1
|
Ulloa-Aguirre A, Zariñán T, Dias JA, Kumar TR, Bousfield GR. Biased signaling by human follicle-stimulating hormone variants. Pharmacol Ther 2025; 268:108821. [PMID: 39961417 DOI: 10.1016/j.pharmthera.2025.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025]
Abstract
Follicle-stimulating hormone (FSH) or follitropin plays a fundamental role in several mammalian species, including humans. This gonadotropin is produced by the anterior pituitary gland and has as its main targets the granulosa cells of the ovary and the Sertoli cells of the testis. Structurally, FSH is composed of two non-convalently linked subunits, the α- and β-subunit, as well as highly heterogenous oligosaccharide structures, which play a key role in determining a number of physiological and biological features of the hormone. Glycosylation in FSH and the other members belonging to the glycoprotein hormone family, is essential for many functions of the gonadotropin, including subunit assembly and stability, secretion, circulatory half-life and biological activity. Carbohydrate heterogeneity in FSH comes in two forms, microheterogeneity, which results from variations in the carbohydrate structural complexity in those oligosaccharides attached to the α- or β-subunit of the hormone and macroheterogeneity, which results from the absence of carbohydrate chain at FSHβ Asn-glycosylation sites. A number of in vitro and in vivo studies have conclusively demonstrated differential, unique and even opposing effects provoked by variations in the carbohydrate structures of FSH, including circulatory survival, binding to and activation of its cognate receptor in the gonads, intracellular signaling, and activation/inhibition of a number of FSH-regulated genes essential for follicle development. Herein, we review the effects of the FSH oligosaccharides on several functions of FSH, and how variations in these structures have been shown to lead to functional selectivity of the hormone.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico..
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| |
Collapse
|
2
|
Cabeza OI, Parra N, Cerro R, Mansilla R, Sanchez RZ, Gutierrez-Reinoso M, Escribano EH, Castillo R, Rodriguez-Alvarez L, Tavares K, Gaudencio S, Martins L, Hugues FI, Acosta J, Moreno E, Montesino R, García-Herreros M, Casanova FC, Toledo JR, Sanchez O. Development and characterization of a novel variant of long-acting bovine follicle-stimulating hormone (brscFSH). Theriogenology 2024; 226:76-86. [PMID: 38865791 DOI: 10.1016/j.theriogenology.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/31/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
Assisted reproduction is a key aspect of modern animal breeding, providing valuable assistance in improving breeding programs. In this field, the administration of exogenous hormones, such as follicle-stimulating hormone (FSH), plays a crucial role in the induction of multiple ovulations. However, commercial FSH used in veterinary practice has been derived primarily from pituitary glands, obtained mostly from pigs for nearly four decades. Although these hormones have contributed significantly to the advancement of assisted reproductive techniques, they have certain limitations that warrant further improvements. These limitations include contamination with luteinizing hormone (LH), the potential risk of pathogen contamination, the potential to trigger an immune response in non-pig species, and the short half-life in circulation, requiring the implementation of complex 8-dose superovulation schedules. Our research team has developed and characterized a new variant of bovine follicle-stimulating hormone (bscrFSH) to address these limitations. The new hormone is produced recombinantly in CHO cell cultures, with a specific productivity of about 30 pg/cell/day. The bscrFSH can be purified to a high purity of 97 % using a single step of immobilized metal affinity chromatography (IMAC). N-glycan analysis of bscrFSH showed that approximately 74 % of the glycans corresponded to charged structures, including mono-, di-, tri-, and tetra-sialylated glycans. Superovulation trials conducted in cattle revealed that bscrFSH, administered at a total dose of about 0.5 μg per kg of body weight, using a decrescent schedule of 4 doses with 24-h intervals, resulted in an average yield of 8-12 transferable embryos per animal. Further research is required; however, the preliminary findings indicate that bscrFSH, currently packaged under the provisional brand name of Cebitropin B, holds potential as a commercial product for assisted reproduction in ruminants.
Collapse
Affiliation(s)
- Oscar Ignacio Cabeza
- Departamento de Ciencias Clínicas, Facultad de Veterinaria, Universidad de Concepción, Chile
| | - Natalie Parra
- Departamento de Farmacología, Universidad de Concepción, Chile
| | - Rita Cerro
- Centro de Biotecnología y Biomedicina Spa., Concepción, Chile
| | | | | | - Miguel Gutierrez-Reinoso
- Departamento de Ciencia Animal, Facultad de Veterinaria, Universidad de Concepción, Chile; Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de medicina, Universidad Técnica de Cotopaxi (UTC), Latacunga, 050150, Ecuador
| | | | | | | | - Kaio Tavares
- Núcleo de Biologia Experimental (Nubex), Universidade de Fortaleza (Unifor), Fortaleza, CE, Brazil; FortGen Technologies, Fortaleza, CE, Brazil
| | - Saul Gaudencio
- Núcleo de Biologia Experimental (Nubex), Universidade de Fortaleza (Unifor), Fortaleza, CE, Brazil; FortGen Technologies, Fortaleza, CE, Brazil
| | - Leonardo Martins
- Núcleo de Biologia Experimental (Nubex), Universidade de Fortaleza (Unifor), Fortaleza, CE, Brazil; FortGen Technologies, Fortaleza, CE, Brazil
| | - Florence I Hugues
- Departamento de Ciencias Clínicas, Facultad de Veterinaria, Universidad de Concepción, Chile
| | - Jannel Acosta
- Departamento de Fisiopatología, Universidad de Concepción, Chile
| | - Ernesto Moreno
- Facultad de Ciencias Básicas, Universidad de Medellín, Medellín, 050026, Colombia
| | - Raquel Montesino
- Departamento de Fisiopatología, Universidad de Concepción, Chile
| | - Manuel García-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048, Santarém, Portugal
| | | | - Jorge R Toledo
- Centro de Biotecnología y Biomedicina Spa., Concepción, Chile; Departamento de Fisiopatología, Universidad de Concepción, Chile
| | - Oliberto Sanchez
- Centro de Biotecnología y Biomedicina Spa., Concepción, Chile; Departamento de Farmacología, Universidad de Concepción, Chile.
| |
Collapse
|
3
|
Zariñán T, Espinal-Enriquez J, De Anda-Jáuregui G, Lira-Albarrán S, Hernández-Montes G, Gutiérrez-Sagal R, Rebollar-Vega RG, Bousfield GR, Butnev VY, Hernández-Lemus E, Ulloa-Aguirre A. Differential effects of follicle-stimulating hormone glycoforms on the transcriptome profile of cultured rat granulosa cells as disclosed by RNA-seq. PLoS One 2024; 19:e0293688. [PMID: 38843139 PMCID: PMC11156319 DOI: 10.1371/journal.pone.0293688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
It has been documented that variations in glycosylation on glycoprotein hormones, confer distinctly different biological features to the corresponding glycoforms when multiple in vitro biochemical readings are analyzed. We here applied next generation RNA sequencing to explore changes in the transcriptome of rat granulosa cells exposed for 0, 6, and 12 h to 100 ng/ml of four highly purified follicle-stimulating hormone (FSH) glycoforms, each exhibiting different glycosylation patterns: a. human pituitary FSH18/21 (hypo-glycosylated); b. human pituitary FSH24 (fully glycosylated); c. Equine FSH (eqFSH) (hypo-glycosylated); and d. Chinese-hamster ovary cell-derived human recombinant FSH (recFSH) (fully-glycosylated). Total RNA from triplicate incubations was prepared from FSH glycoform-exposed cultured granulosa cells obtained from DES-pretreated immature female rats, and RNA libraries were sequenced in a HighSeq 2500 sequencer (2 x 125 bp paired-end format, 10-15 x 106 reads/sample). The computational workflow focused on investigating differences among the four FSH glycoforms at three levels: gene expression, enriched biological processes, and perturbed pathways. Among the top 200 differentially expressed genes, only 4 (0.6%) were shared by all 4 glycoforms at 6 h, whereas 118 genes (40%) were shared at 12 h. Follicle-stimulating hormone glycocoforms stimulated different patterns of exclusive and associated up regulated biological processes in a glycoform and time-dependent fashion with more shared biological processes after 12 h of exposure and fewer treatment-specific ones, except for recFSH, which exhibited stronger responses with more specifically associated processes at this time. Similar results were found for down-regulated processes, with a greater number of processes at 6 h or 12 h, depending on the particular glycoform. In general, there were fewer downregulated than upregulated processes at both 6 h and 12 h, with FSH18/21 exhibiting the largest number of down-regulated associated processes at 6 h while eqFSH exhibited the greatest number at 12 h. Signaling cascades, largely linked to cAMP-PKA, MAPK, and PI3/AKT pathways were detected as differentially activated by the glycoforms, with each glycoform exhibiting its own molecular signature. These data extend previous observations demonstrating glycosylation-dependent distinctly different regulation of gene expression and intracellular signaling pathways triggered by FSH in granulosa cells. The results also suggest the importance of individual FSH glycoform glycosylation for the conformation of the ligand-receptor complex and induced signalling pathways.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | | | | | - Saúl Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Georgina Hernández-Montes
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rosa G. Rebollar-Vega
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita Kansas, Kansas, United States of America
| | - Viktor Y. Butnev
- Department of Biological Sciences, Wichita State University, Wichita Kansas, Kansas, United States of America
| | | | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| |
Collapse
|
4
|
Zariñán T, Espinal-Enriquez J, De Anda-Jáuregui G, Lira-Albarrán S, Hernández-Montes G, Gutiérrez-Sagal R, Rebollar-Vega RG, Bousfield GR, Butnev VY, Hernández-Lemus E, Ulloa-Aguirre A. Differential effects of follicle-stimulating hormone glycoforms on the transcriptome profile of cultured rat granulosa cells as disclosed by RNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562995. [PMID: 37905087 PMCID: PMC10614937 DOI: 10.1101/2023.10.18.562995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
It has been documented that variations in glycosylation on glycoprotein hormones, confer distinctly different biological features to the corresponding glycoforms when multiple in vitro biochemical readings are analyzed. We here applied next generation RNA sequencing to explore changes in the transcriptome of rat granulosa cells exposed for 0, 6, and 12 h to 100 ng/ml of four highly purified follicle-stimulating hormone (FSH) glycoforms, each exhibiting different glycosylation patterns: human pituitary FSH18/21 and equine FSH (eqFSH) (hypo-glycosylated), and human FSH24 and chinese-hamster ovary cell-derived human recombinant FSH (recFSH) (fully-glycosylated). Total RNA from triplicate incubations was prepared from FSH glycoform-exposed cultured granulosa cells obtained from DES-pretreated immature female rats, and RNA libraries were sequenced in a HighSeq 2500 sequencer (2 × 125 bp paired-end format, 10-15 × 106 reads/sample). The computational workflow focused on investigating differences among the four FSH glycoforms at three levels: gene expression, enriched biological processes, and perturbed pathways. Among the top 200 differentially expressed genes, only 4 (0.6%) were shared by all 4 glycoforms at 6 h, whereas 118 genes (40%) were shared at 12 h. Follicle-stimulating hormone glycocoforms stimulated different patterns of exclusive and associated up regulated biological processes in a glycoform and time-dependent fashion with more shared biological processes after 12 h of exposure and fewer treatment-specific ones, except for recFSH, which exhibited stronger responses with more specifically associated processes at this time. Similar results were found for down-regulated processes, with a greater number of processes at 6 h or 12 h, depending on the particular glycoform. In general, there were fewer downregulated than upregulated processes at both 6 h and 12 h, with FSH18/21 exhibiting the largest number of down-regulated associated processes at 6 h while eqFSH exhibited the greatest number at 12 h. Signaling cascades, largely linked to cAMP-PKA, MAPK, and PI3/AKT pathways were detected as differentially activated by the glycoforms, with each glycoform exhibiting its own molecular signature. These data extend previous observations demonstrating glycosylation-dependent differential regulation of gene expression and intracellular signaling pathways triggered by FSH in granulosa cells. The results also suggest the importance of individual FSH glycoform glycosylation for the conformation of the ligand-receptor complex and induced signalling pathways.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | | | | | - Saúl Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, 14080, Mexico
| | - Georgina Hernández-Montes
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | - Rosa G. Rebollar-Vega
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita Kansas, 67260, USA
| | - Viktor Y. Butnev
- Department of Biological Sciences, Wichita State University, Wichita Kansas, 67260, USA
| | | | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| |
Collapse
|
5
|
Zariñán T, Butnev VY, Gutiérrez-Sagal R, Maravillas-Montero JL, Martínez-Luis I, Mejía-Domínguez NR, Juárez-Vega G, Bousfield GR, Ulloa-Aguirre A. In Vitro Impact of FSH Glycosylation Variants on FSH Receptor-stimulated Signal Transduction and Functional Selectivity. J Endocr Soc 2020; 4:bvaa019. [PMID: 32342021 PMCID: PMC7175721 DOI: 10.1210/jendso/bvaa019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
FSH exists as different glycoforms that differ in glycosylation of the hormone-specific β-subunit. Tetra-glycosylated FSH (FSH24) and hypo-glycosylated FSH (FSH18/21) are the most abundant glycoforms found in humans. Employing distinct readouts in HEK293 cells expressing the FSH receptor, we compared signaling triggered by human pituitary FSH preparations (FSH18/21 and FSH24) as well as by equine FSH (eFSH), and human recombinant FSH (recFSH), each exhibiting distinct glycosylation patterns. The potency in eliciting cAMP production was greater for eFSH than for FSH18/21, FSH24, and recFSH, whereas in the ERK1/2 activation readout, potency was highest for FSH18/21 followed by eFSH, recFSH, and FSH24. In β-arrestin1/2 CRISPR/Cas9 HEK293-KO cells, FSH18/21 exhibited a preference toward β-arrestin-mediated ERK1/2 activation as revealed by a drastic decrease in pERK during the first 15-minute exposure to this glycoform. Exposure of β-arrestin1/2 KO cells to H89 additionally decreased pERK1/2, albeit to a significantly lower extent in response to FSH18/21. Concurrent silencing of β-arrestin and PKA signaling, incompletely suppressed pERK response to FSH glycoforms, suggesting that pathways other than those dependent on Gs-protein and β-arrestins also contribute to FSH-stimulated pERK1/2. All FSH glycoforms stimulated intracellular Ca2+ (iCa2+) accumulation through both influx from Ca2+ channels and release from intracellular stores; however, iCa2+ in response to FSH18/21 depended more on the latter, suggesting differences in mechanisms through which glycoforms promote iCa2+ accumulation. These data indicate that FSH glycosylation plays an important role in defining not only the intensity but also the functional selectivity for the mechanisms leading to activation of distinct signaling cascades.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Viktor Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Iván Martínez-Luis
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
6
|
Casarini L, Crépieux P, Reiter E, Lazzaretti C, Paradiso E, Rochira V, Brigante G, Santi D, Simoni M. FSH for the Treatment of Male Infertility. Int J Mol Sci 2020; 21:ijms21072270. [PMID: 32218314 PMCID: PMC7177393 DOI: 10.3390/ijms21072270] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Follicle-stimulating hormone (FSH) supports spermatogenesis acting via its receptor (FSHR), which activates trophic effects in gonadal Sertoli cells. These pathways are targeted by hormonal drugs used for clinical treatment of infertile men, mainly belonging to sub-groups defined as hypogonadotropic hypogonadism or idiopathic infertility. While, in the first case, fertility may be efficiently restored by specific treatments, such as pulsatile gonadotropin releasing hormone (GnRH) or choriogonadotropin (hCG) alone or in combination with FSH, less is known about the efficacy of FSH in supporting the treatment of male idiopathic infertility. This review focuses on the role of FSH in the clinical approach to male reproduction, addressing the state-of-the-art from the little data available and discussing the pharmacological evidence. New compounds, such as allosteric ligands, dually active, chimeric gonadotropins and immunoglobulins, may represent interesting avenues for future personalized, pharmacological approaches to male infertility.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0593961705; Fax: +39-0593962018
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Vincenzo Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
7
|
Padmanabhan V, Cardoso RC. Neuroendocrine, autocrine, and paracrine control of follicle-stimulating hormone secretion. Mol Cell Endocrinol 2020; 500:110632. [PMID: 31682864 PMCID: PMC7433377 DOI: 10.1016/j.mce.2019.110632] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Follicle-stimulating hormone (FSH) is a glycoprotein hormone produced by gonadotropes in the anterior pituitary that plays a central role in controlling ovarian folliculogenesis and steroidogenesis in females. Moreover, recent studies strongly suggest that FSH exerts extragonadal actions, particularly regulating bone mass and adiposity. Despite its crucial role, the mechanisms regulating FSH secretion are not completely understood. It is evident that hypothalamic, ovarian, and pituitary factors are involved in the neuroendocrine, paracrine, and autocrine regulation of FSH production. Large animal models, such as the female sheep, represent valuable research models to investigate specific aspects of FSH secretory processes. This review: (i) summarizes the role of FSH controlling reproduction and other biological processes; (ii) discusses the hypothalamic, gonadal, and pituitary regulation of FSH secretion; (iii) considers the biological relevance of the different FSH isoforms; and (iv) summarizes the distinct patterns of FSH secretion under different physiological conditions.
Collapse
|
8
|
Sacchi S, Tenedini E, Tondelli D, Parenti S, Tagliasacchi D, Xella S, Marsella T, Tagliafico E, La Marca A. Gene expression profiles of human granulosa cells treated with bioequivalent doses of corifollitropin alfa (CFA) or recombinant human follicle-stimulating hormone (recFSH). Gynecol Endocrinol 2019; 35:623-627. [PMID: 30784329 DOI: 10.1080/09513590.2019.1576611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Using recombinant DNA technologies, a chimeric gene containing the coding sequences of follicle stimulating hormone (FSH) β-subunit and C-terminal peptide of the human chorionic gonadotrophin (hCG) β-subunit have been designed to generate a new gonadotrophin named corifollitropin alfa (CFA). CFA has longer elimination half-life and slower rate of absorption compared with FSH, which makes CFA a long-acting hormone employed as a substitute of the recombinant FSH (recFSH) in the controlled ovarian stimulation (COS). The purpose of this study is to compare the gene expression profiles elicited by bioequivalent doses of CFA or recFSH in primary cultures of human granulosa cells (hGCs). Gonadotrophins exert their functions by binding FSH receptors (FSHRs), activating signaling pathways that increase the cyclic adenosine monophosphate (cAMP) intracellular content. Bioequivalence has been defined as the dose/duration of gonadotrophin treatment able to promote the same amount of intracellular cAMP. hGCs were treated with different doses of either gonadotrophin and the cAMP was measured after different incubation times to establish the bioequivalence. Results obtained by comparing the bioequivalent treatments, showed that CFA is more effective than recFSH in inducing aromatase gene expression after 6 and 24 h from the initial stimulation in agreement with its long-acting characteristic.
Collapse
Affiliation(s)
- Sandro Sacchi
- a Department of Medical and Surgical Sciences for Children and Adults , University of Modena and Reggio Emilia , Modena , Italy
| | - Elena Tenedini
- b Center for Genome Research , University of Modena and Reggio Emilia , Modena , Italy
- c Department of Medical and Surgical Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Debora Tondelli
- a Department of Medical and Surgical Sciences for Children and Adults , University of Modena and Reggio Emilia , Modena , Italy
| | - Sandra Parenti
- b Center for Genome Research , University of Modena and Reggio Emilia , Modena , Italy
- c Department of Medical and Surgical Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Daniela Tagliasacchi
- a Department of Medical and Surgical Sciences for Children and Adults , University of Modena and Reggio Emilia , Modena , Italy
| | - Susanna Xella
- a Department of Medical and Surgical Sciences for Children and Adults , University of Modena and Reggio Emilia , Modena , Italy
| | - Tiziana Marsella
- a Department of Medical and Surgical Sciences for Children and Adults , University of Modena and Reggio Emilia , Modena , Italy
| | - Enrico Tagliafico
- b Center for Genome Research , University of Modena and Reggio Emilia , Modena , Italy
- c Department of Medical and Surgical Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Antonio La Marca
- a Department of Medical and Surgical Sciences for Children and Adults , University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|
9
|
Riccetti L, Sperduti S, Lazzaretti C, Klett D, De Pascali F, Paradiso E, Limoncella S, Potì F, Tagliavini S, Trenti T, Galano E, Palmese A, Satwekar A, Daolio J, Nicoli A, Villani MT, Aguzzoli L, Reiter E, Simoni M, Casarini L. Glycosylation Pattern and in vitro Bioactivity of Reference Follitropin alfa and Biosimilars. Front Endocrinol (Lausanne) 2019; 10:503. [PMID: 31396162 PMCID: PMC6667556 DOI: 10.3389/fendo.2019.00503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Recombinant follicle-stimulating hormone (FSH) (follitropin alfa) and biosimilar preparations are available for clinical use. They have specific FSH activity and a unique glycosylation profile dependent on source cells. The aim of the study is to compare the originator (reference) follitropin alfa (Gonal-f®)- with biosimilar preparations (Bemfola® and Ovaleap®)-induced cellular responses in vitro. Gonadotropin N-glycosylation profiles were analyzed by ELISA lectin assay, revealing preparation specific-patterns of glycan species (Kruskal-Wallis test; p < 0.05, n = 6) and by glycotope mapping. Increasing concentrations of Gonal-f® or biosimilar (1 × 10-3-1 × 103 ng/ml) were used for treating human primary granulosa lutein cells (hGLC) and FSH receptor (FSHR)-transfected HEK293 cells in vitro. Intracellular cAMP production, Ca2+ increase and β-arrestin 2 recruitment were evaluated by BRET, CREB, and ERK1/2 phosphorylation by Western blotting. 12-h gene expression, and 8- and 24-h progesterone and estradiol synthesis were measured by real-time PCR and immunoassay, respectively. We found preparation-specific glycosylation patterns by lectin assay (Kruskal-Wallis test; p < 0.001; n = 6), and similar cAMP production and β-arrestin 2 recruitment in FSHR-transfected HEK293 cells (cAMP EC50 range = 12 ± 0.9-24 ± 1.7 ng/ml; β-arrestin 2 EC50 range = 140 ± 14.1-313 ± 18.7 ng/ml; Kruskal-Wallis test; p ≥ 0.05; n = 4). Kinetics analysis revealed that intracellular Ca2+ increased upon cell treatment by 4 μg/ml Gonal-f®, while equal concentrations of biosimilars failed to induced a response (Kruskal-Wallis test; p < 0.05; n = 3). All preparations induced both 8 and 24 h-progesterone and estradiol synthesis in hGLC, while no different EC50s were demonstrated (Kruskal-Wallis test; p > 0.05; n = 5). Apart from preparation-specific intracellular Ca2+ increases achieved at supra-physiological hormone doses, all compounds induced similar intracellular responses and steroidogenesis, reflecting similar bioactivity, and overall structural homogeneity.
Collapse
Affiliation(s)
- Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Danièle Klett
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | | | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Limoncella
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Potì
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL, NOCSAE, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL, NOCSAE, Modena, Italy
| | - Eugenio Galano
- Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Rome, Italy
| | - Angelo Palmese
- Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Rome, Italy
| | - Abhijeet Satwekar
- Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Rome, Italy
| | - Jessica Daolio
- Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Alessia Nicoli
- Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Maria Teresa Villani
- Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Lorenzo Aguzzoli
- Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Livio Casarini
| |
Collapse
|
10
|
Campo S, Andreone L, Ambao V, Urrutia M, Calandra RS, Rulli SB. Hormonal Regulation of Follicle-Stimulating Hormone Glycosylation in Males. Front Endocrinol (Lausanne) 2019; 10:17. [PMID: 30761084 PMCID: PMC6361742 DOI: 10.3389/fendo.2019.00017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/11/2019] [Indexed: 11/13/2022] Open
Abstract
The Follicle-Stimulating Hormone plays an important role in the regulation of gametogenesis. It is synthesized and secreted as a family of glycoforms with differing oligosaccharide structure, biological action, and half-life. The presence of these oligosaccharides is absolutely necessary for the full expression of hormone bioactivity at the level of the target cell. The endocrine milieu modulates the glycosylation of this hormone. During male sexual development a progressive increase in FSH sialylation and in the proportion of glycoforms bearing complex oligosaccharides are the main features in this physiological condition. In late puberty, FSH oligosaccharides are largely processed in the medial- and trans-Golgi cisternae of the gonadotrope and remain without changes throughout adult life. In experimental models, the absence of gonads severely affects FSH sialylation; androgen administration is able to restore the characteristics observed under physiological conditions. The expression of ST6 beta-galactoside alpha-2,6-sialyltransferase 1 is hormonally regulated in the male rat; it decreases after short periods of castration but increases markedly at longer periods of androgen deprivation. Although ST3 beta-galactoside alpha-2,3-sialyltransferase 3 is expressed in the male rat pituitary it is not influenced by changes in the endocrine milieu. The oligosaccharide structure of FSH has an impact on the Sertoli cell endocrine activity. In more advanced stages of Sertoli cell maturation, both sialylation and complexity of the oligosaccharides are involved in the regulation of inhibin B production; moreover, FSH glycoforms bearing incomplete oligosaccharides may enhance the stimulatory effect exerted by gonadal growth factors. In this review, we discuss available information on variation of FSH glycosylation and its hormonal regulation under different physiological and experimental conditions, as well as the effect on Sertoli cell endocrine activity.
Collapse
Affiliation(s)
- Stella Campo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Buenos Aires, Argentina
- *Correspondence: Stella Campo
| | - Luz Andreone
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Buenos Aires, Argentina
| | - Verónica Ambao
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Buenos Aires, Argentina
| | - Mariela Urrutia
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), Buenos Aires, Argentina
| | - Ricardo S. Calandra
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Susana B. Rulli
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
11
|
Landomiel F, De Pascali F, Raynaud P, Jean-Alphonse F, Yvinec R, Pellissier LP, Bozon V, Bruneau G, Crépieux P, Poupon A, Reiter E. Biased Signaling and Allosteric Modulation at the FSHR. Front Endocrinol (Lausanne) 2019; 10:148. [PMID: 30930853 PMCID: PMC6425863 DOI: 10.3389/fendo.2019.00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge on G protein-coupled receptor (GPCRs) structure and mechanism of activation has profoundly evolved over the past years. The way drugs targeting this family of receptors are discovered and used has also changed. Ligands appear to bind a growing number of GPCRs in a competitive or allosteric manner to elicit balanced signaling or biased signaling (i.e., differential efficacy in activating or inhibiting selective signaling pathway(s) compared to the reference ligand). These novel concepts and developments transform our understanding of the follicle-stimulating hormone (FSH) receptor (FSHR) biology and the way it could be pharmacologically modulated in the future. The FSHR is expressed in somatic cells of the gonads and plays a major role in reproduction. When compared to classical GPCRs, the FSHR exhibits intrinsic peculiarities, such as a very large NH2-terminal extracellular domain that binds a naturally heterogeneous, large heterodimeric glycoprotein, namely FSH. Once activated, the FSHR couples to Gαs and, in some instances, to other Gα subunits. G protein-coupled receptor kinases and β-arrestins are also recruited to this receptor and account for its desensitization, trafficking, and intracellular signaling. Different classes of pharmacological tools capable of biasing FSHR signaling have been reported and open promising prospects both in basic research and for therapeutic applications. Here we provide an updated review of the most salient peculiarities of FSHR signaling and its selective modulation.
Collapse
|
12
|
Lainé AL, Laclie C, Furlong J, Crowe MA, Monniaux D. A bovine-specific FSH enzyme immunoassay and its application to study the role of FSH in ovarian follicle development during the postnatal period. Animal 2018; 13:1666-1675. [PMID: 30567615 DOI: 10.1017/s1751731118003233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primary aim of this study was to develop a FSH enzyme immunoassay (EIA) for the bovine species. The newly developed EIA was validated for FSH determination in bovine plasma by comparison with an existing bovine FSH radioimmunoassay. The EIA detected bovine FSH with a high sensitivity (0.1 ng/ml). Cross-reactivity of the EIA was 0.01% with bovine LH, 51% with ovine FSH, <0.1% with porcine FSH and <0.01% with equine FSH. Using this EIA on different time series of plasma in cows, we have confirmed the presence of a FSH pre-ovulatory peak at estrus, of periodic FSH fluctuations accompanying the waves of terminal follicular development, and of FSH pulses, mainly asynchronous with LH ones, in the peri-ovulatory phase of the cycle. In a second objective, the EIA was used to assess the role of FSH in regulating the development of ovarian follicles up to the small antral stage in young calves. To answer this question, six calves were submitted to weekly blood sampling during their first 3 months of life, and FSH changes were studied concomitantly to those of anti-Müllerian hormone (AMH), a well-established endocrine marker of the ovarian population of small antral follicles in cows. In the ovaries of 3-month calves, the population of 3 to 5 mm follicles contained the highest intra-follicular AMH amounts, and the number of 3 to 5 mm follicles on ovaries was closely correlated with AMH concentrations in the plasma of calves at this age (rs = 0.94). Before 3 months of age, only two out of six calves showed a clear postnatal FSH peak in plasma, and no correlation was found between plasma FSH and AMH concentrations. These results indicate that female calves undergo different patterns of FSH secretion and that postnatal activation of follicular growth up to the small antral stage appears independent and not directly related to circulating FSH levels.
Collapse
Affiliation(s)
- A-L Lainé
- 1UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE,Université de Tours,37380 Nouzilly,France
| | - C Laclie
- 1UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE,Université de Tours,37380 Nouzilly,France
| | - J Furlong
- 2UCD School of Veterinary Medicine,University College Dublin,Belfield, Dublin 4,Ireland
| | - M A Crowe
- 2UCD School of Veterinary Medicine,University College Dublin,Belfield, Dublin 4,Ireland
| | - D Monniaux
- 1UMR Physiologie de la Reproduction et des Comportements, INRA, CNRS, IFCE,Université de Tours,37380 Nouzilly,France
| |
Collapse
|
13
|
Anderson RC, Newton CL, Anderson RA, Millar RP. Gonadotropins and Their Analogs: Current and Potential Clinical Applications. Endocr Rev 2018; 39:911-937. [PMID: 29982442 DOI: 10.1210/er.2018-00052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Abstract
The gonadotropin receptors LH receptor and FSH receptor play a central role in governing reproductive competency/fertility. Gonadotropin hormone analogs have been used clinically for decades in assisted reproductive therapies and in the treatment of various infertility disorders. Though these treatments are effective, the clinical protocols demand multiple injections, and the hormone preparations can lack uniformity and stability. The past two decades have seen a drive to develop chimeric and modified peptide analogs with more desirable pharmacokinetic profiles, with some displaying clinical efficacy, such as corifollitropin alfa, which is now in clinical use. More recently, low-molecular-weight, orally active molecules with activity at gonadotropin receptors have been developed. Some have excellent characteristics in animals and in human studies but have not reached the market-largely as a result of acquisitions by large pharma. Nonetheless, such molecules have the potential to mitigate risks currently associated with gonadotropin-based fertility treatments, such as ovarian hyperstimulation syndrome and the demands of injection-based therapies. There is also scope for novel use beyond the current remit of gonadotropin analogs in fertility treatments, including application as novel contraceptives; in the treatment of polycystic ovary syndrome; in the restoration of function to inactivating mutations of gonadotropin receptors; in the treatment of ovarian and prostate cancers; and in the prevention of bone loss and weight gain in postmenopausal women. Here we review the properties and clinical application of current gonadotropin preparations and their analogs, as well as the development of novel orally active, small-molecule nonpeptide analogs.
Collapse
Affiliation(s)
- Ross C Anderson
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Claire L Newton
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P Millar
- Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa.,Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:1-58. [DOI: 10.1016/bs.ircmb.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Mastrangeli R, Satwekar A, Cutillo F, Ciampolillo C, Palinsky W, Longobardi S. In-vivo biological activity and glycosylation analysis of a biosimilar recombinant human follicle-stimulating hormone product (Bemfola) compared with its reference medicinal product (GONAL-f). PLoS One 2017; 12:e0184139. [PMID: 28880909 PMCID: PMC5589168 DOI: 10.1371/journal.pone.0184139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 08/18/2017] [Indexed: 02/03/2023] Open
Abstract
Recombinant human follicle-stimulating hormone (r-hFSH) is widely used in fertility treatment. Although biosimilar versions of r-hFSH (follitropin alfa) are currently on the market, given their structural complexity and manufacturing process, it is important to thoroughly evaluate them in comparison with the reference product. This evaluation should focus on how they differ (e.g., active component molecular characteristics, impurities and potency), as this could be associated with clinical outcome. This study compared the site-specific glycosylation profile and batch-to-batch variability of the in-vivo bioactivity of Bemfola, a biosimilar follitropin alfa, with its reference medicinal product GONAL-f. The focus of this analysis was the site-specific glycosylation at asparagine (Asn) 52 of the α-subunit of FSH, owing to the pivotal role of Asn52 glycosylation in FSH receptor (FSHR) activation/signalling. Overall, Bemfola had bulkier glycan structures and greater sialylation than GONAL-f. The nominal specific activity for both Bemfola and GONAL-f is 13,636 IU/mg. Taking into account both the determined potency and the nominal amount the average specific activity of Bemfola was 14,522 IU/mg (105.6% of the nominal value), which was greater than the average specific activity observed for GONAL-f (13,159 IU/mg; 97.3% of the nominal value; p = 0.0048), although this was within the range stated in the product label. A higher batch-to-batch variability was also observed for Bemfola versus GONAL-f (coefficient of variation: 8.3% vs 5.8%). A different glycan profile was observed at Asn52 in Bemfola compared with GONAL-f (a lower proportion of bi-antennary structures [~53% vs ~77%], and a higher proportion of tri-antennary [~41% vs ~23%] and tetra-antennary structures [~5% vs <1%]). These differences in the Asn52 glycan profile might potentially lead to differences in FSHR activation. This, together with the greater bioactivity and higher batch-to-batch variability of Bemfola, could partly explain the reported differences in clinical outcomes. The clinical relevance of the differences observed between GONAL-f and Bemfola should be further investigated.
Collapse
Affiliation(s)
- Renato Mastrangeli
- Biotech Development Programme, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Guidonia Montecelio, Rome, Italy
- * E-mail:
| | - Abhijeet Satwekar
- Pharamceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Guidonia Montecelio, Rome, Italy
| | - Francesca Cutillo
- Pharamceutical & Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Guidonia Montecelio, Rome, Italy
| | - Cinzia Ciampolillo
- Analytical BQC, Merck RBM S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Ivrea, Turin, Italy
| | - Wolf Palinsky
- Biotech Development Programme, Merck Biopharma (an affiliate of Merck KGaA, Darmstadt, Germany), Aubonne, Switzerland
| | - Salvatore Longobardi
- Global Medical Affairs Fertility, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Guidonia Montecelio, Rome, Italy
| |
Collapse
|
16
|
Andreone L, Ambao V, Pellizzari EH, Loreti N, Cigorraga SB, Campo S. Role of FSH glycan structure in the regulation of Sertoli cell inhibin production. Reproduction 2017; 154:711-721. [PMID: 28855248 DOI: 10.1530/rep-17-0393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 01/16/2023]
Abstract
Variations in follicle-stimulating hormone (FSH) carbohydrate composition and structure are associated with important structural and functional changes in Sertoli cells (SCs) during sexual maturation. The aim of the present study was to investigate the impact of FSH oligosaccharide structure and its interaction with gonadal factors on the regulation of monomeric and dimeric inhibin production at different maturation stages of the SC. Recombinant human FSH (rhFSH) glycosylation variants were isolated according to their sialylation degree (AC and BA) and complexity of oligosaccharides (CO and HY). Native rhFSH stimulated inhibin α-subunit (Pro-αC) but did not show any effect on inhibin B (INHB) production in immature SCs isolated from 8-day-old rats. Activin A stimulated INHB and had a synergistic effect on FSH to stimulate Pro-αC. The less acidic/sialylated rhFSH charge analogues, BA, were the only charge analogue mix that stimulated INHB as well as the most potent stimulus for Pro-αC production. Native rhFSH stimulated both Pro-αC and INHB in SCs at a more advanced maturation stage, isolated from 20-day-old rats. In these cells, all rhFSH glycosylation variants increased INHB and Pro-αC production, even in the presence of growth factors. The BA preparation exerted a more marked stimulatory effect on INHB and Pro-αC than the AC. Glycoforms bearing high mannose and hybrid-type oligosaccharides, HY, stimulated INHB and Pro-αC more effectively than those bearing complex oligosaccharides, CO, even in the presence of gonadal growth factors. These findings demonstrate the modulatory effect of FSH oligosaccharide structure on the regulation of inhibin production in the male gonad.
Collapse
Affiliation(s)
| | - Verónica Ambao
- Centro de Investigaciones Endocrinológicas 'Dr. Cesar Bergadá' (CEDIE-CONICET) Hospital de Niños 'R. Gutiérrez', Buenos Aires, Argentina
| | - Eliana H Pellizzari
- Centro de Investigaciones Endocrinológicas 'Dr. Cesar Bergadá' (CEDIE-CONICET) Hospital de Niños 'R. Gutiérrez', Buenos Aires, Argentina
| | - Nazareth Loreti
- Centro de Investigaciones Endocrinológicas 'Dr. Cesar Bergadá' (CEDIE-CONICET) Hospital de Niños 'R. Gutiérrez', Buenos Aires, Argentina
| | - Selva B Cigorraga
- Centro de Investigaciones Endocrinológicas 'Dr. Cesar Bergadá' (CEDIE-CONICET) Hospital de Niños 'R. Gutiérrez', Buenos Aires, Argentina
| | - Stella Campo
- Centro de Investigaciones Endocrinológicas 'Dr. Cesar Bergadá' (CEDIE-CONICET) Hospital de Niños 'R. Gutiérrez', Buenos Aires, Argentina
| |
Collapse
|
17
|
Clinical efficacy of recombinant versus highly purified follicle-stimulating hormone according to follicle-stimulating hormone receptor genotype. Pharmacogenet Genomics 2017; 26:288-93. [PMID: 26959715 DOI: 10.1097/fpc.0000000000000215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Conflicting data have been reported on the comparative doses of recombinant follicle-stimulating hormone (rFSH) and urinary highly purified follicle-stimulating hormone (HP-FSH) required for ovarian stimulation. Nothing is known about the clinical efficacy of rFSH or HP-FSH depending on the N680S follicle-stimulating hormone receptor (FSHR) polymorphism. Our aim was to investigate whether the N680S polymorphism of the FSHR gene affects ovarian response with different forms of FSH. MATERIALS AND METHODS This retrospective cohort study includes 382 cycles performed at Instituto Bernabeu from 191 oocyte donors. All donors carried out two cycles: one with rFSH and the other one with HP-FSH (group 1, n=63), both with HP-FSH (group 2, n=100) or both with rFSH (group 3, n=28). The results were compared by pairs from each patient. The main outcomes were oocyte yield, metaphase II matured oocytes (MII), days of stimulation, and gonadotropin dosage. RESULTS No significant differences were found when we compared the cycles for donors in group 1. However, according to the FSHR polymorphism, statistical differences were shown. For the SS genotype, more oocytes (16.9 vs. 18.4) and MII (12.8 vs. 15.5) were yielded in the HP-FSH cycle. For the NS genotype, more oocyte (20.1 vs. 16.9) and MII (17.4 vs. 14.2) were yielded in the rFSH cycle. For the NN genotype, no differences were found. No differences were found when we compared the cycles in groups 2 and 3 irrespective of the FSHR polymorphism. CONCLUSION For the first time, we have shown in a population of egg donors that the N680S FSHR gene polymorphism affects the efficacy of HP-FSH or rFSH. The FSHR genotype is an important factor to determine the dosage and the nature of the gonadotropin selected for ovarian stimulation.
Collapse
|
18
|
Sosicka P, Maszczak-Seneczko D, Bazan B, Shauchuk Y, Kaczmarek B, Olczak M. An insight into the orphan nucleotide sugar transporter SLC35A4. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:825-838. [PMID: 28167211 DOI: 10.1016/j.bbamcr.2017.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 12/21/2022]
Abstract
SLC35A4 has been classified in the SLC35A subfamily based on amino acid sequence homology. Most of the proteins belonging to the SLC35 family act as transporters of nucleotide sugars. In this study, the subcellular localization of endogenous SLC35A4 was determined via immunofluorescence staining, and it was demonstrated that SLC35A4 localizes mainly to the Golgi apparatus. In silico topology prediction suggests that SLC35A4 has an uneven number of transmembrane domains and its N-terminus is directed towards the Golgi lumen. However, an experimental assay refuted this prediction: SLC35A4 has an even number of transmembrane regions with both termini facing the cytosol. In vivo interaction analysis using the FLIM-FRET approach revealed that SLC35A4 neither forms homomers nor associates with other members of the SLC35A subfamily except SLC35A5. Additional assays demonstrated that endogenous SLC35A4 is 10 to 40nm proximal to SLC35A2 and SLC35A3. To determine SLC35A4 function SLC35A4 knock-out cells were generated with the CRISPR-Cas9 approach. Although no significant changes in glycosylation were observed, the introduced mutation influenced the subcellular distribution of the SLC35A2/SLC35A3 complexes. Additional FLIM-FRET experiments revealed that overexpression of SLC35A4-BFP together with SLC35A3 and the SLC35A2-Golgi splice variant negatively affects the interaction between the two latter proteins. The results presented here strongly indicate a modulatory role for SLC35A4 in intracellular trafficking of SLC35A2/SLC35A3 complexes.
Collapse
Affiliation(s)
- Paulina Sosicka
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Dorota Maszczak-Seneczko
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Bożena Bazan
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Yauhen Shauchuk
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Beata Kaczmarek
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland
| | - Mariusz Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, 14A F. Joliot-Curie St., 50-383 Wroclaw, Poland.
| |
Collapse
|
19
|
Wang H, May J, Butnev V, Shuai B, May JV, Bousfield GR, Kumar TR. Evaluation of in vivo bioactivities of recombinant hypo- (FSH 21/18) and fully- (FSH 24) glycosylated human FSH glycoforms in Fshb null mice. Mol Cell Endocrinol 2016; 437:224-236. [PMID: 27561202 PMCID: PMC5048586 DOI: 10.1016/j.mce.2016.08.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/21/2016] [Accepted: 08/21/2016] [Indexed: 10/21/2022]
Abstract
The hormone - specific FSHβ subunit of the human FSH heterodimer consists of N-linked glycans at Asn7 and Asn24 residues that are co-translationally attached early during subunit biosynthesis. Differences in the number of N-glycans (none, one or two) on the human FSHβ subunit contribute to macroheterogeneity in the FSH heterodimer. The resulting FSH glycoforms are termed hypo-glycosylated (FSH21/18, missing either an Asn24 or Asn7 N-glycan chain on the β - subunit, respectively) or fully glycosylated (FSH24, possessing of both Asn7 and Asn24 N-linked glycans on the β - subunit) FSH. The recombinant versions of human FSH glycoforms (FSH21/18 and FSH24) have been purified and biochemically characterized. In vitro functional studies have indicated that FSH21/18 exhibits faster FSH- receptor binding kinetics and is much more active than FSH24 in every assay tested to date. However, the in vivo bioactivity of the hypo-glycosylated FSH glycoform has never been tested. Here, we evaluated the in vivo bioactivities of FSH glycoforms in Fshb null mice using a pharmacological rescue approach. In Fshb null female mice, both hypo- and fully-glycosylated FSH elicited an ovarian weight gain response by 48 h and induced ovarian genes in a dose- and time-dependent manner. Quantification by real time qPCR assays indicated that hypo-glycosylated FSH21/18 was bioactive in vivo and induced FSH-responsive ovarian genes similar to fully-glycosylated FSH24. Western blot analyses followed by densitometry of key signaling components downstream of the FSH-receptor confirmed that the hypo-glycosylated FSH21/18 elicited a response similar to that by fully-glycosylated FSH24 in ovaries of Fshb null mice. When injected into Fshb null males, hypo-glycosylated FSH21/18 was more active than the fully-glycosylated FSH24 in inducing FSH-responsive genes and Sertoli cell proliferation. Thus, our data establish that recombinant hypo-glycosylated human FSH21/18 glycoform elicits bioactivity in vivo similar to the fully-glycosylated FSH. Our studies may have clinical implications particularly in formulating FSH-based ovarian follicle induction protocols using a combination of different human FSH glycoforms.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jacob May
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Viktor Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Bin Shuai
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Jeffrey V May
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - T Rajendra Kumar
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA; Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Ulloa-Aguirre A, Zariñán T. The Follitropin Receptor: Matching Structure and Function. Mol Pharmacol 2016; 90:596-608. [PMID: 27382014 DOI: 10.1124/mol.116.104398] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/28/2016] [Indexed: 02/14/2025] Open
Abstract
Follitropin, or follicle-stimulating hormone (FSH) receptor (FSHR), is a G protein-coupled receptor belonging to the glycoprotein hormone receptor family that plays an essential role in reproduction. Although its primary location is the gonad, the FSHR has also been reported in extragonadal tissues including bone, placenta, endometrium, liver, and blood vessels from a number of malignant tumors. The recently resolved crystal structure of FSH bound to the entire FSHR ectodomain has been instrumental in more clearly defining the role of this domain in ligand binding and receptor activation. Biochemical, biophysical, and structural data also indicate that the FSHR exists as a higher order structure and that it may heterodimerize with its closely related receptor, the luteinizing hormone receptor; this association may have physiologic implications during ovarian follicle maturation given that both receptors may simultaneously coexist in the same cell. FSHR heterodimerization is unique to the ovary because in the testes, gonadotropin receptors are expressed in separate compartments. FSHR self-association appears to be required for receptor coupling to multiple effectors and adaptors, for the activation of multiple signaling pathways and the transduction of asymmetric signaling, and for negative and positive receptor cooperativity. It also provides a mechanism through which the glycosylation variants of FSH may exert distinct and differential effects at the target cell level. Given its importance in regulating activation of distinct signaling pathways, functional selectivity at the FSHR is briefly discussed, as well as the potential implications of this particular functional feature on the design of new pharmacological therapies in reproduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Support Network, National University of Mexico and National Institutes of Health, Mexico City, Mexico
| | - Teresa Zariñán
- Research Support Network, National University of Mexico and National Institutes of Health, Mexico City, Mexico
| |
Collapse
|
21
|
Ulloa-Aguirre A, Lira-Albarrán S. Clinical Applications of Gonadotropins in the Male. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:121-174. [PMID: 27697201 DOI: 10.1016/bs.pmbts.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) play a pivotal role in reproduction. The synthesis and secretion of gonadotropins are regulated by complex interactions among several endocrine, paracrine, and autocrine factors of diverse chemical structure. In men, LH regulates the synthesis of androgens by the Leydig cells, whereas FSH promotes Sertoli cell function and thereby influences spermatogenesis. Gonadotropins are complex molecules composed of two subunits, the α- and β-subunit, that are noncovalently associated. Gonadotropins are decorated with glycans that regulate several functions of the protein including folding, heterodimerization, stability, transport, conformational maturation, efficiency of heterodimer secretion, metabolic fate, interaction with their cognate receptor, and selective activation of signaling pathways. A number of congenital and acquired abnormalities lead to gonadotropin deficiency and hypogonadotropic hypogonadism, a condition amenable to treatment with exogenous gonadotropins. Several natural and recombinant preparations of gonadotropins are currently available for therapeutic purposes. The difference between natural and the currently available recombinant preparations (which are massively produced in Chinese hamster ovary cells for commercial purposes) mainly lies in the abundance of some of the carbohydrates that conform the complex glycans attached to the protein core. Whereas administration of exogenous gonadotropins in patients with isolated congenital hypogonadotropic hypogonadism is a well recognized therapeutic approach, their role in treating men with normogonadotropic idiopathic infertility is still controversial. This chapter concentrates on the main structural and functional features of the gonadotropin hormones and how basic concepts have been translated into the clinical arena to guide therapy for gonadotropin deficit in males.
Collapse
Affiliation(s)
- A Ulloa-Aguirre
- Research Support Network, Universidad Nacional Autónoma de México (UNAM)-National Institutes of Health, Mexico City, Mexico.
| | - S Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
22
|
Dose-exposure proportionality of a novel recombinant follicle-stimulating hormone (rFSH), FE 999049, derived from a human cell line, with comparison between Caucasian and Japanese women after subcutaneous administration. Clin Drug Investig 2016; 35:247-53. [PMID: 25773354 PMCID: PMC4368841 DOI: 10.1007/s40261-015-0276-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background and Objectives FE 999049 is a novel recombinant follicle-stimulating hormone (rFSH) preparation expressed by a human cell line (PER.C6®), in contrast to existing rFSH preparations expressed by Chinese hamster ovary (CHO) cell lines. Since the individual dose of rFSH may be altered depending on the response in women undergoing assisted reproductive technologies, knowledge on the dose-exposure linearity and proportionality is important. The purpose of these studies was to investigate the dose-exposure linearity and proportionality properties of FE 999049 with a comparison between Caucasian and Japanese women. This is the first study in Japanese women regarding pharmacokinetics of rFSH. Methods Forty-eight Caucasian and 31 Japanese healthy women of reproductive age were pituitary down-regulated to suppress endogenous FSH. Following single subcutaneous administration of 37.5, 75, 150, 225, or 450 IU (Steelman–Pohley assay), the serum FSH concentration was followed over 10 days. Results The dose-dependent pharmacokinetic parameters of FE 999049, area under the serum concentration-time curve (AUC) and maximum serum concentration (Cmax), showed dose-exposure linearity and proportionality over 150–450 IU in Caucasian women, the dose interval available for analysis, and 75–450 IU in Japanese women, which was the dose interval investigated. Comparison between Caucasian and Japanese women showed no differences between the populations. The dose-independent parameters were similar over all doses in both populations. FE 999049 was safe and well tolerated at all doses in both populations with few, mostly mild, adverse events. Conclusion The results demonstrate dose-exposure proportionality and a predictable dose-dependent exposure of FE 999049, with no differences in Caucasian and Japanese women of reproductive age.
Collapse
|
23
|
Affiliation(s)
- Johan Smitz
- Laboratory of Hormonology and Tumormarkers, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Claudio Wolfenson
- Production and Regulatory Affairs, Instituto Massone SA, Buenos Aires, Argentina
| | | | - Jane Ruman
- Department of Reproductive Health, Ferring Pharmaceuticals, Inc, Parsippany, NJ, USA
| |
Collapse
|
24
|
Meher BR, Dixit A, Bousfield GR, Lushington GH. Glycosylation Effects on FSH-FSHR Interaction Dynamics: A Case Study of Different FSH Glycoforms by Molecular Dynamics Simulations. PLoS One 2015; 10:e0137897. [PMID: 26402790 PMCID: PMC4581761 DOI: 10.1371/journal.pone.0137897] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/23/2015] [Indexed: 12/20/2022] Open
Abstract
The gonadotropin known as follicle-stimulating hormone (FSH) plays a key role in regulating reproductive processes. Physiologically active FSH is a glycoprotein that can accommodate glycans on up to four asparagine residues, including two sites in the FSHα subunit that are critical for biochemical function, plus two sites in the β subunit, whose differential glycosylation states appear to correspond to physiologically distinct functions. Some degree of FSHβ hypo-glycosylation seems to confer advantages toward reproductive fertility of child-bearing females. In order to identify possible mechanistic underpinnings for this physiological difference we have pursued computationally intensive molecular dynamics simulations on complexes between the high affinity site of the gonadal FSH receptor (FSHR) and several FSH glycoforms including fully-glycosylated (FSH24), hypo-glycosylated (e.g., FSH15), and completely deglycosylated FSH (dgFSH). These simulations suggest that deviations in FSH/FSHR binding profile as a function of glycosylation state are modest when FSH is adorned with only small glycans, such as single N-acetylglucosamine residues. However, substantial qualitative differences emerge between FSH15 and FSH24 when FSH is decorated with a much larger, tetra-antennary glycan. Specifically, the FSHR complex with hypo-glycosylated FSH15 is observed to undergo a significant conformational shift after 5-10 ns of simulation, indicating that FSH15 has greater conformational flexibility than FSH24 which may explain the more favorable FSH15 kinetic profile. FSH15 also exhibits a stronger binding free energy, due in large part to formation of closer and more persistent salt-bridges with FSHR.
Collapse
Affiliation(s)
- Biswa Ranjan Meher
- Bioinformatics Core Facility, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail: (BRM); (GHL)
| | - Anshuman Dixit
- Institute of Life Sciences, Nalco Square, Bhubaneswar, 751023, Odisha, India
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, United States of America
| | - Gerald H. Lushington
- LiS Consulting, Lawrence, Kansas, United States of America
- * E-mail: (BRM); (GHL)
| |
Collapse
|
25
|
Mazón MJ, Molés G, Rocha A, Crespo B, Lan-Chow-Wing O, Espigares F, Muñoz I, Felip A, Carrillo M, Zanuy S, Gómez A. Gonadotropins in European sea bass: Endocrine roles and biotechnological applications. Gen Comp Endocrinol 2015; 221:31-41. [PMID: 26002037 DOI: 10.1016/j.ygcen.2015.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/20/2015] [Accepted: 05/05/2015] [Indexed: 12/28/2022]
Abstract
Follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) are central endocrine regulators of the gonadal function in vertebrates. They act through specific receptors located in certain cell types found in the gonads. In fish, the differential roles of these hormones are being progressively elucidated due to the development of suitable tools for their study. In European sea bass (Dicentrarchus labrax), isolation of the genes coding for the gonadotropin subunits and receptors allowed in first instance to conduct expression studies. Later, to overcome the limitation of using native hormones, recombinant dimeric gonadotropins, which show different functional characteristics depending on the cell system and DNA construct, were generated. In addition, single gonadotropin beta-subunits have been produced and used as antigens for antibody production. This approach has allowed the development of detection methods for native gonadotropins, with European sea bass being one of the few species where both gonadotropins can be detected in their native form. By administering recombinant gonadotropins to gonad tissues in vitro, we were able to study their effects on steroidogenesis and intracellular pathways. Their administration in vivo has also been tested for use in basic studies and as a biotechnological approach for hormone therapy and assisted reproduction strategies. In addition to the production of recombinant hormones, gene-based therapies using somatic gene transfer have been offered as an alternative. This approach has been tested in sea bass for gonadotropin delivery in vivo. The hormones produced by the genes injected were functional and have allowed studies on the action of gonadotropins in spermatogenesis.
Collapse
Affiliation(s)
- María José Mazón
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Gregorio Molés
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Ana Rocha
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Berta Crespo
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Olivier Lan-Chow-Wing
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Felipe Espigares
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Iciar Muñoz
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Alicia Felip
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Manuel Carrillo
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain.
| |
Collapse
|
26
|
Jiang C, Hou X, Wang C, May JV, Butnev VY, Bousfield GR, Davis JS. Hypoglycosylated hFSH Has Greater Bioactivity Than Fully Glycosylated Recombinant hFSH in Human Granulosa Cells. J Clin Endocrinol Metab 2015; 100:E852-60. [PMID: 25915568 PMCID: PMC4454802 DOI: 10.1210/jc.2015-1317] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT Previous studies suggest that aging in women is associated with a reduction in hypoglycosylated forms of FSH. OBJECTIVE Experiments were performed to determine whether glycosylation of the FSHβ subunit modulates the biological activity of FSH in human granulosa cells. DESIGN AND SETTING Recombinant human FSH (hFSH) derived from GH3 pituitary cells was purified into fractions containing hypoglycosylated hFSH(21/18) and fully glycosylated hFSH(24). The response to FSH glycoforms was evaluated using the well-characterized, FSH-responsive human granulosa cell line, KGN at an academic medical center. INTERVENTIONS Granulosa cells were treated with increasing concentrations of fully- or hypoglycosylated FSH glycoforms for periods up to 48 hours. MAIN OUTCOME MEASURE(S) The main outcomes were indices of cAMP-dependent cell signaling and estrogen and progesterone synthesis. RESULTS We observed that hypoglycosylated FSH(21/18) was significantly more effective than fully glycosylated FSH(24) at stimulating cAMP accumulation, protein kinase A (PKA) activity, and cAMP response element binding protein (CREB) (S133) phosphorylation. FSH(21/18) was also much more effective than hFSH(24) on the stimulation CREB-response element-mediated transcription, expression of aromatase and STAR proteins, and synthesis of estrogen and progesterone. Adenoviral-mediated expression of the endogenous inhibitor of PKA, inhibited FSH(21/18)- and FSH(24)-stimulated CREB phosphorylation, and steroidogenesis. CONCLUSIONS Hypoglycosylated FSH(21/18) has greater bioactivity than fully glycosylated hFSH(24), suggesting that age-dependent decreases in hypoglycosylated hFSH contribute to reduced ovarian responsiveness. Hypoglycosylated FSH may be useful in follicle stimulation protocols for older patients using assisted reproduction technologies.
Collapse
Affiliation(s)
- Chao Jiang
- The Olson Center for Women's Health, Department of Obstetrics and Gynecology (C.J., X.H., C.W., J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Nebraska-Northwest Iowa VA Medical Center (X.H., J.S.D.), Omaha, Nebraska 68105; Department of Biological Sciences (J.V.M., V.Y.B., G.R.B.), Wichita State University, Wichita, Kansas 67260; and Department of Biochemistry and Molecular Biology (J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Xiaoying Hou
- The Olson Center for Women's Health, Department of Obstetrics and Gynecology (C.J., X.H., C.W., J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Nebraska-Northwest Iowa VA Medical Center (X.H., J.S.D.), Omaha, Nebraska 68105; Department of Biological Sciences (J.V.M., V.Y.B., G.R.B.), Wichita State University, Wichita, Kansas 67260; and Department of Biochemistry and Molecular Biology (J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Cheng Wang
- The Olson Center for Women's Health, Department of Obstetrics and Gynecology (C.J., X.H., C.W., J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Nebraska-Northwest Iowa VA Medical Center (X.H., J.S.D.), Omaha, Nebraska 68105; Department of Biological Sciences (J.V.M., V.Y.B., G.R.B.), Wichita State University, Wichita, Kansas 67260; and Department of Biochemistry and Molecular Biology (J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jeffrey V May
- The Olson Center for Women's Health, Department of Obstetrics and Gynecology (C.J., X.H., C.W., J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Nebraska-Northwest Iowa VA Medical Center (X.H., J.S.D.), Omaha, Nebraska 68105; Department of Biological Sciences (J.V.M., V.Y.B., G.R.B.), Wichita State University, Wichita, Kansas 67260; and Department of Biochemistry and Molecular Biology (J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Viktor Y Butnev
- The Olson Center for Women's Health, Department of Obstetrics and Gynecology (C.J., X.H., C.W., J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Nebraska-Northwest Iowa VA Medical Center (X.H., J.S.D.), Omaha, Nebraska 68105; Department of Biological Sciences (J.V.M., V.Y.B., G.R.B.), Wichita State University, Wichita, Kansas 67260; and Department of Biochemistry and Molecular Biology (J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - George R Bousfield
- The Olson Center for Women's Health, Department of Obstetrics and Gynecology (C.J., X.H., C.W., J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Nebraska-Northwest Iowa VA Medical Center (X.H., J.S.D.), Omaha, Nebraska 68105; Department of Biological Sciences (J.V.M., V.Y.B., G.R.B.), Wichita State University, Wichita, Kansas 67260; and Department of Biochemistry and Molecular Biology (J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - John S Davis
- The Olson Center for Women's Health, Department of Obstetrics and Gynecology (C.J., X.H., C.W., J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Nebraska-Northwest Iowa VA Medical Center (X.H., J.S.D.), Omaha, Nebraska 68105; Department of Biological Sciences (J.V.M., V.Y.B., G.R.B.), Wichita State University, Wichita, Kansas 67260; and Department of Biochemistry and Molecular Biology (J.S.D.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
27
|
Arce JC, Klein BM, La Marca A. The rate of high ovarian response in women identified at risk by a high serum AMH level is influenced by the type of gonadotropin. Gynecol Endocrinol 2014; 30:444-50. [PMID: 24576226 PMCID: PMC4059219 DOI: 10.3109/09513590.2014.892066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim was to compare ovarian response and clinical outcome of potential high-responders after stimulation with highly purified menotropin (HP-hMG) or recombinant follicle-stimulating hormone (rFSH) for in vitro fertilisation/intracytoplasmic sperm injection. Retrospective analysis was performed on data collected in two randomized controlled trials, one conducted following a long GnRH agonist protocol and the other with an antagonist protocol. Potential high-responders (n = 155 and n = 188 in the agonist and antagonist protocol, respectively) were defined as having an initial anti-Müllerian hormone (AMH) value >75th percentile (5.2 ng/ml). In both protocols, HP-hMG stimulation in women in the high AMH category was associated with a significantly lower occurrence of high response (≥15 oocytes retrieved) than rFSH stimulation; 33% versus 51% (p = 0.025) and 31% versus 49% (p = 0.015) in the long agonist and antagonist protocol, respectively. In the potential high-responder women, trends for improved live birth rate were observed with HP-hMG compared with rFSH (long agonist protocol: 33% versus 20%, p = 0.074; antagonist protocol: 34% versus 23%, p = 0.075; overall population: 34% versus 22%, p = 0.012). In conclusion, the type of gonadotropin used for ovarian stimulation influences high-response rates and potentially clinical outcome in women identified as potential high-responders.
Collapse
Affiliation(s)
- Joan-Carles Arce
- Reproductive Health, Ferring Pharmaceuticals A/SCopenhagenDenmark
| | - Bjarke M. Klein
- Global Biometrics, Ferring Pharmaceuticals A/SCopenhagenDenmark
| | - Antonio La Marca
- Mother–Infant Department, University of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
28
|
Olsson H, Sandström R, Grundemar L. Different pharmacokinetic and pharmacodynamic properties of recombinant follicle-stimulating hormone (rFSH) derived from a human cell line compared with rFSH from a non-human cell line. J Clin Pharmacol 2014; 54:1299-307. [DOI: 10.1002/jcph.328] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Håkan Olsson
- Department of Experimental Medicine; Ferring Pharmaceuticals A/S; Copenhagen Denmark
| | - Rikard Sandström
- Department of Experimental Medicine; Ferring Pharmaceuticals A/S; Copenhagen Denmark
| | - Lars Grundemar
- Department of Experimental Medicine; Ferring Pharmaceuticals A/S; Copenhagen Denmark
| |
Collapse
|
29
|
Sequential (hFSH + recFSH) vs homogenous (hFSH or recFSH alone) stimulation: clinical and biochemical (cumulus cell gene expression) aspects. J Assist Reprod Genet 2014; 31:657-65. [PMID: 24639041 DOI: 10.1007/s10815-014-0208-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/28/2014] [Indexed: 01/16/2023] Open
Abstract
FSH is a key hormone in the regulation of follicular development. Together with the EGF network, these molecules mediate oocyte maturation and competence in preparation for the action of LH. FSH isoforms regulate distinct biological pathways and have specific effects on granulosa cell function and maturation of the ovarian follicle. Their dynamic interactions occur during the follicular cycle; short-living forms are predominant in the pre-ovulatory phase, whereas long-acting molecules characterize the luteal-follicular transition. Recombinant FSH (rFSH) molecules have a reduced number of isoforms and are less acidic, with a shorter half-life. We have investigated sequential stimulation, comparing hFSH + rFSH, vs. rFSH alone and hFSH alone for the entire stimulation phase. Sequential stimulation leads to an E2 per MII oocyte ratio that is much lower than is seen during treatment with the two drugs individually. Although there is a positive tendency in favor of the sequential treatment, there was no significant difference in pregnancy rates, even taking frozen embryos into consideration. The cumulus cell transcriptome varies considerably between the treatments, although with no clear significance. When comparing pregnant vs. non-pregnant patients, in general a decrease in mRNA expression can be observed in the pregnant patients, especially in expression of folic acid receptor 1 and ovostatin 2. This indicates that material has been transferred from CC to the oocyte. However, a common observation in the literature is that variations in the transcriptome of the cumulus cells are highly dependent upon the patient genotype; the potential for applying this strategy as a basis for selecting embryos is, at the very least, questionable.
Collapse
|
30
|
Landomiel F, Gallay N, Jégot G, Tranchant T, Durand G, Bourquard T, Crépieux P, Poupon A, Reiter E. Biased signalling in follicle stimulating hormone action. Mol Cell Endocrinol 2014; 382:452-459. [PMID: 24121199 DOI: 10.1016/j.mce.2013.09.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 12/22/2022]
Abstract
Follicle-stimulating hormone (FSH) plays a crucial role in the control of reproduction by specifically binding to and activating a membrane receptor (FSHR) that belongs to the G protein-coupled receptor (GPCR) family. Similar to all GPCRs, FSHR activation mechanisms have generally been viewed as a two-state process connecting a unique FSH-bound active receptor to the Gs/cAMP pathway. Over the last decade, paralleling the breakthroughs that were made in the GPCR field, our understanding of FSH actions at the molecular level has dramatically changed. There are numerous facts indicating that the active FSHR is connected to a complex signalling network rather than the sole Gs/cAMP pathway. Consistently, the FSHR probably exists in equilibrium between multiple conformers, a subset of them being stabilized upon ligand binding. Importantly, the nature of the stabilized conformers of the receptor directly depends on the chemical structure of the ligand bound. This implies that it is possible to selectively control the intracellular signalling pathways activated by using biased ligands. Such biased ligands can be of different nature: small chemical molecules, glycosylation variants of the hormone or antibody/hormone complexes. Likewise, mutations or polymorphisms affecting the FSHR can also lead to stabilization of preferential conformers, hence to selective modulation of signalling pathways. These emerging notions offer a new conceptual framework that could potentially lead to the development of more specific drugs while also improving the way FSHR mutants/variants are functionally characterized.
Collapse
Affiliation(s)
- Flavie Landomiel
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Nathalie Gallay
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Gwenhael Jégot
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Thibaud Tranchant
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Guillaume Durand
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Thomas Bourquard
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Pascale Crépieux
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Anne Poupon
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Eric Reiter
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France.
| |
Collapse
|
31
|
Lombardi A, Andreozzi C, Pavone V, Triglione V, Angiolini L, Caccia P. Evaluation of the oligosaccharide composition of commercial follicle stimulating hormone preparations. Electrophoresis 2013; 34:2394-406. [DOI: 10.1002/elps.201300045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/30/2013] [Accepted: 04/30/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Lombardi
- Department of Chemical Sciences; University “Federico II” of Naples; Naples; Italy
| | - Concetta Andreozzi
- Department of Chemical Sciences; University “Federico II” of Naples; Naples; Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences; University “Federico II” of Naples; Naples; Italy
| | - Valeria Triglione
- Biopharmaceutical Products Division; IBSA Institut Biochimique S.A; Pambio-Noranco; Switzerland
| | - Luca Angiolini
- Biopharmaceutical Products Division; IBSA Institut Biochimique S.A; Pambio-Noranco; Switzerland
| | - Paolo Caccia
- Biopharmaceutical Products Division; IBSA Institut Biochimique S.A; Pambio-Noranco; Switzerland
| |
Collapse
|
32
|
Loreti N, Fresno C, Barrera D, Andreone L, Albarran SL, Fernandez EA, Larrea F, Campo S. The glycan structure in recombinant human FSH affects endocrine activity and global gene expression in human granulosa cells. Mol Cell Endocrinol 2013; 366:68-80. [PMID: 23261981 DOI: 10.1016/j.mce.2012.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/28/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
Abstract
The aim of this study was to analyse the biological response to different recombinant human FSH (rhFSH) glycosylation variants on the endocrine activity and gene expression at whole-genome scale in human granulosa-like tumor cell line, KGN. The effects of differences in rhFSH sialylation and oligosaccharide complexity were determined on steroid hormone and inhibin production. A microarray approach was used to explore gene expression patterns induced by rhFSH glycosylation variants. Set enrichment analysis revealed that hormone sialylation and oligosaccharide complexity in rhFSH differentially affected the expression of genes involved in essential biological processes and molecular functions of KGN cells. The relevance of rhFSH oligosaccharide structure on steroidogenesis was confirmed assessing gene expression by real time-PCR. The results demonstrate that FSH oligosaccharide structure affects expression of genes encoding proteins, growth factors and hormones essential for granulosa cells function.
Collapse
Affiliation(s)
- Nazareth Loreti
- Centro de Investigaciones Endocrinológicas (CEDIE/CONICET), Hospital de Niños Ricardo Gutiérrez, Gallo No. 1330, C1425EFB Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Long-term in vitro culture of ovarian cortical tissue in goats: effects of FSH and IGF-I on preantral follicular development and FSH and IGF-I receptor mRNA expression. Cell Tissue Res 2012; 350:503-11. [DOI: 10.1007/s00441-012-1498-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
34
|
Lima-Verde IB, Matos MH, Celestino JJ, Rossetto R, Name KP, Báo SN, Campello CC, Figueiredo JR. Progesterone and Follicle Stimulating Hormone interact and promote goat preantral follicles survival and development in vitro. PESQUISA VETERINARIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012000400015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of progesterone and follicle stimulating hormone (FSH) on survival and growth of caprine preantral follicles. Pieces of ovarian tissue were cultured for 1 or 7 days in minimum essential medium (MEM) alone or containing progesterone (1, 2.5, 5, 10 or 20ng/mL), FSH (50ng/mL) or the interaction between progesterone and FSH. Fresh (non-cultured control) and cultured ovarian tissues were processed for histological and ultrastructural studies. After 7 days the addition of FSH to all progesterone concentrations maintained the percentage of normal follicles similar to fresh control. At day 7 of culture, a higher percentage of developing follicles was observed only in 2.5ng/ml of progesterone associated with FSH or 10ng/ml of progesterone alone when compared with control. From day 1 to day 7 of culture, a significant increase in the percentage of developing follicles was observed in MEM and 2.5ng/ml of progesterone + FSH. In addition, after 7 days, in all treatments, there was a significant increase in follicular diameter when compared with control, except for MEM alone and in 5ng/ml of progesterone + FSH or 10ng/ml of progesterone alone. Ultrastructural studies confirmed follicular integrity after 7 days of culture in 2.5ng/ml of progesterone with FSH. In conclusion, this study demonstrated that the interaction between progesterone and FSH maintains ultrastructural integrity, stimulates primordial follicles activation and further growth of cultured caprine preantral follicles.
Collapse
|
35
|
Lima I, Celestino J, Faustino L, Magalhães-Padilha D, Rossetto R, Brito I, Donato M, Lopes C, Campello C, Peixoto C, Figueiredo J, Rodrigues A. Dynamic Medium Containing Kit Ligand and Follicle-Stimulating Hormone Promotes Follicular Survival, Activation, and Growth during Long-Term in vitro Culture of Caprine Preantral Follicles. Cells Tissues Organs 2012; 195:260-71. [DOI: 10.1159/000325150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2011] [Indexed: 11/19/2022] Open
|
36
|
Ulloa-Aguirre A, Crépieux P, Poupon A, Maurel MC, Reiter E. Novel pathways in gonadotropin receptor signaling and biased agonism. Rev Endocr Metab Disord 2011; 12:259-74. [PMID: 21526415 DOI: 10.1007/s11154-011-9176-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotropins play a central role in the control of male and female reproduction. Selective agonists and antagonists of gonadotropin receptors would be of great interest for the treatment of infertility or as non steroidal contraceptive. However, to date, only native hormones are being used in assisted reproduction technologies as there is no pharmacological agent available to manipulate gonadotropin receptors. Over the last decade, there has been a growing perception of the complexity associated with gonadotropin receptors' cellular signaling. It is now clear that the Gs/cAMP/PKA pathway is not the sole mechanism that must be taken into account in order to understand these hormones' biological actions. In parallel, consistent with the emerging paradigm of biased agonism, several examples of ligand-mediated selective signaling pathway activation by gonadotropin receptors have been reported. Small molecule ligands, modulating antibodies interacting with the hormones and glycosylation variants of the native glycoproteins have all demonstrated their potential to trigger such selective signaling. Altogether, the available data and emerging concepts give rise to intriguing opportunities towards a more efficient control of reproductive function and associated disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
37
|
Arey BJ, López FJ. Are circulating gonadotropin isoforms naturally occurring biased agonists? Basic and therapeutic implications. Rev Endocr Metab Disord 2011; 12:275-88. [PMID: 21706143 DOI: 10.1007/s11154-011-9188-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The gonadotropins, luteinizing hormone, human chorionic gonadotropin and follicle-stimulating hormone, are key regulators of reproduction. As a result of this function, they have been the focus of research for many years. Isolated or recombinant proteins have been successfully used therapeutically for the treatment of infertility; and, in the case of compounds that block gonadotropin activity, for their potential utility in contraception. Until recently, selective small molecules modulating gonadotropin receptor activity have proven difficult to identify. The gonadotropins are glycoproteins that are released into the plasma as differently glycosylated isoforms and bind to specific G protein-coupled receptors. The degree of glycosylation on the gonadotropins has been shown to be important for the biological activities of these hormones and is differentially regulated depending on the steroidal status. Recent data from the study of glycosylated variants of LH, hCG and FSH have revealed that these isoforms have distinct signaling properties that allow for gonadotropin pleiotropic signals to be transduced effectively at the level of the receptor. Thus, glycosylated variants of the gonadotropins behave as biased agonists. Recently, newly developed, small molecule, synthetic allosteric compounds have been identified that are capable of mimicking this biased signaling. This opens the door to development of orally available, drug-like therapies for reproductive disorders that offer similar pleiotropic richness as that offered by the complex, endogenous hormones.
Collapse
Affiliation(s)
- Brian J Arey
- Metabolic and Cardiovascular Drug Discovery, Research and Development, Bristol-Myers Squibb Co., 311 Pennington-Rocky Hill Rd., Mail Stop- 21-1.08, Hopewell, NJ 08543, USA.
| | | |
Collapse
|
38
|
Molés G, Gómez A, Carrillo M, Rocha A, Mylonas CC, Zanuy S. Determination of Fsh Quantity and Bioactivity During Sex Differentiation and Oogenesis in European Sea Bass1. Biol Reprod 2011; 85:848-57. [DOI: 10.1095/biolreprod.111.091868] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
39
|
Olivares A, Méndez JP, Zambrano E, Cárdenas M, Tovar A, Perera-Marín G, Ulloa-Aguirre A. Reproductive axis function and gonadotropin microheterogeneity in a male rat model of diet-induced obesity. Gen Comp Endocrinol 2010; 166:356-64. [PMID: 20005231 DOI: 10.1016/j.ygcen.2009.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/30/2009] [Accepted: 12/03/2009] [Indexed: 01/23/2023]
Abstract
Obesity causes complex metabolic and endocrine changes that may lead to adverse outcomes, including hypogonadism. We herein studied the reproductive axis function in male rats under a high-fat diet and analyzed the impact of changes in glycosylation of pituitary LH on the bioactivity of this gonadotropin. Rats were fed with a diet enriched in saturated fat (20% of total calories) and euthanized on days 90 or 180 of diet. Long-term (180 days), high-fat feeding rats exhibited a metabolic profile compatible with insulin resistance and metabolic syndrome; they concomitantly showed decreased intrapituitary and serum LH concentrations, low serum testosterone levels, and elevated serum 17beta-estradiol concentrations. A fall in biological to immunological ratio of intrapituitary LH was detected in 180 days control diet-treated rats but not in high-fat-fed animals, as assessed by a homologous in vitro bioassay. Chromatofocusing of pituitary extracts yielded multiple LH charge isoforms; a trend towards decreased abundance of more basic isoforms (pH 9.99-9.0) was apparent in rats fed with the control diet for 180 days but not in those that were fed the diet enriched in saturated fat. It is concluded that long-term high-fat feeding alters the function of the pituitary-testicular axis, resulting in hypogonadotropic hypogonadism. The alterations in LH function found in these animals might be subserved by changes in hypothalamic GnRH output and/or sustained gonadotrope exposure to an altered sex steroid hormone milieu, representing a distinctly different regulatory mechanism whereby the pituitary attempts to counterbalance the effects of long-term obesity on reproductive function.
Collapse
Affiliation(s)
- Aleida Olivares
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia Luis Castelazo Ayala, IMSS, México D.F., Mexico.
| | | | | | | | | | | | | |
Collapse
|
40
|
Wehbi V, Tranchant T, Durand G, Musnier A, Decourtye J, Piketty V, Butnev VY, Bousfield GR, Crépieux P, Maurel MC, Reiter E. Partially deglycosylated equine LH preferentially activates beta-arrestin-dependent signaling at the follicle-stimulating hormone receptor. Mol Endocrinol 2010; 24:561-73. [PMID: 20107152 DOI: 10.1210/me.2009-0347] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Deglycosylated FSH is known to trigger poor Galphas coupling while efficiently binding its receptor. In the present study, we tested the possibility that a deglycosylated equine LH (eLHdg) might be able to selectively activate beta-arrestin-dependent signaling. We compared native eLH to an eLH derivative [i.e. truncated eLHbeta (Delta121-149) combined with asparagine56-deglycosylated eLHalpha (eLHdg)] previously reported as an antagonist of cAMP accumulation at the FSH receptor (FSH-R). We confirmed that, when used in conjunction with FSH, eLHdg acted as an antagonist for cAMP accumulation in HEK-293 cells stably expressing the FSH-R. Furthermore, when used alone at concentrations up to 1 nM, eLHdg had no detectable agonistic activity on cAMP accumulation, protein kinase A activity or cAMP-responsive element-dependent transcriptional activity. At higher concentrations, however, a weak agonistic action was observed with eLHdg, whereas eLH led to robust responses whatever the concentration. Both eLH and eLHdg triggered receptor internalization and led to beta-arrestin recruitment. Both eLH and eLHdg triggered ERK and ribosomal protein (rp) S6 phosphorylation at 1 nM. The depletion of endogenous beta-arrestins had only a partial effect on eLH-induced ERK and rpS6 phosphorylation. In contrast, ERK and rpS6 phosphorylation was completely abolished at all time points in beta-arrestin-depleted cells. Together, these results show that eLHdg has the ability to preferentially activate beta-arrestin-dependent signaling at the FSH-R. This finding provides a new conceptual and experimental framework to revisit the physiological meaning of gonadotropin structural heterogeneity. Importantly, it also opens a field of possibilities for the development of selective modulators of gonadotropin receptors.
Collapse
Affiliation(s)
- Vanessa Wehbi
- Unité Mixte de Recherche 6175, 37380 Nouzilly, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rossetto R, Lima-Verde IB, Matos MHT, Saraiva MVA, Martins FS, Faustino LR, Araújo VR, Silva CMG, Name KPO, SN SNB, Campello CC, Figueiredo JR, Blume H. Interaction between ascorbic acid and follicle-stimulating hormone maintains follicular viability after long-term in vitro culture of caprine preantral follicles. Domest Anim Endocrinol 2009; 37:112-23. [PMID: 19493642 DOI: 10.1016/j.domaniend.2009.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 04/10/2009] [Accepted: 04/12/2009] [Indexed: 11/18/2022]
Abstract
This study evaluates the effects of ascorbic acid and its interaction with follicle-stimulating hormone (FSH) on the morphology, activation, and in vitro growth of caprine preantral follicles. Ovarian fragments were cultured for 1, 7, or 14 d in minimum essential medium (MEM) containing ascorbic acid (50 or 100microg/mL), FSH (50ng/mL), or both of these substances. Ovarian tissue that was either fresh (control) or cultured for 1, 7, or 14 d was processed for histological and ultrastructural evaluation. The results showed that after 14 d of culture, medium supplemented with 50microg/mL of ascorbic acid alone or combined with FSH showed higher rates of follicular survival compared with MEM. After 7 d of culture, FSH, ascorbic acid at 50microg/mL with or without FSH, and ascorbic acid at 100microg/mL increased the percentage of follicular activation compared to fresh control. In addition, FSH alone significantly increased the percentage of growing follicles after 14 d. The combination of 50microg/mL of ascorbic acid and FSH promoted a significant increase in oocyte and follicular diameter after 7 d of culture. Ultrastructural and fluorescent analysis confirmed the integrity of follicles cultured with 50microg/mL of ascorbic acid and FSH after 14 d. In conclusion, the combination of 50microg/mL of ascorbic acid and FSH maintained follicular integrity and promoted follicular activation and growth after long-term in vitro culture of caprine preantral follicles.
Collapse
Affiliation(s)
- R Rossetto
- Faculty of Veterinary Medicine, UPIS - Pioneer Union of Social Integration, DF, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ion mobility-mass spectrometry analysis of isomeric carbohydrate precursor ions. Anal Bioanal Chem 2009; 394:1853-67. [PMID: 19562326 DOI: 10.1007/s00216-009-2865-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 05/19/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
The rapid separation of isomeric precursor ions of oligosaccharides prior to their analysis by mass spectrometry to the nth power (MS(n)) was demonstrated using an ambient pressure ion mobility spectrometer (IMS) interfaced with a quadrupole ion trap. Separations were not limited to specific types of isomers; representative isomers differing solely in the stereochemistry of sugars, in their anomeric configurations, and in their overall branching patterns and linkage positions could be resolved in the millisecond time frame. Physical separation of precursor ions permitted independent mass spectra of individual oligosaccharide isomers to be acquired to at least MS(3), the number of stages of dissociation limited only practically by the abundance of specific product ions. IMS-MS(n) analysis was particularly valuable in the evaluation of isomeric oligosaccharides that yielded identical sets of product ions in tandem mass spectrometry experiments, revealing pairs of isomers that would otherwise not be known to be present in a mixture if evaluated solely by MS dissociation methods alone. A practical example of IMS-MS(n) analysis of a set of isomers included within a single high-performance liquid chromatography fraction of oligosaccharides released from bovine submaxillary mucin is described.
Collapse
|
43
|
Carvalho CM, Oliveira JE, Almeida BE, Ueda EKM, Torjesen PA, Bartolini P, Ribela MTCP. Efficient isolation of the subunits of recombinant and pituitary glycoprotein hormones. J Chromatogr A 2009; 1216:1431-8. [PMID: 19167716 DOI: 10.1016/j.chroma.2008.12.096] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 12/23/2008] [Accepted: 12/31/2008] [Indexed: 10/21/2022]
Abstract
Complete dissociation into subunits was attained by incubating Chinese hamster ovary (CHO)-derived or native human thyrotropin, follitropin and lutropin overnight at 37 degrees C in acetic acid. The alpha-and beta-subunits of the pituitary glycoprotein hormones were rapidly and quantitatively isolated by reversed-phase high-performance liquid chromatography (RP-HPLC). A dissociation efficiency of > 98% was obtained on the basis of mass determinations of the heterodimers and subunits carried out via mass spectrometry. CHO-derived or native subunits were isolated on a C4 column (80-90% total recovery) and characterized comparatively for purity, hydrophobicity, molecular mass and charge distribution by HPLC, mass spectrometry, sodium dodecylsulfate-polyacrylamide gel electrophoresis and isoelectric focusing. Thyrotropin was used as a model for showing that, after subunit reassociation, the in vivo bioactivity of the hormone was completely restored. The method described is mild, practical, flexible, and can be adapted to dissociate microgram amounts of native or recombinant glycoprotein hormones, allowing characterization of each subunit.
Collapse
Affiliation(s)
- C M Carvalho
- Biotechnology Department, IPEN-CNEN, Av. Prof. Lineu Prestes 2242, Cidade Universitária, 05508-900 São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
Arey BJ. Allosteric modulators of glycoprotein hormone receptors: discovery and therapeutic potential. Endocrine 2008; 34:1-10. [PMID: 18956257 DOI: 10.1007/s12020-008-9098-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/02/2008] [Accepted: 06/26/2008] [Indexed: 01/27/2023]
Abstract
The glycoprotein hormones, luteinizing hormone, follicle-stimulating hormone and thyroid stimulating hormone, are important regulators of reproductive and metabolic processes. However, because of the nature of their ligand-receptor interactions that contain multiple contact sites, classical small molecule drug discovery strategies have not been successful. However, recent advances in screening and combinatorial chemistry strategies have identified chemical series that act allosterically as positive, negative or mixed modulators of the glycoprotein hormone receptors. This review will discuss the discovery and highlight the currently known series of allosteric modulators to this therapeutically important family of G-protein coupled receptors. Lastly, we will present potential mechanisms whereby the different series could modulate receptor function in the context of currently held theory and known structure of G protein-coupled receptors.
Collapse
Affiliation(s)
- Brian J Arey
- Department of Metabolic and Cardiovascular Drug Discovery, Research and Development, Bristol-Myers Squibb Co, 311 Pennington Rocky-Hill Rd, Mail Stop 21-1.08, Pennington, NJ 08534, USA.
| |
Collapse
|
45
|
Butler ST, Pelton SH, Knight PG, Butler WR. Follicle-stimulating hormone isoforms and plasma concentrations of estradiol and inhibin A in dairy cows with ovulatory and non-ovulatory follicles during the first postpartum follicle wave. Domest Anim Endocrinol 2008; 35:112-9. [PMID: 18400447 DOI: 10.1016/j.domaniend.2008.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/28/2008] [Accepted: 03/04/2008] [Indexed: 11/16/2022]
Abstract
Following parturition, all cows display a wave of ovarian follicular growth, but a large proportion fail to generate a preovulatory rise in estradiol, and hence fail to ovulate. Follicle-stimulating hormone (FSH) exists as multiple isoforms in the circulation depending on the type and extent of glycosylation, and this has pronounced effects on its biological properties. This study examined differences in plasma FSH, estradiol, and inhibin A concentrations, and the distribution of FSH isoforms in cows with ovulatory or atretic dominant follicles during the first postpartum follicle wave. Plasma FSH isoform distribution was examined in both groups during the period of final development of the dominant follicle by liquid phase isoelectric focusing. Cows with an ovulatory follicle had higher circulating estradiol and inhibin A concentrations, and lower plasma FSH concentrations. The distribution of FSH isoforms displayed a marked shift toward the less acidic isoforms in cows with ovulatory follicles. A higher proportion of the FSH isoforms had a pI>5.0 in cows with ovulatory follicles compared to those with atretic follicles. In addition, cows with ovulatory follicles had greater dry matter intake, superior energy balance, elevated circulating concentrations of insulin and insulin-like growth factor-I, and lower plasma nonesterified fatty acids. The shift in FSH isoforms toward a greater abundance of the less acidic isoforms appears to be a key component in determining the capability for producing a preovulatory rise in estradiol, and this shift in FSH isoforms was associated with more favorable bioenergetic and metabolic status.
Collapse
Affiliation(s)
- Stephen T Butler
- Department of Animal Science, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | |
Collapse
|
46
|
Calongos G, Hasegawa A, Komori S, Koyama K. Comparison of urinary and recombinant follicle-stimulating hormone in in vitro growth, maturation, and fertilization of mouse preantral follicles. Fertil Steril 2008; 89:1482-9. [PMID: 17854805 DOI: 10.1016/j.fertnstert.2007.04.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 04/26/2007] [Accepted: 04/26/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare the effects of urinary and recombinant follicle-stimulating hormone (FSH) on follicular development, oocyte maturation, and fertilization. DESIGN Prospective randomized animal study. SETTING University-based research laboratory. ANIMAL(S) Normal (C57BL/6xDBA2) F1 mice. INTERVENTION(S) Collection of preantral follicles by mechanical dissection, in vitro growth (IVG) with urinary or recombinant FSH (100 mIU/mL), in vitro maturation (IVM), and fertilization. MAIN OUTCOME MEASURE(S) During IVG, follicle diameter and antral formation were evaluated. The number of cells per follicle was evaluated at the end of IVG. The 17beta-estradiol measurements were performed from conditioned media. After IVM, mucification and oocyte maturation rates were estimated and mature oocytes were fertilized. RESULT(S) No differences were observed in the antral formation rate of either group. Antral follicles in the urinary FSH group, however, showed a higher diameter but a lower number of cells per follicle than those in the recombinant FSH group. The level of 17beta-estradiol was also higher in the recombinant FSH group. The rate of mature oocytes developing into metaphase I or II was statistically significantly higher in the recombinant FSH group than in the urinary FSH group. CONCLUSION(S) Recombinant FSH provided better conditions than urinary FSH for the growth and development of mouse preantral follicles that could produce mature oocytes with fertilization capacity.
Collapse
Affiliation(s)
- Giannina Calongos
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | |
Collapse
|
47
|
Differing pharmacological activities of thiazolidinone analogs at the FSH receptor. Biochem Biophys Res Commun 2008; 368:723-8. [DOI: 10.1016/j.bbrc.2008.01.119] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 01/26/2008] [Indexed: 11/24/2022]
|
48
|
Perera-Marín G, Murcia C, González-Padilla E. Luteinizing hormone (LH) isoforms in ruminants: Characterization and physiological relevance. Anim Reprod Sci 2007; 101:187-207. [DOI: 10.1016/j.anireprosci.2007.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 03/09/2007] [Indexed: 11/16/2022]
|
49
|
Macdonald GJ, Wise TH, Sluss PM, Ford JJ. Breed differences in clearance of porcine FSH in hypophysectomized rats. Anim Reprod Sci 2007; 102:328-34. [PMID: 17418509 DOI: 10.1016/j.anireprosci.2007.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 03/06/2007] [Indexed: 10/23/2022]
Abstract
Extracts of anterior pituitary (AP) glands were infused i.v. into hypophysectomized male rats followed by sequential sampling of blood for 120 min. Determination of follicle-stimulating hormone (FSH) concentrations established that FSH from Chinese Meishan males decreased in the circulation of rats more slowly than FSH in extracts of AP from crossbred occidental pigs (P<0.003). Additionally, FSH from AP extracts of castrated males disappeared somewhat more slowly (P<0.06) than FSH from extracts of boars. Evaluation of FSH by bioassay and radioimmunoassay yielded similar concentrations in AP from Meishan and crossbred boars. Serum testosterone concentrations increased with time through 90 min after infusion of AP, but the rate of increase of testosterone was not related to amount of luteinizing hormone (LH) that was administered indicating LH receptor saturation. Unexpectedly, the rate of increase in testosterone was more rapid with AP extracts from boars than with extracts from castrated males. Observations from the current study imply structural alterations of FSH in the AP of Meishan males relative to crossbred males allowing sustained concentrations in the circulation, and this FSH possesses similar activation of the FSH receptor. The amount of LH in the AP extracts saturated the LH receptors of the hypophysectomized male rats, but some factor in extracts of boars differed from those of castrated males.
Collapse
Affiliation(s)
- G J Macdonald
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry, Robert Wood Johnson (Rutgers) Medical School, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
50
|
Aizen J, Kasuto H, Golan M, Zakay H, Levavi-Sivan B. Tilapia Follicle-Stimulating Hormone (FSH): Immunochemistry, Stimulation by Gonadotropin-Releasing Hormone, and Effect of Biologically Active Recombinant FSH on Steroid Secretion1. Biol Reprod 2007; 76:692-700. [PMID: 17192515 DOI: 10.1095/biolreprod.106.055822] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In fish, FSH is generally important for early gonadal development and vitellogenesis. As in mammals, FSH is a heterodimer composed of an alpha subunit that is noncovalently associated with the hormone-specific beta subunit. The objective of the present study was to express glycosylated, properly folded, and biologically active tilapia FSH (tFSH) using the Pichia pastoris expression system. Using this material, we aimed to develop a specific ELISA and to enable the study of FSH response to GnRH. The methylotrophic yeast P. pastoris was used to coexpress recombinant genes formed by fusion of mating factor alpha leader and tilapia fshb and cga coding sequences. Western blot analysis of tilapia pituitary FSH, resolved by SDS-PAGE, yielded a band of 15 kDa, while recombinant tFSH beta (rtFSH beta) and rtFSH beta alpha had molecular masses of 17-18 kDa and 26-30 kDa, respectively. Recombinant tFSH beta alpha was found to bear only N-linked carbohydrates. Recombinant tFSH beta alpha significantly enhanced 11-ketotestosterone (11-KT) and estradiol secretion from tilapia testes and ovaries, respectively, in a dose-dependent manner (similar to tilapia pituitary extract, affinity-purified pituitary FSH, and porcine FSH). Using antibodies raised against rtFSH beta, FSH-containing cells were localized adjacent to hypothalamic nerve fibers ramifying in the proximal pars distalis (PPD), while LH cells were localized in a more peripheral region of the PPD. Moreover, FSH is under the control of hypothalamic decapeptide GnRH, an effect that was abolished through the use of specific bioneutralizing antisera, anti-rtFSH beta. It also reduced basal secretion of 11-KT.
Collapse
Affiliation(s)
- Joseph Aizen
- Department of Animal Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|