1
|
Akçeşme B, Hekimoğlu H, Chirasani VR, İş Ş, Atmaca HN, Waldern JM, Ramos SBV. Identification of deleterious non-synonymous single nucleotide polymorphisms in the mRNA decay activator ZFP36L2. RNA Biol 2025; 22:1-15. [PMID: 39668715 DOI: 10.1080/15476286.2024.2437590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
More than 4,000 single nucleotide polymorphisms (SNP) variants have been identified in the human ZFP36L2 gene, however only a few have been studied in the context of protein function. The tandem zinc finger domain of ZFP36L2, an RNA binding protein, is the functional domain that binds to its target mRNAs. This protein/RNA interaction triggers mRNA degradation, controlling gene expression. We identified 32 non-synonymous SNPs (nsSNPs) in the tandem zinc finger domain of ZFP36L2 that could have possible deleterious impacts in humans. Using different bioinformatic strategies, we prioritized five among these 32 nsSNPs, namely rs375096815, rs1183688047, rs1214015428, rs1215671792 and rs920398592 to be validated. When we experimentally tested the functionality of these protein variants using gel shift assays, all five (Y154H, R160W, R184C, G204D, and C206F) resulted in a dramatic reduction in RNA binding compared to the WT protein. To understand the mechanistic effect of these variants on the protein/RNA interaction, we employed DUET, DynaMut and PyMOL to investigate structural changes in the protein. Additionally, we conducted Molecular Docking and Molecular Dynamics Simulations to fine tune the active behaviour of this biomolecular system at an atomic level. Our results propose atomic explanations for the impact of each of these five genetic variants identified.
Collapse
Affiliation(s)
- Betül Akçeşme
- Program of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Ilidža/Sarajevo, Bosnia and Herzegovina
- Hamidiye School of Medicine, Department of Basic Medical Sciences, Division of Medical Biology, University of Health Sciences, Üsküdar/İstanbul, Turkey
| | - Hilal Hekimoğlu
- Institute of Health Sciences, İstanbul University, Fatih/İstanbul, Turkey
| | - Venkat R Chirasani
- Biochemistry and Biophysics Department, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Biochemistry and Biophysics Department, R. L. Juliano Structural Bioinformatics Core, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Şeyma İş
- Hamidiye School of Medicine, Department of Basic Medical Sciences, Division of Medical Biology, University of Health Sciences, Üsküdar/İstanbul, Turkey
- Department of Molecular Biotechnology, Division of Bioinformatics, Turkish-German University, Beykoz/İstanbul, Turkey
| | - Habibe Nur Atmaca
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayıs University, Atakum/Samsun, Turkey
| | - Justin M Waldern
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Silvia B V Ramos
- Biochemistry and Biophysics Department, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
2
|
O'Keefe ME, Kondolf HC, De Santis S, Pizarro TT, Abbott DW. Restraint of inflammasome-driven cytokine responses through the mRNA stability protein TTP. Cell Rep 2025; 44:115340. [PMID: 39982821 PMCID: PMC12022669 DOI: 10.1016/j.celrep.2025.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/02/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
Activation of the NLRP3 inflammasome causes extensive disturbance of cellular homeostasis, with Golgi disruption, mitochondrial dysfunction, and changes in intracellular ion concentration occurring rapidly upon stimulation. Given this, it would seem near certain that these changes might also globally affect cellular signaling pathways, yet few, if any, studies have explored this possibility. Here, we combine genomics and phosphoproteomics to identify inhibition of the ERK1/2 MAP kinase signaling cascade upon inflammasome stimulation. This loss of ERK1/2 activity results in rapid inactivation of the mRNA decay-promoting protein tristetraprolin (TTP), with loss of TTP promoting subsequent increased release of cytokines upon pyroptosis. Further, we observe significantly increased levels of TTP expression in patients with inflammatory bowel disease, a disease for which altered cytokine expression is a key driver of pathogenesis. Inflammasome activation thus rapidly inactivates a pathway designed to suppress cytokine release, potentially exacerbating hyperinflammatory states, including those involved in autoinflammatory disease.
Collapse
Affiliation(s)
- Meghan E O'Keefe
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hannah C Kondolf
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Stefania De Santis
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Hubiernatorova A, Novak J, Vaskovicova M, Sekac D, Kropyvko S, Hodny Z. Tristetraprolin affects invasion-associated genes expression and cell motility in triple-negative breast cancer model. Cytoskeleton (Hoboken) 2024. [PMID: 39319680 DOI: 10.1002/cm.21934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Tristetraprolin (TTP) is an RNA-binding protein that negatively regulates its target mRNAs and has been shown to inhibit tumor progression and invasion. Tumor invasion requires precise regulation of cytoskeletal components, and dysregulation of cytoskeleton-associated genes can significantly alter cell motility and invasive capability. Several genes, including SH3PXD2A, SH3PXD2B, CTTN, WIPF1, and WASL, are crucial components of the cytoskeleton reorganization machinery and are essential for adequate cell motility. These genes are also involved in invasion processes, with SH3PXD2A, SH3PXD2B, WIPF1, and CTTN being key components of invadopodia-specialized structures that facilitate invasion. However, the regulation of these genes is not well understood. This study demonstrates that ectopic expression of TTP in MDA-MB-231 cells leads to decreased mRNA levels of CTTN and SH3PXD2A, as well as defects in cell motility and actin filament organization. Additionally, doxorubicin significantly increases TTP expression and reduces the mRNA levels of cytoskeleton-associated genes, enhancing our understanding of how doxorubicin may affect the transcriptional profile of cells. However, doxorubicin affects target mRNAs differently than TTP ectopic expression, suggesting it may not be the primary mechanism of doxorubicin in breast cancer (BC) treatment. High TTP expression is considered as a positive prognostic marker in multiple cancers, including BC. Given that doxorubicin is a commonly used drug for treating triple-negative BC, using TTP as a prognostic marker in this cohort of patients might be limited since it might be challenging to understand if high TTP expression occurred due to the favorable physiological state of the patient or as a consequence of treatment.
Collapse
Affiliation(s)
- Anastasiia Hubiernatorova
- Department of Functional Genomics, Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Vaskovicova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of DNA Integrity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - David Sekac
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Serhii Kropyvko
- Department of Functional Genomics, Institute of Molecular Biology and Genetics NAS of Ukraine, Kyiv, Ukraine
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Yin M, Qian P, Wang H, Zhao Q, Zhang H, Zheng Z, Zhang M, Lu Z, Li X. Foot-and-mouth disease virus (FMDV) negatively regulates ZFP36 protein expression to alleviate its antiviral activity. J Virol 2024; 98:e0111424. [PMID: 39194213 PMCID: PMC11406947 DOI: 10.1128/jvi.01114-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Zinc finger protein 36 (ZFP36) is a key regulator of inflammatory and cytokine production. However, the interplay between swine zinc-finger protein 36 (sZFP36) and foot-and-mouth disease virus (FMDV) has not yet been reported. Here, we demonstrate that overexpression of sZFP36 restricted FMDV replication, while the knockdown of sZFP36 facilitated FMDV replication. To subvert the antagonism of sZFP36, FMDV decreased sZFP36 protein expression through its non-structural protein 3C protease (3Cpro). Our results also suggested that 3Cpro-mediated sZFP36 degradation was dependent on its protease activity. Further investigation revealed that both N-terminal and C-terminal-sZFP36 could be degraded by FMDV and FMDV 3Cpro. In addition, both N-terminal and C-terminal-sZFP36 decreased FMDV replication. Moreover, sZFP36 promotes the degradation of FMDV structural proteins VP3 and VP4 via the CCCH-type zinc finger and NES domains of sZFP36. Together, our results confirm that sZFP36 is a host restriction factor that negatively regulates FMDV replication.IMPORTANCEFoot-and-mouth disease (FMD) is an infectious disease of animals caused by the pathogen foot-and-mouth disease virus (FMDV). FMD is difficult to prevent and control because there is no cross-protection between its serotypes. Thus, we designed this study to investigate virus-host interactions. We first demonstrate that swine zinc-finger protein 36 (sZFP36) impaired FMDV structural proteins VP3 and VP4 to suppress viral replication. To subvert the antagonism of sZFP36, FMDV and FMDV 3Cpro downregulate sZFP36 expression to facilitate FMDV replication. Taken together, the present study reveals a previously unrecognized antiviral mechanism for ZFP36 and elucidates the role of FMDV in counteracting host antiviral activity.
Collapse
Affiliation(s)
- Mengge Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| | - Haoyuan Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiongqiong Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huiyan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Zixuan Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Min Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan, Hubei, China
| |
Collapse
|
5
|
Fang Z, Liu C, Yu X, Yang K, Yu T, Ji Y, Liu C. Identification of neutrophil extracellular trap-related biomarkers in non-alcoholic fatty liver disease through machine learning and single-cell analysis. Sci Rep 2024; 14:21085. [PMID: 39256536 PMCID: PMC11387488 DOI: 10.1038/s41598-024-72151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD), noted for its widespread prevalence among adults, has become the leading chronic liver condition globally. Simultaneously, the annual disease burden, particularly liver cirrhosis caused by NAFLD, has increased significantly. Neutrophil Extracellular Traps (NETs) play a crucial role in the progression of this disease and are key to the pathogenesis of NAFLD. However, research into the specific roles of NETs-related genes in NAFLD is still a field requiring thorough investigation. Utilizing techniques like AddModuleScore, ssGSEA, and WGCNA, our team conducted gene screening to identify the genes linked to NETs in both single-cell and bulk transcriptomics. Using algorithms including Random Forest, Support Vector Machine, Least Absolute Shrinkage, and Selection Operator, we identified ZFP36L2 and PHLDA1 as key hub genes. The pivotal role of these genes in NAFLD diagnosis was confirmed using the training dataset GSE164760. This study identified 116 genes linked to NETs across single-cell and bulk transcriptomic analyses. These genes demonstrated enrichment in immune and metabolic pathways. Additionally, two NETs-related hub genes, PHLDA1 and ZFP36L2, were selected through machine learning for integration into a prognostic model. These hub genes play roles in inflammatory and metabolic processes. scRNA-seq results showed variations in cellular communication among cells with different expression patterns of these key genes. In conclusion, this study explored the molecular characteristics of NETs-associated genes in NAFLD. It identified two potential biomarkers and analyzed their roles in the hepatic microenvironment. These discoveries could aid in NAFLD diagnosis and management, with the ultimate goal of enhancing patient outcomes.
Collapse
Affiliation(s)
- Zhihao Fang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Changxu Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiaoxiao Yu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Kai Yang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tianqi Yu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yanchao Ji
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chang Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
6
|
Cao H, Sethumadhavan K. Plant Polyphenol Gossypol Induced Cell Death and Its Association with Gene Expression in Mouse Macrophages. Biomolecules 2023; 13:biom13040624. [PMID: 37189372 DOI: 10.3390/biom13040624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Gossypol is a complex plant polyphenol reported to be cytotoxic and anti-inflammatory, but little is known about its effect on gene expression in macrophages. The objective of this study was to explore gossypol’s toxicity and its effect on gene expression involved in the inflammatory response, glucose transport and insulin signaling pathways in mouse macrophages. Mouse RAW264.7 macrophages were treated with multiple concentrations of gossypol for 2–24 h. Gossypol toxicity was estimated by MTT assay and soluble protein content. qPCR analyzed the expression of anti-inflammatory tristetraprolin family (TTP/ZFP36), proinflammatory cytokine, glucose transporter (GLUT) and insulin signaling genes. Cell viability was greatly reduced by gossypol, accompanied with a dramatic reduction in soluble protein content in the cells. Gossypol treatment resulted in an increase in TTP mRNA level by 6–20-fold and increased ZFP36L1, ZFP36L2 and ZFP36L3 mRNA levels by 26–69-fold. Gossypol increased proinflammatory cytokine TNF, COX2, GM-CSF, INFγ and IL12b mRNA levels up to 39–458-fold. Gossypol treatment upregulated mRNA levels of GLUT1, GLUT3 and GLUT4 genes as well as INSR, AKT1, PIK3R1 and LEPR, but not APP genes. This study demonstrated that gossypol induced macrophage death and reduced soluble protein content, which was accompanied with the massive stimulation of anti-inflammatory TTP family and proinflammatory cytokine gene expression, as well as the elevation of gene expression involved in glucose transport and the insulin signaling pathway in mouse macrophages.
Collapse
|
7
|
Ketone Body β-Hydroxybutyric Acid Ameliorates Dopaminergic Neuron Injury Through Modulating Zinc Finger Protein 36/Acyl-CoA Synthetase Long-Chain Family Member Four Signaling Axis-Mediated Ferroptosis. Neuroscience 2023; 509:157-172. [PMID: 36435477 DOI: 10.1016/j.neuroscience.2022.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
β-hydroxybutyrate (BHB) is one of main component of ketone body, which plays an important protective role in various tissues and organs. Whereas, its exact regulatory roles and mechanisms in Parkinson's disease (PD) have not been full elucidated. In this study, SN4741 cells and C57BL/6 mice were treated with 1-methyl-4-phenylpyridinium ion (MPP+)/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to establish the PD model in vitro and in vivo. Cell viability and damage to dopaminergic neurons were measured by cell counting kit 8, Calcein-AM/PI staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling and hematoxylin & eosin staining. Corresponding assay kits and BODIPY 581/591 C11 probe evaluated oxidative stress and intracellular iron levels. Western blot examined the ferroptosis-related proteins. MPTP/MPP+-treatment reduced cell viability but triggered oxidative stress and ferroptosis in SNA4741 cells and brain tissues of mice. However, these effects were dramatically reversed by BHB and Fer-1 treatment. Mechanistically, Zinc finger protein 36 (ZFP36) was a target of BHB, and its depletion could reverse the anti-oxidative stress and anti-ferroptosis roles of BHB. Moreover, ZFP36 could directly bound to acyl-CoA synthetase long-chain family member 4 (ACSL4) mRNA to decay its expression, thus negatively modulating ACSL4-mediated oxidative stress and ferroptosis. Summary, BHB alleviated oxidative stress and ferroptosis of dopaminergic neurons in PD via modulating ZFP36/ACSL4 axis, which provided some new understanding for PD prevention and treatment.
Collapse
|
8
|
Snyder BL, Blackshear PJ. Clinical implications of tristetraprolin (TTP) modulation in the treatment of inflammatory diseases. Pharmacol Ther 2022; 239:108198. [PMID: 35525391 PMCID: PMC9636069 DOI: 10.1016/j.pharmthera.2022.108198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Abnormal regulation of pro-inflammatory cytokine and chemokine mediators can contribute to the excess inflammation characteristic of many autoimmune diseases, such as rheumatoid arthritis, psoriasis, Crohn's disease, type 1 diabetes, and many others. The tristetraprolin (TTP) family consists of a small group of related RNA-binding proteins that bind to preferred AU-rich binding sites within the 3'-untranslated regions of specific mRNAs to promote mRNA deadenylation and decay. TTP deficient mice develop a severe systemic inflammatory syndrome consisting of arthritis, myeloid hyperplasia, dermatitis, autoimmunity and cachexia, due at least in part to the excess accumulation of proinflammatory chemokine and cytokine mRNAs and their encoded proteins. To investigate the possibility that increased TTP expression or activity might have a beneficial effect on inflammatory diseases, at least two mouse models have been developed that provide proof of principle that increasing TTP activity can promote the decay of pro-inflammatory and other relevant transcripts, and decrease the severity of mouse models of inflammatory disease. Animal studies of this type are summarized here, and we briefly review the prospects for harnessing these insights for the development of TTP-based anti-inflammatory treatments in humans.
Collapse
Affiliation(s)
- Brittany L Snyder
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States of America; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States of America; Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States of America; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, United States of America.
| |
Collapse
|
9
|
Serhii K, Anastasiia H, Oksana M, Kyrylo L, Liubov S, Nataliia V, Iryna I, Rostyslav S, Alla R. Tristetraprolin expression levels and methylation status in breast cancer. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Cook ME, Bradstreet TR, Webber AM, Kim J, Santeford A, Harris KM, Murphy MK, Tran J, Abdalla NM, Schwarzkopf EA, Greco SC, Halabi CM, Apte RS, Blackshear PJ, Edelson BT. The ZFP36 family of RNA binding proteins regulates homeostatic and autoreactive T cell responses. Sci Immunol 2022; 7:eabo0981. [PMID: 36269839 PMCID: PMC9832469 DOI: 10.1126/sciimmunol.abo0981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RNA binding proteins are important regulators of T cell activation, proliferation, and cytokine production. The zinc finger protein 36 (ZFP36) family genes (Zfp36, Zfp36l1, and Zfp36l2) encode RNA binding proteins that promote the degradation of transcripts containing AU-rich elements. Numerous studies have demonstrated both individual and shared functions of the ZFP36 family in immune cells, but their collective function in T cells remains unclear. Here, we found a redundant and critical role for the ZFP36 proteins in regulating T cell quiescence. T cell-specific deletion of all three ZFP36 family members in mice resulted in early lethality, immune cell activation, and multiorgan pathology characterized by inflammation of the eyes, central nervous system, kidneys, and liver. Mice with T cell-specific deletion of any two Zfp36 genes were protected from this spontaneous syndrome. Triply deficient T cells overproduced proinflammatory cytokines, including IFN-γ, TNF, and GM-CSF, due to increased mRNA stability of these transcripts. Unexpectedly, T cell-specific deletion of both Zfp36l1 and Zfp36l2 rendered mice resistant to experimental autoimmune encephalomyelitits due to failed priming of antigen-specific CD4+ T cells. ZFP36L1 and ZFP36L2 double-deficient CD4+ T cells had poor proliferation during in vitro T helper cell polarization. Thus, the ZFP36 family redundantly regulates T cell quiescence at homeostasis, but ZFP36L1 and ZFP36L2 are specifically required for antigen-specific T cell clonal expansion.
Collapse
Affiliation(s)
- Melissa E. Cook
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Tara R. Bradstreet
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Ashlee M. Webber
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Jongshin Kim
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine; St. Louis, MO, USA
- Current address: Medical Science and Engineering Program, School of Convergence Science and Technology, Pohang University of Science and Technology; Pohang, Korea
| | - Andrea Santeford
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine; St. Louis, MO, USA
| | - Kevin M. Harris
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Maegan K. Murphy
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Jennifer Tran
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Nada M. Abdalla
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Elizabeth A. Schwarzkopf
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Current address: Wugen, Inc.; St. Louis, MO, USA
| | - Suellen C. Greco
- Division of Comparative Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Carmen M. Halabi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra S. Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine; St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, USA
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health; Research Triangle Park, NC, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center; Durham, NC, USA
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| |
Collapse
|
11
|
Cottonseed extracts regulate gene expression in human colon cancer cells. Sci Rep 2022; 12:1039. [PMID: 35058516 PMCID: PMC8776848 DOI: 10.1038/s41598-022-05030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Cotton plant provides economically important fiber and cottonseed, but cottonseed contributes 20% of the crop value. Cottonseed value could be increased by providing high value bioactive compounds and polyphenolic extracts aimed at improving nutrition and preventing diseases because plant polyphenol extracts have been used as medicinal remedy for various diseases. The objective of this study was to investigate the effects of cottonseed extracts on cell viability and gene expression in human colon cancer cells. COLO 225 cells were treated with ethanol extracts from glanded and glandless cottonseed followed by MTT and qPCR assays. Cottonseed extracts showed minor effects on cell viability. qPCR assay analyzed 55 mRNAs involved in several pathways including DGAT, GLUT, TTP, IL, gossypol-regulated and TTP-mediated pathways. Using BCL2 mRNA as the internal reference, qPCR analysis showed minor effects of ethanol extracts from glanded seed coat and kernel and glandless seed coat on mRNA levels in the cells. However, glandless seed kernel extract significantly reduced mRNA levels of many genes involved in glucose transport, lipid biosynthesis and inflammation. The inhibitory effects of glandless kernel extract on gene expression may provide a useful opportunity for improving nutrition and healthcare associated with colon cancer. This in turn may provide the potential of increasing cottonseed value by using ethanol extract as a nutrition/health intervention agent.
Collapse
|
12
|
Bai W, Wells ML, Lai WS, Hicks SN, Burkholder AB, Perera L, Kimmel AR, Blackshear PJ. A post-transcriptional regulon controlled by TtpA, the single tristetraprolin family member expressed in Dictyostelium discoideum. Nucleic Acids Res 2021; 49:11920-11937. [PMID: 34718768 DOI: 10.1093/nar/gkab983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022] Open
Abstract
Post-transcriptional processes mediated by mRNA binding proteins represent important control points in gene expression. In eukaryotes, mRNAs containing specific AU-rich motifs are regulated by binding of tristetraprolin (TTP) family tandem zinc finger proteins, which promote mRNA deadenylation and decay, partly through interaction of a conserved C-terminal CNOT1 binding (CNB) domain with CCR4-NOT protein complexes. The social ameba Dictyostelium discoideum shared a common ancestor with humans more than a billion years ago, and expresses only one TTP family protein, TtpA, in contrast to three members expressed in humans. Evaluation of ttpA null-mutants identified six transcripts that were consistently upregulated compared to WT during growth and early development. The 3'-untranslated regions (3'-UTRs) of all six 'TtpA-target' mRNAs contained multiple TTP binding motifs (UUAUUUAUU), and one 3'-UTR conferred TtpA post-transcriptional stability regulation to a heterologous mRNA that was abrogated by mutations in the core TTP-binding motifs. All six target transcripts were upregulated to similar extents in a C-terminal truncation mutant, in contrast to less severe effects of analogous mutants in mice. All six target transcripts encoded probable membrane proteins. In Dictyostelium, TtpA may control an 'RNA regulon', where a single RNA binding protein, TtpA, post-transcriptionally co-regulates expression of several functionally related proteins.
Collapse
Affiliation(s)
- Wenli Bai
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Melissa L Wells
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Wi S Lai
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Stephanie N Hicks
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Perry J Blackshear
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.,The Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
13
|
Albano F, Tucci V, Blackshear PJ, Reale C, Roberto L, Russo F, Marotta P, Porreca I, Colella M, Mallardo M, de Felice M, Ambrosino C. ZFP36L2 Role in Thyroid Functionality. Int J Mol Sci 2021; 22:9379. [PMID: 34502288 PMCID: PMC8431063 DOI: 10.3390/ijms22179379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Thyroid hormone levels are usually genetically determined. Thyrocytes produce a unique set of enzymes that are dedicated to thyroid hormone synthesis. While thyroid transcriptional regulation is well-characterized, post-transcriptional mechanisms have been less investigated. Here, we describe the involvement of ZFP36L2, a protein that stimulates degradation of target mRNAs, in thyroid development and function, by in vivo and in vitro gene targeting in thyrocytes. Thyroid-specific Zfp36l2-/- females were hypothyroid, with reduced levels of circulating free Thyroxine (cfT4) and Triiodothyronine (cfT3). Their hypothyroidism was due to dyshormonogenesis, already evident one week after weaning, while thyroid development appeared normal. We observed decreases in several thyroid-specific transcripts and proteins, such as Nis and its transcriptional regulators (Pax8 and Nkx2.1), and increased apoptosis in Zfp36l2-/- thyroids. Nis, Pax8, and Nkx2.1 mRNAs were also reduced in Zfp36l2 knock-out thyrocytes in vitro (L2KO), in which we confirmed the increased apoptosis. Finally, in L2KO cells, we showed an altered response to TSH stimulation regarding both thyroid-specific gene expression and cell proliferation and survival. This result was supported by increases in P21/WAF1 and p-P38MAPK levels. Mechanistically, we confirmed Notch1 as a target of ZFP36L2 in the thyroid since its levels were increased in both in vitro and in vivo models. In both models, the levels of Id4 mRNA, a potential inhibitor of Pax8 activity, were increased. Overall, the data indicate that the regulation of mRNA stability by ZFP36L2 is a mechanism that controls the function and survival of thyrocytes.
Collapse
Affiliation(s)
- Francesco Albano
- IEOS-CNR, 80131 Naples, Italy;
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Valeria Tucci
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Perry J. Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA;
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Carla Reale
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Luca Roberto
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Filomena Russo
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Pina Marotta
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Immacolata Porreca
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
| | - Marco Colella
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Mario de Felice
- IEOS-CNR, 80131 Naples, Italy;
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Concetta Ambrosino
- Biogem, Istituto di Biologia e Genetica Molecolare, 83031 Ariano Irpino, Italy; (V.T.); (C.R.); (L.R.); (F.R.); (I.P.); (M.C.)
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
14
|
Cao H, Sethumadhavan K, Cao F, Wang TTY. Gossypol decreased cell viability and down-regulated the expression of a number of genes in human colon cancer cells. Sci Rep 2021; 11:5922. [PMID: 33723275 PMCID: PMC7961146 DOI: 10.1038/s41598-021-84970-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Plant polyphenol gossypol has anticancer activities. This may increase cottonseed value by using gossypol as a health intervention agent. It is necessary to understand its molecular mechanisms before human consumption. The aim was to uncover the effects of gossypol on cell viability and gene expression in cancer cells. In this study, human colon cancer cells (COLO 225) were treated with gossypol. MTT assay showed significant inhibitory effect under high concentration and longtime treatment. We analyzed the expression of 55 genes at the mRNA level in the cells; many of them are regulated by gossypol or ZFP36/TTP in cancer cells. BCL2 mRNA was the most stable among the 55 mRNAs analyzed in human colon cancer cells. GAPDH and RPL32 mRNAs were not good qPCR references for the colon cancer cells. Gossypol decreased the mRNA levels of DGAT, GLUT, TTP, IL families and a number of previously reported genes. In particular, gossypol suppressed the expression of genes coding for CLAUDIN1, ELK1, FAS, GAPDH, IL2, IL8 and ZFAND5 mRNAs, but enhanced the expression of the gene coding for GLUT3 mRNA. The results showed that gossypol inhibited cell survival with decreased expression of a number of genes in the colon cancer cells.
Collapse
Affiliation(s)
- Heping Cao
- grid.507314.40000 0001 0668 8000United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124 USA
| | - Kandan Sethumadhavan
- grid.507314.40000 0001 0668 8000United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124 USA
| | - Fangping Cao
- grid.66741.320000 0001 1456 856XBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Thomas T. Y. Wang
- grid.508988.4United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, 10300 Baltimore Ave, Beltsville, MD 20705 USA
| |
Collapse
|
15
|
Makita S, Takatori H, Iwata A, Tanaka S, Furuta S, Ikeda K, Suto A, Suzuki K, Ramos SBV, Nakajima H. RNA-Binding Protein ZFP36L2 Downregulates Helios Expression and Suppresses the Function of Regulatory T Cells. Front Immunol 2020; 11:1291. [PMID: 32655569 PMCID: PMC7324482 DOI: 10.3389/fimmu.2020.01291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
The zinc finger protein 36-like 2, ZFP36L2, is a member of a small family of RNA-binding proteins composed by ZFP36 (also known as tristetraprolin, TTP), ZFP36L1 and ZFP36L2 in humans, with corresponding murine orthologs. These proteins bind to adenine uridine-rich element (ARE) in the 3′untranslated region of target messenger RNA and stimulate target degradation. ZFP36 functions as an anti-inflammatory modulator in murine models of inflammatory diseases by down-regulating the production of inflammatory cytokines such as tumor necrosis factor-α. However, how ZFP36L1 and ZFP36L2 alter the function of CD4+ T cells is not completely understood. We addressed this issue by searching for the target genes of ZFP36L2 by comprehensive transcriptome analysis. We observed that ZFP36L2 is highly expressed in naïve CD4+ T cells; however, when CD4+ T cells are stimulated through their T cell receptors, ZFP36L2 expression is rapidly reduced in both humans and mice. Among CD4+ T cell populations, the expression levels of ZFP36L2 in regulatory T cells (Tregs) were significantly lower than those in naïve or effector CD4+ T cells. RNA-sequence analysis revealed that the forced expression of ZFP36L2 decreased Ikzf2 (encoding Helios) expression in Foxp3+ Tregs and inhibited the ability of induced Tregs (iTregs). ZFP36L2 directly bound to and destabilized the 3′untranslated region of Ikzf2 mRNA, which contains AU-rich elements. These results indicate that ZFP36L2 reduces the expression of Ikzf2 and suppresses iTreg function, raising the interesting possibility that the inhibition of ZFP36L2 in iTregs could be a therapeutic strategy for autoimmune diseases.
Collapse
Affiliation(s)
- Sohei Makita
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Takatori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Rheumatology, Hamamatsu Medical Center, Shizuoka, Japan
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shunsuke Furuta
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kei Ikeda
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Silvia B V Ramos
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
16
|
RNA-Binding Proteins in Acute Leukemias. Int J Mol Sci 2020; 21:ijms21103409. [PMID: 32408494 PMCID: PMC7279408 DOI: 10.3390/ijms21103409] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute leukemias are genetic diseases caused by translocations or mutations, which dysregulate hematopoiesis towards malignant transformation. However, the molecular mode of action is highly versatile and ranges from direct transcriptional to post-transcriptional control, which includes RNA-binding proteins (RBPs) as crucial regulators of cell fate. RBPs coordinate RNA dynamics, including subcellular localization, translational efficiency and metabolism, by binding to their target messenger RNAs (mRNAs), thereby controlling the expression of the encoded proteins. In view of the growing interest in these regulators, this review summarizes recent research regarding the most influential RBPs relevant in acute leukemias in particular. The reported RBPs, either dysregulated or as components of fusion proteins, are described with respect to their functional domains, the pathways they affect, and clinical aspects associated with their dysregulation or altered functions.
Collapse
|
17
|
Cao H, Sethumadhavan K. Regulation of Cell Viability and Anti-inflammatory Tristetraprolin Family Gene Expression in Mouse Macrophages by Cottonseed Extracts. Sci Rep 2020; 10:775. [PMID: 31964945 PMCID: PMC6972847 DOI: 10.1038/s41598-020-57584-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/30/2019] [Indexed: 01/28/2023] Open
Abstract
Bioactive plant extracts have been used for the prevention and treatment of various diseases. One of the major classes of bioactive compounds is plant polyphenols. Cottonseed ethanol extracts were determined by HPLC-MS analysis to be essentially free of toxic gossypol. The objective of this study was to investigate the effect of cottonseed ethanol extracts on the cytotoxicity and regulation of anti-inflammatory tristrataprolin (TTP) family gene expression in mouse cells. MTT, qPCR and immunoblotting assays tested the effects of cottonseed extracts in mouse RAW264.7 macrophages and 3T3-L1 adipocytes. No cytotoxicity effect was observed in macrophages treated with extracts from the coat or kernel of glanded and glandless cottonseed. Similarly, the viability of mouse adipocytes was not affected by cottonseed extracts. In contrast, gossypol and lipopolysaccharides were toxic to macrophages but not adipocytes under high concentration or long time treatment. Cottonseed extracts exhibited modest effect on TTP family gene expression in macrophages but glandless cottonseed coat extract significantly increased TTP mRNA and protein levels with a magnitude similar to cinnamon and green tea polyphenol extract and insulin. These results demonstrated that cottonseed extracts are harmless towards the mouse cells and that glandless cottonseed coat extract stimulates TTP gene expression. We propose that glandless cottonseed is a safe source of plant polyphenols with anti-inflammatory property.
Collapse
Affiliation(s)
- Heping Cao
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA.
| | - Kandan Sethumadhavan
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA, 70124, USA
| |
Collapse
|
18
|
Yoshinaga M, Takeuchi O. RNA binding proteins in the control of autoimmune diseases. Immunol Med 2019; 42:53-64. [DOI: 10.1080/25785826.2019.1655192] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
20
|
Lai WS, Stumpo DJ, Wells ML, Gruzdev A, Hicks SN, Nicholson CO, Yang Z, Faccio R, Webster MW, Passmore LA, Blackshear PJ. Importance of the Conserved Carboxyl-Terminal CNOT1 Binding Domain to Tristetraprolin Activity In Vivo. Mol Cell Biol 2019; 39:e00029-19. [PMID: 31036567 PMCID: PMC6580703 DOI: 10.1128/mcb.00029-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 04/19/2019] [Indexed: 01/19/2023] Open
Abstract
Tristetraprolin (TTP) is an anti-inflammatory protein that modulates the stability of certain cytokine/chemokine mRNAs. After initial high-affinity binding to AU-rich elements in 3' untranslated regions of target mRNAs, mediated through its tandem zinc finger (TZF) domain, TTP promotes the deadenylation and ultimate decay of target transcripts. These transcripts and their encoded proteins accumulate abnormally in TTP knockout (KO) mice, leading to a severe inflammatory syndrome. To assess the importance of the highly conserved C-terminal CNOT1 binding domain (CNBD) of TTP to the TTP deficiency phenotype in mice, we created a mouse model in which TTP lacked its CNBD. CNBD deletion mice exhibited a less severe phenotype than the complete TTP KO mice. In macrophages, the stabilization of target transcripts seen in KO mice was partially normalized in the CNBD deletion mice. In cell-free experiments, recombinant TTP lacking its CNBD could still activate target mRNA deadenylation by purified recombinant Schizosaccharomyces pombe CCR4/NOT complexes, although to a lesser extent than full-length TTP. Thus, TTP lacking its CNBD can still act to promote target mRNA instability in vitro and in vivo These data have implications for TTP family members throughout the eukarya, since species from all four kingdoms contain proteins with linked TZF and CNOT1 binding domains.
Collapse
Affiliation(s)
- Wi S Lai
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Melissa L Wells
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Artiom Gruzdev
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Stephanie N Hicks
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cindo O Nicholson
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Zhengfeng Yang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children, St. Louis, Missouri, USA
| | - Roberta Faccio
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Shriners Hospitals for Children, St. Louis, Missouri, USA
| | | | - Lori A Passmore
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
21
|
Schmidt JA, Danielson KG, Duffner ER, Radecki SG, Walker GT, Shelton A, Wang T, Knepper JE. Regulation of the oncogenic phenotype by the nuclear body protein ZC3H8. BMC Cancer 2018; 18:759. [PMID: 30041613 PMCID: PMC6057032 DOI: 10.1186/s12885-018-4674-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/18/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The Zc3h8 gene encodes a protein with three zinc finger motifs in the C-terminal region. The protein has been identified as a component of the Little Elongation Complex, involved in transcription of small nuclear RNAs. ZC3H8 is overexpressed in a number of human and mouse breast cancer cell lines, and elevated mRNA levels are associated with a poorer prognosis for women with breast cancer. METHODS We used RNA silencing to decrease levels of expression in mouse mammary tumor cells and overexpression of ZC3H8 in cells derived from the normal mouse mammary gland. We measured characteristics of cell behavior in vitro, including proliferation, migration, invasion, growth in soft agar, and spheroid growth. We assessed the ability of these cells to form tumors in syngeneic BALB/c mice. ZC3H8 protein was visualized in cells using confocal microscopy. RESULTS Tumor cells with lower ZC3H8 expression exhibited decreased proliferation rates, slower migration, reduced ability to invade through a basement membrane, and decreased anchorage independent growth in vitro. Cells with lower ZC3H8 levels formed fewer and smaller tumors in animals. Overexpression of ZC3H8 in non-tumorigenic COMMA-D cells led to an opposite effect. ZC3H8 protein localized to both PML bodies and Cajal bodies within the nucleus. ZC3H8 has a casein kinase 2 (CK2) phosphorylation site near the N-terminus, and a CK2 inhibitor caused the numerous PML bodies and ZC3H8 to coalesce to a few larger bodies. Removal of the inhibitor restored PML bodies to their original state. A mutant ZC3H8 lacking the predicted CK2 phosphorylation site showed localization and numbers of ZC3H8/PML bodies similar to wild type. In contrast, a mutant constructed with a glutamic acid in place of the phosphorylatable threonine showed dramatically increased numbers of smaller nuclear foci. CONCLUSIONS These experiments demonstrate that Zc3h8 expression contributes to aggressive tumor cell behavior in vitro and in vivo. Our studies show that ZC3H8 integrity is key to maintenance of PML bodies. The work provides a link between the Little Elongation Complex, PML bodies, and the cancer cell phenotype.
Collapse
Affiliation(s)
- John A. Schmidt
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Keith G. Danielson
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Emily R. Duffner
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Sara G. Radecki
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Gerard T. Walker
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Amber Shelton
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Tianjiao Wang
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| | - Janice E. Knepper
- Department of Biology, Mendel Science Center, Villanova University, 800 East Lancaster Avenue, Villanova, PA 19085 USA
| |
Collapse
|
22
|
A Knock-In Tristetraprolin (TTP) Zinc Finger Point Mutation in Mice: Comparison with Complete TTP Deficiency. Mol Cell Biol 2018; 38:MCB.00488-17. [PMID: 29203639 DOI: 10.1128/mcb.00488-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/25/2017] [Indexed: 01/09/2023] Open
Abstract
Tristetraprolin (TTP) is a tandem CCCH zinc finger protein that can bind to AU-rich element-containing mRNAs and promote their decay. TTP knockout mice develop a severe inflammatory syndrome, largely due to excess tumor necrosis factor (TNF), whose mRNA is a direct target of TTP binding and destabilization. TTP's RNA binding activity and its ability to promote mRNA decay are lost when one of the zinc-coordinating residues of either zinc finger is mutated. To address several long-standing questions about TTP activity in intact animals, we developed a knock-in mouse with a cysteine-to-arginine mutation within the first zinc finger. Homozygous knock-in mice developed a severe inflammatory syndrome that was essentially identical to that of complete TTP deficiency, suggesting that TTP's critical anti-inflammatory role in mammalian physiology is secondary to its ability to bind RNA. In addition, there was no evidence for a "dominant-negative" effect of the mutant allele in heterozygotes, as suggested by previous experiments. Finally, mRNA decay experiments in mutant macrophages demonstrated that TTP can regulate the stability of its own mRNA, albeit to a minor extent. These studies suggest that RNA binding is an essential first step in the physiological activities of members of this protein family.
Collapse
|
23
|
The control of inflammation via the phosphorylation and dephosphorylation of tristetraprolin: a tale of two phosphatases. Biochem Soc Trans 2017; 44:1321-1337. [PMID: 27911715 PMCID: PMC5095909 DOI: 10.1042/bst20160166] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022]
Abstract
Twenty years ago, the first description of a tristetraprolin (TTP) knockout mouse highlighted the fundamental role of TTP in the restraint of inflammation. Since then, work from several groups has generated a detailed picture of the expression and function of TTP. It is a sequence-specific RNA-binding protein that orchestrates the deadenylation and degradation of several mRNAs encoding inflammatory mediators. It is very extensively post-translationally modified, with more than 30 phosphorylations that are supported by at least two independent lines of evidence. The phosphorylation of two particular residues, serines 52 and 178 of mouse TTP (serines 60 and 186 of the human orthologue), has profound effects on the expression, function and localisation of TTP. Here, we discuss the control of TTP biology via its phosphorylation and dephosphorylation, with a particular focus on recent advances and on questions that remain unanswered.
Collapse
|
24
|
Wells ML, Perera L, Blackshear PJ. An Ancient Family of RNA-Binding Proteins: Still Important! Trends Biochem Sci 2017; 42:285-296. [PMID: 28096055 DOI: 10.1016/j.tibs.2016.12.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022]
Abstract
RNA-binding proteins are important modulators of mRNA stability, a crucial process that determines the ultimate cellular levels of mRNAs and their encoded proteins. The tristetraprolin (TTP) family of RNA-binding proteins appeared early in the evolution of eukaryotes, and has persisted in modern eukaryotes. The domain structures and biochemical functions of family members from widely divergent lineages are remarkably similar, but their mRNA 'targets' can be very different, even in closely related species. Recent gene knockout studies in species as distantly related as plants, flies, yeasts, and mice have demonstrated crucial roles for these proteins in a wide variety of physiological processes. Inflammatory and hematopoietic phenotypes in mice have suggested potential therapeutic approaches for analogous human disorders.
Collapse
Affiliation(s)
- Melissa L Wells
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; Departments of Biochemistry and Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Rataj F, Planel S, Desroches-Castan A, Le Douce J, Lamribet K, Denis J, Feige JJ, Cherradi N. The cAMP pathway regulates mRNA decay through phosphorylation of the RNA-binding protein TIS11b/BRF1. Mol Biol Cell 2016; 27:3841-3854. [PMID: 27708140 PMCID: PMC5170607 DOI: 10.1091/mbc.e16-06-0379] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 02/01/2023] Open
Abstract
TIS11b belongs to the tristetraprolin family of zinc-finger proteins, which target short-lived mRNA for degradation. This study shows that the cAMP pathway up-regulates TIS11b expression and modulates its function in mRNA decay through PKA-dependent phosphorylation of two highly conserved phosphosites. TPA-inducible sequence 11b/butyrate response factor 1 (TIS11b/BRF1) belongs to the tristetraprolin (TTP) family of zinc-finger proteins, which bind to mRNAs containing AU-rich elements in their 3′-untranslated region and target them for degradation. Regulation of TTP family function through phosphorylation by p38 MAP kinase and Akt/protein kinase B signaling pathways has been extensively studied. In contrast, the role of cAMP-dependent protein kinase (PKA) in the control of TTP family activity in mRNA decay remains largely unknown. Here we show that PKA activation induces TIS11b gene expression and protein phosphorylation. Site-directed mutagenesis combined with kinase assays and specific phosphosite immunodetection identified Ser-54 (S54) and Ser-334 (S334) as PKA target amino acids in vitro and in vivo. Phosphomimetic mutation of the C-terminal S334 markedly increased TIS11b half-life and, unexpectedly, enhanced TIS11b activity on mRNA decay. Examination of protein–protein interactions between TIS11b and components of the mRNA decay machinery revealed that mimicking phosphorylation at S334 enhances TIS11b interaction with the decapping coactivator Dcp1a, while preventing phosphorylation at S334 potentiates its interaction with the Ccr4-Not deadenylase complex subunit Cnot1. Collectively our findings establish for the first time that cAMP-elicited phosphorylation of TIS11b plays a key regulatory role in its mRNA decay-promoting function.
Collapse
Affiliation(s)
- Felicitas Rataj
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Séverine Planel
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Agnès Desroches-Castan
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Juliette Le Douce
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Khadija Lamribet
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Josiane Denis
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale, INSERM U1036, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Biosciences et Biotechnologies de Grenoble, Laboratoire Biologie du Cancer et de l'Infection, and Université Grenoble Alpes, Unité Mixte de Recherche-S1036, F-38000 Grenoble, France
| |
Collapse
|
26
|
Prenzler F, Fragasso A, Schmitt A, Munz B. Functional analysis of ZFP36 proteins in keratinocytes. Eur J Cell Biol 2016; 95:277-84. [PMID: 27182009 DOI: 10.1016/j.ejcb.2016.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/22/2022] Open
Abstract
The ZFP36 family of zinc finger proteins, including ZFP36, ZFP36L1, and ZFP36L2, regulates the production of growth factors and cytokines via destabilization of the respective mRNAs. We could recently demonstrate that in cultured keratinocytes, expression of the ZFP36, ZFP36L1, and ZFP36L2 genes is induced by growth factors and cytokines and that ZFP36L1 is a potent regulator of keratinocyte VEGF production. We now further analyzed the localization and function of ZFP36 proteins in the skin, specifically in epidermal keratinocytes. We found that in human epidermis, the ZFP36 protein could be detected in basal and suprabasal keratinocytes, whereas ZFP36L1 and ZFP36L2 were expressed mainly in the basal layer, indicating different and non-redundant functions of the three proteins in the epidermis. Consistently, upon inhibition of ZFP36 or ZFP36L1 expression using specific siRNAs, there was no major effect on expression of the respective other gene. In addition, we demonstrate that both ZFP36 and ZFP36L1 influence keratinocyte cell cycle, differentiation, and apoptosis in a distinct manner. Finally, we show that similarly as ZFP36L1, ZFP36 is a potent regulator of keratinocyte VEGF production. Thus, it is likely that both proteins regulate angiogenesis via paracrine mechanisms. Taken together, our results suggest that ZFP36 proteins might control reepithelialization and angiogenesis in the skin in a multimodal manner.
Collapse
Affiliation(s)
- Frauke Prenzler
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Annunziata Fragasso
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Angelika Schmitt
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
| | - Barbara Munz
- University Hospital Tübingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany.
| |
Collapse
|
27
|
Effects of Combined Tristetraprolin/Tumor Necrosis Factor Receptor Deficiency on the Splenic Transcriptome. Mol Cell Biol 2016; 36:1395-411. [PMID: 26976640 DOI: 10.1128/mcb.01068-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 12/15/2022] Open
Abstract
Tristetraprolin (TTP) acts by binding to AU-rich elements in certain mRNAs, such as tumor necrosis factor (TNF) mRNA, and increasing their decay rates. TTP knockout mice exhibit a profound inflammatory syndrome that is largely due to increased TNF levels. Although TTP's effects on gene expression have been well studied in cultured cells, little is known about its functions in intact tissues. We performed deep RNA sequencing on spleens from TTP knockout mice that were also deficient in both TNF receptors ("triple knockout" mice) to remove the secondary effects of excess TNF activity. To help identify posttranscriptionally regulated transcripts, we also compared changes in mature mRNA levels to levels of transiently expressed pre-mRNA. In the triple knockout spleens, levels of 3,014 transcripts were significantly affected by 1.5-fold or more, but only a small fraction exhibited differential mRNA/pre-mRNA changes suggestive of increased mRNA stability. Transferrin receptor mRNA, which contains two highly conserved potential TTP binding sites, was significantly upregulated relative to its pre-mRNA. This was reflected in increased transferrin receptor expression and increased splenic iron/hemosiderin deposition. Our results suggest that TTP deficiency has profound effects on the splenic transcriptome, even in the absence of secondary increases in TNF activity.
Collapse
|
28
|
Stumpo DJ, Trempus CS, Tucker CJ, Huang W, Li L, Kluckman K, Bortner DM, Blackshear PJ. Deficiency of the placenta- and yolk sac-specific tristetraprolin family member ZFP36L3 identifies likely mRNA targets and an unexpected link to placental iron metabolism. Development 2016; 143:1424-33. [PMID: 26952984 DOI: 10.1242/dev.130369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022]
Abstract
The ZFP36L3 protein is a rodent-specific, placenta- and yolk sac-specific member of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins. These proteins bind to AU-rich elements in target mRNAs, and promote their deadenylation and decay. We addressed the hypotheses that the absence of ZFP36L3 would result in the accumulation of target transcripts in placenta and/or yolk sac, and that some of these would be important for female reproductive physiology and overall fecundity. Mice deficient in ZFP36L3 exhibited decreased neonatal survival rates, but no apparent morphological changes in the placenta or surviving offspring. We found Zfp36l3 to be paternally imprinted, with profound parent-of-origin effects on gene expression. The protein was highly expressed in the syncytiotrophoblast cells of the labyrinth layer of the placenta, and the epithelial cells of the yolk sac. RNA-Seq of placental mRNA from Zfp36l3 knockout (KO) mice revealed many significantly upregulated transcripts, whereas there were few changes in KO yolk sacs. Many of the upregulated placental transcripts exhibited decreased decay rates in differentiated trophoblast stem cells derived from KO blastocysts. Several dozen transcripts were deemed high probability targets of ZFP36L3; these include proteins known to be involved in trophoblast and placenta physiology. Type 1 transferrin receptor mRNA was unexpectedly decreased in KO placentas, despite an increase in its stability in KO stem cells. This receptor is crucial for placental iron uptake, and its decrease was accompanied by decreased iron stores in the KO fetus, suggesting that this intrauterine deficiency might have deleterious consequences in later life.
Collapse
Affiliation(s)
- Deborah J Stumpo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Carol S Trempus
- Laboratory of Clinical Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Charles J Tucker
- Confocal Microscopy Core, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Weichun Huang
- Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Leping Li
- Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | - Perry J Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
29
|
Chen MT, Dong L, Zhang XH, Yin XL, Ning HM, Shen C, Su R, Li F, Song L, Ma YN, Wang F, Zhao HL, Yu J, Zhang JW. ZFP36L1 promotes monocyte/macrophage differentiation by repressing CDK6. Sci Rep 2015; 5:16229. [PMID: 26542173 PMCID: PMC4635361 DOI: 10.1038/srep16229] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
RNA binding proteins (RBPs)-mediated post-transcriptional control has been implicated in influencing various aspects of RNA metabolism and playing important roles in mammalian development and pathological diseases. However, the functions of specific RBPs and the molecular mechanisms through which they act in monocyte/macrophage differentiation remain to be determined. In this study, through bioinformatics analysis and experimental validation, we identify that ZFP36L1, a member of ZFP36 zinc finger protein family, exhibits significant decrease in acute myeloid leukemia (AML) patients compared with normal controls and remarkable time-course increase during monocyte/macrophage differentiation of PMA-induced THP-1 and HL-60 cells as well as induction culture of CD34+ hematopoietic stem/progenitor cells (HSPCs). Lentivirus-mediated gain and loss of function assays demonstrate that ZFP36L1 acts as a positive regulator to participate in monocyte/macrophage differentiation. Mechanistic investigation further reveals that ZFP36L1 binds to the CDK6 mRNA 3′untranslated region bearing adenine-uridine rich elements and negatively regulates the expression of CDK6 which is subsequently demonstrated to impede the in vitro monocyte/macrophage differentiation of CD34+ HSPCs. Collectively, our work unravels a ZFP36L1-mediated regulatory circuit through repressing CDK6 expression during monocyte/macrophage differentiation, which may also provide a therapeutic target for AML therapy.
Collapse
Affiliation(s)
- Ming-Tai Chen
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lei Dong
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Xin-Hua Zhang
- Haematology Department, the 303 Hospital, Nanning, China
| | - Xiao-Lin Yin
- Haematology Department, the 303 Hospital, Nanning, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Science, Beijing, China
| | - Chao Shen
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Rui Su
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Feng Li
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Li Song
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan-Ni Ma
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Fang Wang
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Hua-Lu Zhao
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jun-Wu Zhang
- The State Key Laboratory of Medical Molecular Biology and the Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
30
|
Gingerich TJ, Stumpo DJ, Lai WS, Randall TA, Steppan SJ, Blackshear PJ. Emergence and evolution of Zfp36l3. Mol Phylogenet Evol 2015; 94:518-530. [PMID: 26493225 DOI: 10.1016/j.ympev.2015.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022]
Abstract
In most mammals, the Zfp36 gene family consists of three conserved members, with a fourth member, Zfp36l3, present only in rodents. The ZFP36 proteins regulate post-transcriptional gene expression at the level of mRNA stability in organisms from humans to yeasts, and appear to be expressed in all major groups of eukaryotes. In Mus musculus, Zfp36l3 expression is limited to the placenta and yolk sac, and is important for overall fecundity. We sequenced the Zfp36l3 gene from more than 20 representative species, from members of the Muridae, Cricetidae and Nesomyidae families. Zfp36l3 was not present in Dipodidae, or any families that branched earlier, indicating that this gene is exclusive to the Muroidea superfamily. We provide evidence that Zfp36l3 arose by retrotransposition of an mRNA encoded by a related gene, Zfp36l2 into an ancestral rodent X chromosome. Zfp36l3 has evolved rapidly since its origin, and numerous modifications have developed, including variations in start codon utilization, de novo intron formation by mechanisms including a nested retrotransposition, and the insertion of distinct repetitive regions. One of these repeat regions, a long alanine rich-sequence, is responsible for the full-time cytoplasmic localization of Mus musculus ZFP36L3. In contrast, this repeat sequence is lacking in Peromyscus maniculatus ZFP36L3, and this protein contains a novel nuclear export sequence that controls shuttling between the nucleus and cytosol. Zfp36l3 is an example of a recently acquired, rapidly evolving gene, and its various orthologues illustrate several different mechanisms by which new genes emerge and evolve.
Collapse
Affiliation(s)
- Timothy J Gingerich
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Deborah J Stumpo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Wi S Lai
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Thomas A Randall
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Scott J Steppan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Perry J Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Newman R, McHugh J, Turner M. RNA binding proteins as regulators of immune cell biology. Clin Exp Immunol 2015. [PMID: 26201441 DOI: 10.1111/cei.12684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sequence-specific RNA binding proteins (RBP) are important regulators of the immune response. RBP modulate gene expression by regulating splicing, polyadenylation, localization, translation and decay of target mRNAs. Increasing evidence suggests that RBP play critical roles in the development, activation and function of lymphocyte populations in the immune system. This review will discuss the post-transcriptional regulation of gene expression by RBP during lymphocyte development, with particular focus on the Tristetraprolin family of RBP.
Collapse
Affiliation(s)
- R Newman
- Babraham Institute, Cambridge, UK
| | - J McHugh
- Babraham Institute, Cambridge, UK
| | - M Turner
- Babraham Institute, Cambridge, UK
| |
Collapse
|
32
|
Wang KT, Wang HH, Wu YY, Su YL, Chiang PY, Lin NY, Wang SC, Chang GD, Chang CJ. Functional regulation of Zfp36l1 and Zfp36l2 in response to lipopolysaccharide in mouse RAW264.7 macrophages. JOURNAL OF INFLAMMATION-LONDON 2015; 12:42. [PMID: 26180518 PMCID: PMC4502546 DOI: 10.1186/s12950-015-0088-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/25/2015] [Indexed: 01/07/2023]
Abstract
Background The tristetraprolin (TTP) family of mRNA-binding proteins contains three major members, Ttp, Zfp36l1, and Zfp36l2. Ttp down-regulates the stability of AU-rich element–containing mRNAs and functions as an anti-inflammation regulator. Methods To examine whether other TTP family proteins also play roles in the inflammatory response, their expression profiles and the possible mRNA targets were determined in the knockdown cells. Results Ttp mRNA and protein were highly induced by lipopolysaccharide (LPS), whereas Zfp36l1 and Zfp36l2 mRNAs were down-regulated and their proteins were phosphorylated during early lipopolysaccharide stimulation. Biochemical and functional analyses exhibited that the decrease of Zfp36l2 mRNA was cross-regulated by Ttp. Knockdown of Zfp36l1 and Zfp36l2 increased the basal level of Mkp-1 mRNAs by prolonging its half-life. Increasing the expression of Mkp-1 inhibited the activation of p38 MAPK under lipopolysaccharide stimulation and down-regulated Tnfα, and Ttp mRNA. In addition, hyper-phosphorylation of Zfp36l1 might stabilize Mkp-1 expression by forming a complex with the adapter protein 14-3-3 and decreasing the interaction with deadenylase Caf1a. Conclusions Our findings imply that the expression and phosphorylation of Zfp36l1 and Zfp36l2 may modulate the basal level of Mkp-1 mRNA to control p38 MAPK activity during lipopolysaccharide stimulation, which would affect the inflammatory mediators production. Zfp36l1 and Zfp36l2 are important regulators of the innate immune response. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0088-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kuan-Ting Wang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No.1 Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan
| | - Hsin-Hui Wang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Road, Beitou District, Taipei, 112 Taiwan ; Department of Pediatrics, Faculty of Medicine, School of Medicine, and Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, No.155, Sec.2, Linong Street, Beitou District, Taipei, 112 Taiwan
| | - Yan-Yun Wu
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No.1 Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan
| | - Yu-Lun Su
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No.1 Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan
| | - Pei-Yu Chiang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No.1 Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan
| | - Nien-Yi Lin
- Institute of Biological Chemistry, Academia Sinica, No.128, Sec.2, Academia Road, Nankang, Taipei, 11529 Taiwan
| | - Shun-Chang Wang
- Institute of Biological Chemistry, Academia Sinica, No.128, Sec.2, Academia Road, Nankang, Taipei, 11529 Taiwan
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No.1 Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan
| | - Ching-Jin Chang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No.1 Sec. 4 Roosevelt Road, Taipei, 10617 Taiwan ; Institute of Biological Chemistry, Academia Sinica, No.128, Sec.2, Academia Road, Nankang, Taipei, 11529 Taiwan
| |
Collapse
|
33
|
Blackshear PJ, Perera L. Phylogenetic distribution and evolution of the linked RNA-binding and NOT1-binding domains in the tristetraprolin family of tandem CCCH zinc finger proteins. J Interferon Cytokine Res 2015; 34:297-306. [PMID: 24697206 DOI: 10.1089/jir.2013.0150] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In humans, the tristetraprolin or TTP family of CCCH tandem zinc finger (TZF) proteins comprises 3 members, encoded by the genes ZFP36, ZFP36L1, and ZFP36L2. These proteins have direct orthologues in essentially all vertebrates studied, with the exception of birds, which appear to lack a version of ZFP36. Additional family members are found in rodents, amphibians, and fish. In general, the encoded proteins contain 2 critical macromolecular interaction domains: the CCCH TZF domain, which is necessary for high-affinity binding to AU-rich elements in mRNA; and an extreme C-terminal domain that, in the case of TTP, interacts with NOT1, the scaffold of a large multi-protein complex that contains deadenylases. TTP and its related proteins act by first binding to AU-rich elements in mRNA, and then recruiting deadenylases to the mRNA, where they can processively remove the adenosine residues from the poly(A) tail. Highly conserved TZF domains have been found in unicellular eukaryotes such as yeasts, and these domains can bind AU-rich elements that resemble those bound by the mammalian proteins. However, certain fungi appear to lack proteins with intact TZF domains, and the TTP family proteins that are expressed in other fungi often lack the characteristic C-terminal NOT1 binding domain found in the mammalian proteins. For these reasons, we investigated the phylogenetic distribution of the relevant sequences in available databases. Both domains are present in family member proteins from most lineages of eukaryotes, suggesting their mutual presence in a common ancestor. However, the vertebrate type of NOT1-binding domain is missing in most fungi, and the TZF domain itself has disappeared or degenerated in recently evolved fungi. Nonetheless, both domains are present together in the proteins from several unicellular eukaryotes, including at least 1 fungus, and they seem to have remained together during the evolution of metazoans.
Collapse
Affiliation(s)
- Perry J Blackshear
- 1 Laboratories of Signal Transduction, National Institute of Environmental Health Sciences , Research Triangle Park, North Carolina
| | | |
Collapse
|
34
|
Qiu LQ, Lai WS, Bradbury A, Zeldin DC, Blackshear PJ. Tristetraprolin (TTP) coordinately regulates primary and secondary cellular responses to proinflammatory stimuli. J Leukoc Biol 2015; 97:723-36. [PMID: 25657290 DOI: 10.1189/jlb.3a0214-106r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TTP is an anti-inflammatory protein that acts by binding to AREs in its target mRNAs, such as Tnf mRNA, and promoting their deadenylation and decay. TNF released from inflammatory cells can then stimulate gene expression in tissue cells, such as fibroblasts. To determine whether TTP could affect the decay of TNF-induced transcripts in fibroblasts, we exposed primary embryonic fibroblasts and stable fibroblast cell lines, derived from WT and TTP KO mice, to TNF. The decay rates of transcripts encoded by several early-response genes, including Cxcl1, Cxcl2, Ier3, Ptgs2, and Lif, were significantly slowed in TTP-deficient fibroblasts after TNF stimulation. These changes were associated with TTP-dependent increases in CXCL1, CXCL2, and IER3 protein levels. The TTP-susceptible transcripts contained multiple, conserved, closely spaced, potential TTP binding sites in their 3'-UTRs. WT TTP, but not a nonbinding TTP zinc finger mutant, bound to RNA probes that were based on the mRNA sequences of Cxcl1, Cxcl2, Ptgs2, and Lif. TTP-promoted decay of transcripts encoding chemokines and other proinflammatory mediators is thus a critical post-transcriptional regulatory mechanism in the response of secondary cells, such as fibroblasts, to TNF released from primary immune cells.
Collapse
Affiliation(s)
- Lian-Qun Qiu
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Wi S Lai
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Alyce Bradbury
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Darryl C Zeldin
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Perry J Blackshear
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
35
|
Choi YJ, Lai WS, Fedic R, Stumpo DJ, Huang W, Li L, Perera L, Brewer BY, Wilson GM, Mason JM, Blackshear PJ. The Drosophila Tis11 protein and its effects on mRNA expression in flies. J Biol Chem 2014; 289:35042-60. [PMID: 25342740 DOI: 10.1074/jbc.m114.593491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the mammalian tristetraprolin family of CCCH tandem zinc finger proteins can bind to certain AU-rich elements (AREs) in mRNAs, leading to their deadenylation and destabilization. Mammals express three or four members of this family, but Drosophila melanogaster and other insects appear to contain a single gene, Tis11. We found that recombinant Drosophila Tis11 protein could bind to ARE-containing RNA oligonucleotides with low nanomolar affinity. Remarkably, co-expression in mammalian cells with "target" RNAs demonstrated that Tis11 could promote destabilization of ARE-containing mRNAs and that this was partially dependent on a conserved C-terminal sequence resembling the mammalian NOT1 binding domain. Drosophila Tis11 promoted both deadenylation and decay of a target transcript in this heterologous cell system. We used chromosome deletion/duplication and P element insertion to produce two types of Tis11 deficiency in adult flies, both of which were viable and fertile. To address the hypothesis that Tis11 deficiency would lead to the abnormal accumulation of potential target transcripts, we analyzed gene expression in adult flies by deep mRNA sequencing. We identified 69 transcripts from 56 genes that were significantly up-regulated more than 1.5-fold in both types of Tis11-deficient flies. Ten of the up-regulated transcripts encoded probable proteases, but many other functional classes of proteins were represented. Many of the up-regulated transcripts contained potential binding sites for tristetraprolin family member proteins that were conserved in other Drosophila species. Tis11 is thus an ARE-binding, mRNA-destabilizing protein that may play a role in post-transcriptional gene expression in Drosophila and other insects.
Collapse
Affiliation(s)
| | - Wi S Lai
- From the Laboratories of Signal Transduction
| | | | | | | | | | - Lalith Perera
- Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Brandy Y Brewer
- the Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland 21201, and
| | - Gerald M Wilson
- the Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland 21201, and
| | | | - Perry J Blackshear
- From the Laboratories of Signal Transduction, the Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
36
|
Hyatt LD, Wasserman GA, Rah YJ, Matsuura KY, Coleman FT, Hilliard KL, Pepper-Cunningham ZA, Ieong M, Stumpo DJ, Blackshear PJ, Quinton LJ, Mizgerd JP, Jones MR. Myeloid ZFP36L1 does not regulate inflammation or host defense in mouse models of acute bacterial infection. PLoS One 2014; 9:e109072. [PMID: 25299049 PMCID: PMC4192124 DOI: 10.1371/journal.pone.0109072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022] Open
Abstract
Zinc finger protein 36, C3H type-like 1 (ZFP36L1) is one of several Zinc Finger Protein 36 (Zfp36) family members, which bind AU rich elements within 3' untranslated regions (UTRs) to negatively regulate the post-transcriptional expression of targeted mRNAs. The prototypical member of the family, Tristetraprolin (TTP or ZFP36), has been well-studied in the context of inflammation and plays an important role in repressing pro-inflammatory transcripts such as TNF-α. Much less is known about the other family members, and none have been studied in the context of infection. Using macrophage cell lines and primary alveolar macrophages we demonstrated that, like ZFP36, ZFP36L1 is prominently induced by infection. To test our hypothesis that macrophage production of ZFP36L1 is necessary for regulation of the inflammatory response of the lung during pneumonia, we generated mice with a myeloid-specific deficiency of ZFP36L1. Surprisingly, we found that myeloid deficiency of ZFP36L1 did not result in alteration of lung cytokine production after infection, altered clearance of bacteria, or increased inflammatory lung injury. Although alveolar macrophages are critical components of the innate defense against respiratory pathogens, we concluded that myeloid ZFP36L1 is not essential for appropriate responses to bacteria in the lungs. Based on studies conducted with myeloid-deficient ZFP36 mice, our data indicate that, of the Zfp36 family, ZFP36 is the predominant negative regulator of cytokine expression in macrophages. In conclusion, these results imply that myeloid ZFP36 may fully compensate for loss of ZFP36L1 or that Zfp36l1-dependent mRNA expression does not play an integral role in the host defense against bacterial pneumonia.
Collapse
Affiliation(s)
- Lynnae D. Hyatt
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory A. Wasserman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yoon J. Rah
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kori Y. Matsuura
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Fadie T. Coleman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kristie L. Hilliard
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Michael Ieong
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Deborah J. Stumpo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lee J. Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew R. Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Zekavati A, Nasir A, Alcaraz A, Aldrovandi M, Marsh P, Norton JD, Murphy JJ. Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells. PLoS One 2014; 9:e102625. [PMID: 25014217 PMCID: PMC4094554 DOI: 10.1371/journal.pone.0102625] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/22/2014] [Indexed: 12/25/2022] Open
Abstract
The human ZFP36 zinc finger protein family consists of ZFP36, ZFP36L1, and ZFP36L2. These proteins regulate various cellular processes, including cell apoptosis, by binding to adenine uridine rich elements in the 3' untranslated regions of sets of target mRNAs to promote their degradation. The pro-apoptotic and other functions of ZFP36 family members have been implicated in the pathogenesis of lymphoid malignancies. To identify candidate mRNAs that are targeted in the pro-apoptotic response by ZFP36L1, we reverse-engineered a gene regulatory network for all three ZFP36 family members using the 'maximum information coefficient' (MIC) for target gene inference on a large microarray gene expression dataset representing cells of diverse histological origin. Of the three inferred ZFP36L1 mRNA targets that were identified, we focussed on experimental validation of mRNA for the pro-survival protein, BCL2, as a target for ZFP36L1. RNA electrophoretic mobility shift assay experiments revealed that ZFP36L1 interacted with the BCL2 adenine uridine rich element. In murine BCL1 leukemia cells stably transduced with a ZFP36L1 ShRNA lentiviral construct, BCL2 mRNA degradation was significantly delayed compared to control lentiviral expressing cells and ZFP36L1 knockdown in different cell types (BCL1, ACHN, Ramos), resulted in increased levels of BCL2 mRNA levels compared to control cells. 3' untranslated region luciferase reporter assays in HEK293T cells showed that wild type but not zinc finger mutant ZFP36L1 protein was able to downregulate a BCL2 construct containing the BCL2 adenine uridine rich element and removal of the adenine uridine rich core from the BCL2 3' untranslated region in the reporter construct significantly reduced the ability of ZFP36L1 to mediate this effect. Taken together, our data are consistent with ZFP36L1 interacting with and mediating degradation of BCL2 mRNA as an important target through which ZFP36L1 mediates its pro-apoptotic effects in malignant B-cells.
Collapse
Affiliation(s)
- Anna Zekavati
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
| | - Asghar Nasir
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
| | - Amor Alcaraz
- Department of Biomedical Sciences, University of Westminster, London, United Kingdom
| | - Maceler Aldrovandi
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
| | - Phil Marsh
- Division of Endocrinology, King's College London, London, United Kingdom
| | - John D. Norton
- School of Biological Sciences, University of Essex, Colchester, Essex, United Kingdom
| | - John J. Murphy
- Division of Immunology, Infection and Inflammatory Disease, King's College London, London, United Kingdom
- Department of Biomedical Sciences, University of Westminster, London, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Cao H, Deterding LJ, Blackshear PJ. Identification of a major phosphopeptide in human tristetraprolin by phosphopeptide mapping and mass spectrometry. PLoS One 2014; 9:e100977. [PMID: 25010646 PMCID: PMC4091943 DOI: 10.1371/journal.pone.0100977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/02/2014] [Indexed: 11/18/2022] Open
Abstract
Tristetraprolin/zinc finger protein 36 (TTP/ZFP36) binds and destabilizes some pro-inflammatory cytokine mRNAs. TTP-deficient mice develop a profound inflammatory syndrome due to excessive production of pro-inflammatory cytokines. TTP expression is induced by various factors including insulin and extracts from cinnamon and green tea. TTP is highly phosphorylated in vivo and is a substrate for several protein kinases. Multiple phosphorylation sites are identified in human TTP, but it is difficult to assign major vs. minor phosphorylation sites. This study aimed to generate additional information on TTP phosphorylation using phosphopeptide mapping and mass spectrometry (MS). Wild-type and site-directed mutant TTP proteins were expressed in transfected human cells followed by in vivo radiolabeling with [32P]-orthophosphate. Histidine-tagged TTP proteins were purified with Ni-NTA affinity beads and digested with trypsin and lysyl endopeptidase. The digested peptides were separated by C18 column with high performance liquid chromatography. Wild-type and all mutant TTP proteins were localized in the cytosol, phosphorylated extensively in vivo and capable of binding to ARE-containing RNA probes. Mutant TTP with S90 and S93 mutations resulted in the disappearance of a major phosphopeptide peak. Mutant TTP with an S197 mutation resulted in another major phosphopeptide peak being eluted earlier than the wild-type. Additional mutations at S186, S296 and T271 exhibited little effect on phosphopeptide profiles. MS analysis identified the peptide that was missing in the S90 and S93 mutant protein as LGPELSPSPTSPTATSTTPSR (corresponding to amino acid residues 83–103 of human TTP). MS also identified a major phosphopeptide associated with the first zinc-finger region. These analyses suggest that the tryptic peptide containing S90 and S93 is a major phosphopeptide in human TTP.
Collapse
Affiliation(s)
- Heping Cao
- U. S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Leesa J. Deterding
- Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America and Departments of Biochemistry and Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
39
|
Lai WS, Perera L, Hicks SN, Blackshear PJ. Mutational and structural analysis of the tandem zinc finger domain of tristetraprolin. J Biol Chem 2013; 289:565-80. [PMID: 24253039 DOI: 10.1074/jbc.m113.466326] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tristetraprolin (TTP), the best known member of a class of tandem (R/K)YKTELCX8CX5CX3H zinc finger proteins, can destabilize target mRNAs by first binding to AU-rich elements (AREs) in their 3'-untranslated regions (UTRs) and subsequently promoting deadenylation and ultimate destruction of those mRNAs. This study sought to determine the roles of selected amino acids in the RNA binding domain, known as the tandem zinc finger (TZF) domain, in the ability of the full-length protein to bind to AREs within the tumor necrosis factor α (TNF) mRNA 3'-UTR. Within the CX8C region of the TZF domain, mutation of some of the residues specific to TTP, not found in other members of the TTP protein family, resulted in decreased binding to RNA as well as inhibited mRNA deadenylation and decay. Evaluation of simulation solution models revealed a distinct structure in the second zinc finger of TTP that was induced by the presence of these TTP-specific residues. In addition, mutations within the lead-in sequences preceding the first C of highly conserved residues within the CX5C or CX3H regions or within the linker region between the two fingers also perturbed both RNA binding and the simulation model of the TZF domain in complex with RNA. We conclude that, although the majority of conserved residues within the TZF domain of TTP are required for productive binding, not all residues at sequence-equivalent positions in the two zinc fingers of the TZF domain of TTP are functionally equivalent.
Collapse
Affiliation(s)
- Wi S Lai
- From the Laboratories of Signal Transduction and
| | | | | | | |
Collapse
|
40
|
Twyffels L, Wauquier C, Soin R, Decaestecker C, Gueydan C, Kruys V. A masked PY-NLS in Drosophila TIS11 and its mammalian homolog tristetraprolin. PLoS One 2013; 8:e71686. [PMID: 23951221 PMCID: PMC3739726 DOI: 10.1371/journal.pone.0071686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/07/2013] [Indexed: 12/11/2022] Open
Abstract
Many RNA-binding proteins (RBPs) dynamically shuttle between the nucleus and the cytoplasm, often exerting different functions in each compartment. Therefore, the nucleo-cytoplasmic distribution of RBPs has a strong impact on their activity. Here we describe the localization and the shuttling properties of the tandem zinc finger RBP dTIS11, which is the Drosophila homolog of mammalian TIS11 proteins. Drosophila and mammalian TIS11 proteins act as destabilizing factors in ARE-mediated decay. At equilibrium, dTIS11 is concentrated mainly in the cytoplasm. We show that dTIS11 is a nucleo-cytoplasmic shuttling protein whose nuclear export is mediated by the exportin CRM1 through the recognition of a nuclear export signal (NES) located in a different region comparatively to its mammalian homologs. We also identify a cryptic Transportin-dependent PY nuclear localization signal (PY-NLS) in the tandem zinc finger region of dTIS11 and show that it is conserved across the TIS11 protein family. This NLS partially overlaps the second zinc finger ZnF2. Importantly, mutations disrupting the capacity of the ZnF2 to coordinate a Zinc ion unmask dTIS11 and TTP NLS and promote nuclear import. All together, our results indicate that the nuclear export of TIS11 proteins is mediated by CRM1 through diverging NESs, while their nuclear import mechanism may rely on a highly conserved PY-NLS whose activity is negatively regulated by ZnF2 folding.
Collapse
Affiliation(s)
- Laure Twyffels
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| | - Corinne Wauquier
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Romuald Soin
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Christine Decaestecker
- Center for Microscopy and Molecular Imaging, Gosselies, Belgium
- Laboratory of Image Synthesis and Analysis - Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| |
Collapse
|
41
|
Lai WS, Stumpo DJ, Kennington EA, Burkholder AB, Ward JM, Fargo DL, Blackshear PJ. Life without TTP: apparent absence of an important anti-inflammatory protein in birds. Am J Physiol Regul Integr Comp Physiol 2013; 305:R689-700. [PMID: 23904106 DOI: 10.1152/ajpregu.00310.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both innate and adaptive immunity in birds are different from their mammalian counterparts. Understanding bird immunity is important because of the enormous potential impact of avian infectious diseases, both in their role as food animals and as potential carriers of zoonotic diseases in man. The anti-inflammatory protein tristetraprolin (TTP) is an important component of the mammalian innate immune response, in that it binds to and destabilizes key cytokine mRNAs. TTP knockout mice exhibit a severe systemic inflammatory syndrome, and they are abnormally sensitive to innate immune stimuli such as LPS. TTP orthologs have been found in most vertebrates studied, including frogs. Here, we attempted to identify TTP orthologs in chicken and other birds, using database searches and deep mRNA sequencing. Although sequences encoding the two other widely expressed TTP family members, ZFP36L1 and ZFP36L2, were identified, we did not find sequences corresponding to TTP in any bird species. Sequences corresponding to TTP were identified in both lizards and alligators, close evolutionary relatives of birds. The induction kinetics of Zfp36l1 and Zfp36l2 mRNAs in LPS-stimulated chicken macrophages or serum-stimulated chick embryo fibroblasts did not resemble the normal mammalian TTP response to these stimuli, suggesting that the other two family members might not compensate for the TTP deficiency in regulating rapidly induced mRNA targets. Several mammalian TTP target transcripts have chicken counterparts that contain one or more potential TTP binding sites, raising the possibility that birds express other proteins that subsume TTP's function as a rapidly inducible regulator of AU-rich element (ARE)-dependent mRNA turnover.
Collapse
Affiliation(s)
- Wi S Lai
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | | | | | | |
Collapse
|
42
|
Fabian MR, Frank F, Rouya C, Siddiqui N, Lai WS, Karetnikov A, Blackshear PJ, Nagar B, Sonenberg N. Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat Struct Mol Biol 2013; 20:735-9. [PMID: 23644599 PMCID: PMC4811204 DOI: 10.1038/nsmb.2572] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/19/2013] [Indexed: 12/27/2022]
Abstract
Tristetraprolin (TTP) is an RNA-binding protein that controls the inflammatory response by limiting the expression of several proinflammatory cytokines. TTP post-transcriptionally represses gene expression by interacting with AU-rich elements (AREs) in 3' untranslated regions of target mRNAs and subsequently engenders their deadenylation and decay. TTP accomplishes these tasks, at least in part, by recruiting the multisubunit CCR4-NOT deadenylase complex to the mRNA. Here we identify an evolutionarily conserved C-terminal motif in human TTP that directly binds a central domain of CNOT1, a core subunit of the CCR4-NOT complex. A high-resolution crystal structure of the TTP-CNOT1 complex was determined, providing the first structural insight, to our knowledge, into an ARE-binding protein bound to the CCR4-NOT complex. Mutations at the CNOT1-TTP interface impair TTP-mediated deadenylation, demonstrating the significance of this interaction in TTP-mediated gene silencing.
Collapse
MESH Headings
- Binding Sites
- Crystallography, X-Ray
- Humans
- Models, Biological
- Models, Molecular
- Mutagenesis, Site-Directed
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/chemistry
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Protein Binding
- Protein Conformation
- Receptors, CCR4/chemistry
- Receptors, CCR4/metabolism
- Ribonucleases/chemistry
- Ribonucleases/metabolism
- Tristetraprolin/chemistry
- Tristetraprolin/metabolism
Collapse
Affiliation(s)
- Marc R. Fabian
- Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital. Montréal, Quebec, Canada
- Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Filipp Frank
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Christopher Rouya
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Nadeem Siddiqui
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Wi S. Lai
- Laboratory of Signal Transduction, National Institute of Environmental Health Science,, NC, USA
| | - Alexey Karetnikov
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Science,, NC, USA
| | - Bhushan Nagar
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Ciais D, Cherradi N, Feige JJ. Multiple functions of tristetraprolin/TIS11 RNA-binding proteins in the regulation of mRNA biogenesis and degradation. Cell Mol Life Sci 2013; 70:2031-44. [PMID: 22968342 PMCID: PMC11113850 DOI: 10.1007/s00018-012-1150-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 02/06/2023]
Abstract
Members of the tristetraprolin (TTP/TIS11) family are important RNA-binding proteins initially characterized as mediators of mRNA degradation. They act via their interaction with AU-rich elements present in the 3'UTR of regulated transcripts. However, it is progressively appearing that the different steps of mRNA processing and fate including transcription, splicing, polyadenylation, translation, and degradation are coordinately regulated by multifunctional integrator proteins that possess a larger panel of functions than originally anticipated. Tristetraprolin and related proteins are very good examples of such integrators. This review gathers the present knowledge on the functions of this family of RNA-binding proteins, including their role in AU-rich element-mediated mRNA decay and focuses on recent advances that support the concept of their broader involvement in distinct steps of mRNA biogenesis and degradation.
Collapse
Affiliation(s)
- Delphine Ciais
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| | - Nadia Cherradi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| | - Jean-Jacques Feige
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1036, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV)/Biologie du Cancer et de l’Infection (BCI), 38054 Grenoble, France
- Université Joseph Fourier-Grenoble 1, 38041 Grenoble, France
| |
Collapse
|
44
|
Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:666-79. [PMID: 23428348 PMCID: PMC3752887 DOI: 10.1016/j.bbagrm.2013.02.003] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
Abstract
Changes in mRNA stability and translation are critical control points in the regulation of gene expression, particularly genes encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenosine and uridine (AU)-rich elements (ARE), often located in the 3' untranslated regions (3'UTR) of mRNAs, are known to target transcripts for rapid decay. They are also involved in the regulation of mRNA stability and translation in response to extracellular cues. This review focuses on one of the best characterized ARE binding proteins, tristetraprolin (TTP), the founding member of a small family of CCCH tandem zinc finger proteins. In this survey, we have reviewed the current status of TTP interactions with mRNA and proteins, and discussed current thinking about TTP's mechanism of action to promote mRNA decay. We also review the proposed regulation of TTP's functions by phosphorylation. Finally, we have discussed emerging evidence for TTP operating as a translational regulator. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Seth A. Brooks
- Veterans Affairs Medical Center, White River Junction, Vermont, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
45
|
Hochdörfer T, Tiedje C, Stumpo DJ, Blackshear PJ, Gaestel M, Huber M. LPS-induced production of TNF-α and IL-6 in mast cells is dependent on p38 but independent of TTP. Cell Signal 2013; 25:1339-47. [PMID: 23499908 DOI: 10.1016/j.cellsig.2013.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/26/2013] [Indexed: 02/08/2023]
Abstract
The production of the proinflammatory cytokines TNF-α and IL-6 is regulated by various mRNA-binding proteins, influencing stability and translation of the respective transcripts. Research in macrophages has shown the importance of the p38-MK2-tristetraprolin (TTP) axis for regulation of TNF-α mRNA stability and translation. In the current study we examined a possible involvement of p38 and TTP in LPS-induced cytokine production in bone marrow-derived mast cells (BMMCs). Using pharmacological inhibitors we initially found a strong dependence of LPS-induced TNF-α and IL-6 production on p38 activation, whereas activation of the Erk pathway appeared dispensable. LPS treatment also induced p38-dependent expression of the TTP gene. This prompted us to analyze the proinflammatory cytokine response in BMMCs generated from TTP-deficient mice. Unexpectedly, there were no significant differences in cytokine production between TTP-deficient and WT BMMCs in response to LPS. Gene expression and cytokine production of TNF-α and IL-6 as well as stability of the TNF-α transcript were comparable between TTP-deficient and WT BMMCs. In contrast to TTP mRNA expression, TTP protein expression could not be detected in BMMCs. While we successfully precipitated and detected TTP from lysates of LPS-stimulated RAW 264.7 macrophages, this was not accomplished from BMMC lysates. In contrast, we found mRNA and protein expressions of the other TIS11 family members connected to regulation of mRNA stability, BRF1 and BRF2, and detected their interaction with 14-3-3 proteins. These data suggest that control of cytokine mRNA stability and translation in MCs is exerted by proteins different from TTP.
Collapse
Affiliation(s)
- Thomas Hochdörfer
- RWTH Aachen University, Medical Faculty, Institute of Biochemistry and Molecular Immunology, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. PLANT PHYSIOLOGY 2013; 161:1202-16. [PMID: 23296688 PMCID: PMC3585590 DOI: 10.1104/pp.112.205385] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 01/02/2013] [Indexed: 05/19/2023]
Abstract
OsTZF1 is a member of the CCCH-type zinc finger gene family in rice (Oryza sativa). Expression of OsTZF1 was induced by drought, high-salt stress, and hydrogen peroxide. OsTZF1 gene expression was also induced by abscisic acid, methyl jasmonate, and salicylic acid. Histochemical activity of β-glucuronidase in transgenic rice plants containing the promoter of OsTZF1 fused with β-glucuronidase was observed in callus, coleoptile, young leaf, and panicle tissues. Upon stress, OsTZF1-green fluorescent protein localization was observed in the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF1 driven by a maize (Zea mays) ubiquitin promoter (Ubi:OsTZF1-OX [for overexpression]) exhibited delayed seed germination, growth retardation at the seedling stage, and delayed leaf senescence. RNA interference (RNAi) knocked-down plants (OsTZF1-RNAi) showed early seed germination, enhanced seedling growth, and early leaf senescence compared with controls. Ubi:OsTZF1-OX plants showed improved tolerance to high-salt and drought stresses and vice versa for OsTZF1-RNAi plants. Microarray analysis revealed that genes related to stress, reactive oxygen species homeostasis, and metal homeostasis were regulated in the Ubi:OsTZF1-OX plants. RNA-binding assays indicated that OsTZF1 binds to U-rich regions in the 3' untranslated region of messenger RNAs, suggesting that OsTZF1 might be associated with RNA metabolism of stress-responsive genes. OsTZF1 may serve as a useful biotechnological tool for the improvement of stress tolerance in various plants through the control of RNA metabolism of stress-responsive genes.
Collapse
|
47
|
Tréguer K, Faucheux C, Veschambre P, Fédou S, Thézé N, Thiébaud P. Comparative functional analysis of ZFP36 genes during Xenopus development. PLoS One 2013; 8:e54550. [PMID: 23342169 PMCID: PMC3546996 DOI: 10.1371/journal.pone.0054550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 12/14/2012] [Indexed: 01/12/2023] Open
Abstract
ZFP36 constitutes a small family of RNA binding proteins (formerly known as the TIS11 family) that target mRNA and promote their degradation. In mammals, ZFP36 proteins are encoded by four genes and, although they show similar activities in a cellular RNA destabilization assay, there is still a limited knowledge of their mRNA targets and it is not known whether or not they have redundant functions. In the present work, we have used the Xenopus embryo, a model system allowing gain- and loss-of-function studies, to investigate, whether individual ZFP36 proteins had distinct or redundant functions. We show that overexpression of individual amphibian zfp36 proteins leads to embryos having the same defects, with alteration in somites segmentation and pronephros formation. In these embryos, members of the Notch signalling pathway such as hairy2a or esr5 mRNA are down-regulated, suggesting common targets for the different proteins. We also show that mouse Zfp36 protein overexpression gives the same phenotype, indicating an evolutionary conserved property among ZFP36 vertebrate proteins. Morpholino oligonucleotide-induced loss-of-function leads to defects in pronephros formation, reduction in tubule size and duct coiling alterations for both zfp36 and zfp36l1, indicating no functional redundancy between these two genes. Given the conservation in gene structure and function between the amphibian and mammalian proteins and the conserved mechanisms for pronephros development, our study highlights a potential and hitherto unreported role of ZFP36 gene in kidney morphogenesis.
Collapse
|
48
|
Damgaard CK, Lykke-Andersen J. Regulation of ARE-mRNA Stability by Cellular Signaling: Implications for Human Cancer. Cancer Treat Res 2013; 158:153-80. [PMID: 24222358 DOI: 10.1007/978-3-642-31659-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During recent years, it has become clear that regulation of mRNA stability is an important event in the control of gene expression. The stability of a large class of mammalian mRNAs is regulated by AU-rich elements (AREs) located in the mRNA 3' UTRs. mRNAs with AREs are inherently labile but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression. These tightly regulated mRNAs include many that encode growth factors, proto-oncogenes, cytokines, and cell cycle regulators. Failure to properly regulate their stability can therefore lead to uncontrolled expression of factors associated with cell proliferation and has been implicated in several human cancers. A number of transfactors that recognize AREs and regulate the translation and degradation of ARE-mRNAs have been identified. These transfactors are regulated by signal transduction pathways, which are often misregulated in cancers. This chapter focuses on the function of ARE-binding proteins with an emphasis on their regulation by signaling pathways and the implications for human cancer.
Collapse
|
49
|
Xia YJ, Zhao SH, Mao BY. Involvement of XZFP36L1, an RNA-binding protein, in Xenopus neural development. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:E82-8. [PMID: 23266986 DOI: 10.3724/sp.j.1141.2012.e05-06e82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Xenopus ZFP36L1 (zinc finger protein 36, C3H type-like 1) belongs to the ZFP36 family of RNA-binding proteins, which contains two characteristic tandem CCCH-type zinc-finger domains. The ZFP36 proteins can bind AU-rich elements in 3' untranslated regions of target mRNAs and promote their turnover. However, the expression and role of ZFP36 genes during neural development in Xenopus embryos remains largely unknown. The present study showed that Xenopus ZFP36L1 was expressed at the dorsal part of the forebrain, forebrain-midbrain boundary, and midbrain-hindbrain boundary from late neurula stages to tadpole stages of embryonic development. Overexpression of XZFP36L1 in Xenopus embryos inhibited neural induction and differentiation, leading to severe neural tube defects. The function of XZP36L1 requires both its zinc finger and C terminal domains, which also affect its subcellular localization. These results suggest that XZFP36L1 is likely involved in neural development in Xenopus and might play an important role in post-transcriptional regulation.
Collapse
Affiliation(s)
- Ying-Jie Xia
- Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
| | | | | |
Collapse
|
50
|
ZFP36L1 negatively regulates plasmacytoid differentiation of BCL1 cells by targeting BLIMP1 mRNA. PLoS One 2012; 7:e52187. [PMID: 23284928 PMCID: PMC3527407 DOI: 10.1371/journal.pone.0052187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/09/2012] [Indexed: 12/03/2022] Open
Abstract
The ZFP36/Tis11 family of zinc-finger proteins regulate cellular processes by binding to adenine uridine rich elements in the 3′ untranslated regions of various mRNAs and promoting their degradation. We show here that ZFP36L1 expression is largely extinguished during the transition from B cells to plasma cells, in a reciprocal pattern to that of ZFP36 and the plasma cell transcription factor, BLIMP1. Enforced expression of ZFP36L1 in the mouse BCL1 cell line blocked cytokine-induced differentiation while shRNA-mediated knock-down enhanced differentiation. Reconstruction of regulatory networks from microarray gene expression data using the ARACNe algorithm identified candidate mRNA targets for ZFP36L1 including BLIMP1. Genes that displayed down-regulation in plasma cells were significantly over-represented (P = <0.0001) in a set of previously validated ZFP36 targets suggesting that ZFP36L1 and ZFP36 target distinct sets of mRNAs during plasmacytoid differentiation. ShRNA-mediated knock-down of ZFP36L1 in BCL1 cells led to an increase in levels of BLIMP1 mRNA and protein, but not for mRNAs of other transcription factors that regulate plasmacytoid differentiation (xbp1, irf4, bcl6). Finally, ZFP36L1 significantly reduced the activity of a BLIMP1 3′ untranslated region-driven luciferase reporter. Taken together, these findings suggest that ZFP36L1 negatively regulates plasmacytoid differentiation, at least in part, by targeting the expression of BLIMP1.
Collapse
|