1
|
Li X, Han Z, Guo P, Zhang X, Hu Y, Cao J. LbCas12a-based DNA POCT facilitates fast genotyping on farm. Talanta 2025; 287:127672. [PMID: 39923676 DOI: 10.1016/j.talanta.2025.127672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 12a (CRISPR/Cas12a) detection system is now widely used for nucleic acid detection and disease diagnosis. However, there are still fewer detections for single nucleotide polymorphisms (SNPs) and limited diversified detection systems for pathogen and SNP sites detection, which greatly limits their applications. Obviously, the development of a more diversified and convenient suite of detection tools is essential to unlock the full potential of CRISPR/Cas12a technology and to expand its applications across a wider range of scenarios. We have successfully developed an integrated CRISPR/Cas12a assay system. This system introduces crRNA during protein expression, reducing the number of steps and reaction time by adding only a fluorescent reporter gene and target DNA during subsequent detection. It enables on-site visualization of the assay in combination with a Recombinase polymerase amplification (RPA) reaction. Combined with the RPA reaction, we are able to rapidly detect African swine fever virus (ASFV) pathogens with high specificity. The system also enables genotyping of the SNP site of the porcine prolificacy-associated estrogen receptor (ESR) gene and the sheep prolificacy-associated Fecundity booroola (FecB) gene. Visualization is possible up to a final concentration of 3 nM, and effective differentiation of low concentrations within the concentration range of the assay. The integrated CRISPR/Cas12a assay system we developed has a robust design that ensures high-fidelity genotyping and pathogen detection are no longer restricted to the lab, allowing for rapid field analysis, which is crucial for timely interventions in agricultural and clinical settings. In addition, it has the advantages of low cost, easy operation and visualization of results.
Collapse
Affiliation(s)
- Xiaolong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Smart Farming for Agricultural Animals, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhentao Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peihua Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yixuan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianhua Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The Role of Androgens and Estrogens in Social Interactions and Social Cognition. Neuroscience 2025; 568:476-502. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, Canada
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph, Canada; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Canada.
| |
Collapse
|
3
|
McCurry MD, D'Agostino GD, Walsh JT, Bisanz JE, Zalosnik I, Dong X, Morris DJ, Korzenik JR, Edlow AG, Balskus EP, Turnbaugh PJ, Huh JR, Devlin AS. Gut bacteria convert glucocorticoids into progestins in the presence of hydrogen gas. Cell 2024; 187:2952-2968.e13. [PMID: 38795705 PMCID: PMC11179439 DOI: 10.1016/j.cell.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/03/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Recent studies suggest that human-associated bacteria interact with host-produced steroids, but the mechanisms and physiological impact of such interactions remain unclear. Here, we show that the human gut bacteria Gordonibacter pamelaeae and Eggerthella lenta convert abundant biliary corticoids into progestins through 21-dehydroxylation, thereby transforming a class of immuno- and metabo-regulatory steroids into a class of sex hormones and neurosteroids. Using comparative genomics, homologous expression, and heterologous expression, we identify a bacterial gene cluster that performs 21-dehydroxylation. We also uncover an unexpected role for hydrogen gas production by gut commensals in promoting 21-dehydroxylation, suggesting that hydrogen modulates secondary metabolism in the gut. Levels of certain bacterial progestins, including allopregnanolone, better known as brexanolone, an FDA-approved drug for postpartum depression, are substantially increased in feces from pregnant humans. Thus, bacterial conversion of corticoids into progestins may affect host physiology, particularly in the context of pregnancy and women's health.
Collapse
Affiliation(s)
- Megan D McCurry
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel D D'Agostino
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine T Walsh
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan E Bisanz
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Ines Zalosnik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xueyang Dong
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - David J Morris
- Emeritus Professor of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI 02903, USA
| | - Joshua R Korzenik
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Andrea G Edlow
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emily P Balskus
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - A Sloan Devlin
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Aspesi D, Cornil CA. Role of neuroestrogens in the regulation of social behaviors - From social recognition to mating. Neurosci Biobehav Rev 2024; 161:105679. [PMID: 38642866 DOI: 10.1016/j.neubiorev.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
In this mini-review, we summarize the brain distribution of aromatase, the enzyme catalyzing the synthesis of estrogens from androgens, and the mechanisms responsible for regulating estrogen production within the brain. Understanding this local synthesis of estrogens by neurons is pivotal as it profoundly influences various facets of social behavior. Neuroestrogen action spans from the initial processing of socially pertinent sensory cues to integrating this information with an individual's internal state, ultimately resulting in the manifestation of either pro-affiliative or - aggressive behaviors. We focus here in particular on aggressive and sexual behavior as the result of correct individual recognition of intruders and potential mates. The data summarized in this review clearly point out the crucial role of locally synthesized estrogens in facilitating rapid adaptation to the social environment in rodents and birds of both sexes. These observations not only shed light on the evolutionary significance but also indicate the potential implications of these findings in the realm of human health, suggesting a compelling avenue for further investigation.
Collapse
Affiliation(s)
- Dario Aspesi
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
5
|
Interactions governing transcriptional activity of nuclear receptors. Biochem Soc Trans 2022; 50:1941-1952. [DOI: 10.1042/bst20220338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
The key players in transcriptional regulation are transcription factors (TFs), proteins that bind specific DNA sequences. Several mechanisms exist to turn TFs ‘on’ and ‘off’, including ligand binding which induces conformational changes within TFs, subsequently influencing multiple inter- and intramolecular interactions to drive transcriptional responses. Nuclear receptors are a specific family of ligand-regulated TFs whose activity relies on interactions with DNA, coregulator proteins and other receptors. These multidomain proteins also undergo interdomain interactions on multiple levels, further modulating transcriptional outputs. Cooperation between these distinct interactions is critical for appropriate transcription and remains an intense area of investigation. In this review, we report and summarize recent findings that continue to advance our mechanistic understanding of how interactions between nuclear receptors and diverse partners influence transcription.
Collapse
|
6
|
Mobisson SK, Ikpi DE, Wopara I, Obembe AO, Omotuyi O. Inhibition of human androgen receptor by delta 9-tetrahydro-cannabinol and cannabidiol related to reproductive dysfunction: A computational study. Andrologia 2022; 54:e14454. [PMID: 35524041 DOI: 10.1111/and.14454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
There have been conflicting reports on the impact of Cannabis sativa impact on reproductive function. Hence this study was aimed to ascertain the impact of tetrahydrocannabinol (THC) and cannabidiol (CBD) binding affinity on human androgen receptor (AR) via computational molecular dynamic simulation. The human AR coordinate in this study is derived from human AR in complex with the ligand metribolone (R18) (PBD ID: 1E3G) template using (MODELER version. 9.15). CBD (PubChem CID: 644019), and THC (PubChem CID: 16078) 2D structures were retrieved from PubChem and docked (Autodock-Vina inbuilt in PyMol into the active site of human AR using the coordinates of the co-crystalized ligand (R18). All atomic representations in this study were created using visual molecular dynamics (VMD) tools. The result revealed that neither CBD nor THC bear significant 2D similarity with R18. Despite the diversity within the chemical space, both CBD and THC poses bond flexibility required to bind avidly to AR with the docking scores comparable to R18. In fully bound state, the three compounds engage the AR pocket hydrophobic residues such as L701, L704, and L707, and aromatic residues such as F764. Polar contacts with T877 observed in R18 bound state is avoided in the THC and CBD bound states. Moreso, the results revealed that CBD has lesser binding energy compared to THC and R18 compound which serves as standard. This study hypothesized that CBD and THC binds complimentarily to the pocket AR, indicating a likely inhibition of reproductive function and prostate cancer progression.
Collapse
Affiliation(s)
- Samuel Kelechi Mobisson
- Department of Human Physiology, Faculty of Basic Medical Sciences, Madonna University, Elele, Rivers State, Nigeria
| | - Daniel Ewa Ikpi
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Iheanyichukwu Wopara
- Department of Biochemistry, Faculty of Sciences, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Agona Odey Obembe
- Department of Human Physiology, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Olaposi Omotuyi
- Institute for Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado Ekiti, Nigeria
| |
Collapse
|
7
|
Aspesi D, Choleris E. Neuroendocrine underpinning of social recognition in males and females. J Neuroendocrinol 2022; 34:e13070. [PMID: 34927288 DOI: 10.1111/jne.13070] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022]
Abstract
Social recognition is an essential skill for the expression of appropriate behaviors towards conspecifics in most social species. Several studies point to oxytocin (OT) and arginine vasopressin (AVP) as key mediators of social recognition in males and females. However, sex differences in social cognitive behaviors highlight an important interplay between OT, AVP and the sex steroids. Estrogens facilitate social recognition by regulating OT action in the hypothalamus and that of OT receptor in the medial amygdala. The role of OT in these brain regions appears to be essential for social recognition in both males and females. Conversely, social recognition in male rats and mice is more dependent on AVP release in the lateral septum than in females. The AVP system comprises a series of highly sexually dimorphic brain nuclei, including the bed nucleus of the stria terminalis, the amygdala and the lateral septum. Various studies suggest that testosterone and its metabolites, including estradiol, influence social recognition in males by modulating the activity of the AVP at V1a receptor. Intriguingly, both estrogens and androgens can affect social recognition very rapidly, through non-genomic mechanisms. In addition, the androgen metabolites, namely 3α-diol and 3β-diol, may also have an impact on social behaviors either by interacting with the estrogen receptors or through other mechanisms. Overall, the regulation of OT and AVP by sex steroids fine tunes social recognition and the behaviors that depend upon it (e.g., social bond, hierarchical organization, aggression) in a sex-dependent manner. Elucidating the sex-dependent interaction between sex steroids and neuroendocrine systems is essential for understanding sex differences in the normal and abnormal expression of social behaviors.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
8
|
Balthazart J, Choleris E, Remage-Healey L. Steroids and the brain: 50years of research, conceptual shifts and the ascent of non-classical and membrane-initiated actions. Horm Behav 2018; 99:1-8. [PMID: 29305886 PMCID: PMC5880709 DOI: 10.1016/j.yhbeh.2018.01.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 11/22/2022]
Abstract
This brief commentary reviews key steps in the history of steroid endocrinology that have resulted in important conceptual shifts. Our understanding of the "Fast Effects of Steroids" now reflect substantial progress, including the major concept that steroids act rapidly on a variety of physiological and behavioral responses, via mechanisms that are too fast to be fully accounted for by classical receptor-dependent regulation of gene transcription. Several so-called 'non-classical' mechanisms have been identified and include binding to membrane receptors and regulating non genomic signaling cascades. We survey the discovery of steroids, the initial characterization of their intracellular receptors, key progress in the understanding of the genomic effects of steroids and then the progressive discovery of the rapid non-classical and membrane-initiated actions of steroids. Foundational discoveries about brain steroid synthesis in neural processes and terminals has converged with emerging evidence for the rapid actions of steroids on brain and behavior. Had the rapid effects of steroids in the central nervous system been discovered first, these molecules would likely now be considered as a class of neurotransmitter.
Collapse
Affiliation(s)
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luke Remage-Healey
- Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Wang XJ, Qiao Y, Xiao MM, Wang L, Chen J, Lv W, Xu L, Li Y, Wang Y, Tan MD, Huang C, Li J, Zhao TC, Hou Z, Jing N, Chin YE. Opposing Roles of Acetylation and Phosphorylation in LIFR-Dependent Self-Renewal Growth Signaling in Mouse Embryonic Stem Cells. Cell Rep 2017; 18:933-946. [PMID: 28122243 DOI: 10.1016/j.celrep.2016.12.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/25/2016] [Accepted: 12/22/2016] [Indexed: 11/27/2022] Open
Abstract
LIF promotes self-renewal of mouse embryonic stem cells (mESCs), and in its absence, the cells differentiate. LIF binds to the LIF receptor (LIFR) and activates the JAK-STAT3 pathway, but it remains unknown how the receptor complex triggers differentiation or self-renewal. Here, we report that the LIFR cytoplasmic domain contains a self-renewal domain within the juxtamembrane region and a differentiation domain within the C-terminal region. The differentiation domain contains four SPXX repeats that are phosphorylated by MAPK to restrict STAT3 activation; the self-renewal domain is characterized by a 3K motif that is acetylated by p300. In mESCs, acetyl-LIFR undergoes homodimerization, leading to STAT3 hypo- or hyper-activation depending on the presence or absence of gp130. LIFR-activated STAT3 restricts differentiation via cytokine induction. Thus, LIFR acetylation and serine phosphorylation differentially promote stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Xiong-Jun Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China; Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yunbo Qiao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; iHuman Institute, Shanghai Tech University, 99 Haike Road, Shanghai 201210, China
| | - Minzhe M Xiao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Lingbo Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jun Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenjian Lv
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Li Xu
- Department of Signal Transduction, School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yan Li
- Department of Signal Transduction, School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yumei Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Ming-Dian Tan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Chao Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| | - Y Eugene Chin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
10
|
|
11
|
Colley SM, Wintle L, Searles R, Russell V, Firman RC, Smith S, DeBoer K, Merriner DJ, Genevieve B, Bentel JM, Stuckey BGA, Phillips MR, Simmons LW, de Kretser DM, O'Bryan MK, Leedman PJ. Loss of the nuclear receptor corepressor SLIRP compromises male fertility. PLoS One 2013; 8:e70700. [PMID: 23976951 PMCID: PMC3744554 DOI: 10.1371/journal.pone.0070700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/20/2013] [Indexed: 11/24/2022] Open
Abstract
Nuclear receptors (NRs) and their coregulators play fundamental roles in initiating and directing gene expression influencing mammalian reproduction, development and metabolism. SRA stem Loop Interacting RNA-binding Protein (SLIRP) is a Steroid receptor RNA Activator (SRA) RNA-binding protein that is a potent repressor of NR activity. SLIRP is present in complexes associated with NR target genes in the nucleus; however, it is also abundant in mitochondria where it affects mitochondrial mRNA transcription and energy turnover. In further characterisation studies, we observed SLIRP protein in the testis where its localization pattern changes from mitochondrial in diploid cells to peri-acrosomal and the tail in mature sperm. To investigate the in vivo effects of SLIRP, we generated a SLIRP knockout (KO) mouse. This animal is viable, but sub-fertile. Specifically, when homozygous KO males are crossed with wild type (WT) females the resultant average litter size is reduced by approximately one third compared with those produced by WT males and females. Further, SLIRP KO mice produced significantly fewer progressively motile sperm than WT animals. Electron microscopy identified disruption of the mid-piece/annulus junction in homozygous KO sperm and altered mitochondrial morphology. In sum, our data implicates SLIRP in regulating male fertility, wherein its loss results in asthenozoospermia associated with compromised sperm structure and mitochondrial morphology.
Collapse
Affiliation(s)
- Shane M. Colley
- Laboratory for Cancer Medicine, The University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
| | - Larissa Wintle
- Laboratory for Cancer Medicine, The University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
| | | | - Victoria Russell
- Laboratory for Cancer Medicine, The University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
| | - Renee C. Firman
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Crawley, Australia
| | - Stephanie Smith
- Male Infertility and Germ Cell Biology Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Kathleen DeBoer
- Male Infertility and Germ Cell Biology Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - D. Jo Merriner
- Male Infertility and Germ Cell Biology Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Ben Genevieve
- Keogh Institute for Medical Research, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Jacqueline M. Bentel
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia
| | - Bronwyn G. A. Stuckey
- Keogh Institute for Medical Research, Sir Charles Gairdner Hospital, Nedlands, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia
| | - Michael R. Phillips
- Laboratory for Cancer Medicine, The University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Animal Biology, The University of Western Australia, Crawley, Australia
| | - David M. de Kretser
- Male Infertility and Germ Cell Biology Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Moira K. O'Bryan
- Male Infertility and Germ Cell Biology Laboratory, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Peter J. Leedman
- Laboratory for Cancer Medicine, The University of Western Australia Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia
- * E-mail:
| |
Collapse
|
12
|
Salian-Mehta S, Doshi T, Vanage G. Exposure of neonatal rats to the endocrine disrupter Bisphenol A affects ontogenic expression pattern of testicular steroid receptors and their coregulators. J Appl Toxicol 2013; 34:307-18. [DOI: 10.1002/jat.2882] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 03/10/2013] [Accepted: 03/10/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Smita Salian-Mehta
- National Center for Preclinical Reproductive and Genetic Toxicology; National Institute for Research in Reproductive Health (ICMR); J M Street, Parel Mumbai 400 012 Maharashtra India
| | - Tanvi Doshi
- National Center for Preclinical Reproductive and Genetic Toxicology; National Institute for Research in Reproductive Health (ICMR); J M Street, Parel Mumbai 400 012 Maharashtra India
| | - Geeta Vanage
- National Center for Preclinical Reproductive and Genetic Toxicology; National Institute for Research in Reproductive Health (ICMR); J M Street, Parel Mumbai 400 012 Maharashtra India
| |
Collapse
|
13
|
Saunier EF, Vivar OI, Rubenstein A, Zhao X, Olshansky M, Baggett S, Staub RE, Tagliaferri M, Cohen I, Speed TP, Baxter JD, Leitman DC. Estrogenic plant extracts reverse weight gain and fat accumulation without causing mammary gland or uterine proliferation. PLoS One 2011; 6:e28333. [PMID: 22163294 PMCID: PMC3233562 DOI: 10.1371/journal.pone.0028333] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/06/2011] [Indexed: 01/20/2023] Open
Abstract
Long-term estrogen deficiency increases the risk of obesity, diabetes and metabolic syndrome in postmenopausal women. Menopausal hormone therapy containing estrogens might prevent these conditions, but its prolonged use increases the risk of breast cancer, as wells as endometrial cancer if used without progestins. Animal studies indicate that beneficial effects of estrogens in adipose tissue and adverse effects on mammary gland and uterus are mediated by estrogen receptor alpha (ERα). One strategy to improve the safety of estrogens to prevent/treat obesity, diabetes and metabolic syndrome is to develop estrogens that act as agonists in adipose tissue, but not in mammary gland and uterus. We considered plant extracts, which have been the source of many pharmaceuticals, as a source of tissue selective estrogens. Extracts from two plants, Glycyrrhiza uralensis (RG) and Pueraria montana var. lobata (RP) bound to ERα, activated ERα responsive reporters, and reversed weight gain and fat accumulation comparable to estradiol in ovariectomized obese mice maintained on a high fat diet. Unlike estradiol, RG and RP did not induce proliferative effects on mammary gland and uterus. Gene expression profiling demonstrated that RG and RP induced estradiol-like regulation of genes in abdominal fat, but not in mammary gland and uterus. The compounds in extracts from RG and RP might constitute a new class of tissue selective estrogens to reverse weight gain, fat accumulation and metabolic syndrome in postmenopausal women.
Collapse
Affiliation(s)
| | - Omar I. Vivar
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | | | - Xiaoyue Zhao
- Bionovo Inc., Emeryville, California, United States of America
| | - Moshe Olshansky
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Scott Baggett
- Bionovo Inc., Emeryville, California, United States of America
| | | | | | - Isaac Cohen
- Bionovo Inc., Emeryville, California, United States of America
| | - Terence P. Speed
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Statistics, University of California, Berkeley, California, United States of America
| | - John D. Baxter
- Diabetes Center and Cancer Research Unit, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Dale C. Leitman
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Wu X, Chen F, Sahin A, Albarracin C, Pei Z, Zou X, Singh B, Xu R, Daniels G, Li Y, Wei J, Blake M, Schneider RJ, Cowin P, Lee P. Distinct function of androgen receptor coactivator ARA70α and ARA70β in mammary gland development, and in breast cancer. Breast Cancer Res Treat 2011; 128:391-400. [PMID: 20814820 DOI: 10.1007/s10549-010-1131-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/13/2010] [Indexed: 12/23/2022]
Abstract
Steroid receptor coactivators are important in regulating the function of the receptors in endocrine organ development and in cancers, including breast. Androgen receptor (AR) coactivator ARA70, was first identified as a gene fused to the ret oncogene and later characterized as an AR coactivator. We previously reported that the full length ARA70α functions as a tumor suppressor gene and that ARA70β functions as an oncogene in prostate cancer. Here we show that both ARA70α and ARA70β function as AR and estrogen receptor (ER) coactivators in breast cancer cells. However, ARA70α and ARA70β serve different functions in mammary gland development and breast cancer tumorigenesis. We observed hypoplastic development of mammary glands in MMTV driven ARA70α transgenic mice and overgrowth of mammary glands in ARA70β transgenic mice at virgin and pregnant stages. We determined that ARA70α inhibited cell proliferation, and that ARA70β promotes proliferation in MCF7 breast cancer cells. These effects were observed in hormone-free media, or in media with androgen or estrogen, though to varying degrees. Additionally, we observed that ARA70β strongly enhanced the invasive ability of MCF7 breast cancer cells in in vitro Matrigel assays. Significantly, decreased ARA70α expression is associated with increased tendency of breast cancer metastasis. In summary, ARA70α and ARA70β have distinct effects in mammary gland development and in the progression of breast cancer.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Breast Neoplasms/prevention & control
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/prevention & control
- Carcinoma, Ductal, Breast/secondary
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Female
- Humans
- Luciferases/metabolism
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Receptor Coactivators/genetics
- Nuclear Receptor Coactivators/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Response Elements
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Pathology, New York University School of Medicine, 423 E. 23rd street, Room6139 N, New York, NY 10010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Duncan KA, Jimenez P, Carruth LL. Distribution and sexually dimorphic expression of steroid receptor coactivator-1 (SRC-1) in the zebra finch brain. Gen Comp Endocrinol 2011; 170:408-14. [PMID: 21050854 DOI: 10.1016/j.ygcen.2010.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 10/20/2010] [Accepted: 10/23/2010] [Indexed: 10/18/2022]
Abstract
Coactivator proteins, such as steroid receptor coactivator-1 (SRC-1) greatly enhance gene expression by amplifying steroid-induced transcription regulated by receptors such as estrogen receptor. These proteins may also play a role in the development of sex differences in central nervous system as well the maintenance of the sexually dimorphic behaviors in adulthood. One well-studied sexually dimorphic behavior is singing in songbirds such as the Australian zebra finch (Taeniopygia guttata). Song learning and production is controlled by the song control system, a collection of sexually dimorphic nuclei found in the avian telencephalon. While the actions of steroid hormones on song nuclei development has been under debate, steroids, such as testosterone, influence singing behavior in adulthood. We hypothesize that the differential expression of coactivators in male and female brains aid in organizing the song nuclei during development and function in adulthood to aid in activating the song control nuclei to induce singing behavior. The distribution of SRC-1-immunoreactive neurons was localized in the brains of male and female zebra finches on the day of hatch (P1) and in adults. In adults SRC-1 immunoreactive cells are found in the four main song control nuclei as well as other steroid sensitive brain regions. We found that SRC-1 is sexually dimorphic in the adult zebra finch telencephalon, suggesting that coactivators may play a role in the maintenance of sexually dimorphic behaviors including singing.
Collapse
Affiliation(s)
- Kelli A Duncan
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, PO Box 5030, Atlanta, GA 30302-5030, United States
| | | | | |
Collapse
|
16
|
Abstract
The three members of the p160 family of steroid receptor coactivators (SRC-1, SRC-2, and SRC-3) steer the functional output of numerous genetic programs and serve as pleiotropic rheostats for diverse physiological processes. Since their discovery ∼15 years ago, the extraordinary sum of examination of SRC function has shaped the foundation of our knowledge for the now 350+ coregulators that have been identified to date. In this perspective, we retrace our steps into the field of coregulators and provide a summary of selected seminal work that helped define the SRCs as masters of systems biology.
Collapse
Affiliation(s)
- Brian York
- From the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Bert W. O'Malley
- From the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
17
|
Ramamoorthy S, Dhananjayan SC, Demayo FJ, Nawaz Z. Isoform-specific degradation of PR-B by E6-AP is critical for normal mammary gland development. Mol Endocrinol 2010; 24:2099-113. [PMID: 20829392 DOI: 10.1210/me.2010-0116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
E6-associated protein (E6-AP), which was originally identified as an ubiquitin-protein ligase, also functions as a coactivator of estrogen (ER-α) and progesterone (PR) receptors. To investigate the in vivo role of E6-AP in mammary gland development, we generated transgenic mouse lines that either overexpress wild-type (WT) human E6-AP (E6-AP(WT)) or ubiquitin-protein ligase-defective E6-AP (E6-AP(C833S)) in the mammary gland. Here we show that overexpression of E6-AP(WT) results in impaired mammary gland development. In contrast, overexpression of E6-AP(C833S) or loss of E6-AP (E6-AP(KO)) increases lateral branching and alveolus-like protuberances in the mammary gland. We also show that the mammary phenotypes observed in the E6-AP transgenic and knockout mice are due, in large part, to the alteration of PR-B protein levels. We also observed alteration in ER-α protein level, which might contribute to the observed mammary phenotype by regulating PR expression. Furthermore, E6-AP regulates PR-B protein levels via the ubiquitin-proteasome pathway. Additionally, we also show that E6-AP impairs progesterone-induced Wnt-4 expression by decreasing the steady state level of PR-B in both mice and in human breast cancer cells. In conclusion, we present the novel observation that E6-AP controls mammary gland development by regulating PR-B protein turnover via the ubiquitin proteasome pathway. For the first time, we show that the E3-ligase activity rather than the coactivation function of E6-AP plays an important role in the mammary gland development, and the ubiquitin-dependent PR-B degradation is not required for its transactivation functions. This mechanism appears to regulate normal mammogenesis, and dysregulation of this process may be an important contributor to mammary cancer development and progression.
Collapse
Affiliation(s)
- Sivapriya Ramamoorthy
- Department of Biochemistry & Molecular Biology, Braman Breast Cancer Institute (M-877), University of Miami School of Medicine, Batchelor Building, Room 416, 1580 Northwest 10 Avenue, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
18
|
Salian S, Doshi T, Vanage G. Impairment in protein expression profile of testicular steroid receptor coregulators in male rat offspring perinatally exposed to Bisphenol A. Life Sci 2009; 85:11-8. [DOI: 10.1016/j.lfs.2009.04.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 04/09/2009] [Accepted: 04/14/2009] [Indexed: 11/28/2022]
|
19
|
Guerriero G. Vertebrate sex steroid receptors: evolution, ligands, and neurodistribution. Ann N Y Acad Sci 2009; 1163:154-68. [PMID: 19456336 DOI: 10.1111/j.1749-6632.2009.04460.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review focuses on our current understanding of vertebrate sex steroid receptors, with an emphasis on their evolutionary relationships. These relationships are discussed based on nucleotide and amino acid sequence data, which provide clues to the process by which structure-function relations have originated, evolved, and been maintained over time. The importance of the distribution of sex steroid receptors in the vertebrate brain is discussed using the example of androgen receptor sites and their relatively conserved localizations in the vertebrate brain.
Collapse
Affiliation(s)
- Giulia Guerriero
- Department of Biological Sciences, Federico II University of Naples, Naples, Italy.
| |
Collapse
|
20
|
|
21
|
Molenda-Figueira HA, Murphy SD, Shea KL, Siegal NK, Zhao Y, Chadwick JG, Denner LA, Tetel MJ. Steroid receptor coactivator-1 from brain physically interacts differentially with steroid receptor subtypes. Endocrinology 2008; 149:5272-9. [PMID: 18566116 PMCID: PMC2582912 DOI: 10.1210/en.2008-0048] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In vitro studies reveal that nuclear receptor coactivators enhance the transcriptional activity of steroid receptors, including estrogen (ER) and progestin receptors (PR), through ligand-dependent interactions. Whereas work from our laboratory and others shows that steroid receptor coactivator-1 (SRC-1) is essential for efficient ER and PR action in brain, very little is known about receptor-coactivator interactions in brain. In the present studies, pull-down assays were used to test the hypotheses that SRC-1 from hypothalamic and hippocampal tissue physically associate with recombinant PR or ER in a ligand-dependent manner. SRC-1, from hypothalamus or hippocampus, interacted with PR-A and PR-B in the presence of an agonist, but not in the absence of ligand or in the presence of a selective PR modulator, RU486. Interestingly, SRC-1 from brain associated more with PR-B, the stronger transcriptional activator, than with PR-A. In addition, SRC-1 from brain, which was confirmed by mass spectrometry, interacted with ERalpha and ERbeta in the presence of agonist but not when unliganded or in the presence of the selective ER modulator, tamoxifen. Furthermore, SRC-1 from hypothalamus, but not hippocampus, interacted more with ERalpha than ERbeta, suggesting distinct expression patterns of other cofactors in these brain regions. These findings suggest that interactions of SRC-1 from brain with PR and ER are dependent on ligand, receptor subtype, and brain region to manifest the pleiotropic functional consequences that underlie steroid-regulated behaviors. The present findings reveal distinct contrasts with previous cell culture studies and emphasize the importance of studying receptor-coactivator interactions using biologically relevant tissue.
Collapse
Affiliation(s)
- Heather A Molenda-Figueira
- Center for Neuroendocrine Studies, Neuroscience, and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Westberg L, Eriksson E. Sex steroid-related candidate genes in psychiatric disorders. J Psychiatry Neurosci 2008; 33:319-30. [PMID: 18592033 PMCID: PMC2440794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Sex steroids readily pass the blood-brain barrier, and receptors for them are abundant in brain areas important for the regulation of emotions, cognition and behaviour. Animal experiments have revealed both important early effects of these hormones on brain development and their ongoing influence on brain morphology and neurotransmission in the adult organism. The important effects of sex steroids on human behaviour are illustrated by, for example, the effect of reduced levels of these hormones on sexual drive and conditions such as premenstrual dysphoric disorder, perimenopausal dysphoria, postpartum depression, postpartum psychosis, dysphoria induced by oral contraceptives or hormonal replacement therapy and anabolic steroid-induced aggression. The fact that men and women (as groups) differ with respect to the prevalence of several psychiatric disorders, certain aspects of cognitive function and certain personality traits may possibly also reflect an influence of sex steroids on human behaviour. The heritability of most behavioural traits, including personality, cognitive abilities and susceptibility to psychiatric illness, is considerable, but as yet, only few genes of definite importance in this context have been identified. Given the important role of sex steroids for brain function, it is unfortunate that relatively few studies so far have addressed the possible influence of sex steroid-related genes on interindividual differences with respect to personality, cognition and susceptibility to psychiatric disorders. To facilitate further research in this area, this review provides information on several such genes and summarizes what is currently known with respect to their possible influence on brain function.
Collapse
Affiliation(s)
- Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elias Eriksson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
23
|
Jeong JW, Lee KY, Han SJ, Aronow BJ, Lydon JP, O'Malley BW, DeMayo FJ. The p160 steroid receptor coactivator 2, SRC-2, regulates murine endometrial function and regulates progesterone-independent and -dependent gene expression. Endocrinology 2007; 148:4238-50. [PMID: 17556502 DOI: 10.1210/en.2007-0122] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of the p160 steroid receptor coactivator 2 (SRC-2) in the regulation of uterine function and progesterone (P4) signaling was investigated by determining the expression pattern of SRC-2 in the murine uterus during pregnancy and the impact of SRC-2 ablation on uterine function and global uterine gene expression in response to progesterone. SRC-2 is expressed in the endometrial luminal and glandular epithelium from pregnancy d 0.5. SRC-2 is then expressed in the endometrial stroma on pregnancy d 2.5-3.5. Once the embryo is implanted, SRC-2 is expressed in the endometrial stromal cells in the secondary decidual zone. This compartmental expression of SRC-2 can be mimicked by treatment of ovariectomized mice with estrogen and P4. Ablation of SRC-2 in the uterus resulted in a significant reduction in the ability of the uterus to undergo a hormonally induced decidual reaction. Microarray analysis of RNA from uteri of wild-type and SRC-2(-/-) mice treated with vehicle or P4 showed that SRC-2 was involved in the ability of progesterone to repress specific genes. This microarray analysis also revealed that the uteri of SRC-2(-/-) mice showed alterations in genes involved in estrogen receptor, Wnt, and bone morphogenetic protein signaling. This analysis indicates that SRC-2 regulates uterine function by modulating the regulation of developmentally important signaling molecules and the ability of P4 to repress specific genes.
Collapse
Affiliation(s)
- Jae-Wook Jeong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Karveliene B, Zilinskas H, Riskevicience V. Post-mortem Examination of Sows Genital Organs Culled for Reproductive Disturbances and Immunohistochemical Studies on ER? and PR A Receptors in the Anoestral Sows Uterus. Reprod Domest Anim 2007; 42:275-81. [PMID: 17506806 DOI: 10.1111/j.1439-0531.2006.00777.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of present study was post-mortem examination of ovaries, uterus and plasma oestradiol-17beta (E2) and progesterone (P4) concentrations in the blood of sows with reproductive disturbances and the distribution of oestradiol receptor (ERalpha), as well as progesterone (PR-A) in the anoestrous sows uteri. Reproductive organs of 150 crossbred sows (Lithuanian White x Danish Landrace) culled for the reasons of reproductive disturbances, were collected in local abattoir over a period of 3 months (September-November). Organs were assessed to determine the stage of the oestrous cycle or anoestrus and their development. Blood samples were collected for E2 and P4 analysis from the jugular vein 1 h prior to slaughter. For this study uterine samples only from pathological anoestrous sows were subjected to immunohistochemical staining to assess the distribution of ERalpha and PR-A in surface epithelium, subepithelial connective tissue, glandular epithelium and myometrium. Macroscopic examination of the ovaries showed that 68.7% sows had active cycling ovaries, 26.6% sows were anoestrus, ovaries were small without CL, and 4.7% of sows had multiple follicular cysts. In anoestrous sows (n = 27) the number and intensity of the nuclear staining of ERalpha varied between different uterine tissue compartments. The highest number (>80%) and the strongest intensity (+++) of positively stained cells for ERalpha was seen in myometrium and glandular epithelium. In other uterine wall compartments the number and intensity of positively stained for ERalpha nuclei was lower (+/++). The PR-A was absent from all tissue compartments. The intensity of the nuclear staining for ERalpha varied not only between the different uterine compartments but also between the sows. The 11.1% of the sows presented ERalpha in surface epithelium, 74.1% of the sows in glandular epithelium and 63.0% of sows in the myometrium.
Collapse
Affiliation(s)
- B Karveliene
- Department of Infectious Diseases, Lithuanian Veterinary Academy, Kaunas, Lithuanian.
| | | | | |
Collapse
|
25
|
Tetel MJ, Siegal NK, Murphy SD. Cells in behaviourally relevant brain regions coexpress nuclear receptor coactivators and ovarian steroid receptors. J Neuroendocrinol 2007; 19:262-71. [PMID: 17244199 PMCID: PMC2692344 DOI: 10.1111/j.1365-2826.2007.01526.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oestradiol and progesterone act in the brain to elicit profound effects on behaviour and physiology. One physiological function of oestradiol is the induction of progesterone receptor (PR) expression in a variety of behaviourally relevant brain regions, including the ventromedial nucleus of the hypothalamus (VMN), the medial preoptic nucleus of the preoptic area (MPOA), the arcuate nucleus (ARC) and the medial central grey (MCG). Ligand-dependent transcriptional activity of steroid receptors, including oestrogen receptors (ER) and Pr, is dramatically influenced by nuclear receptor coactivators. In previous studies, we have found that two of these nuclear receptor coactivators, steroid receptor coactivator-1 (SRC-1) and CREB-binding protein (CBP), are important in ER-mediated induction of PR in the VMN and in steroid-dependent behaviours. For nuclear receptor coactivators to function in hormone-dependent transcription in the brain and regulate behaviour, both receptor and coactivator must be expressed in the same cell. In the present study, we used a dual-label immunohistochemical technique to investigate if individual cells in behaviourally relevant brain regions coexpress nuclear receptor coactivators and steroid receptors. Confocal analysis revealed that in oestrogen-primed rats, most of the E-induced PR cells in the VMN (89.6%), MPOA (63%), ARC (82.6%), and many in the MCG (39%), also express SRC-1. In addition, the majority of the cells containing E-induced PR in the VMN (78.3%), MPOA (83.1%), ARC (83.6%), and MCG (60%) also express CBP. These results, taken together with the findings that virtually all oestradiol-induced PR containing cells in the brain express ER, suggest that these neurones represent sites of functional interaction of nuclear receptor coactivators with ovarian steroid receptors in the brain. The present findings provide neuroanatomical evidence that nuclear receptor coactivators are integral in mediating steroid hormone action in behaviourally relevant brain regions.
Collapse
Affiliation(s)
- M J Tetel
- Department of Biological Sciences and Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA.
| | | | | |
Collapse
|
26
|
Molenda-Figueira HA, Williams CA, Griffin AL, Rutledge EM, Blaustein JD, Tetel MJ. Nuclear receptor coactivators function in estrogen receptor- and progestin receptor-dependent aspects of sexual behavior in female rats. Horm Behav 2006; 50:383-92. [PMID: 16769066 PMCID: PMC2244585 DOI: 10.1016/j.yhbeh.2006.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 04/25/2006] [Accepted: 04/26/2006] [Indexed: 11/17/2022]
Abstract
The ovarian hormones, estradiol (E) and progesterone (P) facilitate the expression of sexual behavior in female rats. E and P mediate many of these behavioral effects by binding to their respective intracellular receptors in specific brain regions. Nuclear receptor coactivators, including Steroid Receptor Coactivator-1 (SRC-1) and CREB Binding Protein (CBP), dramatically enhance ligand-dependent steroid receptor transcriptional activity in vitro. Previously, our lab has shown that SRC-1 and CBP modulate estrogen receptor (ER)-mediated induction of progestin receptor (PR) gene expression in the ventromedial nucleus of the hypothalamus (VMN) and hormone-dependent sexual receptivity in female rats. Female sexual behaviors can be activated by high doses of E alone in ovariectomized rats, and thus are believed to be ER-dependent. However, the full repertoire of female sexual behavior, in particular, proceptive behaviors such as hopping, darting and ear wiggling, are considered to be PR-dependent. In the present experiments, the function of SRC-1 and CBP in distinct ER- (Exp. 1) and PR- (Exp. 2) dependent aspects of female sexual behavior was investigated. In Exp. 1, infusion of antisense oligodeoxynucleotides to SRC-1 and CBP mRNA into the VMN decreased lordosis intensity in rats treated with E alone, suggesting that these coactivators modulate ER-mediated female sexual behavior. In Exp. 2, antisense to SRC-1 and CBP mRNA around the time of P administration reduced PR-dependent ear wiggling and hopping and darting. Taken together, these data suggest that SRC-1 and CBP modulate ER and PR action in brain and influence distinct aspects of hormone-dependent sexual behaviors. These findings support our previous studies and provide further evidence that SRC-1 and CBP function together to regulate ovarian hormone action in behaviorally-relevant brain regions.
Collapse
Affiliation(s)
- Heather A. Molenda-Figueira
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Casey A. Williams
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Andreana L. Griffin
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Eric M. Rutledge
- Biology Department, Skidmore College, Saratoga Spring, NY 12866, USA
| | - Jeffrey D. Blaustein
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Marc J. Tetel
- Center for Neuroendocrine Studies, Neuroscience and Behavior Program, University of Massachusetts, Amherst, MA 01003, USA
- .Department of Biological Sciences and Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA
- * Corresponding author. Department of Biological Sciences and Neuroscience Program, Wellesley College, Wellesley, MA 02481, USA. Fax: +1 781 283 3642. E-mail address: (M.J. Tetel)
| |
Collapse
|
27
|
Yamaguchi H, Zhu J, Yu T, Sasaki K, Umetsu H, Kidachi Y, Ryoyama K. Low-level bisphenol A increases production of glial fibrillary acidic protein in differentiating astrocyte progenitor cells through excessive STAT3 and Smad1 activation. Toxicology 2006; 226:131-42. [PMID: 16860915 DOI: 10.1016/j.tox.2006.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 11/17/2022]
Abstract
The effects of bisphenol A (BPA) on the differentiation of serum-free mouse embryo (SFME) cells, the astrocyte progenitor cells in the central nervous system, were examined. SFME cells were exposed to 10 ng/ml leukemia inhibitory factor (LIF) and 10ng/ml bone morphogenetic protein 2 (BMP2) to increase glial fibrillary acidic protein (GFAP) expression and induce cell differentiation. Various concentrations of BPA (0.1 pg/ml-1 microg/ml) were then added to determine their effects on the cell differentiation. SFME cells were effectively differentiated by LIF and BMP2 in completely serum-free cultures. Cell proliferation following cell differentiation was not significantly affected by low-level BPA. However, GFAP expression was significantly increased in SFME cells in the presence of 1-100 pg/ml BPA. These increases were due to excessive activation of signal transducer and activator of transcription 3 (STAT3) and mothers against decapentaplegic homolog 1 (Smad1) by the low-level BPA.
Collapse
Affiliation(s)
- Hideaki Yamaguchi
- Graduate School of Environmental Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Han HJ, Heo JS, Lee YJ. Estradiol-17β stimulates proliferation of mouse embryonic stem cells: involvement of MAPKs and CDKs as well as protooncogenes. Am J Physiol Cell Physiol 2006; 290:C1067-75. [PMID: 16291822 DOI: 10.1152/ajpcell.00222.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the importance of estradiol-17β (E2) in many physiological processes has been reported, to date no researchers have investigated the effects of E2 on embryonic stem (ES) cell proliferation. Therefore, in the present study, we have examined the effect of E2 on the DNA synthesis of murine ES (ES-E14TG2a) cells and its related signaling pathways. The results of this study show that E2 (10−9 M) significantly increased [3H]thymidine incorporation at >4 h and that E2 (>10−12 M) induced an increase of [3H]thymidine incorporation after 8-h incubation. Moreover, E2 (>10−12 M) also increased 5′-bromo-2′-deoxyuridine (BrdU) incorporation and cell number. Indeed, E2 stimulated estrogen receptor (ER)-α and -β protein levels and increased mRNA expression levels of protooncogenes (c- fos, c- jun, and c- myc). Tamoxifen (antiestrogen) completely inhibited E2-induced increases in [3H]thymidine incorporation. In addition, estradiol-6- O-carboxymethyl oxime-BSA (E2-BSA; 10−9 M) increased [3H]thymidine incorporation at >1 h, and E2-BSA (>10−12 M) increased [3H]thymidine incorporation after 1-h incubation. E2-BSA-induced increase in BrdU incorporation also occurred in a dose-dependent manner. Tamoxifen had no effect on E2-BSA-induced increase of [3H]thymidine incorporation. Also, E2 and E2-BSA displayed maximal phosphorylation of p44/42 MAPKs at 10 and 5 min, respectively. E2 increased cyclins D1 and E as well as cyclin-dependent kinase (CDK)2 and CDK4. In contrast, E2 decreased the levels of p21cip1 and p27kip1 (CDK-inhibitory proteins). Increases of these cell cycle regulators were blocked by 10−5 M PD-98059 (MEK inhibitor). Moreover, E2-induced increase of [3H]thymidine incorporation was inhibited by PD-98059 or butyrolactone I (CDK2 inhibitor). In conclusion, estradiol-17β stimulates the proliferation of murine ES cells, and this action is mediated by MAPKs, CDKs, or protooncogenes.
Collapse
Affiliation(s)
- Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea.
| | | | | |
Collapse
|
29
|
Meijer OC, van der Laan S, Lachize S, Steenbergen PJ, de Kloet ER. Steroid receptor coregulator diversity: What can it mean for the stressed brain? Neuroscience 2006; 138:891-9. [PMID: 16310313 DOI: 10.1016/j.neuroscience.2005.07.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/20/2005] [Accepted: 07/10/2005] [Indexed: 11/28/2022]
Abstract
Glucocorticoid hormones modulate brain function and as such are crucial for responding and adjusting to physical and psychological stressors. Their effects are mediated via mineralo- and glucocorticoid receptors, which in large measure act as transcription factors to modulate transcription of target genes, in a receptor-, cell-, and state-specific manner. The nature and magnitude of these transcriptional effects depend on the presence and activity of downstream proteins, such as steroid receptor coactivators and corepressors (together: coregulators), many of which are expressed in the brain. We address the role of coregulators for mineralo- and glucocorticoid receptor-mediated modulation of gene transcription. We first address evidence from cell lines for the importance of coregulator stoichiometry for steroid signaling. The in vivo importance of coregulators-when possible specifically for glucocorticoid signaling in the brain-is discussed based on knockout mice, transient knockdown of steroid receptor coactivators, and distribution and regulation of coactivator expression in the brain. We conclude that for a better understanding of modulation of brain function by glucocorticoids, it is necessary to take into account the role of coregulators, and to assess their importance relative to changes in hormone levels and receptor expression.
Collapse
Affiliation(s)
- O C Meijer
- Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Yu D, Mneg H, Bai C, Zhao W, Wang QS, Pan Y. Molecular cloning of nuclear receptor coactivator-1 gene in pig. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2006; 17:79-82. [PMID: 16753821 DOI: 10.1080/10425170500476343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nuclear receptor coactivator-1 (NCOA-1) as a member of Steroid receptor coactivator (SRC) family can interact with some DNA-bound nuclear receptors and enhance their transcriptional activation function, which is physiologically and pathologically important for animals and human. Much work has been done on the gene in human and mouse, but few in pig. Here we cloned and sequenced full length cDNA of NCOA-1 gene in pig. The putative protein includes 1440 amino acids. Sequences alignment showed that pig NCOA-1 gene cDNA sequence has identity of 93.73% with human and mouse, and putative pig NCOA-1 protein has identity of 94.99% with human, mouse and rat. The motifs, LXXLL, which have been demonstrated to be important for NCOA-1 mediating ligand-dependent and direct interaction with nuclear receptor, were conserved in pig.
Collapse
Affiliation(s)
- Dandan Yu
- Department of Animal Science, Agriculture and Biology School, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
In women, endometrial morphology and function undergo characteristic changes every menstrual cycle. These changes are crucial for perpetuation of the species and are orchestrated to prepare the endometrium for implantation of a conceptus. In the absence of pregnancy, the human endometrium is sloughed off at menstruation over a period of a few days. Tissue repair, growth, angiogenesis, differentiation, and receptivity ensue to prepare the endometrium for implantation in the next cycle. Ovarian sex steroids through interaction with different cognate nuclear receptors regulate the expression of a cascade of local factors within the endometrium that act in an autocrine/paracrine and even intracrine manner. Such interactions initiate complex events within the endometrium that are crucial for implantation and, in the absence thereof, normal menstruation. A clearer understanding of regulation of normal endometrial function will provide an insight into causes of menstrual dysfunction such as menorrhagia (heavy menstrual bleeding) and dysmenorrhea (painful periods). The molecular pathways that precipitate these pathologies remain largely undefined. Future research efforts to provide greater insight into these pathways will lead to the development of novel drugs that would target identified aberrations in expression and/or of local uterine factors that are crucial for normal endometrial function.
Collapse
Affiliation(s)
- Henry N Jabbour
- Medical Research Council Human Reproductive Sciences Unit, University of Edinburgh, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom.
| | | | | | | |
Collapse
|
32
|
Okamoto K, Isohashi F. Macromolecular translocation inhibitor II (Zn(2+)-binding protein, parathymosin) interacts with the glucocorticoid receptor and enhances transcription in vivo. J Biol Chem 2005; 280:36986-93. [PMID: 16150697 DOI: 10.1074/jbc.m506056200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macromolecular translocation inhibitor II (MTI-II), which was first identified as an in vitro inhibitor of binding between the highly purified glucocorticoid receptor (GR) and isolated nuclei, is an 11.5-kDa Zn(2+)-binding protein that is also known as ZnBP or parathymosin. MTI-II is a small nuclear acidic protein that is highly conserved in rats, cows, and humans and widely distributed in mammalian tissues, yet its physiological function is unknown. To elucidate its in vivo function in relation to GR, we transiently transfected mammalian cells with an expression plasmid encoding MTI-II. Unexpectedly, we found that the expression of MTI-II enhances the transcriptional activity of GR. The magnitude of the transcriptional enhancement induced by MTI-II is comparable with that induced by the steroid receptor coactivator SRC-1. In contrast, MTI-II had little effect on the transcriptional activity of estrogen receptor. Immunoprecipitation analysis showed that in the presence of glucocorticoid hormone, GR coprecipitates with MTI-II, and, vice versa, MTI-II coprecipitates with GR. The expression of various deletion mutants of MTI-II revealed that the central acidic domain is essential for the enhancement of GR-dependent transcription. Microscopic analysis of MTI-II fused to green fluorescent protein and GR fused to red fluorescent protein in living HeLa cells showed that MTI-II colocalizes with GR in discrete subnuclear domains in a hormone-dependent manner. Coexpression of MTI-II with the coactivator SRC-1 or p300 further enhances GR-dependent transcription. Immunoprecipitation analysis showed that in the presence of glucocorticoid hormone, p300 and CREB-binding protein are coprecipitated with MTI-II. Furthermore, the knockdown of endogenous MTI-II by RNAi reduces the transcriptional activity of GR in cells. Moreover, expression of MTI-II enhances the glucocorticoid-dependent transcription of the endogenous glucocorticoid-inducible enzyme in cells. Taken together, these results indicate that MTI-II enhances GR-dependent transcription via a direct interaction with GR in vivo. Thus, MTI-II is a new member of the GR-coactivator complex.
Collapse
Affiliation(s)
- Kazuki Okamoto
- Department of Biochemistry, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | | |
Collapse
|
33
|
Smale L, Heideman PD, French JA. Behavioral neuroendocrinology in nontraditional species of mammals: things the 'knockout' mouse CAN'T tell us. Horm Behav 2005; 48:474-83. [PMID: 15990097 PMCID: PMC2981860 DOI: 10.1016/j.yhbeh.2005.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/01/2005] [Accepted: 05/03/2005] [Indexed: 11/25/2022]
Abstract
The exploration of many of the fundamental features of mammalian behavioral neuroendocrinology has benefited greatly throughout the short history of the discipline from the study of highly inbred, genetically characterized rodents and several other "traditional" exemplars. More recently, the impact of genomic variation in the determination of complex neuroendocrine and behavioral systems has advanced through the use of single and multiple gene knockouts or knockins. In our essay, we argue that the study of nontraditional mammals is an essential approach that complements these methodologies by taking advantage of allelic variation produced by natural selection. Current and future research will continue to exploit these systems to great advantage and will bring new techniques developed in more traditional laboratory animals to bear on problems that can only be addressed with nontraditional species. We highlight our points by discussing advances in our understanding of neuroendocrine and behavioral systems in phenomena of widely differing time scales. These examples include neuroendocrine variation in the regulation of reproduction across seasons in Peromyscus, variation in parental care by biparental male rodents and primates within a single infant rearing attempt, and circadian variation in the regulation of the substrates underlying mating in diurnal vs. nocturnal rodents. Our essay reveals both important divergences in neuroendocrine systems in our nontraditional model species, and important commonalities in these systems.
Collapse
Affiliation(s)
- Laura Smale
- Departments of Zoology, Michigan State University, East Lansing, MI 48843, USA.
| | | | | |
Collapse
|
34
|
Lamote I, Meyer E, De Ketelaere A, Duchateau L, Burvenich C. Expression of the estrogen receptor in blood neutrophils of dairy cows during the periparturient period. Theriogenology 2005; 65:1082-98. [PMID: 16197988 DOI: 10.1016/j.theriogenology.2005.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 07/07/2005] [Accepted: 07/31/2005] [Indexed: 11/18/2022]
Abstract
During the period around parturition, cows experience an increased susceptibility to inflammatory disorders in the mammary gland and uterus. This increased susceptibility has been correlated with a decreased functionality of neutrophils, major components in the innate immune defence. As sex steroid levels vary extensively in the period around parturition, an influence of these changes on the functionality of neutrophils has been suggested. Indeed, it has been shown that 17beta-estradiol affects some functions of bovine neutrophils. In spite of these observations, receptors for 17beta-estradiol have not yet been demonstrated in these cells. The investigation of the presence of estrogen receptors in bovine neutrophils was therefore the main objective of this study. The expression of estrogen receptors was evaluated at the protein level by flow cytometry, and at the mRNA level by polymerase chain reaction. A clear positive signal was obtained using flow cytometry for the estrogen receptor protein in bovine neutrophils. Further discrimination between the estrogen receptor subtypes alpha and beta revealed the expression of the estrogen receptor beta, whereas for the estrogen receptor alpha no reproducible positive signal could be obtained with the available antibodies. Both subtypes were found at the mRNA level. Subsequently, the estrogen receptor protein expression level in neutrophils obtained from cows in early lactation was compared with those from cows in late pregnancy. Additionally, the influence of endogenous 17beta-estradiol and progesterone levels was assessed. No difference was found for the estrogen receptor protein expression in neutrophils from cows in early lactation compared with late gestation neither were the endogenous 17beta-estradiol and progesterone levels correlated with the protein expression.
Collapse
Affiliation(s)
- I Lamote
- Department of Physiology, Biochemistry and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
35
|
Canale D, Caglieresi C, Moschini C, Liberati CD, Macchia E, Pinchera A, Martino E. Androgen receptor polymorphism (CAG repeats) and androgenicity. Clin Endocrinol (Oxf) 2005; 63:356-61. [PMID: 16117826 DOI: 10.1111/j.1365-2265.2005.02354.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objective Polymorphism of the androgen receptor (AR) has been related to various pathophysiological conditions, such as osteoporosis and infertility. The objectives of this study were to evaluate the frequency of distribution in a normal Italian population and to assess CAG repeats (CAGr) in other conditions, such as hypoandrogenism, potentially influenced by AR polymorphism. Patients and measurements CAGr polymorphism was determined in a group of 91 healthy normoandrogenized subjects, 29 hypoandrogenized patients (hypoplasia of prostate and seminal vesicles, reduced beard or body hair, etc.) and 29 infertile patients by direct sequencing. Results The mean (+/- SD) number of CAG repeats [(CAGr)n] was 21.5 (+/- 1.7) in the control group, 21.4 (+/- 2.0) in the infertile patients and 24.0 (+/- 2.9) in the hypoandrogenic males. The difference was statistically significant between this last group and the other two (P < 0.0001), while there was no difference between normal controls and infertile patients. The frequency distribution showed a shift towards higher CAG length in hypoandrogenized patients compared to controls and infertile patients. If we used a cut-off point of 24.9 (2 SD above the mean), the percentage of patients with 25 or more CAGr repeats was 38% among hypoandrogenized patients, 7% among infertile patients and 5% among the control group. In hypoandrogenized subjects (CAGr)n correlated slightly with testis and prostate volume. The number of CAG repeats was not associated with any of the hormonal parameters, including testosterone, evaluated in the three groups. Conclusions Our normal population, representing subjects from Central Italy, is superimposable on other European populations with regard to (CAGr)n distribution. Hypoandrogenic males have a shift in the frequency distribution towards longer (CAGr)n. Infertile patients are not statistically different from the control group. These findings suggest that, given the same amount of circulating testosterone, as in our hypoandrogenized and control group, the final net androgenic phenotypical effect is due to AR polymorphism.
Collapse
Affiliation(s)
- D Canale
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tetel MJ, Ungar TC, Hassan B, Bittman EL. Photoperiodic regulation of androgen receptor and steroid receptor coactivator-1 in Siberian hamster brain. ACTA ACUST UNITED AC 2005; 131:79-87. [PMID: 15530655 PMCID: PMC2692347 DOI: 10.1016/j.molbrainres.2004.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2004] [Indexed: 12/01/2022]
Abstract
Seasonal changes in the neuroendocrine actions of gonadal steroid hormones are triggered by fluctuations in daylength. The mechanisms responsible for photoperiodic influences upon the feedback and behavioral effects of testosterone in Siberian hamsters are poorly understood. We hypothesized that daylength regulates the expression of androgen receptor (AR) and/or steroid receptor coactivator-1 (SRC-1) in specific forebrain regions. Hamsters were castrated and implanted with either oil-filled capsules or low doses of testosterone; half of the animals remained in 16L/8D and the rest were kept in 10L/14D for the ensuing 70 days. The number of AR-immunoreactive (AR-ir) cells was regulated by testosterone in medial amygdala and caudal arcuate, and by photoperiod in the medial preoptic nucleus and the posterodorsal medial amygdala. A significant interaction between photoperiod and androgen treatment was found in medial preoptic nucleus and posterodorsal medial amygdala. The molecular weight and distribution of SRC-1 were similar to reports in other rodent species, and short days reduced the number of SRC-1-ir cells in posteromedial bed nucleus of the stria terminalis (BNST) and posterodorsal medial amygdala. A significant interaction between androgen treatment and daylength in regulation of SRC-1-ir was found in anterior medial amygdala. The present results indicate that daylength-induced fluctuations in SRC-1 and AR expression may contribute to seasonally changing effects of testosterone.
Collapse
Affiliation(s)
| | | | | | - Eric L. Bittman
- Corresponding author. Tel.: +1 413 545 4344; fax: +1 413 545 3243. E-mail address: (E.L. Bittman)
| |
Collapse
|
37
|
Auger AP. Steroid receptor control of reproductive behavior. Horm Behav 2004; 45:168-72. [PMID: 15047011 DOI: 10.1016/j.yhbeh.2003.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 09/17/2003] [Accepted: 09/17/2003] [Indexed: 11/21/2022]
Abstract
Steroid hormone receptors in the brain were thought to be only activated by steroid hormones. Once steroid binds to the receptor, it would act on DNA to regulate gene transcription. Recent data indicate that steroid receptor action is more complex. Steroid receptor activity in the brain is under the control of co-regulatory proteins, such as coactivators. It is the expression of these additional proteins that modulate the activity of steroid receptors. Furthermore, steroid receptors are not only activated by steroid, but can also be activated by neurotransmitters in the absence of steroid. For example, progestin receptors in rodent brain are sensitive to progesterone and to social cues in the environment. This review discusses these emerging mechanisms for steroid receptor control in developing and adult brain.
Collapse
Affiliation(s)
- Anthony P Auger
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
38
|
Petralia SM, Frye CA. In the ventral tegmental area, G-proteins and cAMP mediate the neurosteroid 3alpha,5alpha-THP's actions at dopamine type 1 receptors for lordosis of rats. Neuroendocrinology 2004; 80:233-43. [PMID: 15604595 DOI: 10.1159/000082752] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 09/30/2004] [Indexed: 11/19/2022]
Abstract
Progestins have multiple mechanisms of action in the central nervous system that are important for modulating lordosis of female rats. In the ventral tegmental area (VTA), progestins, such as the progesterone metabolite and neurosteroid 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), regulate lordosis via actions independent of intracellular progestin receptors. We hypothesized that if, in the VTA, dopamine type 1 receptors (D1), G-proteins, and adenosine 3',5'-monophosphate (cAMP) are downstream effectors of 3alpha,5alpha-THP's actions for lordosis, then pharmacological manipulations of these signaling molecules will produce changes in 3alpha,5alpha-THP-facilitated lordosis of estradiol (E2)-primed rats. VTA infusions of 3alpha,5alpha-THP (50 ng) or 3alpha,5alpha-THP and the D1 agonist SKF38393 (100 ng) increased lordosis of ovariectomized, E2 (10 microg)-primed rats, compared to vehicle. Both 3alpha,5alpha-THP- and 3alpha,5alpha-THP plus SKF38393-facilitated lordosis was reduced by VTA infusions of the G-protein inhibitor guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S; 50 microM), but not vehicle. Also, in the VTA, blocking D1 with SCH23390 (100 ng) decreased, or increasing cAMP with 8-bromo-cAMP (200 ng) enhanced, 3alpha,5alpha-THP-facilitated lordosis of E2-primed rats. Notably, SCH23390's inhibitory effects on 3alpha,5alpha-THP-facilitated lordosis were reversed by 8-bromo-cAMP. Thus, in the VTA, 3alpha,5alpha-THP's actions for lordosis may involve activation of D1 and initiation of the G-protein-mediated second messenger cAMP.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Analysis of Variance
- Animals
- Behavior, Animal
- Benzazepines/pharmacology
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/metabolism
- Desoxycorticosterone/analogs & derivatives
- Desoxycorticosterone/pharmacology
- Drug Interactions
- Female
- GTP-Binding Proteins/agonists
- GTP-Binding Proteins/antagonists & inhibitors
- GTP-Binding Proteins/metabolism
- Guanosine Diphosphate/analogs & derivatives
- Guanosine Diphosphate/pharmacology
- Male
- Models, Biological
- Posture
- Rats
- Rats, Long-Evans
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/physiology
- Sexual Behavior, Animal/drug effects
- Thionucleotides/pharmacology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Sandra M Petralia
- Department of Psychology, University at Albany-SUNY, Albany, NY 12222, USA
| | | |
Collapse
|