliation(s)
- Martin A. Estermann
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mylene M. Mariette
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Julie L. M. Moreau
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Alexander N. Combes
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Craig A. Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
15
|
Estermann MA, Hirst CE, Major AT, Smith CA. The homeobox gene TGIF1 is required for chicken ovarian cortical development and generation of the juxtacortical medulla. Development 2021; 148:dev199646. [PMID: 34387307 PMCID: PMC8406534 DOI: 10.1242/dev.199646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
During early embryogenesis in amniotic vertebrates, the gonads differentiate into either ovaries or testes. The first cell lineage to differentiate gives rise to the supporting cells: Sertoli cells in males and pre-granulosa cells in females. These key cell types direct the differentiation of the other cell types in the gonad, including steroidogenic cells. The gonadal surface epithelium and the interstitial cell populations are less well studied, and little is known about their sexual differentiation programs. Here, we show the requirement of the homeobox transcription factor gene TGIF1 for ovarian development in the chicken embryo. TGIF1 is expressed in the two principal ovarian somatic cell populations: the cortex and the pre-granulosa cells of the medulla. TGIF1 expression is associated with an ovarian phenotype in estrogen-mediated sex reversal experiments. Targeted misexpression and gene knockdown indicate that TGIF1 is required, but not sufficient, for proper ovarian cortex formation. In addition, TGIF1 is identified as the first known regulator of juxtacortical medulla development. These findings provide new insights into chicken ovarian differentiation and development, specifically cortical and juxtacortical medulla formation.
Collapse
Affiliation(s)
| | | | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
16
|
Ioannidis J, Taylor G, Zhao D, Liu L, Idoko-Akoh A, Gong D, Lovell-Badge R, Guioli S, McGrew MJ, Clinton M. Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary sex characteristics. Proc Natl Acad Sci U S A 2021; 118:e2020909118. [PMID: 33658372 PMCID: PMC7958228 DOI: 10.1073/pnas.2020909118] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In birds, males are the homogametic sex (ZZ) and females the heterogametic sex (ZW). Primary sex determination is thought to depend on a sex chromosome gene dosage mechanism, and the most likely sex determinant is the Z chromosome gene Doublesex and Mab-3-Related Transcription factor 1 (DMRT1). To clarify this issue, we used a CRISPR-Cas9-based monoallelic targeting approach and sterile surrogate hosts to generate birds with targeted mutations in the DMRT1 gene. The resulting chromosomally male (ZZ) chicken with a single functional copy of DMRT1 developed ovaries in place of testes, demonstrating the avian sex-determining mechanism is based on DMRT1 dosage. These ZZ ovaries expressed typical female markers and showed clear evidence of follicular development. However, these ZZ adult birds with an ovary in place of testes were indistinguishable in appearance to wild-type adult males, supporting the concept of cell-autonomous sex identity (CASI) in birds. In experiments where estrogen synthesis was blocked in control ZW embryos, the resulting gonads developed as testes. In contrast, if estrogen synthesis was blocked in ZW embryos that lacked DMRT1, the gonads invariably adopted an ovarian fate. Our analysis shows that DMRT1 is the key sex determination switch in birds and that it is essential for testis development, but that production of estrogen is also a key factor in primary sex determination in chickens, and that this production is linked to DMRT1 expression.
Collapse
Affiliation(s)
- Jason Ioannidis
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom;
| | - Gunes Taylor
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Debiao Zhao
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, People's Republic of China
| | - Alewo Idoko-Akoh
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, 225009 Yangzhou, People's Republic of China
| | - Robin Lovell-Badge
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Silvana Guioli
- Laboratory of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Mike J McGrew
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom;
| | - Michael Clinton
- Division of Functional Genomics and Development, The Roslin Institute, Royal (Dick) School of Veterinary Studies, EH25 9RG Midlothian, United Kingdom
| |
Collapse
|
17
|
Jiang J, Zhang C, Yuan X, Li J, Zhang M, Shi X, Jin K, Zhang Y, Zuo Q, Chen G, Li B. Spin1z induces the male pathway in the chicken by down-regulating Tcf4. Gene 2021; 780:145521. [PMID: 33631236 DOI: 10.1016/j.gene.2021.145521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/20/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
SPINDLIN1-Z (SPIN1Z), a member of the Spin/Ssty(Y-linked spermiogenesis specific transcript) protein family, participates in the early embryonic development process. Our previous RNA-seq analysis indicates that the level of Spin1z was abundantly expressed in male embryonic stem cells (ESCs) and primitive germ cells (PGCs), we speculate that Spin1z may play an important role in chicken male differentiation. Therefore, the loss- and gain-of-function experiments provide solid evidence that Spin1z is both necessary and sufficient to initiate male development in chicken. Furthermore, chromatin immunoprecipitation (ChIP) assay and the dual-luciferase assay was performed to further confirm that Spin1z contributed to chicken male differentiation by inhibiting the Tcf4 transcription. Our findings provide a novel insight into the molecular mechanism for chicken male differentiation.
Collapse
Affiliation(s)
- Jingyi Jiang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chen Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xia Yuan
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiancheng Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ming Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiang Shi
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
18
|
Shan B, Liu Y, Yang C, Zhao Y, Sun D. Comparative transcriptomic analysis for identification of candidate sex-related genes and pathways in Crimson seabream (Parargyrops edita). Sci Rep 2021; 11:1077. [PMID: 33441831 PMCID: PMC7806868 DOI: 10.1038/s41598-020-80282-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Teleost fishes display the largest array of sex-determining systems among animals, resulting in various reproductive strategies. Research on sex-related genes in teleosts will broaden our understanding of the process, and provide important insight into the plasticity of the sex determination process in vertebrates in general. Crimson seabream (Parargyrops edita Tanaka, 1916) is one of the most valuable and abundant fish resources throughout Asia. However, little genomic information on P. edita is available. In the present study, the transcriptomes of male and female P. edita were sequenced with RNA-seq technology. A total of 388,683,472 reads were generated from the libraries. After filtering and assembling, a total of 79,775 non redundant unigenes were obtained with an N50 of 2,921 bp. The unigenes were annotated with multiple public databases, including NT (53,556, 67.13%), NR (54,092, 67.81%), Swiss-Prot (45,265, 56.74%), KOG (41,274, 51.74%), KEGG (46,302, 58.04%), and GO (11,056, 13.86%) databases. Comparison of the unigenes of different sexes of P. edita revealed that 11,676 unigenes (9,335 in females, 2,341 in males) were differentially expressed between males and females. Of these, 5,463 were specifically expressed in females, and 1,134 were specifically expressed in males. In addition, the expression levels of ten unigenes were confirmed to validate the transcriptomic data by qRT-PCR. Moreover, 34,473 simple sequence repeats (SSRs) were identified in SSR-containing sequences, and 50 loci were randomly selected for primer development. Of these, 36 loci were successfully amplified, and 19 loci were polymorphic. Finally, our comparative analysis identified many sex-related genes (zps, amh, gsdf, sox4, cyp19a, etc.) and pathways (MAPK signaling pathway, p53 signaling pathway, etc.) of P. edita. This informative transcriptomic analysis provides valuable data to increase genomic resources of P. edita. The results will be useful for clarifying the molecular mechanism of sex determination and for future functional analyses of sex-associated genes.
Collapse
Affiliation(s)
- Binbin Shan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Yan Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Changping Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Yu Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China
| | - Dianrong Sun
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture Rural Affairs, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, China.
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, China.
| |
Collapse
|
19
|
Shioda K, Odajima J, Kobayashi M, Kobayashi M, Cordazzo B, Isselbacher KJ, Shioda T. Transcriptomic and Epigenetic Preservation of Genetic Sex Identity in Estrogen-feminized Male Chicken Embryonic Gonads. Endocrinology 2021; 162:5973467. [PMID: 33170207 PMCID: PMC7745639 DOI: 10.1210/endocr/bqaa208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 12/18/2022]
Abstract
Whereas in ovo exposure of genetically male (ZZ) chicken embryos to exogenous estrogens temporarily feminizes gonads at the time of hatching, the morphologically ovarian ZZ-gonads (FemZZs for feminized ZZ gonads) are masculinized back to testes within 1 year. To identify the feminization-resistant "memory" of genetic male sex, FemZZs showing varying degrees of feminization were subjected to transcriptomic, DNA methylome, and immunofluorescence analyses. Protein-coding genes were classified based on their relative mRNA expression across normal ZZ-testes, genetically female (ZW) ovaries, and FemZZs. We identified a group of 25 genes that were strongly expressed in both ZZ-testes and FemZZs but dramatically suppressed in ZW-ovaries. Interestingly, 84% (21/25) of these feminization-resistant testicular marker genes, including the DMRT1 master masculinizing gene, were located in chromosome Z. Expression of representative marker genes of germline cells (eg, DAZL or DDX4/VASA) was stronger in FemZZs than normal ZZ-testes or ZW-ovaries. We also identified 231 repetitive sequences (RSs) that were strongly expressed in both ZZ-testes and FemZZs, but these RSs were not enriched in chromosome Z. Although 94% (165/176) of RSs exclusively expressed in ZW-ovaries were located in chromosome W, no feminization-inducible RS was detected in FemZZs. DNA methylome analysis distinguished FemZZs from normal ZZ- and ZW-gonads. Immunofluorescence analysis of FemZZ gonads revealed expression of DMRT1 protein in medullary SOX9+ somatic cells and apparent germline cell populations in both medulla and cortex. Taken together, our study provides evidence that both somatic and germline cell populations in morphologically feminized FemZZs maintain significant transcriptomic and epigenetic memories of genetic sex.
Collapse
Affiliation(s)
- Keiko Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Junko Odajima
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Misato Kobayashi
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Mutsumi Kobayashi
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Bianca Cordazzo
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Kurt J Isselbacher
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Toshi Shioda
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Correspondence: Toshi Shioda, Massachusetts General Hospital Center for Cancer Research, Building 149 – 7th Floor, 13th Street, Charlestown, Massachusetts 02129, USA. E-mail:
| |
Collapse
|
20
|
Zhou Y, Sun W, Cai H, Bao H, Zhang Y, Qian G, Ge C. The Role of Anti-Müllerian Hormone in Testis Differentiation Reveals the Significance of the TGF-β Pathway in Reptilian Sex Determination. Genetics 2019; 213:1317-1327. [PMID: 31645361 PMCID: PMC6893390 DOI: 10.1534/genetics.119.302527] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
Abstract
Anti-Müllerian hormone (Amh, or Müllerian-inhibiting substance, Mis), a member of TGF-β superfamily, has been well documented in some vertebrates as initiator or key regulator in sexual development, and particularly in fish. However, its functional role has not yet been identified in reptiles. Here, we characterized the Amh gene in the Chinese soft-shelled turtle Pelodiscus sinensis, a typical reptilian species exhibiting ZZ/ZW sex chromosomes. The messenger RNA of Amh was initially expressed in male embryonic gonads by stage 15, preceding gonadal sex differentiation, and exhibited a male-specific expression pattern throughout embryogenesis. Moreover, Amh was rapidly upregulated during female-to-male sex reversal induced by aromatase inhibitor letrozole. Most importantly, Amh loss of function by RNA interference led to complete feminization of genetic male (ZZ) gonads, suppression of the testicular marker Sox9, and upregulation of the ovarian regulator Cyp19a1 Conversely, overexpression of Amh in ZW embryos resulted in female-to-male sex reversal, characterized by the formation of a testis structure, ectopic activation of Sox9, and a remarkable decline in Cyp19a1 Collectively, these findings provide the first solid evidence that Amh is both necessary and sufficient to drive testicular development in a reptilian species, P. sinensis, highlighting the significance of the TGF-β pathway in reptilian sex determination.
Collapse
Affiliation(s)
- Yingjie Zhou
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Sun
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Han Cai
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Haisheng Bao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yu Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Chutian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
21
|
González-Castellano I, Manfrin C, Pallavicini A, Martínez-Lage A. De novo gonad transcriptome analysis of the common littoral shrimp Palaemon serratus: novel insights into sex-related genes. BMC Genomics 2019; 20:757. [PMID: 31640556 PMCID: PMC6805652 DOI: 10.1186/s12864-019-6157-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The common littoral shrimp Palaemon serratus is an economically important decapod resource in some European communities. Aquaculture practices prevent the genetic deterioration of wild stocks caused by overfishing and at the same time enhance the production. The biotechnological manipulation of sex-related genes has the proved potential to improve the aquaculture production but the scarcity of genomic data about P. serratus hinders these applications. RNA-Seq analysis has been performed on ovary and testis samples to generate a reference gonadal transcriptome. Differential expression analyses were conducted between three ovary and three testis samples sequenced by Illumina HiSeq 4000 PE100 to reveal sex-related genes with sex-biased or sex-specific expression patterns. RESULTS A total of 224.5 and 281.1 million paired-end reads were produced from ovary and testis samples, respectively. De novo assembly of ovary and testis trimmed reads yielded a transcriptome with 39,186 transcripts. The 29.57% of the transcriptome retrieved at least one annotation and 11,087 differentially expressed genes (DEGs) were detected between ovary and testis replicates. Six thousand two hundred seven genes were up-regulated in ovaries meanwhile 4880 genes were up-regulated in testes. Candidate genes to be involved in sexual development and gonadal development processes were retrieved from the transcriptome. These sex-related genes were discussed taking into account whether they were up-regulated in ovary, up-regulated in testis or not differentially expressed between gonads and in the framework of previous findings in other crustacean species. CONCLUSIONS This is the first transcriptome analysis of P. serratus gonads using RNA-Seq technology. Interesting findings about sex-related genes from an evolutionary perspective (such as Dmrt1) and for putative future aquaculture applications (Iag or vitellogenesis genes) are reported here. We provide a valuable dataset that will facilitate further research into the reproductive biology of this shrimp.
Collapse
Affiliation(s)
- Inés González-Castellano
- Universidade da Coruña, Departamento de Biología and Centro de Investigaciones Científicas Avanzadas (CICA), 15071, A Coruña, Spain.
| | - Chiara Manfrin
- Università degli Studi di Trieste, Dipartimento di Scienze della Vita, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Università degli Studi di Trieste, Dipartimento di Scienze della Vita, 34127, Trieste, Italy
| | - Andrés Martínez-Lage
- Universidade da Coruña, Departamento de Biología and Centro de Investigaciones Científicas Avanzadas (CICA), 15071, A Coruña, Spain.
| |
Collapse
|
22
|
Yousefi Taemeh S, Mahdavi Shahri N, Lari R, Bahrami AR, Dehghani H. Meiotic initiation in chicken germ cells is regulated by Cyp26b1 and mesonephros. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 332:269-278. [PMID: 31580014 DOI: 10.1002/jez.b.22904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/22/2019] [Accepted: 09/07/2019] [Indexed: 01/04/2023]
Abstract
Our knowledge of mechanisms involved in the meiosis of chicken germ cells is very limited. In mammalian fetal ovaries, the onset of meiosis is dependent on retinoic acid and subsequent upregulation of the Stra8 gene. To clarify the mechanism of meiotic initiation in chicken germ cells, we investigated the role of Cyp26b1, a retinoic acid-degrading enzyme. The Cyp26b1-inhibitor, ketoconazole was used to treat the ex vivo-cultured stage 36 gonads/mesonephroi. Then, the progression of meiosis was studied by histological and immunohistochemical analysis and the level of the transcript for Stra8 was evaluated by a quantitative reverse transcription-polymerase chain reaction in individual ketoconazole-treated gonads after 6 days in culture. The results revealed that meiosis was induced in both testes and right ovary upon inhibition of Cyp26b1 in the ex vivo-cultured gonads, despite downregulation of Stra8 messenger RNA in the treated gonads. Also, meiosis was observed only when mesonephros was cultured alongside the left ovary. These findings demonstrate that in chicken, Stra8 is not the only factor for the entrance into meiosis, and Cyp26b1 and mesonephros play critical regulatory roles for the sex-specific timing of meiotic initiation in birds.
Collapse
Affiliation(s)
- Sara Yousefi Taemeh
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Naser Mahdavi Shahri
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Roya Lari
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hesam Dehghani
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
23
|
Sánchez L, Chaouiya C. Logical modelling uncovers developmental constraints for primary sex determination of chicken gonads. J R Soc Interface 2019; 15:rsif.2018.0165. [PMID: 29792308 PMCID: PMC6000168 DOI: 10.1098/rsif.2018.0165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
In the chicken, sex determination relies on a ZZ (male)/ZW (female) chromosomal system, but underlying mechanisms are still not fully understood. The Z-dosage and the dominant W-chromosome hypotheses have been proposed to underlie primary sex determination. We present a modelling approach, which assembles the current knowledge and permits exploration of the regulation of this process in chickens. Relying on published experimental data, we assembled a gene network, which led to a logical model that integrates both the Z-dosage and dominant W hypotheses. This model showed that the sexual fate of chicken gonads results from the resolution of the mutual inhibition between DMRT1 and FOXL2, where the initial amount of DMRT1 product determines the development of the gonads. In this respect, at the initiation step, a W-factor would function as a secondary device, by reducing the amount of DMRT1 in ZW gonads when the sexual fate of the gonad is settled, that is when the SOX9 functional level is established. Developmental constraints that are instrumental in this resolution were identified. These constraints establish qualitative restrictions regarding the relative transcription rates of the genes DMRT1, FOXL2 and HEMGN. Our model further clarified the role of OESTROGEN in maintaining FOXL2 function during ovary development.
Collapse
Affiliation(s)
- Lucas Sánchez
- Dpto. Biología Celular y Molecular, Centro de Investigaciones Biológicas (C. S. I. C.), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Claudine Chaouiya
- Instituto Gulbenkian de Ciência - IGC, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
24
|
Wexler J, Delaney EK, Belles X, Schal C, Wada-Katsumata A, Amicucci MJ, Kopp A. Hemimetabolous insects elucidate the origin of sexual development via alternative splicing. eLife 2019; 8:e47490. [PMID: 31478483 PMCID: PMC6721801 DOI: 10.7554/elife.47490] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/11/2019] [Indexed: 02/02/2023] Open
Abstract
Insects are the only known animals in which sexual differentiation is controlled by sex-specific splicing. The doublesex transcription factor produces distinct male and female isoforms, which are both essential for sex-specific development. dsx splicing depends on transformer, which is also alternatively spliced such that functional Tra is only present in females. This pathway has evolved from an ancestral mechanism where dsx was independent of tra and expressed and required only in males. To reconstruct this transition, we examined three basal, hemimetabolous insect orders: Hemiptera, Phthiraptera, and Blattodea. We show that tra and dsx have distinct functions in these insects, reflecting different stages in the changeover from a transcription-based to a splicing-based mode of sexual differentiation. We propose that the canonical insect tra-dsx pathway evolved via merger between expanding dsx function (from males to both sexes) and narrowing tra function (from a general splicing factor to dedicated regulator of dsx).
Collapse
Affiliation(s)
- Judith Wexler
- Department of Evolution and EcologyUniversity of California, DavisDavisUnited States
| | - Emily Kay Delaney
- Department of Evolution and EcologyUniversity of California, DavisDavisUnited States
| | - Xavier Belles
- Institut de Biologia EvolutivaConsejo Superior de Investigaciones Cientificas, Universitat Pompeu FabraBarcelonaSpain
| | - Coby Schal
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighUnited States
| | - Ayako Wada-Katsumata
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighUnited States
| | - Matthew J Amicucci
- Department of ChemistryUniversity of California, DavisDavisUnited States
| | - Artyom Kopp
- Department of Evolution and EcologyUniversity of California, DavisDavisUnited States
| |
Collapse
|
25
|
Hu YQ, Bai DP, Chen Y, Lu ZX, Zheng HB, Xu FQ, Wu Y, Zhu MX, Li A. The Degree of Sex Reversal in Muscovy Ducks (Cairina moschata domestica) Induced by an Aromatase Inhibitor. Sex Dev 2019; 13:137-142. [PMID: 31450230 DOI: 10.1159/000502195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 11/19/2022] Open
Abstract
Under the same feeding conditions, the growth and development of male Muscovy ducks is significantly greater than that of females. Thus, controlling their sex expression can have economic benefits. However, reports on the degree of sex reversal in Muscovy ducks are scarce. In this study, we obtained sex-reversed Muscovy ducks by injecting letrozole before sex differentiation. We analyzed the degree of sex reversal in Muscovy ducks in terms of hormone levels, gonadal tissue development, and growth and found that the estradiol levels of AI-females (letrozole-induced female-to-male sex reversal) were not significantly different from those of normal males (p > 0.05), but the testosterone levels were significantly lower than those in normal males (p < 0.05). AI-female gonad tissue had changed, and the right gonad presented ovotestis tissue. The growth and development of AI-females was significantly less than that of normal males (p < 0.05) but was not significantly different from that of normal females (p > 0.05). Letrozole can induce female Muscovy ducks to convert into males, but the reversal cannot be completed. Thus, further studies are needed to elucidate how to entirely attain the change.
Collapse
|
26
|
Xu C, Mohsin A, Luo Y, Xie L, Peng Y, Wang Q, Hang H, Zhuang Y, Guo M. Differentiation roadmap of embryonic Sertoli cells derived from mouse embryonic stem cells. Stem Cell Res Ther 2019; 10:81. [PMID: 30850007 PMCID: PMC6408820 DOI: 10.1186/s13287-019-1180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Embryonic Sertoli cells (eSCs) play an important role in sex determination and in male gonad development which makes them a very useful cell type for therapeutic applications. However, the deriving mechanism of Sertoli cells has been unclear and challenging to create a large number of quality eSCs. Therefore, this study aimed to create the eSCs induced from mouse embryonic stem (mES) cells by regulating defined factors and to explore the relevant regulatory mechanism. Methods Six inducing factors, Sry, Sox9, SF1, WT1, GATA4, and Dmrt1, were respectively transduced into mES cells by lentiviral infection according to the experimental design. The test groups were identified by development stage-specific markers, AMH, Emx2, SF1, and FasL, using flow cytometry. Induced eSCs were determined by FasL and AMH biomarkers under immunofluorescence, immunocytochemistry, and flow cytometry. Moreover, the pluripotency markers, gonad development-related markers, epithelial markers and mesenchymal markers in test groups were transcriptionally determined by qPCR. Results In this study, the co-overexpression of all the six factors effectively produced a large population of eSCs from mES cells in 35 days of culturing. These eSCs were capable of forming tubular-like and ring-like structures with functional performance. The results of flow cytometry indicated that the upregulation of GATA4 and WT1 contributed to the growth of somatic cells in the coelomic epithelium regarded as the main progenitor cells of eSCs. Whereas, SF1 facilitated the development of eSC precursor cells, and Sry and Sox9 promoted the determination of male development. Moreover, the overexpression of Dmrt1 was essential for the maintenance of eSCs and some of their specific surface biomarkers such as FasL. The cellular morphology, biomarker identification, and transcriptomic analysis aided in exploring the regulatory mechanism of deriving eSCs from mES cells. Conclusion Conclusively, we have elucidated a differentiation roadmap of eSCs derived from mES cells with a relevant regulatory mechanism. Through co-overexpression of all these six factors, a large population of eSCs was successfully induced occupying 24% of the whole cell population (1 × 105 cells/cm2). By adopting this approach, a mass of embryonic Sertoli cells can be generated for the purpose of co-culture technique, organ transplantation, gonadal developmental and sex determination researches. Electronic supplementary material The online version of this article (10.1186/s13287-019-1180-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenze Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yanxia Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Lili Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Qizheng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China. .,Engineering Research Centre of Processes System, Ministry of Education, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, People's Republic of China.
| |
Collapse
|
27
|
Dmrt1 directly regulates the transcription of the testis-biased Sox9b gene in Nile tilapia (Oreochromis niloticus). Gene 2019; 687:109-115. [DOI: 10.1016/j.gene.2018.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 11/22/2022]
|
28
|
Identification of critical sex-biased genes in Andrias davidianus by de novo transcriptome. Mol Genet Genomics 2018; 294:287-299. [PMID: 30377773 DOI: 10.1007/s00438-018-1508-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
The Chinese giant salamander Andrias davidianus is a protected amphibian with high nutritional and economic value. Understanding its sex determination mechanism is important for improving culture techniques and sex control in breeding. However, little information on the characterization of critical genes involved in sex is available. Herein, sequencing of ovary and test produced 40,783,222 and 46,128,902 raw reads, respectively, which were jointly assembled into 80,497 unigenes. Of these, 36,609 unigenes were annotated, of which 8907 were female-biased and 10,385 were male-biased. Several sex-related pathways were observed, including the Wnt signaling pathway. After elevated temperature and estrogen exposure, neomale and neofemale specimens were identified by a female-specific marker for the first time. RT-qPCR analysis showed the expression profile of ten selected sex-biased genes to be exhibited consistently in male and neomale and in female and neofemale, with the exception of the Amh and TfIIIa genes. Results suggested that these genes may play important roles in A. davidianus sex determination and gonad development. This provides a basis for further investigation of the molecular mechanisms of sex determination in amphibians.
Collapse
|
29
|
Alam SMI, Sarre SD, Gleeson D, Georges A, Ezaz T. Did Lizards Follow Unique Pathways in Sex Chromosome Evolution? Genes (Basel) 2018; 9:E239. [PMID: 29751579 PMCID: PMC5977179 DOI: 10.3390/genes9050239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/02/2023] Open
Abstract
Reptiles show remarkable diversity in modes of reproduction and sex determination, including high variation in the morphology of sex chromosomes, ranging from homomorphic to highly heteromorphic. Additionally, the co-existence of genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) within and among sister clades makes this group an attractive model to study and understand the evolution of sex chromosomes. This is particularly so with Lizards (Order Squamata) which, among reptiles, show extraordinary morphological diversity. They also show no particular pattern of sex chromosome degeneration of the kind observed in mammals, birds and or even in snakes. We therefore speculate that sex determination sensu sex chromosome evolution is labile and rapid and largely follows independent trajectories within lizards. Here, we review the current knowledge on the evolution of sex chromosomes in lizards and discuss how sex chromosome evolution within that group differs from other amniote taxa, facilitating unique evolutionary pathways.
Collapse
Affiliation(s)
| | - Stephen D Sarre
- Institute for Applied Ecology, University of Canberra, Canberra 2616, Australia.
| | - Dianne Gleeson
- Institute for Applied Ecology, University of Canberra, Canberra 2616, Australia.
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra 2616, Australia.
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra 2616, Australia.
| |
Collapse
|
30
|
Hirst CE, Major AT, Ayers KL, Brown RJ, Mariette M, Sackton TB, Smith CA. Sex Reversal and Comparative Data Undermine the W Chromosome and Support Z-linked DMRT1 as the Regulator of Gonadal Sex Differentiation in Birds. Endocrinology 2017; 158:2970-2987. [PMID: 28911174 DOI: 10.1210/en.2017-00316] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
Abstract
The exact genetic mechanism regulating avian gonadal sex differentiation has not been completely resolved. The most likely scenario involves a dosage mechanism, whereby the Z-linked DMRT1 gene triggers testis development. However, the possibility still exists that the female-specific W chromosome may harbor an ovarian determining factor. In this study, we provide evidence that the universal gene regulating gonadal sex differentiation in birds is Z-linked DMRT1 and not a W-linked (ovarian) factor. Three candidate W-linked ovarian determinants are HINTW, female-expressed transcript 1 (FET1), and female-associated factor (FAF). To test the association of these genes with ovarian differentiation in the chicken, we examined their expression following experimentally induced female-to-male sex reversal using the aromatase inhibitor fadrozole (FAD). Administration of FAD on day 3 of embryogenesis induced a significant loss of aromatase enzyme activity in female gonads and masculinization. However, expression levels of HINTW, FAF, and FET1 were unaltered after experimental masculinization. Furthermore, comparative analysis showed that FAF and FET1 expression could not be detected in zebra finch gonads. Additionally, an antibody raised against the predicted HINTW protein failed to detect it endogenously. These data do not support a universal role for these genes or for the W sex chromosome in ovarian development in birds. We found that DMRT1 (but not the recently identified Z-linked HEMGN gene) is male upregulated in embryonic zebra finch and emu gonads, as in the chicken. As chicken, zebra finch, and emu exemplify the major evolutionary clades of birds, we propose that Z-linked DMRT1, and not the W sex chromosome, regulates gonadal sex differentiation in birds.
Collapse
Affiliation(s)
- Claire E Hirst
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew T Major
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Katie L Ayers
- Murdoch Childrens Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria 3052, Australia
- Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Victoria 3010, Australia
| | - Rosie J Brown
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mylene Mariette
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
31
|
Dmrt1 is required for primary male sexual differentiation in Chinese soft-shelled turtle Pelodiscus sinensis. Sci Rep 2017; 7:4433. [PMID: 28667307 PMCID: PMC5493664 DOI: 10.1038/s41598-017-04938-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 06/16/2017] [Indexed: 11/27/2022] Open
Abstract
In vertebrates, the primary sex-determining signals that initiate sexual development are remarkably diverse, ranging from complete genetic to environmental cues. However, no sex determination-related genes have been functionally identified in reptiles. Here, we characterized a conserved DM domain gene, Dmrt1, in Chinese soft-shelled turtle Pelodiscus sinensis (P. sinensis), which exhibits ZZ/ZW sex chromosomes. Dmrt1 exhibited early male-specific embryonic expression, preceding the onset of gonadal sex differentiation. The expression of Dmrt1 was induced in ZW embryonic gonads that were masculinized by aromatase inhibitor treatment. Dmrt1 knockdown in ZZ embryos by RNA interference resulted in male to female sex reversal, characterized by obvious feminization of gonads, significant down-regulation of testicular markers Amh and Sox9, and remarkable up-regulation of ovarian regulators, Cyp19a1 and Foxl2. Conversely, ectopic expression of Dmrt1 led to largely masculinized genetic females, production of Amh and Sox9, and a decline in Cyp19a1 and Foxl2. These findings demonstrate that Dmrt1 is both necessary and sufficient to initiate testicular development, thereby acting as an upstream regulator of the male pathway in P. sinensis.
Collapse
|
32
|
Ge C, Ye J, Zhang H, Zhang Y, Sun W, Sang Y, Capel B, Qian G. Dmrt1 induces the male pathway in a turtle species with temperature-dependent sex determination. Development 2017; 144:2222-2233. [PMID: 28506988 DOI: 10.1242/dev.152033] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/28/2017] [Indexed: 01/31/2023]
Abstract
The molecular mechanism underlying temperature-dependent sex determination (TSD) has been a long-standing mystery; in particular, the thermosensitive genetic triggers for gonadal sex differentiation are largely unknown. Here, we have characterized a conserved DM domain gene, Dmrt1, in the red-eared slider turtle Trachemys scripta (T. scripta), which exhibits TSD. We found that Dmrt1 has a temperature-dependent, sexually dimorphic expression pattern, preceding gonadal sex differentiation, and is capable of responding rapidly to temperature shifts and aromatase inhibitor treatment. Most importantly, loss- and gain-of-function analyses provide solid evidence that Dmrt1 is both necessary and sufficient to initiate male development in T. scripta Furthermore, the DNA methylation dynamics of the Dmrt1 promoter are tightly correlated with temperature and could mediate the impact of temperature on sex determination. Collectively, our findings demonstrate that Dmrt1 is a candidate master male sex-determining gene in this TSD species, consistent with the idea that DM domain genes are conserved during the evolution of sex determination mechanisms.
Collapse
Affiliation(s)
- Chutian Ge
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| | - Jian Ye
- HangZhou Aquacultural Technique Extending Centre, Hangzhou 310001, China
| | - Haiyan Zhang
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| | - Yi Zhang
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Sun
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| | - Yapeng Sang
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guoying Qian
- Zhejiang Provincial Top Key Discipline of Biological Engineering, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
33
|
Omotehara T, Minami K, Mantani Y, Umemura Y, Nishida M, Hirano T, Yoshioka H, Kitagawa H, Yokoyama T, Hoshi N. Contribution of the coelomic epithelial cells specific to the left testis in the chicken embryo. Dev Dyn 2017; 246:148-156. [DOI: 10.1002/dvdy.24469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/23/2016] [Accepted: 10/19/2016] [Indexed: 11/11/2022] Open
Affiliation(s)
- Takuya Omotehara
- Laboratory of Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science; Kobe University; Kobe Hyogo Japan
| | - Kiichi Minami
- Laboratory of Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science; Kobe University; Kobe Hyogo Japan
| | - Youhei Mantani
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science; Kobe University; Kobe Hyogo Japan
| | - Yuria Umemura
- Laboratory of Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science; Kobe University; Kobe Hyogo Japan
| | - Miho Nishida
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science; Kobe University; Kobe Hyogo Japan
| | - Tetsushi Hirano
- Laboratory of Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science; Kobe University; Kobe Hyogo Japan
| | - Hidefumi Yoshioka
- Laboratory of Biology, Department of Mathematics and Natural Sciences, Graduate School of Teacher Education; Hyogo University of Teacher Education; Katoh Hyogo Japan
| | - Hiroshi Kitagawa
- Laboratory of Histophysiology, Department of Animal Science, Graduate School of Agricultural Science; Kobe University; Kobe Hyogo Japan
| | - Toshifumi Yokoyama
- Laboratory of Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science; Kobe University; Kobe Hyogo Japan
| | - Nobuhiko Hoshi
- Laboratory of Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science; Kobe University; Kobe Hyogo Japan
| |
Collapse
|
34
|
Yang X, Deng J, Zheng J, Xia L, Yang Z, Qu L, Chen S, Xu G, Jiang H, Clinton M, Yang N. A Window of MHM Demethylation Correlates with Key Events in Gonadal Differentiation in the Chicken. Sex Dev 2016; 10:152-8. [DOI: 10.1159/000447659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 11/19/2022] Open
|
35
|
|
36
|
Lambeth LS, Morris K, Ayers KL, Wise TG, O'Neil T, Wilson S, Cao Y, Sinclair AH, Cutting AD, Doran TJ, Smith CA. Overexpression of Anti-Müllerian Hormone Disrupts Gonadal Sex Differentiation, Blocks Sex Hormone Synthesis, and Supports Cell Autonomous Sex Development in the Chicken. Endocrinology 2016; 157:1258-75. [PMID: 26809122 DOI: 10.1210/en.2015-1571] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The primary role of Anti-Müllerian hormone (AMH) during mammalian development is the regression of Müllerian ducts in males. This highly conserved function is retained in birds and is supported by the high levels of AMH expression in developing testes. Mammalian AMH expression is regulated by a combination of transcription factors, the most important being Sry-type high-mobility-group box transcription factor-9 (SOX9). In the chicken embryo, however, AMH mRNA expression precedes that of SOX9, leading to the view that AMH may play a more central role in avian testicular development. To define its role in chicken gonadal development, AMH was overexpressed using the RCASBP viral vector. AMH caused the gonads of both sexes to develop as small and undeveloped structures at both embryonic and adult stages. Molecular analysis revealed that although female gonads developed testis-like cords, gonads lacked Sertoli cells and were incapable of steroidogenesis. A similar gonadal phenotype was also observed in males, with a complete loss of both Sertoli cells, disrupted SOX9 expression and gonadal steroidogenesis. At sexual maturity both sexes showed a female external phenotype but retained sexually dimorphic body weights that matched their genetic sexes. These data suggest that AMH does not operate as an early testis activator in the chicken but can affect downstream events, such as sex steroid hormone production. In addition, this study provides a unique opportunity to assess chicken sexual development in an environment of sex hormone deficiency, demonstrating the importance of both hormonal signaling and direct cell autonomous factors for somatic sex identity in birds.
Collapse
Affiliation(s)
- Luke S Lambeth
- Murdoch Childrens Research Institute (L.S.L., K.L.A., A.H.S., A.D.C.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (K.L.A., A.H.S., A.D.C.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship (K.M., T.G.W., T.O., D.W., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3217, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Kirsten Morris
- Murdoch Childrens Research Institute (L.S.L., K.L.A., A.H.S., A.D.C.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (K.L.A., A.H.S., A.D.C.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship (K.M., T.G.W., T.O., D.W., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3217, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Katie L Ayers
- Murdoch Childrens Research Institute (L.S.L., K.L.A., A.H.S., A.D.C.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (K.L.A., A.H.S., A.D.C.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship (K.M., T.G.W., T.O., D.W., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3217, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Terry G Wise
- Murdoch Childrens Research Institute (L.S.L., K.L.A., A.H.S., A.D.C.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (K.L.A., A.H.S., A.D.C.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship (K.M., T.G.W., T.O., D.W., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3217, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Terri O'Neil
- Murdoch Childrens Research Institute (L.S.L., K.L.A., A.H.S., A.D.C.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (K.L.A., A.H.S., A.D.C.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship (K.M., T.G.W., T.O., D.W., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3217, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Susanne Wilson
- Murdoch Childrens Research Institute (L.S.L., K.L.A., A.H.S., A.D.C.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (K.L.A., A.H.S., A.D.C.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship (K.M., T.G.W., T.O., D.W., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3217, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Yu Cao
- Murdoch Childrens Research Institute (L.S.L., K.L.A., A.H.S., A.D.C.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (K.L.A., A.H.S., A.D.C.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship (K.M., T.G.W., T.O., D.W., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3217, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Andrew H Sinclair
- Murdoch Childrens Research Institute (L.S.L., K.L.A., A.H.S., A.D.C.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (K.L.A., A.H.S., A.D.C.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship (K.M., T.G.W., T.O., D.W., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3217, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Andrew D Cutting
- Murdoch Childrens Research Institute (L.S.L., K.L.A., A.H.S., A.D.C.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (K.L.A., A.H.S., A.D.C.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship (K.M., T.G.W., T.O., D.W., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3217, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Timothy J Doran
- Murdoch Childrens Research Institute (L.S.L., K.L.A., A.H.S., A.D.C.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (K.L.A., A.H.S., A.D.C.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship (K.M., T.G.W., T.O., D.W., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3217, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Craig A Smith
- Murdoch Childrens Research Institute (L.S.L., K.L.A., A.H.S., A.D.C.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (K.L.A., A.H.S., A.D.C.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Biosecurity Flagship (K.M., T.G.W., T.O., D.W., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3217, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
37
|
Lambeth LS, Morris KR, Wise TG, Cummins DM, O'Neil TE, Cao Y, Sinclair AH, Doran TJ, Smith CA. Transgenic Chickens Overexpressing Aromatase Have High Estrogen Levels but Maintain a Predominantly Male Phenotype. Endocrinology 2016; 157:83-90. [PMID: 26556534 DOI: 10.1210/en.2015-1697] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens play a key role in sexual differentiation of both the gonads and external traits in birds. The production of estrogen occurs via a well-characterized steroidogenic pathway, which is a multistep process involving several enzymes, including cytochrome P450 aromatase. In chicken embryos, the aromatase gene (CYP19A1) is expressed female-specifically from the time of gonadal sex differentiation. Ectopic overexpression of aromatase in male chicken embryos induces gonadal sex reversal, and male embryos treated with estradiol become feminized; however, this is not permanent. To test whether a continuous supply of estrogen in adult chickens could induce stable male to female sex reversal, 2 transgenic male chickens overexpressing aromatase were generated using the Tol2/transposase system. These birds had robust ectopic aromatase expression, which resulted in the production of high serum levels of estradiol. Transgenic males had female-like wattle and comb growth and feathering, but they retained male weights, displayed leg spurs, and developed testes. Despite the small sample size, this data strongly suggests that high levels of circulating estrogen are insufficient to maintain a female gonadal phenotype in adult birds. Previous observations of gynandromorph birds and embryos with mixed sex chimeric gonads have highlighted the role of cell autonomous sex identity in chickens. This might imply that in the study described here, direct genetic effects of the male chromosomes largely prevailed over the hormonal profile of the aromatase transgenic birds. This data therefore support the emerging view of at least partial cell autonomous sex development in birds. However, a larger study will confirm this intriguing observation.
Collapse
Affiliation(s)
- Luke S Lambeth
- Murdoch Childrens Research Institute (L.S.L., A.H.S.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (A.H.S.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity Flagship (K.R.M., T.G.W., D.M.C., T.E.O., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Kirsten R Morris
- Murdoch Childrens Research Institute (L.S.L., A.H.S.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (A.H.S.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity Flagship (K.R.M., T.G.W., D.M.C., T.E.O., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Terry G Wise
- Murdoch Childrens Research Institute (L.S.L., A.H.S.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (A.H.S.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity Flagship (K.R.M., T.G.W., D.M.C., T.E.O., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - David M Cummins
- Murdoch Childrens Research Institute (L.S.L., A.H.S.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (A.H.S.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity Flagship (K.R.M., T.G.W., D.M.C., T.E.O., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Terri E O'Neil
- Murdoch Childrens Research Institute (L.S.L., A.H.S.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (A.H.S.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity Flagship (K.R.M., T.G.W., D.M.C., T.E.O., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Yu Cao
- Murdoch Childrens Research Institute (L.S.L., A.H.S.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (A.H.S.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity Flagship (K.R.M., T.G.W., D.M.C., T.E.O., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Andrew H Sinclair
- Murdoch Childrens Research Institute (L.S.L., A.H.S.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (A.H.S.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity Flagship (K.R.M., T.G.W., D.M.C., T.E.O., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Timothy J Doran
- Murdoch Childrens Research Institute (L.S.L., A.H.S.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (A.H.S.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity Flagship (K.R.M., T.G.W., D.M.C., T.E.O., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| | - Craig A Smith
- Murdoch Childrens Research Institute (L.S.L., A.H.S.), Royal Children's Hospital, Melbourne, Victoria 3052, Australia; Department of Paediatrics (A.H.S.), The University of Melbourne, Melbourne, Victoria 3010, Australia; Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity Flagship (K.R.M., T.G.W., D.M.C., T.E.O., Y.C., T.J.D.), Australian Animal Health Laboratory, Geelong, Victoria 3219, Australia; and Department of Anatomy and Developmental Biology (C.A.S.), Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
38
|
Kaneko H, Ijiri S, Kobayashi T, Izumi H, Kuramochi Y, Wang DS, Mizuno S, Nagahama Y. Gonadal soma-derived factor (gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus. Mol Cell Endocrinol 2015; 415:87-99. [PMID: 26265450 DOI: 10.1016/j.mce.2015.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 11/21/2022]
Abstract
The Nile tilapia, Oreochromis niloticus, is a gonochoristic teleost fish with an XX/XY genetic system and is an excellent model for gonadal sex differentiation. In the present study, we screened novel genes that were expressed predominantly in either XY or XX undifferentiated gonads during the critical period for differentiation of gonads into ovaries or testes using microarray screening. We focused on one of the isolated 12 candidate genes, #9475, which was an ortholog of gsdf (gonadal soma-derived factor), a member of the transforming growth factor-beta superfamily. #9475/gsdf showed sexual dimorphism in expression in XY gonads before any other testis differentiation-related genes identified in this species thus far. We also overexpressed the #9475/gsdf gene in XX tilapia, and XX tilapia bearing the #9475/gsdf gene showed normal testis development, which suggests that #9475/gsdf plays an important role in male determination and/or differentiation in tilapia.
Collapse
Affiliation(s)
- Hiroyo Kaneko
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan.
| | - Shigeho Ijiri
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan; Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Tohru Kobayashi
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Hikari Izumi
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Yuki Kuramochi
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - De-Shou Wang
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan.
| | - Shouta Mizuno
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan.
| | - Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; SORST, Japan Science Technology Corporation, Kawaguchi, Saitama 332-0012, Japan; South Ehime Fisheries Research Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
39
|
Lambeth LS, Ayers K, Cutting AD, Doran TJ, Sinclair AH, Smith CA. Anti-Müllerian Hormone Is Required for Chicken Embryonic Urogenital System Growth but Not Sexual Differentiation. Biol Reprod 2015; 93:138. [PMID: 26510867 DOI: 10.1095/biolreprod.115.131664] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/26/2015] [Indexed: 11/01/2022] Open
Abstract
In mammals, the primary role of anti-Müllerian hormone (AMH) during development is the regression of Müllerian ducts in males. These structures otherwise develop into fallopian tubes, oviducts, and upper vagina, as in females. This highly conserved function is retained in birds and is supported by the high levels of AMH expression in developing testes. In mammals, AMH expression is controlled partly by the transcription factor, SOX9. However, in the chicken, AMH mRNA expression precedes that of SOX9 , leading to the view that AMH may lie upstream of SOX9 and play a more central role in avian testicular development. To help define the role of AMH in chicken gonad development, we suppressed AMH expression in chicken embryos using RNA interference. In males, AMH knockdown did not affect the expression of key testis pathway genes, and testis cords developed normally. However, a reduction in the size of the mesonephros and gonads was observed, a phenotype that was evident in both sexes. This growth defect occurred as a result of the reduced proliferative capacity of the cells of these tissues, and male gonads also had a significant reduction in germ cell numbers. These data suggest that although AMH does not directly contribute to testicular or ovarian differentiation, it is required in a sex-independent manner for proper cell proliferation and urogenital system growth.
Collapse
Affiliation(s)
- Luke S Lambeth
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Katie Ayers
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew D Cutting
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
| | - Timothy J Doran
- CSIRO Animal, Food and Health Sciences, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Andrew H Sinclair
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
40
|
Ayers KL, Lambeth LS, Davidson NM, Sinclair AH, Oshlack A, Smith CA. Identification of candidate gonadal sex differentiation genes in the chicken embryo using RNA-seq. BMC Genomics 2015; 16:704. [PMID: 26377738 PMCID: PMC4574023 DOI: 10.1186/s12864-015-1886-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite some advances in recent years, the genetic control of gonadal sex differentiation during embryogenesis is still not completely understood. To identify new candidate genes involved in ovary and testis development, RNA-seq was used to define the transcriptome of embryonic chicken gonads at the onset of sexual differentiation (day 6.0/stage 29). RESULTS RNA-seq revealed more than 1000 genes that were transcribed in a sex-biased manner at this early stage of gonadal differentiation. Comparison with undifferentiated gonads revealed that sex biased expression was derived primarily from autosomal rather than sex-linked genes. Gene ontology and pathway analysis indicated that many of these genes encoded proteins involved in extracellular matrix function and cytoskeletal remodelling, as well as tubulogenesis. Several of these genes are novel candidate regulators of gonadal sex differentiation, based on sex-biased expression profiles that are altered following experimental sex reversal. We further characterised three female-biased (ovarian) genes; calpain-5 (CAPN5), G-protein coupled receptor 56 (GPR56), and FGFR3 (fibroblast growth factor receptor 3). Protein expression of these candidates in the developing ovaries suggests that they play an important role in this tissue. CONCLUSIONS This study provides insight into the earliest steps of vertebrate gonad sex differentiation, and identifies novel candidate genes for ovarian and testicular development.
Collapse
Affiliation(s)
- Katie L Ayers
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - Luke S Lambeth
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Nadia M Davidson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Andrew H Sinclair
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - Alicia Oshlack
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
41
|
de Melo Bernardo A, Heeren AM, van Iperen L, Fernandes MG, He N, Anjie S, Noce T, Ramos ES, de Sousa Lopes SMC. Meiotic wave adds extra asymmetry to the development of female chicken gonads. Mol Reprod Dev 2015; 82:774-86. [PMID: 26096940 PMCID: PMC5034815 DOI: 10.1002/mrd.22516] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/14/2015] [Indexed: 11/06/2022]
Abstract
Development of female gonads in the chicken is asymmetric. This asymmetry affects gene expression, morphology, and germ cell development; consequently only the left ovary develops into a functional organ, whereas the right ovary remains vestigial. In males, on the other hand, both gonads develop into functional testes. Here, we revisited the development of asymmetric traits in female (and male) chicken gonads between Hamburger Hamilton stage 16 (HH16) and hatching. At HH16, primordial germ cells migrated preferentially to the left gonad, accumulating in the left coelomic hinge between the gut mesentery and developing gonad in both males and females. Using the meiotic markers SYCP3 and phosphorylated H2AFX, we identified a previously undescribed, pronounced asymmetryc meiotic progression in the germ cells located in the central, lateral, and extreme cortical regions of the left female gonad from HH38 until hatching. Moreover, we observed that--in contrast to the current view--medullary germ cells are not apoptotic, but remain arrested in pre-leptotene until hatching. In addition to the systematic analysis of the asymmetric distribution of germ cells in female chicken gonads, we propose an updated model suggesting that the localization of germ cells--in the left or right gonad; in the cortex or medulla of the left gonad; and in the central part or the extremities of the left cortex--has direct consequences for their development and participation in adult reproduction.
Collapse
Affiliation(s)
- Ana de Melo Bernardo
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - A Marijne Heeren
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Maria Gomes Fernandes
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Nannan He
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Stafford Anjie
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Toshiaki Noce
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Ester Silveira Ramos
- Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands.,Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
42
|
High-density linkage mapping aided by transcriptomics documents ZW sex determination system in the Chinese mitten crab Eriocheir sinensis. Heredity (Edinb) 2015; 115:206-15. [PMID: 25873149 DOI: 10.1038/hdy.2015.26] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 01/20/2023] Open
Abstract
The sex determination system in crabs is believed to be XY-XX from karyotypy, but centromeres could not be identified in some chromosomes and their morphology is not completely clear. Using quantitative trait locus mapping of the gender phenotype, we revealed a ZW-ZZ sex determination system in Eriocheir sinensis and presented a high-density linkage map covering ~98.5% of the genome, with 73 linkage groups corresponding to the haploid chromosome number. All sex-linked markers in the family we used were located on a single linkage group, LG60, and sex linkage was confirmed by genome-wide association studies (GWAS). Forty-six markers detected by GWAS were heterozygous and segregated only in the female parent. The female LG60 was thus the putative W chromosome, with the homologous male LG60 as the Z chromosome. The putative Z and W sex chromosomes were identical in size and carried many homologous loci. Sex ratio (5:1) skewing towards females in induced triploids using unrelated animals also supported a ZW-ZZ system. Transcriptome data were used to search for candidate sex-determining loci, but only one LG60 gene was identified as an ankyrin-2 gene. Double sex- and mab3-related transcription factor 1 (Dmrt1), a Z-linked gene in birds, was located on a putative autosome. With complete genome sequencing and transcriptomic data, more genes on putative sex chromosomes will be characterised, thus leading towards a comprehensive understanding of the sex determination and differentiation mechanisms of E. sinensis, and decapod crustaceans in general.
Collapse
|
43
|
Bieser KL, Wibbels T. Chronology, magnitude and duration of expression of putative sex-determining/differentiation genes in a turtle with temperature-dependent sex determination. Sex Dev 2014; 8:364-75. [PMID: 25427533 DOI: 10.1159/000369116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
The red-eared slider turtle (Trachemys scripta) possesses temperature-dependent sex determination (TSD) in which the incubation temperature determines gonadal sex. Although a number of mammalian gene homologues have been identified in reptiles with TSD, the exact sex-determining trigger(s) is not known. To date, the current study represents the most comprehensive simultaneous evaluation of the chronology of mRNA expression profiles of putative sex-determining/differentiation genes (Dmrt1, Sox9, Amh, Lhx9, and Foxl2) from gonads incubated at male- and female-producing temperatures in T. scripta. Additionally, sex-reversing treatments with 17β-estradiol and letrozole were examined. At a male-producing temperature, Dmrt1 expression was sexually dimorphic by stage 17, Sox9 by 19 and Amh by 21. In contrast, Foxl2 did not significantly increase until after the thermosensitive period at a female-producing temperature. Treatment with 17β-estradiol resulted in reduced gonad size and/or inhibited gonadal development and differentiation. Gene expression was subsequently low in this group. Sex reversal utilizing letrozole failed to produce testes at a female-producing temperature and as such, gene expression was comparable to ovary. These results indicate that Dmrt1 and Sox9 are potential triggers for testis differentiation and Amh, Lhx9 and Foxl2 represent a conserved core set of genes in the sex-determining/differentiation pathway of TSD species.
Collapse
Affiliation(s)
- Kayla L Bieser
- Department of Biology, University of Alabama at Birmingham, Birmingham, Ala., USA
| | | |
Collapse
|
44
|
Koster R, Mitra N, D'Andrea K, Vardhanabhuti S, Chung CC, Wang Z, Loren Erickson R, Vaughn DJ, Litchfield K, Rahman N, Greene MH, McGlynn KA, Turnbull C, Chanock SJ, Nathanson KL, Kanetsky PA. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors. Hum Mol Genet 2014; 23:6061-8. [PMID: 24943593 PMCID: PMC4204765 DOI: 10.1093/hmg/ddu305] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/28/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT.
Collapse
Affiliation(s)
- Roelof Koster
- Translational Medicine and Human Genetics, Department of Medicine
| | | | - Kurt D'Andrea
- Translational Medicine and Human Genetics, Department of Medicine
| | | | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, Cancer Genome Research Laboratory, Division of Cancer Epidemiology and Genetics, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | - R Loren Erickson
- Walter Reed Army Institute of Research, Silver Spring, MD, USA and
| | - David J Vaughn
- Division of Hematology-Oncology, Department of Medicine and, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Litchfield
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Nazneen Rahman
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Mark H Greene
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, Surrey, UK
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine L Nathanson
- Translational Medicine and Human Genetics, Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Peter A Kanetsky
- Department of Biostatistics and Epidemiology, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,
| |
Collapse
|
45
|
Matsumoto Y, Hannigan B, Crews D. Embryonic PCB exposure alters phenotypic, genetic, and epigenetic profiles in turtle sex determination, a biomarker of environmental contamination. Endocrinology 2014; 155:4168-77. [PMID: 25105783 DOI: 10.1210/en.2014-1404] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In species with temperature-dependent sex determination, embryonic gonadal differentiation can be modified by exposure to exogenous chemicals such as environmental contaminants. Although phenotypic outcomes of such events are well documented, the underlying molecular mechanisms are rarely described. Here we examine the genetic and epigenetic effect of the embryonic exposure to polychlorinated biphenyls (PCBs) on gonad differentiation in red-eared slider turtles (Trachemys scripta). Some PCB congeners are without effect whereas others synergize to alter sex determination in this species. Application of two potent PCB congeners alter the physiological processes of gonad development normally dictated by the male-producing temperature (MPT), resulting sex ratios significantly biased toward female hatchlings. Of these PCB-induced females, oviduct formation is prominently distorted regardless of ovary development. Further, gonadal expression of ovarian markers, aromatase, FoxL2, and Rspo1, is activated whereas testicular markers, Dmrt1 and Sox9, are suppressed compared with typical expression patterns observed at MPT. DNA methylation profiles of the aromatase promoter in PCB-treated gonads do not follow the typical methylation pattern observed in embryos incubating at female-producing temperature. Rather, the MPT-typical methylation profiles is retained despite the induced ovarian formation. Overall, our studies demonstrate that PCB exposure alters the transcriptional profiles of genes responsible for gonadal differentiation but does not re-establish the epigenetic marks of the aromatase promoter normally set by incubation temperatures in embryonic gonads.
Collapse
Affiliation(s)
- Yuiko Matsumoto
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | | | | |
Collapse
|
46
|
Mohammadrezaei M, Toghyani M, Gheisari A, Toghyani M, Eghbalsaied S. Synergistic effect of fadrozole and insulin-like growth factor-I on female-to-male sex reversal and body weight of broiler chicks. PLoS One 2014; 9:e103570. [PMID: 25075864 PMCID: PMC4116201 DOI: 10.1371/journal.pone.0103570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 07/03/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the effects of Fadrozole hydrochloride and recombinant human insulin-like growth factor I (rhIGF-I) on female-to-male sex reversal, hatching traits, and body weight of broiler chickens. On the third day of incubation, fertile eggs were randomly assigned to five experimental groups comprising (i) Fadrozole (0.1 mg/egg), (ii) rhIGF-I (100 ng/egg), (iii) Fadrozole (0.1 mg/egg) + rhIGF-I (100 ng/egg), (iv) vehicle injection (10 mM acetic acid and 0.1% BSA), and (v) non-injected eggs. Eggs in the rhIGF-I-injected groups showed the mode of hatching time at the 480th hour of incubation, 12 hours earlier compared to the other groups, with no statistically significant difference in mortality and hatchability. On Day 1 and 42 of production, 90% of genetically female chicks were masculinized using Fadrozole treatment, while 100% female-to-male phenotypic sex reversal was observed in the Fadrozole+rhIGF-I group. Fadrozole equalized the body weight of both genders, although rhIGF-I was effective on the body weight of male chicks only. Interestingly, combined rhIGF-I and Fadrozole could increase the body weight in both sexes compared to the individual injections (P<0.05). These findings revealed that (i) IGF-I-treated chicken embryos were shown to be an effective option for overcoming the very long chicken deprivation period, (ii) the simultaneous treatment with Fadrozole and IGF-I could maximize the female-to-male sex reversal chance, (iii) the increase in the body weight of masculinized chickens via Fadrozole could be equal to their genetically male counterparts, and (iv) the IGF-I effectiveness, specifically along with the application of aromatase inhibitors in female chicks, indicates that estrogen synthesis could be a stumbling block for the IGF-I action mechanism in female embryos.
Collapse
Affiliation(s)
- Mohammad Mohammadrezaei
- Young Researchers and Elite Club, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
| | - Majid Toghyani
- Department of Animal Science, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
| | - Abbasali Gheisari
- Department of Animal Science, Isfahan Research Center for Natural Resources and Agriculture, Isfahan, Iran
| | - Mehdi Toghyani
- Young Researchers and Elite Club, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
- Department of Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Shahin Eghbalsaied
- Young Researchers and Elite Club, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
- Department of Animal Science, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran
- * E-mail:
| |
Collapse
|
47
|
Lambeth LS, Ohnesorg T, Cummins DM, Sinclair AH, Smith CA. Development of retroviral vectors for tissue-restricted expression in chicken embryonic gonads. PLoS One 2014; 9:e101811. [PMID: 25003592 PMCID: PMC4086957 DOI: 10.1371/journal.pone.0101811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/11/2014] [Indexed: 01/30/2023] Open
Abstract
The chicken embryo has long been a useful model organism for studying development, including sex determination and gonadal differentiation. However, manipulating gene expression specifically in the embryonic avian gonad has been difficult. The viral vector RCASBP can be readily used for embryo-wide transgene expression; however global mis-expression using this method can cause deleterious off-target effects and embryo-lethality. In an attempt to develop vectors for the over-expression of sequences in chicken embryonic urogenital tissues, the viral vector RCANBP was engineered to contain predicted promoter sequences of gonadal-expressed genes. Several promoters were analysed and it was found that although the SF1 promoter produced a tissue-restricted expression pattern that was highest in the mesonephros and liver, it was also higher in the gonads compared to the rest of the body. The location of EGFP expression from the SF1 promoter overlapped with several key gonad-expressed sex development genes; however expression was generally low-level and was not seen in all gonadal cells. To further validate this sequence the key testis determinant DMRT1 was over-expressed in female embryos, which due to insufficient levels had no effect on gonad development. The female gene aromatase was then over-expressed in male embryos, which disrupted the testis pathway as demonstrated by a reduction in AMH protein. Taken together, although these data showed that the SF1 promoter can be used for functional studies in ovo, a stronger promoter sequence would likely be required for the functional analysis of gonad genes that require high-level expression.
Collapse
Affiliation(s)
- Luke S. Lambeth
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Poultry Cooperative Research Centre, Armidale, NSW, Australia
- * E-mail:
| | - Thomas Ohnesorg
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David M. Cummins
- CSIRO Animal, Food and Health Sciences, Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Andrew H. Sinclair
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Poultry Cooperative Research Centre, Armidale, NSW, Australia
| | - Craig A. Smith
- Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Poultry Cooperative Research Centre, Armidale, NSW, Australia
| |
Collapse
|
48
|
Arezo MJ, Papa N, Guttierrez V, García G, Berois N. Sex determination in annual fishes: Searching for the master sex-determining gene in Austrolebias charrua (Cyprinodontiformes, Rivulidae). Genet Mol Biol 2014; 37:364-74. [PMID: 25071401 PMCID: PMC4094610 DOI: 10.1590/s1415-47572014005000009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 01/09/2014] [Indexed: 11/22/2022] Open
Abstract
Evolution of sex determination and differentiation in fishes involves a broad range of sex strategies (hermaphroditism, gonochorism, unisexuality, environmental and genetic sex determination). Annual fishes inhabit temporary ponds that dry out during the dry season when adults die. The embryos exhibit an atypical developmental pattern and remain buried in the bottom mud until the next rainy season. To elucidate genomic factors involved in the sex determination in annual fish, we explored the presence of a candidate sex-specific gene related to the cascade network in Austrolebias charrua. All phylogenetic analyses showed a high posterior probability of occurrence for a clade integrated by nuclear sequences (aprox. 900 bp) from both adults (male and female), with partial cDNA fragments of A. charrua from juveniles (male) and the dsx D. melanogaster gene. The expressed fragment was detected from blastula to adulthood stages showing a sexually dimorphic expression pattern. The isolated cDNA sequence is clearly related to dsx D. melanogaster gene and might be located near the top of the sex determination cascade in this species.
Collapse
Affiliation(s)
- María José Arezo
- Sección Biología Celular,
Facultad de Ciencias, Universidad de la República,
Montevideo,
Uruguay
| | - Nicolás Papa
- Sección Biología Celular,
Facultad de Ciencias, Universidad de la República,
Montevideo,
Uruguay
| | - Verónica Guttierrez
- Sección Genética Evolutiva,
Facultad de Ciencias,
Universidad de la República,
Montevideo,
Uruguay
| | - Graciela García
- Sección Genética Evolutiva,
Facultad de Ciencias,
Universidad de la República,
Montevideo,
Uruguay
| | - Nibia Berois
- Sección Biología Celular,
Facultad de Ciencias, Universidad de la República,
Montevideo,
Uruguay
| |
Collapse
|
49
|
Omotehara T, Smith CA, Mantani Y, Kobayashi Y, Tatsumi A, Nagahara D, Hashimoto R, Hirano T, Umemura Y, Yokoyama T, Kitagawa H, Hoshi N. Spatiotemporal expression patterns of doublesex and mab-3 related transcription factor 1 in the chicken developing gonads and Mullerian ducts. Poult Sci 2014; 93:953-8. [PMID: 24706973 DOI: 10.3382/ps.2013-03672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Sex of birds is genetically determined by the inheritance of sex chromosomes (ZZ for male and ZW for female), and the Z-linked gene named doublesex and mab-3 related transcription factor 1 (DMRT1) is a candidate sex-determining gene in avian species. However, the mechanisms underlying sex determination in birds are not yet understood, and the expression patterns of the DMRT1 protein in urogenital tissues have not been identified. In the current study, we used immunohistochemistry to investigate the detailed expression patterns of the DMRT1 protein in the urogenital systems (including Müllerian ducts) in male and female chicken embryos throughout embryonic development. Gonadal somatic cells in the male indifferent gonads showed stronger expressions of DMRT1 compared with those in the female indifferent gonads well before the presumptive period of the sex determination, and Sertoli cells forming testicular cords expressed DMRT1 in the testes after sex determination. Germ cells expressed DMRT1 equally in males and females after sex determination. The expression was continuous in males, but in females it gradually disappeared from the germ cells in the central part of the cortex of the left ovary toward both edges. The DMRT1 was also detected in the tubal ridge, which is a precursor of the Müllerian duct, and at the mesenchyme and outermost coelomic epithelium of the Müllerian duct in both sexes. Strong expression was observed in the males, but it was restricted to coelomic epithelium after the regression of the duct started. Thus, we observed the detailed spatiotemporal expression patterns of DMRT1 in the developing chicken urogenital systems throughout embryonic development, suggesting its various roles in the development of urogenital tissues in the chicken embryo.
Collapse
Affiliation(s)
- T Omotehara
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shen ZG, Wang HP. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish. Genet Sel Evol 2014; 46:26. [PMID: 24735220 PMCID: PMC4108122 DOI: 10.1186/1297-9686-46-26] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 03/24/2014] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed.
Collapse
Affiliation(s)
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, Ohio 45661, USA.
| |
Collapse
|