1
|
Lei Y, He D, Zhao X, Miao L, Cao Z. Structure, function, and therapeutic potential of defensins from marine animals. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110365. [PMID: 40318710 DOI: 10.1016/j.fsi.2025.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Defensins are a type of host defense peptides (HDPs), belonging to a family of cationic antimicrobial peptides (AMPs) that exhibit activity against various infectious microorganisms including bacteria, viruses, and fungi. Due to the uniqueness of the ocean's ecological environment, defensins from marine animals have a rich biodiversity and some special molecular features so as to possess significant potential. They exert antibacterial activity by binding to cell membranes, forming specific channels, or interacting with lipid II. These peptides can be utilized through various nanotechnologies, such as antimicrobial peptide-antibiotic conjugates, nanonets, and nanoparticle-based drug delivery systems, to enhance their antibacterial activities and broaden their spectra. This review summarizes the structural characteristics and classification of defensins from marine animals (mainly fish and shellfish), outlines their evolutionary trajectory, and discusses their antibacterial, antiviral, immune-regulation, and reproductive functions. Finally, the future therapeutic potential of defensins from marine animals is highlighted for fighting antibiotic resistance and treating other diseases. This review provides new insights into the future development of marine resources and natural peptides.
Collapse
Affiliation(s)
- Yining Lei
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Dangui He
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Xiao Zhao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Lixia Miao
- Department of Biochemistry, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Zhijian Cao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
2
|
Chera JS, Gaur V, Kumar A, Josan F, Patel A, Yadav S, Karanwal S, Verma P, Verma V, Kumar S, Bairagi AK, Kamal S, Datta TK, Kumar R. Surface N- or O-linked glycans on bovine spermatozoa play minimal role in evading macrophage mediated phagocytosis. Front Vet Sci 2025; 12:1550100. [PMID: 40196804 PMCID: PMC11973392 DOI: 10.3389/fvets.2025.1550100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Bull spermatozoa possess glycocalyx made of carbohydrate moieties attached to proteins and lipids on their membranes that is involved in fertility associated functions including immune evasion in the female reproductive tract. The current study aimed to establish whether the differences in the glycocalyx of spermatozoa provide selective advantage in evading phagocytosis mediated by female macrophages. Based on removal of either N- or O-linked surface glycans from the spermatozoa, their susceptibility to phagocytosis by macrophages was assessed in vitro in bovines (Bos indicus) through flow cytometry. We found no significant difference (p > 0.05) in the phagocytosis of spermatozoa without N-glycans or O-glycans compared to those with intact glycocalyx. Out of nearly 2,000 events analysed, the mean number of macrophages phagocytosing the spermatozoa were found to be 416, 423 and 345, respectively for spermatozoa with an intact glycocalyx, with N-glycans removed and with O-glycans removed. The difference in the mean values of the individual sample geometric mean fluorescence intensities (n = 3) of the phagocytosed spermatozoa among all the treatment groups were also statistically insignificant (p > 0.05) indicating that the macrophages are not involved in the selection of spermatozoa based on their surface glycan profiles. Therefore, it is plausible to conclude that macrophages may be exploiting other signature molecules if at all they are involved in the cryptic female choice, or they might be phagocytosing spermatozoa with less stringency that may not be dependent on O- or-N-glycans on sperm surface. However, further studies are required to gain deeper insights into this phenomenon.
Collapse
Affiliation(s)
- Jatinder Singh Chera
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vikrant Gaur
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Abhishek Kumar
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Fanny Josan
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Aditya Patel
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sonam Yadav
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Preeti Verma
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Vivek Verma
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sushil Kumar
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Amit Kumar Bairagi
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Sanchi Kamal
- Department of Veterinary Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
3
|
Al Khodair KM, Al-Shabebi A, Al-Thnaian TA, Alturki OIM, Marwa-Babiker A, Al-Ramadan SY, Ali AM, Elseory AM. Beta-defensin 126 (DEFB126) localization and expression in the sperms and male reproductive tract of the dromedary camel ( Camelus dromedarius) during the rutting season. Open Vet J 2025; 15:1206-1216. [PMID: 40276191 PMCID: PMC12017708 DOI: 10.5455/ovj.2025.v15.i3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/13/2025] [Indexed: 04/26/2025] Open
Abstract
Background Numerous plant and animal species have β-defensins, antimicrobial peptides involved in immunity and reproduction. Beta-defensin 126 (DEFB126) belongs to the β-defensin family and is a vital component of sperm function. It regulates the capacitation and sperm-egg interaction. Aim Clarify the expression of DEFB126 in the dromedary camel's sperm and reproductive tract. Methods The current work used immunohistochemical (IHC) and quantitative real-time polymerase chain reaction (qRT-PCR) methods to clarify the distribution and expression of DEFB126 in the sperm and male reproductive tract (MRT) of dromedary camels in the time of rutting. Samples of fresh and epididymal sperm, testicular, epididymis, ductus deferens, and male accessory gland tissues were obtained from 20 male camels. Results The results of IHC showed that the fresh and epididymal sperms had a positive immunoreaction to DEFB126 antibodies. Also, all parts of the testicles, epididymis, vas deferens, prostate, and bulbourethral glands were positively stained to various degrees with a strong immunoreaction in the epididymal's tail. qRT-PCR results showed that expression levels of DEFB126 mRNA varied in the fresh and epididymal sperms and throughout all parts of the MRT; the tail of the epididymis had the most significant expression levels (p < 0.05). Conclusion This study's results indicated that DEFB126 protein is expressed in the sperm and MRT of the dromedary camel, with the acrosomal cap of the sperm and the epididymis tail exhibiting the highest levels of expression. These findings imply that DEFB126 could be involved in the reproductive processes of sperm maturation, capacitation, and sperm-zona recognition.
Collapse
Affiliation(s)
- Khalid M. Al Khodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulkarem Al-Shabebi
- Department of Animal Resources, Ministry of Municipality, Doha, Qatar
- Veterinary Department, Faculty of Agriculture and Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Thnaian A. Al-Thnaian
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Osamah I. M. Alturki
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - A.M. Marwa-Babiker
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Anatomy, College of Veterinary Medicine, University of Bahri, Khartoum North, Sudan
| | - Saeed Y Al-Ramadan
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdelhay M. Ali
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdelrahman M.A. Elseory
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North, Sudan
| |
Collapse
|
4
|
Muret K, Le Goff V, Dandine-Roulland C, Hotz C, Jean-Louis F, Boisson B, Mesrob L, Sandron F, Daian D, Olaso R, Le Floch E, Meyer V, Wolkenstein P, Casanova JL, Lévy Y, Bonnet E, Deleuze JF, Hüe S. Comprehensive Catalog of Variants Potentially Associated with Hidradenitis Suppurativa, Including Newly Identified Variants from a Cohort of 100 Patients. Int J Mol Sci 2024; 25:10374. [PMID: 39408704 PMCID: PMC11476843 DOI: 10.3390/ijms251910374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic skin disease characterized by painful, recurrent abscesses, nodules, and scarring, primarily in skin folds. The exact causes of HS are multifactorial, involving genetic, hormonal, and environmental factors. It is associated with systemic diseases such as metabolic syndrome and inflammatory bowel disease. Genetic studies have identified mutations in the γ-secretase complex that affect Notch signaling pathways critical for skin cell regulation. Despite its high heritability, most reported HS cases do not follow a simple genetic pattern. In this article, we performed whole-exome sequencing (WES) on a cohort of 100 individuals with HS, and we provide a comprehensive review of the variants known to be described or associated with HS. 91 variants were associated with the γ-secretase complex, and 78 variants were associated with other genes involved in the Notch pathway, keratinization, or immune response. Through this new genetic analysis, we have added ten new variants to the existing catalogs. All variants are available in a .vcf file and are provided as a resource for future studies.
Collapse
Affiliation(s)
- Kévin Muret
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Vincent Le Goff
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Claire Dandine-Roulland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Claire Hotz
- Public Health Department, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
- Transversal Dermatology Unit, Jacques Puel Hospital Center, 12000 Rodez, France
| | - Francette Jean-Louis
- Team 16, Vaccine Research Institute (VRI), INSERM U955, Institut Mondor de Recherche Biomédicale (IMRB), Henri-Mondor Hospital, UPEC, 94000 Créteil, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Lilia Mesrob
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Paris Cité University, 75014 Paris, France
| | - Florian Sandron
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Delphine Daian
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Edith Le Floch
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Vincent Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Pierre Wolkenstein
- Public Health Department, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Yves Lévy
- Public Health Department, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
- Centre d’Etude du Polymorphisme Humain (CEPH), Fondation Jean Dausset, 75010 Paris, France
- Centre de Référence, d’Innovation, d’Expertise et de Transfert (CREFIX), 91000 Evry, France
| | - Sophie Hüe
- Team 16, Vaccine Research Institute (VRI), INSERM U955, Institut Mondor de Recherche Biomédicale (IMRB), Henri-Mondor Hospital, UPEC, 94000 Créteil, France
- Biologic Immunology-Hematology Department, DMU Biologie, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
| |
Collapse
|
5
|
Batra V, Dagar K, Diwakar MP, Kumaresan A, Kumar R, Datta TK. The proteomic landscape of sperm surface deciphers its maturational and functional aspects in buffalo. Front Physiol 2024; 15:1413817. [PMID: 39005499 PMCID: PMC11239549 DOI: 10.3389/fphys.2024.1413817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Buffalo is a dominant dairy animal in many agriculture-based economies. However, the poor reproductive efficiency (low conception rate) of the buffalo bulls constrains the realization of its full production potential. This in turn leads to economic and welfare issues, especially for the marginal farmers in such economies. The mammalian sperm surface proteins have been implicated in the regulation of survival and function of the spermatozoa in the female reproductive tract (FRT). Nonetheless, the lack of specific studies on buffalo sperm surface makes it difficult for researchers to explore and investigate the role of these proteins in the regulation of mechanisms associated with sperm protection, survival, and function. This study aimed to generate a buffalo sperm surface-specific proteomic fingerprint (LC-MS/MS) and to predict the functional roles of the identified proteins. The three treatments used to remove sperm surface protein viz. Elevated salt, phosphoinositide phospholipase C (PI-PLC) and in vitro capacitation led to the identification of N = 1,695 proteins (≥1 high-quality peptide-spectrum matches (PSMs), p < 0.05, and FDR<0.01). Almost half of these proteins (N = 873) were found to be involved in crucial processes relevant in the context of male fertility, e.g., spermatogenesis, sperm maturation and protection in the FRT, and gamete interaction or fertilization, amongst others. The extensive sperm-surface proteomic repertoire discovered in this study is unparalleled vis-à-vis the depth of identification of reproduction-specific cell-surface proteins and can provide a potential framework for further studies on the functional aspects of buffalo spermatozoa.
Collapse
Affiliation(s)
- Vipul Batra
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Komal Dagar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Maharana Pratap Diwakar
- Cell Science and Molecular Biology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Southern Regional Station of ICAR-National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
6
|
Zhang G, Sun Y, Guan M, Liu M, Sun S. Single-cell and spatial transcriptomic investigation reveals the spatiotemporal specificity of the beta-defensin gene family during mouse sperm maturation. Cell Commun Signal 2024; 22:267. [PMID: 38745232 PMCID: PMC11092205 DOI: 10.1186/s12964-024-01637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
Low sperm motility is a significant contributor to male infertility. beta-defensins have been implicated in host defence and the acquisition of sperm motility; however, the regulatory mechanisms governing their gene expression patterns and functions remain poorly understood. In this study, we performed single-cell RNA and spatial transcriptome sequencing to investigate the cellular composition of testicular and epididymal tissues and examined their gene expression characteristics. In the epididymis, we found that epididymal epithelial cells display a region specificity of gene expression in different epididymal segments, including the beta-defensin family genes. In particular, Defb15, Defb18, Defb20, Defb25 and Defb48 are specific to the caput; Defb22, Defb23 and Defb26 to the corpus; Defb2 and Defb9 to the cauda of the epididymis. To confirm this, we performed mRNA fluorescence in situ hybridisation (FISH) targeting certain exon region of beta-defensin genes, and found some of their expression matched the sequencing results and displayed a close connection with epididimosome marker gene Cd63. In addition, we paid attention to the Sertoli cells and Leydig cells in the testis, along with fibroblasts and smooth muscle cells in the epididymis, by demonstrating their gene expression profile and spatial information. Our study provides a single-cell and spatial landscape for analysing the gene expression characteristics of testicular and epididymal environments and has important implications for the study of spermatogenesis and sperm maturation.
Collapse
Affiliation(s)
| | - Yuanchao Sun
- Qingdao Agricultural University, Qingdao, China
- Qingdao University, Qingdao, China
| | - Minkai Guan
- Qingdao Agricultural University, Qingdao, China
| | | | - Shiduo Sun
- Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Yi S, Feng Y, Wang Y, Ma F. Sialylation: fate decision of mammalian sperm development, fertilization, and male fertility†. Biol Reprod 2023; 109:137-155. [PMID: 37379321 DOI: 10.1093/biolre/ioad067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Sperm development, maturation, and successful fertilization within the female reproductive tract are intricate and orderly processes that involve protein translation and post-translational modifications. Among these modifications, sialylation plays a crucial role. Any disruptions occurring throughout the sperm's life cycle can result in male infertility, yet our current understanding of this process remains limited. Conventional semen analysis often fails to diagnose some infertility cases associated with sperm sialylation, emphasizing the need to comprehend and investigate the characteristics of sperm sialylation. This review reanalyzes the significance of sialylation in sperm development and fertilization and evaluates the impact of sialylation damage on male fertility under pathological conditions. Sialylation serves a vital role in the life journey of sperm, providing a negatively charged glycocalyx and enriching the molecular structure of the sperm surface, which is beneficial to sperm reversible recognition and immune interaction. These characteristics are particularly crucial during sperm maturation and fertilization within the female reproductive tract. Moreover, enhancing the understanding of the mechanism underlying sperm sialylation can promote the development of relevant clinical indicators for infertility detection and treatment.
Collapse
Affiliation(s)
- Shiqi Yi
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Fesahat F, Firouzabadi AM, Zare-Zardini H, Imani M. Roles of Different β-Defensins in the Human Reproductive System: A Review Study. Am J Mens Health 2023; 17:15579883231182673. [PMID: 37381627 PMCID: PMC10334010 DOI: 10.1177/15579883231182673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/21/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Human β-defensins (hBDs) are cationic peptides with an amphipathic spatial shape and a high cysteine content. The members of this peptide family have been found in the human body with various functions, including the human reproductive system. Of among β-defensins in the human body, β-defensin 1, β-defensin 2, and β-defensin 126 are known in the human reproductive system. Human β-defensin 1 interacts with chemokine receptor 6 (CCR6) in the male reproductive system to prevent bacterial infections. This peptide has a positive function in antitumor immunity by recruiting dendritic cells and memory T cells in prostate cancer. It is necessary for fertilization via facilitating capacitation and acrosome reaction in the female reproductive system. Human β-defensin 2 is another peptide with antibacterial action which can minimize infection in different parts of the female reproductive system such as the vagina by interacting with CCR6. Human β-defensin 2 could play a role in preventing cervical cancer via interactions with dendritic cells. Human β-defensin 126 is required for sperm motility and protecting the sperm against immune system factors. This study attempted to review the updated knowledge about the roles of β-defensin 1, β-defensin 2, and β-defensin 126 in both the male and female reproductive systems.
Collapse
Affiliation(s)
- Farzaneh Fesahat
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amir Masoud Firouzabadi
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Imani
- Reproductive Immunology Research
Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
9
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
10
|
Degueldre F, Aron S. Long-term sperm storage in eusocial Hymenoptera. Biol Rev Camb Philos Soc 2023; 98:567-583. [PMID: 36397639 DOI: 10.1111/brv.12919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
In internally fertilizing species, sperm transfer is not always immediately followed by egg fertilization, and female sperm storage (FSS) may occur. FSS is a phenomenon in which females store sperm in a specialized organ for periods lasting from a few hours to several years, depending on the species. Eusocial hymenopterans (ants, social bees, and social wasps) hold the record for FSS duration. In these species, mating takes place during a single nuptial flight that occurs early in adult life for both sexes; they never mate again. Males die quickly after copulation but survive posthumously as sperm stored in their mates' spermathecae. Reproductive females, also known as queens, have a much longer life expectancy, up to 20 years in some species. Here, we review what is currently known about the molecular adaptations underlying the remarkable FSS capacities in eusocial hymenopterans. Because sperm quality is crucial to the reproductive success of both sexes, we also discuss the mechanisms involved in sperm storage and preservation in the male seminal vesicles prior to ejaculation. Finally, we propose future research directions that should broaden our understanding of this unique biological phenomenon.
Collapse
Affiliation(s)
- Félicien Degueldre
- Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles, B-1050, Brussels, Belgium
| |
Collapse
|
11
|
Solanki S, Kumar V, Kashyap P, Kumar R, De S, Datta TK. Beta-defensins as marker for male fertility: a comprehensive review†. Biol Reprod 2023; 108:52-71. [PMID: 36322147 DOI: 10.1093/biolre/ioac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
Bovine male fertility in animals has a direct impact on the productivity of dairy herds. The epididymal sperm maturations involve extensive sperm surface modifications to gain the fertilizing ability, especially by absorptions of the plethora of biomolecules, including glycoprotein beta-defensins (BDs), enzymes, organic ions, protein, and phospholipids. Defensins are broad-range nonspecific antimicrobial peptides that exhibit strong relations with innate and adaptive immunity, but their roles in male fertility are relatively recently identified. In the course of evolution, BD genes give rise to different clusters with specific functions, especially reproductive functions, by undergoing duplications and nonsynonymous mutations. BD polymorphisms have been reported with milk compositions, disease resistance, and antimicrobial activities. However, in recent decades, the link of BD polymorphisms with fertility has emerged as an appealing improvement of reproductive performance such as sperm motility, membrane integrity, cervical mucus penetration, evading of uterus immunosurveillance, oviduct cell attachment, and egg recognition. The reproductive-specific glycosylated BD class-A BDs (CA-BDs) have shown age- and sex-specific expressions in male reproductive organs, signifying their physiological pleiotropism, especially in the sperm maturation and sperm transport in the female reproductive tract. By considering adult male reproductive organ-specific BD expressions, importance in sperm functionalities, and bioinformatic analysis, we have selected two bovine BBD126 and BBD129 genes as novel potential biomarkers of bovine male fertility. Despite the importance of BDs, however, genomic characterization of most BD genes across most livestock and nonmodel organisms remains predictive/incomplete. The current review discusses our understanding of BD pleiotropic functions, polymorphism, and genomic structural attributes concerning the fertilizability of the male gamete in dairy animals.
Collapse
Affiliation(s)
- Subhash Solanki
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Vijay Kumar
- NMR lab-II, National Institute of immunology, New Delhi, India
| | - Poonam Kashyap
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Sachinandan De
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India.,ICAR- Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
12
|
Analysis of amplification and association polymorphisms in the bovine beta-defensin 129 (BBD129) gene revealed its function in bull fertility. Sci Rep 2022; 12:19042. [PMID: 36352091 PMCID: PMC9646896 DOI: 10.1038/s41598-022-23654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
β-defensins are adsorbable on the sperm surface in the male reproductive tract (MRT) and enhance sperm functional characteristics. The beta-defensin 129 (DEFB129) antimicrobial peptide is involved in sperm maturation, motility, and fertilization. However, its role in bovine fertility has not been well investigated. This study examines the relationship between the bovine BBD129 gene and Bos indicus x Bos taurus bull fertility. The complete coding sequence of BBD129 mRNA was identified by RNA Ligase Mediated-Rapid Amplification of cDNA End (RLM-RACE) and Sanger sequencing methodologies. It consisted of 582 nucleotides (nts) including 5' untranslated region (UTR) (46nts) and 3'UTR (23nts). It conserves all beta-defensin-like features. The expression level of BBD129 was checked by RT-qPCR and maximal expression was detected in the corpus-epididymis region compared to other parts of MRT. Polymorphism in BBD129 was also confirmed by Sanger sequencing of 254 clones from 5 high fertile (HF) and 6 low fertile (LF) bulls at two positions, 169 T > G and 329A > G, which change the S57A and N110S in the protein sequence respectively. These two mutations give rise to four types of BBD129 haplotypes. The non-mutated TA-BBD129 (169 T/329A) haplotype was substantially more prevalent among high-fertile bulls (P < 0.005), while the double-site mutated GG-BBD129 (169 T > G/329A > G) haplotype was significantly more prevalent among low-fertile bulls (P < 0.005). The in silico analysis confirmed that the polymorphism in BBD129 results in changes in mRNA secondary structure, protein conformations, protein stability, extracellular-surface availability, post-translational modifications (O-glycosylation and phosphorylation), and affects antibacterial and immunomodulatory capabilities. In conclusion, the mRNA expression of BBD129 in the MRT indicates its region-specific dynamics in sperm maturation. BBD129 polymorphisms were identified as the deciding elements accountable for the changed proteins with impaired functionality, contributing to cross-bred bulls' poor fertility.
Collapse
|
13
|
Adjei M, Yan Y, Li C, Pan C, Pan M, Wang P, Li K, Shahzad K, Chen X, Zhao W. Comparative transcriptome analysis in the caput segment of yak and cattleyak epididymis. Theriogenology 2022; 195:217-228. [DOI: 10.1016/j.theriogenology.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/14/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
|
14
|
Fliniaux I, Marchand G, Molinaro C, Decloquement M, Martoriati A, Marin M, Bodart JF, Harduin-Lepers A, Cailliau K. Diversity of sialic acids and sialoglycoproteins in gametes and at fertilization. Front Cell Dev Biol 2022; 10:982931. [PMID: 36340022 PMCID: PMC9630641 DOI: 10.3389/fcell.2022.982931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 09/22/2023] Open
Abstract
Sialic acids are a family of 9-carbon monosaccharides with particular physicochemical properties. They modulate the biological functions of the molecules that carry them and are involved in several steps of the reproductive process. Sialoglycoproteins participate in the balance between species recognition and specificity, and the mechanisms of these aspects remain an issue in gametes formation and binding in metazoan reproduction. Sialoglycoproteins form a specific coat at the gametes surface and specific polysialylated chains are present on marine species oocytes. Spermatozoa are submitted to critical sialic acid changes in the female reproductive tract facilitating their migration, their survival through the modulation of the female innate immune response, and the final oocyte-binding event. To decipher the role of sialic acids in gametes and at fertilization, the dynamical changes of enzymes involved in their synthesis and removal have to be further considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
15
|
Zhai YJ, Feng Y, Ma X, Ma F. Defensins: defenders of human reproductive health. Hum Reprod Update 2022; 29:126-154. [PMID: 36130055 PMCID: PMC9825273 DOI: 10.1093/humupd/dmac032] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/31/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Reproductive tract infection is an important factor leading to male and female infertility. Among female infertility factors, microbial and viral infections are the main factors affecting female reproductive health and causing tubal infertility, ectopic tubal pregnancy and premature delivery. Among male infertility factors, 13-15% of male infertility is related to infection. Defensins are cationic antibacterial and antiviral peptides, classified into α-defensins, β-defensins and θ-defensins. Humans only have α-defensins and β-defensins. Apart from their direct antimicrobial functions, defensins have an immunomodulatory function and are involved in many physiological processes. Studies have shown that defensins are widely distributed in the female reproductive tract (FRT) and male reproductive tract (MRT), playing a dual role of host defence and fertility protection. However, to our knowledge, the distribution, regulation and function of defensins in the reproductive tract and their relation to reproduction have not been reviewed. OBJECTIVE AND RATIONALE This review summarizes the expression, distribution and regulation of defensins in the reproductive tracts to reveal the updated research on the dual role of defensins in host defence and the protection of fertility. SEARCH METHODS A systematic search was conducted in PubMed using the related keywords through April 2022. Related data from original researches and reviews were integrated to comprehensively review the current findings and understanding of defensins in the human reproductive system. Meanwhile, female and male transcriptome data in the GEO database were screened to analyze defensins in the human reproductive tracts. OUTCOMES Two transcriptome databases from the GEO database (GSE7307 and GSE150852) combined with existing researches reveal the expression levels and role of the defensins in the reproductive tracts. In the FRT, a high expression level of α-defensin is found, and the expression levels of defensins in the vulva and vagina are higher than those in other organs. The expression of defensins in the endometrium varies with menstrual cycle stages and with microbial invasion. Defensins also participate in the local immune response to regulate the risk of spontaneous preterm birth. In the MRT, a high expression level of β-defensins is also found. It is mainly highly expressed in the epididymal caput and corpus, indicating that defensins play an important role in sperm maturation. The expression of defensins in the MRT varies with androgen levels, age and the status of microbial invasion. They protect the male reproductive system from bacterial infections by neutralizing lipopolysaccharide and downregulating pro-inflammatory cytokines. In addition, animal and clinical studies have shown that defensins play an important role in sperm maturation, motility and fertilization. WIDER IMPLICATIONS As a broad-spectrum antimicrobial peptide without drug resistance, defensin has great potential for developing new natural antimicrobial treatments for reproductive tract infections. However, increasing evidence has shown that defensins can not only inhibit microbial invasion but can also promote the invasion and adhesion of some microorganisms in certain biological environments, such as human immunodeficiency virus. Therefore, the safety of defensins as reproductive tract anti-infective drugs needs more in-depth research. In addition, the modulatory role of defensins in fertility requires more in-depth research since the current conclusions are based on small-size samples. At present, scientists have made many attempts at the clinical transformation of defensins. However, defensins have problems such as poor stability, low bioavailability and difficulties in their synthesis. Therefore, the production of safe, effective and low-cost drugs remains a challenge.
Collapse
Affiliation(s)
| | | | - Xue Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| | - Fang Ma
- Correspondence address. Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7781-821X (F.M.); Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail: https://orcid.org/0000-0002-7650-6214 (X.M.)
| |
Collapse
|
16
|
Orsolini MF, Verstraete MH, van Heule M, Orellana D, Ortega A, Meyers S, Dini P. Characterization of sperm cell membrane charge and selection of high-quality sperm using microfluidics in stallions. Theriogenology 2022; 192:1-8. [PMID: 36007376 DOI: 10.1016/j.theriogenology.2022.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) is the only method for in vitro embryo production (IVP) in horses. Besides oocyte developmental competence, the outcome of IVP is also highly dependent on sperm quality. Therefore, it is not only essential to employ superior methods of selecting high quality sperm, but also to be able to characterize which quantifiable properties of sperm quality are most indicative of its fertility. In men, a net negative surface charge, estimated by zeta potential (ZP) is highly correlated with sperm quality and in vitro embryo developmental outcomes. However, there is no information available about approximate charges or ZP in equine sperm. Therefore, in this study we aimed to characterize equine sperm ZP and identify its associations with known measures of sperm quality. Additionally, we aimed to complete a comprehensive comparison of conventional sperm selection techniques as compared to the novel method of microfluidic sorting. Ejaculates (n = 22) were partitioned into fresh (∼23 °C, 0 h; n = 12) and cooled (∼4 °C, 24 h; n = 10) groups, and processed by swim up (SU), density gradient centrifugation (DGC), density gradient-swim up combination (DG-SU), and microfluidic chip (MF) sorting. Motility, progressive motility, cell viability, normal morphology, and ZP were evaluated for both unprocessed fractions and post-selected fractions. The ZP of both fresh and cooled samples was net negative and also correlated with motility and progressive motility for both fresh and cooled samples (P < 0.05). The ZP of cooled samples was also correlated with viability (P < 0.05). Among the compared methods of sperm selection, MF was highly effective in selecting high quality sperm as determined by the measured parameters. Percent motility, progressive motility, normal morphology, and viability of MF selected sperm were of higher quality than sperm selected by SU, and of similar to DG-SU and DGC without the use of potentially harmful centrifugation steps. Correlations between ZP, motility, and viability parameters may indicate a role of external charge on the motility and survival of sperm within the female reproductive tract. In conclusion, we identified an average net negative ZP on equine sperm and correlations between ZP and other measures of sperm quality, as well as having identified MF as a novel effective method of equine sperm selection for IVP.
Collapse
Affiliation(s)
- Morgan F Orsolini
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Margo H Verstraete
- Department of Population Health and Reproduction, University of California, Davis, CA, USA; Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 133 Salisburylaan, 9820, Merelbeke, Belgium
| | - Machteld van Heule
- Department of Population Health and Reproduction, University of California, Davis, CA, USA; Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, University of Ghent, 133 Salisburylaan, 9820, Merelbeke, Belgium
| | - Daniela Orellana
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Alyssa Ortega
- Department of Population Health and Reproduction, University of California, Davis, CA, USA
| | - Stuart Meyers
- Anatomy, Physiology, and Cell Biology, 1089 Veterinary Medicine Dr, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, University of California, Davis, CA, USA.
| |
Collapse
|
17
|
Abril-Parreño L, Morgan J, Krogenæs A, Druart X, Cormican P, Gallagher ME, Reid C, Meade K, Saldova R, Fair S. Biochemical and molecular characterisation of sialylated cervical mucins in sheep. Biol Reprod 2022; 107:419-431. [PMID: 35470857 PMCID: PMC9382375 DOI: 10.1093/biolre/ioac077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Sialic acid occupies terminal positions on O-glycans of cervical mucins, where they contribute to the increased viscosity of mucin thereby regulating sperm transport. This study characterised the sialylated cervical mucins from follicular phase mucus of six European ewe breeds with known differences in pregnancy rates following cervical artificial insemination using frozen-thawed semen at both synchronised and natural oestrus cycles. These were Suffolk (low fertility) and Belclare (medium fertility) in Ireland, Ile de France and Romanov (both with medium fertility) in France and Norwegian White Sheep (NWS) and Fur (both with high fertility) in Norway. Expression of mucin and sialic acid related genes was quantified using RNA-sequencing in cervical tissue from Suffolk, Belclare, Fur and NWS only. Cervical tissue was also assessed for the percentage of cervical epithelial populated by mucin secreting goblet cells in the same four ewe breeds. Biochemical analysis showed that there was an effect of ewe breed on sialic acid species, which was represented by Suffolk having higher levels of Neu5,9Ac2 compared to NWS (P < 0.05). Suffolk ewes had a lower percentage of goblet cells than Fur and NWS (P < 0.05). Gene expression analysis identified higher expression of MUC5AC, MUC5B, ST6GAL1, ST6GAL2 and lower expression of ST3GAL3, ST3GAL4 and SIGLEC10 in Suffolk compared to high fertility ewe breeds (P < 0.05). Our results indicate that specific alterations in sialylated mucin composition may be related to impaired cervical sperm transport.
Collapse
Affiliation(s)
- Laura Abril-Parreño
- Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering. University of Limerick, V94 T9PX, Limerick, Ireland.,Teagasc, Animal & Grassland Research and Innovation Centre, C15 PW93, Grange, Ireland
| | - Jack Morgan
- NIBRT GlycoScience Group, The National Institute for Bioprocessing Research and Training, A94 X099, Blackrock, Ireland
| | - Anette Krogenæs
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 5003 1432, Ås, Norway
| | - Xavier Druart
- UMR-PRC, INRA-85, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380, Nouzilly, France
| | - Paul Cormican
- Teagasc, Animal & Grassland Research and Innovation Centre, C15 PW93, Grange, Ireland
| | - Mary E Gallagher
- UCD Veterinary Sciences Centre, University College Dublin, D04 W6F6, Belfield, Ireland
| | - Colm Reid
- UCD Veterinary Sciences Centre, University College Dublin, D04 W6F6, Belfield, Ireland
| | - Kieran Meade
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6, Dublin 4, Ireland
| | - Radka Saldova
- NIBRT GlycoScience Group, The National Institute for Bioprocessing Research and Training, A94 X099, Blackrock, Ireland.,UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, D07 A8NN, Dublin 4, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, H91 W2TY, Galway, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, School of Natural Sciences, Biomaterials Research Cluster, Bernal Institute, Faculty of Science and Engineering. University of Limerick, V94 T9PX, Limerick, Ireland
| |
Collapse
|
18
|
Shum W, Zhang BL, Cao AS, Zhou X, Shi SM, Zhang ZY, Gu LY, Shi S. Calcium Homeostasis in the Epididymal Microenvironment: Is Extracellular Calcium a Cofactor for Matrix Gla Protein-Dependent Scavenging Regulated by Vitamins. Front Cell Dev Biol 2022; 10:827940. [PMID: 35252193 PMCID: PMC8893953 DOI: 10.3389/fcell.2022.827940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
In the male reproductive tract, the epididymis is an essential organ for sperm maturation, in which sperm cells acquire mobility and the ability to fertilize oocytes while being stored in a protective microenvironment. Epididymal function involves a specialized luminal microenvironment established by the epithelial cells of epididymal mucosa. Low-calcium concentration is a unique feature of this epididymal luminal microenvironment, its relevance and regulation are, however, incompletely understood. In the rat epididymis, the vitamin D-related calcium-dependent TRPV6-TMEM16A channel-coupler has been shown to be involved in fluid transport, and, in a spatially complementary manner, vitamin K2-related γ-glutamyl carboxylase (GGCX)-dependent carboxylation of matrix Gla protein (MGP) plays an essential role in promoting calcium-dependent protein aggregation. An SNP in the human GGCX gene has been associated with asthenozoospermia. In addition, bioinformatic analysis also suggests the involvement of a vitamin B6-axis in calcium-dependent MGP-mediated protein aggregation. These findings suggest that vitamins interact with calcium homeostasis in the epididymis to ensure proper sperm maturation and male fertility. This review article discusses the regulation mechanisms of calcium homeostasis in the epididymis, and the potential role of vitamin interactions on epididymal calcium homeostasis, especially the role of matrix calcium in the epididymal lumen as a cofactor for the carboxylated MGP-mediated scavenging function.
Collapse
Affiliation(s)
- Winnie Shum
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Winnie Shum,
| | - Bao Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Reproduction and Development Institution, Fudan University, Shanghai, China
| | - Albert Shang Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Su Meng Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ze Yang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lou Yi Gu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuo Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
19
|
Liu H, Diao H, Hou J, Yu H, Wen H. Soluble expression and purification of human β-defensin DEFB136 in Escherichia coli and identification of its bioactivity. Protein Expr Purif 2021; 188:105968. [PMID: 34481960 DOI: 10.1016/j.pep.2021.105968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Human β-defensins are an important family of innate host defense peptides with pleiotropic activities. Human β-defensin 36 (DEFB136) is a novel member of the β-defensin family which have not been characterized so far. In the present research, the DEFB136 peptide was expressed successfully and purified using the IMPACT-TWIN 1 expression system. The purified DEFB136 peptide was identified by MALDI-TOF mass spectrometry and circular dichroism spectroscopy. While the recombinant DEFB136 peptide exhibited a broad spectrum of antimicrobial activity against E. coli, Staphylococcus aureus and Candida albicans strains, but had low cytotoxicity to human erythrocytes. In addition, the result of the octet assay showed that the DEFB136 had a high lipopolysaccharide (LPS)-binding affinity, suggesting the DEFB136 may be involved in immunoregulation through its LPS neutralization. These results may help lay the groundwork to understand better the complex interaction between innate host defense and the diversity of the defensin family.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Biology, College of Ecology, Lishui University, Lishui City, 323000, China
| | - Hua Diao
- NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
| | - Jing Hou
- Department of Biology, College of Ecology, Lishui University, Lishui City, 323000, China.
| | - Heguo Yu
- NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, 200032, China
| | - Huiping Wen
- Department of Biology, College of Ecology, Lishui University, Lishui City, 323000, China
| |
Collapse
|
20
|
Valdez-Miramontes CE, De Haro-Acosta J, Aréchiga-Flores CF, Verdiguel-Fernández L, Rivas-Santiago B. Antimicrobial peptides in domestic animals and their applications in veterinary medicine. Peptides 2021; 142:170576. [PMID: 34033877 DOI: 10.1016/j.peptides.2021.170576] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/07/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Antimicrobial peptides (AMPs) are molecules with a broad-spectrum activity against bacteria, fungi, protozoa, and viruses. These peptides are widely distributed in insects, amphibians and mammals. Indeed, they are key molecules of the innate immune system with remarkable antimicrobial and immunomodulatory activity. Besides, these peptides have also shown regulatory activity for gut microbiota and have been considered inductors of growth performance. The current review describes the updated findings of antimicrobial peptides in domestic animals, such as bovines, goats, sheep, pigs, horses, canines and felines, analyzing the most relevant aspects of their use as potential therapeutics and their applications in Veterinary medicine.
Collapse
Affiliation(s)
- C E Valdez-Miramontes
- Academic Unit of Veterinary Medicine, Autonomous University of Zacatecas, Zacatecas, Mexico.
| | - Jeny De Haro-Acosta
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| | - C F Aréchiga-Flores
- Academic Unit of Veterinary Medicine, Autonomous University of Zacatecas, Zacatecas, Mexico
| | - L Verdiguel-Fernández
- Molecular Microbiology Laboratory, Department of Microbiology and Immunology, Faculty of Medicine Veterinary, National Autonomous University of Mexico, Mexico
| | - B Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security- IMSS, Zacatecas, Mexico
| |
Collapse
|
21
|
Batra V, Bhushan V, Ali SA, Sarwalia P, Pal A, Karanwal S, Solanki S, Kumaresan A, Kumar R, Datta TK. Buffalo sperm surface proteome profiling reveals an intricate relationship between innate immunity and reproduction. BMC Genomics 2021; 22:480. [PMID: 34174811 PMCID: PMC8235841 DOI: 10.1186/s12864-021-07640-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Background Low conception rate (CR) despite insemination with morphologically normal spermatozoa is a common reproductive restraint that limits buffalo productivity. This accounts for a significant loss to the farmers and the dairy industry, especially in agriculture-based economies. The immune-related proteins on the sperm surface are known to regulate fertility by assisting the spermatozoa in their survival and performance in the female reproductive tract (FRT). Regardless of their importance, very few studies have specifically catalogued the buffalo sperm surface proteome. The study was designed to determine the identity of sperm surface proteins and to ascertain if the epididymal expressed beta-defensins (BDs), implicated in male fertility, are translated and applied onto buffalo sperm surface along with other immune-related proteins. Results The raw mass spectra data searched against an in-house generated proteome database from UniProt using Comet search engine identified more than 300 proteins on the ejaculated buffalo sperm surface which were bound either by non-covalent (ionic) interactions or by a glycosylphosphatidylinositol (GPI) anchor. The singular enrichment analysis (SEA) revealed that most of these proteins were extracellular with varied binding activities and were involved in either immune or reproductive processes. Flow cytometry using six FITC-labelled lectins confirmed the prediction of glycosylation of these proteins. Several beta-defensins (BDs), the anti-microbial peptides including the BuBD-129 and 126 were also identified amongst other buffalo sperm surface proteins. The presence of these proteins was subsequently confirmed by RT-qPCR, immunofluorescence and in vitro fertilization (IVF) experiments. Conclusions The surface of the buffalo spermatozoa is heavily glycosylated because of the epididymal secreted (glyco) proteins like BDs and the GPI-anchored proteins (GPI-APs). The glycosylation pattern of buffalo sperm-surface, however, could be perturbed in the presence of elevated salt concentration or incubation with PI-PLC. The identification of numerous BDs on the sperm surface strengthens our hypothesis that the buffalo BDs (BuBDs) assist the spermatozoa either in their survival or in performance in the FRT. Our results suggest that BuBD-129 is a sperm-surface BD that could have a role in buffalo sperm function. Further studies elucidating its exact physiological function are required to better understand its role in the regulation of male fertility. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07640-z.
Collapse
Affiliation(s)
- Vipul Batra
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Vanya Bhushan
- Proteomics and Molecular Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Syed Azmal Ali
- Proteomics and Molecular Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Parul Sarwalia
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Ankit Pal
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Seema Karanwal
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Subhash Solanki
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Theriogenology Lab, SRS of National Dairy Research Institute, Bengaluru, India
| | - Rakesh Kumar
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab., Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India.
| |
Collapse
|
22
|
Aram R, Chan PTK, Cyr DG. Beta-defensin126 is correlated with sperm motility in fertile and infertile men†. Biol Reprod 2021; 102:92-101. [PMID: 31504198 DOI: 10.1093/biolre/ioz171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
A crucial function of the epididymis is providing a surface glycocalyx that is important for sperm maturation and capacitation. Defensins are antimicrobial peptides expressed in the epididymis. In the macaque epididymis, defensin beta 126 (DEFB126) is important for sperm motility, however, it is not known whether this is the case in humans. The objectives were to determine: (1) if DEFB126 on human ejaculated sperm was correlated with sperm motility in fertile and infertile men, (2) that recombinant DEFB126 could induce immature sperm motility in vitro. Immunofluorescence staining indicated that the proportion of DEFB126-positive sperm was significantly higher in motile sperm. Furthermore, the proportion of DEFB126-labeled sperm was positively correlated with sperm motility and normal morphology. Additional studies indicated that the proportion of DEFB126-positive spermatozoa in fertile volunteers was significantly higher than in volunteers with varicocele, and in infertile volunteers with semen deficiencies. To determine the role of DEFB126 on sperm motility, the DEFB126 gene was cloned and used to generate recombinant DEFB126 in H9C2 cells (rat embryonic heart myoblast cells). Deletion mutations were created into two regions of the protein, which have been linked to male infertility. Immotile testicular spermatozoa were incubated with cells expressing the different forms of DEFB126. Full-length DEFB126 significantly increased motility of co-cultured spermatozoa. However, no increase in sperm motility was observed with the mutated forms of DEFB126. In conclusion, these results support the notion that DEFB126 is important in human sperm maturation and the potential use of DEFB126 for in vitro sperm maturation.
Collapse
Affiliation(s)
- Raheleh Aram
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Peter T K Chan
- Department of Urology, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| |
Collapse
|
23
|
Oluwayiose OA, Wu H, Saddiki H, Whitcomb BW, Balzer LB, Brandon N, Suvorov A, Tayyab R, Sites CK, Hill L, Marcho C, Pilsner JR. Sperm DNA methylation mediates the association of male age on reproductive outcomes among couples undergoing infertility treatment. Sci Rep 2021; 11:3216. [PMID: 33547328 PMCID: PMC7864951 DOI: 10.1038/s41598-020-80857-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Parental age at time of offspring conception is increasing in developed countries. Advanced male age is associated with decreased reproductive success and increased risk of adverse neurodevelopmental outcomes in offspring. Mechanisms for these male age effects remain unclear, but changes in sperm DNA methylation over time is one potential explanation. We assessed genome-wide methylation of sperm DNA from 47 semen samples collected from male participants of couples seeking infertility treatment. We report that higher male age was associated with lower likelihood of fertilization and live birth, and poor embryo development (p < 0.05). Furthermore, our multivariable linear models showed male age was associated with alterations in sperm methylation at 1698 CpGs and 1146 regions (q < 0.05), which were associated with > 750 genes enriched in embryonic development, behavior and neurodevelopment among others. High dimensional mediation analyses identified four genes (DEFB126, TPI1P3, PLCH2 and DLGAP2) with age-related sperm differential methylation that accounted for 64% (95% CI 0.42-0.86%; p < 0.05) of the effect of male age on lower fertilization rate. Our findings from this modest IVF population provide evidence for sperm methylation as a mechanism of age-induced poor reproductive outcomes and identifies possible candidate genes for mediating these effects.
Collapse
Affiliation(s)
- Oladele A Oluwayiose
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, New York, NY, 10032, USA
| | - Hachem Saddiki
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 North Pleasant Street, Amherst, MA, USA
| | - Brian W Whitcomb
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 North Pleasant Street, Amherst, MA, USA
| | - Laura B Balzer
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 North Pleasant Street, Amherst, MA, USA
| | - Nicole Brandon
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Rahil Tayyab
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA, USA
| | - Cynthia K Sites
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA, USA
| | - Lisa Hill
- Division of Reproductive Endocrinology and Infertility, Baystate Medical Center, 759 Chestnut Street, Springfield, MA, USA
| | - Chelsea Marcho
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - J Richard Pilsner
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 173A Goessmann, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
24
|
Batra V, Dagar K, Nayak S, Kumaresan A, Kumar R, Datta TK. A Higher Abundance of O-Linked Glycans Confers a Selective Advantage to High Fertile Buffalo Spermatozoa for Immune-Evasion From Neutrophils. Front Immunol 2020; 11:1928. [PMID: 32983120 PMCID: PMC7483552 DOI: 10.3389/fimmu.2020.01928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
The glycans on the plasma membrane of cells manifest as the glycocalyx, which serves as an information-rich frontier that is directly in contact with its immediate milieu. The glycoconjugates (GCs) that adorn most of the mammalian cells are also abundant in gametes, especially the spermatozoa where they perform unique reproduction-specific functions e.g., inter-cellular recognition and communication. This study aimed to implicate the sperm glycosylation pattern as one of the factors responsible for low conception rates observed in buffalo bulls. We hypothesized that a differential abundance of glycans exists on the spermatozoa from bulls of contrasting fertilizing abilities endowing them with differential immune evasion abilities. Therefore, we investigated the role of glycan abundance in the phagocytosis and NETosis rates exhibited by female neutrophils (PMNs) upon exposure to such spermatozoa. Our results indicated that the spermatozoa from high fertile (HF) bulls possessed a higher abundance of O-linked glycans e.g., galactosyl (β-1,3)N-acetylgalactosamine and N-linked glycans like [GlcNAc]1-3, N-acetylglucosamine than the low fertile (LF) bull spermatozoa. This differential glycomic endowment appeared to affect the spermiophagy and NETosis rates exhibited by the female neutrophil cells (PMNs). The mean percentage of phagocytizing PMNs was significantly different (P < 0.0001) for HF and LF bulls, 28.44 and 59.59%, respectively. Furthermore, any introduced perturbations in the inherent sperm glycan arrangements promoted phagocytosis by PMNs. For example, after in vitro capacitation the mean phagocytosis rate (MPR) rate in spermatozoa from HF bulls significantly increased to 66.49% (P < 0.01). Likewise, the MPR increased to 70.63% (p < 0.01) after O-glycosidase & α2-3,6,8,9 Neuraminidase A treatment of spermatozoa from HF bulls. Moreover, the percentage of PMNs forming neutrophil extracellular traps (NETs) was significantly higher, 41.47% when exposed to spermatozoa from LF bulls vis-à-vis the spermatozoa from HF bulls, 15.46% (P < 0.0001). This is a pioneer report specifically demonstrating the role of O-linked glycans in the immune responses mounted against spermatozoa. Nevertheless, further studies are warranted to provide the measures to diagnose the sub-fertile phenotype thus preventing the losses incurred by incorrect selection of morphologically normal sperm in the AI/IVF reproduction techniques.
Collapse
Affiliation(s)
- Vipul Batra
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Komal Dagar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Samiksha Nayak
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Theriogenelogy Laboratory, SRS of National Dairy Research Institute, Bengaluru, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
25
|
Silva Balbin Villaverde AI, Ogle RA, Lewis P, Carbone V, Velkov T, Netherton JK, Baker MA. Sialylation of Asparagine 612 Inhibits Aconitase Activity during Mouse Sperm Capacitation; a Possible Mechanism for the Switch from Oxidative Phosphorylation to Glycolysis. Mol Cell Proteomics 2020; 19:1860-1875. [PMID: 32839225 DOI: 10.1074/mcp.ra120.002109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/22/2020] [Indexed: 11/06/2022] Open
Abstract
After ejaculation, mammalian spermatozoa must undergo a process known as capacitation in order to successfully fertilize the oocyte. Several post-translational modifications occur during capacitation, including sialylation, which despite being limited to a few proteins, seems to be essential for proper sperm-oocyte interaction. Regardless of its importance, to date, no single study has ever identified nor quantified which glycoproteins bearing terminal sialic acid (Sia) are altered during capacitation. Here we characterize sialylation during mouse sperm capacitation. Using tandem MS coupled with liquid chromatography (LC-MS/MS), we found 142 nonreductant peptides, with 9 of them showing potential modifications on their sialylated oligosaccharides during capacitation. As such, N-linked sialoglycopeptides from C4b-binding protein, endothelial lipase (EL), serine proteases 39 and 52, testis-expressed protein 101 and zonadhesin were reduced following capacitation. In contrast, mitochondrial aconitate hydratase (aconitase; ACO2), a TCA cycle enzyme, was the only protein to show an increase in Sia content during capacitation. Interestingly, although the loss of Sia within EL (N62) was accompanied by a reduction in its phospholipase A1 activity, a decrease in the activity of ACO2 (i.e. stereospecific isomerization of citrate to isocitrate) occurred when sialylation increased (N612). The latter was confirmed by N612D recombinant protein tagged with both His and GFP. The replacement of Sia for the negatively charged Aspartic acid in the N612D mutant caused complete loss of aconitase activity compared with the WT. Computer modeling show that N612 sits atop the catalytic site of ACO2. The introduction of Sia causes a large conformational change in the alpha helix, essentially, distorting the active site, leading to complete loss of function. These findings suggest that the switch from oxidative phosphorylation, over to glycolysis that occurs during capacitation may come about through sialylation of ACO2.
Collapse
Affiliation(s)
- Ana Izabel Silva Balbin Villaverde
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Rachel A Ogle
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Peter Lewis
- Centre for Chemical Biology and Clinical Pharmacology, Department of Biology, School of Environmental & Life Sciences, The University of Newcastle, Callaghan, Australia
| | - Vincenzo Carbone
- AgResearchGrasslands Research Centre, Palmerston North, New Zealand
| | - Tony Velkov
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, NSW, Australia
| | - Jacob K Netherton
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
26
|
Shotgun proteome analysis of seminal plasma differentiate boars by reproductive performance. Theriogenology 2020; 157:130-139. [PMID: 32810790 DOI: 10.1016/j.theriogenology.2020.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
There is a need to identify subfertile boars before they enter into the breeding herd. Seminal plasma proteins are essential for normal sperm function and transport and play an important role in fertilization. The objective of this study was to use liquid chromatography tandem mass spectrometry for shotgun proteome analysis to investigate whether differences in boar fertility phenotype can be differentiated by seminal plasma protein abundance. Following 50 breedings, boars were categorized into one of four phenotypes: high farrowing rate and total born (HFHB; n = 9), high farrowing rate with low total born (HFLB; n = 10), low farrowing rate and total born (LFLB; n = 9), and low farrowing rate with high total born (LFHB; n = 4) that were distinct (p < 0.05) from each other by these variables. There were 506 proteins measured in at least one sample across all animals. There were 245 high confidence proteins and 56 were differentially abundant between the high fertility phenotype (HFHB) and at least one of the three subfertile groups. Findings support that seminal plasma protein profiles are distinct between boars with different fertility phenotypes.
Collapse
|
27
|
Fair S, Meade KG, Reynaud K, Druart X, de Graaf SP. The biological mechanisms regulating sperm selection by the ovine cervix. Reproduction 2020; 158:R1-R13. [PMID: 30921769 DOI: 10.1530/rep-18-0595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/28/2019] [Indexed: 01/11/2023]
Abstract
In species where semen is deposited in the vagina, the cervix has the unique function of facilitating progress of spermatozoa towards the site of fertilisation while also preventing the ascending influx of pathogens from the vagina. For the majority of species, advances in assisted reproduction techniques facilitate the bypassing of the cervix and therefore its effect on the transit of processed spermatozoa has been largely overlooked. The exception is in sheep, as it is currently not possible to traverse the ovine cervix with an inseminating catheter due to its complex anatomy, and semen must be deposited at the external cervical os. This results in unacceptably low pregnancy rates when frozen-thawed or liquid stored (>24 h) semen is inseminated. The objective of this review is to discuss the biological mechanisms which regulate cervical sperm selection. We assess the effects of endogenous and exogenous hormones on cervical mucus composition and discuss how increased mucus production and flow during oestrus stimulates sperm rheotaxis along the crypts and folds of the cervix. Emerging results shedding light on the sperm-cervical mucus interaction as well as the dialogue between spermatozoa and the innate immune system are outlined. Finally, ewe breed differences in cervical function and the impact of semen processing on the success of fertilisation, as well as the most fruitful avenues of further investigation in this area are proposed.
Collapse
Affiliation(s)
- S Fair
- Laboratory of Animal Reproduction, School of Natural Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - K G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co Meath, Ireland
| | - K Reynaud
- UMR PRC, INRA 85, CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
| | - X Druart
- UMR PRC, INRA 85, CNRS 7247, Université de Tours, IFCE, Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
| | - S P de Graaf
- The University of Sydney, School of Life and Environmental Sciences, Faculty of Science, Sydney, New South Wales, Australia
| |
Collapse
|
28
|
Batra V, Maheshwarappa A, Dagar K, Kumar S, Soni A, Kumaresan A, Kumar R, Datta TK. Unusual interplay of contrasting selective pressures on β-defensin genes implicated in male fertility of the Buffalo (Bubalus bubalis). BMC Evol Biol 2019; 19:214. [PMID: 31771505 PMCID: PMC6878701 DOI: 10.1186/s12862-019-1535-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The buffalo, despite its superior milk-producing ability, suffers from reproductive limitations that constrain its lifetime productivity. Male sub-fertility, manifested as low conception rates (CRs), is a major concern in buffaloes. The epididymal sperm surface-binding proteins which participate in the sperm surface remodelling (SSR) events affect the survival and performance of the spermatozoa in the female reproductive tract (FRT). A mutation in an epididymal secreted protein, beta-defensin 126 (DEFB-126/BD-126), a class-A beta-defensin (CA-BD), resulted in decreased CRs in human cohorts across the globe. To better understand the role of CA-BDs in buffalo reproduction, this study aimed to identify the BD genes for characterization of the selection pressure(s) acting on them, and to identify the most abundant CA-BD transcript in the buffalo male reproductive tract (MRT) for predicting its reproductive functional significance. RESULTS Despite the low protein sequence homology with their orthologs, the CA-BDs have maintained the molecular framework and the structural core vital to their biological functions. Their coding-sequences in ruminants revealed evidence of pervasive purifying and episodic diversifying selection pressures. The buffalo CA-BD genes were expressed in the major reproductive and non-reproductive tissues exhibiting spatial variations. The Buffalo BD-129 (BuBD-129) was the most abundant and the longest CA-BD in the distal-MRT segments and was predicted to be heavily O-glycosylated. CONCLUSIONS The maintenance of the structural core, despite the sequence divergence, indicated the conservation of the molecular functions of the CA-BDs. The expression of the buffalo CA-BDs in both the distal-MRT segments and non-reproductive tissues indicate the retention the primordial microbicidal activity, which was also predicted by in silico sequence analyses. However, the observed spatial variations in their expression across the MRT hint at their region-specific roles. Their comparison across mammalian species revealed a pattern in which the various CA-BDs appeared to follow dissimilar evolutionary paths. This pattern appears to maintain only the highly efficacious CA-BD alleles and diversify their functional repertoire in the ruminants. Our preliminary results and analyses indicated that BuBD-129 could be the functional ortholog of the primate DEFB-126. Further studies are warranted to assess its molecular functions to elucidate its role in immunity, reproduction and fertility.
Collapse
Affiliation(s)
- Vipul Batra
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | | | - Komal Dagar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Sandeep Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - Apoorva Soni
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - A Kumaresan
- Theriogenology Lab, SRS of NDRI, Bengaluru, 560030, India
| | - Rakesh Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India
| | - T K Datta
- Animal Genomics Lab, National Dairy Research Institute, Karnal, 132001, India.
| |
Collapse
|
29
|
RANJAN R, SINGH SP, GURURAJ K, JINDAL SK, CHAUHAN MS. Status of beta defensin-1 in Indian goat breeds. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i10.95001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present study was carried out to know the status of Beta Defensin-1 in goat semen before and after cryopreservation with beta defensin-1 supplemented semen diluent and in blood of different breeds of goat (Barbari, Jamunapari and Jakhrana). Goat semen (N-10) from each breed was collected by artificial vagina method. Immediately after collection, the volume, colour, consistency, and mass motility of ejaculate were assessed and were extended with Tris-Egg yolk-Fructose diluent having 10% (v/v) egg yolk and glycerol 6% (v/v). Samples were divided for estimation of beta defensin–1 and rest parts were cryopreserved with semen diluent having beta defensin-1 @ 10 ng/mL. Blood samples (N-30) were also collected from the same animal after semen collection. The samples were stored at –20°C until assayed. Plasma membrane of sperm was broken by freeze thaw followed by ultracentrifugation (20,000 × g for 5 min) at room temperature before ELISA test. The samples were diluted with Phosphate buffer (1:2) before analysis. The samples were analyzed using goat specific beta defensin–1 commercial kit (EO6D0419) as per the manufacturer’s instruction. The result showed that with supplementation of beta defensin-1 in goat semen, diluent maintains the concentration of beta defensin-1 even after cryopreservation. There was significant decrease (P<0.05) in beta defensin-1 concentration in sample which had no supplement in semen diluent after cryopreservation. The supplementation of beta defensin-1 in goat semen diluent improved the post-thaw immune modulatory properties of semen.
Collapse
|
30
|
Zhao W, Mengal K, Yuan M, Quansah E, Li P, Wu S, Xu C, Yi C, Cai X. Comparative RNA-Seq Analysis of Differentially Expressed Genes in the Epididymides of Yak and Cattleyak. Curr Genomics 2019; 20:293-305. [PMID: 32030088 PMCID: PMC6983960 DOI: 10.2174/1389202920666190809092819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/03/2023] Open
Abstract
Background Cattleyak are the Fl hybrids between (♀) yak (Bos grunniens) and (♂) cattle (Bos taurus). Cattleyak exhibit higher capability in adaptability to a harsh environment and display much higher performances in production than the yak and cattle. The cattleyak, however, are females fertile but males sterile. All previous studies greatly focused on testes tissues to study the mechanism of male infer-tility in cattleyak. However, so far, no transcriptomic study has been conducted on the epididymides of yak and cattleyak. Objective Our objective was to perform comparative transcriptome analysis between the epididymides of yak and cattleyak and predict the etiology of male infertility in cattleyak.Methods: We performed comparative transcriptome profiles analysis by mRNA sequencing in the epidi-dymides of yak and cattleyak. Results In total 3008 differentially expressed genes (DEGs) were identified in cattleyak, out of which 1645 DEGs were up-regulated and 1363 DEGs were down-regulated. Thirteen DEGs were validated by quantitative real-time PCR. DEGs included certain genes that were associated with spermatozoal matura-tion, motility, male fertility, water and ion channels, and beta-defensins. LCN9, SPINT4, CES5A, CD52, CST11, SERPINA1, CTSK, FABP4, CCR5, GRIA2, ENTPD3, LOC523530 and DEFB129, DEFB128, DEFB127, DEFB126, DEFB124, DEFB122A, DEFB122, DEFB119 were all downregu-lated, whereas NRIP1 and TMEM212 among top 30 DEGs were upregulated. Furthermore, protein processing in endoplasmic reticulum pathway was ranked at top-listed three significantly enriched KEGG pathways that as a consequence of abnormal expression of ER-associated genes in the entire ER protein processing pathway might have been disrupted in male cattleyak which resulted in the down-regulation of several important genes. All the DEGs enriched in this pathway were downregulated ex-cept NEF. Conclusion Taken together, our findings revealed that there were marked differences in the epididymal transcriptomic profiles of yak and cattleyak. The DEGs were involved in spermatozoal maturation, mo-tility, male fertility, water and ion channels, and beta-defensins. Abnormal expression of ER-associated genes in the entire ER protein processing pathway may have disrupted protein processing pathway in male cattleyak resulting in the downregulation of several important genes involved in sperm maturation, motility and defense.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Kifayatullah Mengal
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Meng Yuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Eugene Quansah
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Pengcheng Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Shixin Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Chuanping Yi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| | - Xin Cai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang621010, Sichuan, China
| |
Collapse
|
31
|
Rickard JP, Pool KR, Druart X, de Graaf SP. The fate of spermatozoa in the female reproductive tract: A comparative review. Theriogenology 2019; 137:104-112. [PMID: 31230704 DOI: 10.1016/j.theriogenology.2019.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The journey that spermatozoa take following deposition in the female tract is a long and perilous one. The barriers they face within the female tract differ depending on whether they are deposited in the vagina or uterus, like spermatozoa of the ram or boar respectively. Comparative studies on the transit of spermatozoa through the ewe and sow tracts serves to highlight similarities, or differences, in the way their sperm-surface properties enable them to overcome these barriers, progress through the tract and fertilise the oocyte. The female environment contributes towards this successful transit by providing a vehicle for sperm transport, aiding the removal of dead spermatozoa and other pathogens and applying strict selection pressures to ensure only those cells with the highest quality reach the site of fertilisation. Understanding the criteria behind these natural barriers helps an understanding of the limitations to fertility associated with preserved spermatozoa, and how in vitro manipulation can alter this complex interaction between spermatozoa and the female environment. Similar mechanisms or surface coat interactions exist in both species, but each has evolved to be used for physiologically disparate functions. Here we briefly describe the sperm surface characteristics of both fresh and frozen-thawed boar and ram spermatozoa and compare how these properties equip them to survive the physical, biochemical and immune interactions within the female reproductive tract.
Collapse
Affiliation(s)
- J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW, 2006, Australia.
| | - K R Pool
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW, 2006, Australia
| | - X Druart
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Le Centre National de la Recherche Scientifique, Institut Francais du Cheval et de L'Equitation, Université de Tours, Nouzilly, France
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW, 2006, Australia
| |
Collapse
|
32
|
Abstract
The moment of the fertilization of an egg by a spermatozoon-the point of "sperm success"-is a key milestone in the biology of sexually reproducing species and is a fundamental requirement for offspring production. Fertilization also represents the culmination of a suite of sexually selected processes in both sexes and is commonly used as a landmark to measure reproductive success. Sperm success is heavily dependent upon interactions with other key aspects of male and female biology, with the immune system among the most important. The immune system is vital to maintaining health in both sexes; however, immune reactions can also have antagonistic effects on sperm success. The effects of immunity on sperm success are diverse, and may include trade-offs in the male between investment in the production or protection of sperm, as well as more direct, hostile, immune responses to sperm within the female, and potentially the male, reproductive tract. Here, we review current understanding of where the biology of immunity and sperm meet, and identify the gaps in our knowledge.
Collapse
Affiliation(s)
- Stuart Wigby
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | - Susan S Suarez
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| | - Brian P Lazzaro
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| | - Tommaso Pizzari
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Mariana F Wolfner
- Departments of Biomedical Sciences (SSS), Entomology (BPL), and Molecular Biology and Genetics (MFW), Cornell University, Ithaca, NY, United States
| |
Collapse
|
33
|
Sadeghzadeh M, Shirpoor A, Naderi R, Kheradmand F, Gharalari FH, Samadi M, Khalaji N, Gharaaghaji R. Long‐term ethanol consumption promotes changes in β‐defensin isoform gene expression and induces structural changes and oxidative DNA damage to the epididymis of rats. Mol Reprod Dev 2019; 86:624-631. [DOI: 10.1002/mrd.23138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Maryam Sadeghzadeh
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
| | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
- Department of PhysiologyFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
- Department of PhysiologyFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Fatemeh Kheradmand
- Department of BiochemistryFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Farzaneh H. Gharalari
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
| | - Mahrokh Samadi
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
| | - Naser Khalaji
- Department of PhysiologyFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Rasool Gharaaghaji
- Department of Community MedicineFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| |
Collapse
|
34
|
Meade KG, O'Farrelly C. β-Defensins: Farming the Microbiome for Homeostasis and Health. Front Immunol 2019; 9:3072. [PMID: 30761155 PMCID: PMC6362941 DOI: 10.3389/fimmu.2018.03072] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
Diverse commensal populations are now regarded as key to physiological homeostasis and protection against disease. Although bacteria are the most abundant component of microbiomes, and the most intensively studied, the microbiome also consists of viral, fungal, archael, and protozoan communities, about which comparatively little is known. Host-defense peptides (HDPs), originally described as antimicrobial, now have renewed significance as curators of the pervasive microbial loads required to maintain homeostasis and manage microbiome diversity. Harnessing HDP biology to transition away from non-selective, antibiotic-mediated treatments for clearance of microbes is a new paradigm, particularly in veterinary medicine. One family of evolutionarily conserved HDPs, β-defensins which are produced in diverse combinations by epithelial and immune cell populations, are multifunctional cationic peptides which manage the cross-talk between host and microbes and maintain a healthy yet dynamic equilibrium across mucosal systems. They are therefore key gatekeepers to the oral, respiratory, reproductive and enteric tissues, preventing pathogen-associated inflammation and disease and maintaining physiological normality. Expansions in the number of genes encoding these natural antibiotics have been described in the genomes of some species, the functional significance of which has only recently being appreciated. β-defensin expression has been documented pre-birth and disruptions in their regulation may play a role in maladaptive neonatal immune programming, thereby contributing to subsequent disease susceptibility. Here we review recent evidence supporting a critical role for β-defensins as farmers of the pervasive and complex prokaryotic ecosystems that occupy all body surfaces and cavities. We also share some new perspectives on the role of β-defensins as sensors of homeostasis and the immune vanguard particularly at sites of immunological privilege where inflammation is attenuated.
Collapse
Affiliation(s)
- Kieran G. Meade
- Animal and Bioscience Research Centre, Teagasc, Grange, Ireland
| | - Cliona O'Farrelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
35
|
Castillo J, Jodar M, Oliva R. The contribution of human sperm proteins to the development and epigenome of the preimplantation embryo. Hum Reprod Update 2018; 24:535-555. [DOI: 10.1093/humupd/dmy017] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Judit Castillo
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
| | - Rafael Oliva
- Molecular Biology of Reproduction and Development Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica, Faculty of Medicine, University of Barcelona, Casanova, Barcelona, Spain
- Biochemistry and Molecular Genetics Service, Hospital Clínic, Villarroel, Barcelona, Spain
| |
Collapse
|
36
|
Abstract
The ability to predict the fertility of bulls before semen is released into the field has been a long-term objective of the animal breeding industry. However, the recent shift in the dairy industry towards the intensive use of young genomically selected bulls has increased its urgency. Such bulls, which are often in the highest demand, are frequently only used intensively for one season and consequently there is limited time to track their field fertility. A more pressing issue is that they produce fewer sperm per ejaculate than mature bulls and therefore there is a need to reduce the sperm number per straw to the minimum required without a concomitant reduction in fertility. However, as individual bulls vary in the minimum number of sperm required to achieve their maximum fertility, this cannot be currently achieved without extensive field-testing. Although an in vitro semen quality test, or combination of tests, which can accurately and consistently determine a bull's fertility and the optimum sperm number required represent the 'holy grail' in terms of semen assessment, this has not been achieved to date. Understanding the underlying causes of variation in bull fertility is a key prerequisite to achieving this goal. In this review, we consider the reliability of sire conception rate estimates and then consider where along the pregnancy establishment axis the variation in reproductive loss between bulls occurs. We discuss the aetiology of these deficiencies in sperm function and propose avenues for future investigation.
Collapse
|
37
|
Fernandez-Fuertes B, Blanco-Fernandez A, Reid CJ, Meade KG, Fair S, Lonergan P. Removal of sialic acid from bull sperm decreases motility and mucus penetration ability but increases zona pellucida binding and polyspermic penetration in vitro. Reproduction 2018; 155:481-492. [PMID: 29618635 DOI: 10.1530/rep-17-0429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
This study tested the hypothesis that sperm sialic acid (Sia) is required to reach the site of fertilization, and that successful fertilization requires recognition of Sia from both the sperm and oocyte to occur. In addition, it has recently been reported that Siglecs (Sia-binding-immunoglobulin-like lectins) are present on the sperm surface. Thus, the possibility that the recognition of oocyte Sia was sperm-Siglec-mediated was also addressed. Sperm exposed to neuraminidase (NMase) exhibited lower overall and progressive motility, which translated to a decreased ability to swim through cervical mucus from cows in oestrus. In addition, when either sperm or cumulus-oocyte complexes (COCs) were treated with NMase, a decrease in cleavage and blastocyst rate was observed. However, incubation of sperm with increasing concentrations of anti-Siglec-2, -5, -6 and -10 antibodies prior to fertilization had no effect on their fertilizing ability. Interestingly, treatment with NMase increased the number of sperm bound to the ZP but also the rate of polyspermic fertilization. Flow cytometry analysis revealed no differences in the percentage of capacitated or acrosome-reacted sperm. These results suggest that Sia are required to reach the site of fertilization but need to be removed for sperm-oocyte interaction. However, fine regulation is needed to avoid abnormal fertilization which can lead to impaired embryo development.
Collapse
Affiliation(s)
- B Fernandez-Fuertes
- School of Agriculture and Food ScienceUniversity College Dublin, Dublin, Ireland
| | - A Blanco-Fernandez
- Flow Cytometry Core FacilitiesUCD-Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - C J Reid
- School of Veterinary MedicineVeterinary Sciences Centre, University College Dublin, Dublin, Ireland
| | - K G Meade
- Animal & Grassland Research and Innovation CentreTeagasc, Grange, County Meath, Ireland
| | - S Fair
- Department of Biological SciencesLaboratory of Animal Reproduction, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - P Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Huang P, Li W, Yang Z, Zhang N, Xu Y, Bao J, Jiang D, Dong X. LYZL6, an acidic, bacteriolytic, human sperm-related protein, plays a role in fertilization. PLoS One 2017; 12:e0171452. [PMID: 28182716 PMCID: PMC5300149 DOI: 10.1371/journal.pone.0171452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 01/21/2017] [Indexed: 11/17/2022] Open
Abstract
Lysozyme-like proteins (LYZLs) belong to the c-type lysozyme/α-lactalbumin family and are selectively expressed in the mammalian male reproductive tract. Two members, human sperm lysozyme-like protein (SLLP) -1 and mouse LYZL4, have been reported to contribute to fertilization but show no bacteriolytic activity. Here, we focused on the possible contribution of LYZL6 to immunity and fertilization. In humans, LYZL6 was selectively expressed by the testis and epididymis and became concentrated on spermatozoa. Native LYZL6 isolated from sperm extracts exhibited bacteriolytic activity against Micrococcus lysodeikticus. Recombinant LYZL6 (rLYZL6) reached its peak activity at pH 5.6 and 15 mM of Na+, and could inhibit the growth of Gram-positive, but not Gram-negative bacteria. Nevertheless, the bacteriolytic activity of rLYZL6 proved to be much lower than that of human lysozyme under physiological conditions. Immunodetection with a specific antiserum localized the LYZL6 protein on the postacrosomal membrane of mature spermatozoa. Immunoneutralization of LYZL6 significantly decreased the numbers of human spermatozoa fused with zona-free hamster eggs in a dose-dependent manner in vitro. Thus, we report here for the first time that LYZL6, an acidic, bacteriolytic and human sperm-related protein, is likely important for fertilization but not for the innate immunity of the male reproductive tract.
Collapse
Affiliation(s)
- Peng Huang
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Wenshu Li
- College of Arts and Sciences, New York University, Shanghai, People’s Republic of China
| | - Zhifang Yang
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Ning Zhang
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Yixin Xu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Jianying Bao
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xianping Dong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| |
Collapse
|
39
|
Atikuzzaman M, Alvarez-Rodriguez M, Vicente-Carrillo A, Johnsson M, Wright D, Rodriguez-Martinez H. Conserved gene expression in sperm reservoirs between birds and mammals in response to mating. BMC Genomics 2017; 18:98. [PMID: 28100167 PMCID: PMC5242001 DOI: 10.1186/s12864-017-3488-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Spermatozoa are stored in the oviductal functional sperm reservoir in animals with internal fertilization, including zoologically distant classes such as pigs or poultry. They are held fertile in the reservoir for times ranging from a couple of days (in pigs), to several weeks (in chickens), before they are gradually released to fertilize the newly ovulated eggs. It is currently unknown whether females from these species share conserved mechanisms to tolerate such a lengthy presence of immunologically-foreign spermatozoa. Therefore, global gene expression was assessed using cDNA microarrays on tissue collected from the avian utero-vaginal junction (UVJ), and the porcine utero-tubal junction (UTJ) to determine expression changes after mating (entire semen deposition) or in vivo cloacal/cervical infusion of sperm-free seminal fluid (SF)/seminal plasma (SP). RESULTS In chickens, mating changed the expression of 303 genes and SF-infusion changed the expression of 931 genes, as compared to controls, with 68 genes being common to both treatments. In pigs, mating or SP-infusion changed the expressions of 1,722 and 1,148 genes, respectively, as compared to controls, while 592 genes were common to both treatments. The differentially expressed genes were significantly enriched for GO categories related to immune system functions (35.72-fold enrichment). The top 200 differentially expressed genes of each treatment in each animal class were analysed for gene ontology. In both pig and chicken, an excess of genes affecting local immune defence were activated, though frequently these were down-regulated. Similar genes were found in both the chicken and pig, either involved in pH-regulation (SLC16A2, SLC4A9, SLC13A1, SLC35F1, ATP8B3, ATP13A3) or immune-modulation (IFIT5, IFI16, MMP27, ADAMTS3, MMP3, MMP12). CONCLUSION Despite being phylogenetically distant, chicken and pig appear to share some gene functions for the preservation of viable spermatozoa in the female reservoirs.
Collapse
Affiliation(s)
- Mohammad Atikuzzaman
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden
| | - Manuel Alvarez-Rodriguez
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden
| | - Alejandro Vicente-Carrillo
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden
| | - Martin Johnsson
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering, Linköping University, Linköping, Sweden
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering, Linköping University, Linköping, Sweden
| | - Heriberto Rodriguez-Martinez
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden.
| |
Collapse
|
40
|
Narciandi F, Fernandez-Fuertes B, Khairulzaman I, Jahns H, King D, Finlay EK, Mok KH, Fair S, Lonergan P, Farrelly CO, Meade KG. Sperm-Coating Beta-Defensin 126 Is a Dissociation-Resistant Dimer Produced by Epididymal Epithelium in the Bovine Reproductive Tract. Biol Reprod 2016; 95:121. [PMID: 27707712 PMCID: PMC5333941 DOI: 10.1095/biolreprod.116.138719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/14/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022] Open
Abstract
Beta-defensins are innate immune molecules, often described as antimicrobial peptides because of their bactericidal activity and are now known to have diverse additional functions, including cell signaling, chemoattraction, immunoregulation, and reproduction. In humans and primates, beta-defensin 126 has been shown to regulate the ability of sperm to swim through cervical mucus and to protect sperm from attack by the female immune system during transit toward the oviduct. Bovine beta-defensin 126 (BBD126) is the ortholog of human defensin 126, and computational analysis here revealed significant conservation between BBD126 and other mammalian orthologs at the N-terminus, although extensive sequence differences were detected at the C-terminus, implying possible species-specific roles for this beta-defensin in reproduction. We had previously demonstrated preferential expression of this and related beta-defensin genes in the bovine male reproductive tract, but no studies of bovine beta-defensin proteins have been performed to date. Here, we analyzed BBD126 protein using a monoclonal antibody (a-BBD126) generated against a 14 amino acid peptide sequence from the secreted fragment of BBD126. The specificity of a-BBD126 was validated by testing against the native form of the peptide recovered from bovine caudal epididymal fluid and recombinant BBD126 generated using a prokaryotic expression system. Western blot analysis of the native and recombinant forms showed that BBD126 exists as a dimer that was highly resistant to standard methods of dissociation. Immunohistochemical staining using a-BBD126 demonstrated BBD126 protein expression by epithelial cells of the caudal epididymis and vas deferens from both mature and immature bulls. BBD126 could also be seen (by confocal microscopy) to coat caudal sperm, with staining concentrated on the tail of the sperm cells. This study is the first to demonstrate beta-defensin 126 protein expression in the bovine reproductive tract and on bull sperm. Its dissociation-resistant dimeric structure is likely to have important functional implications for the role of BBD126 in bovine reproduction.
Collapse
Affiliation(s)
| | | | | | - Hanne Jahns
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Deirdre King
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Emma K Finlay
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Ken H Mok
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.,Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Sean Fair
- Department of Life Sciences, University of Limerick, Limerick, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Cliona O' Farrelly
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland .,Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Kieran G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| |
Collapse
|
41
|
Fernandez-Fuertes B, Narciandi F, O'Farrelly C, Kelly AK, Fair S, Meade KG, Lonergan P. Cauda Epididymis-Specific Beta-Defensin 126 Promotes Sperm Motility but Not Fertilizing Ability in Cattle. Biol Reprod 2016; 95:122. [PMID: 27707713 PMCID: PMC5333942 DOI: 10.1095/biolreprod.116.138792] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/15/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022] Open
Abstract
Bovine beta-defensin 126 (BBD126) exhibits preferential expression for the cauda epididymis of males, where it is absorbed onto the tail and postacrosomal region of the sperm. The aim of this study was to examine the role of BBD126 in bull sperm function. Fresh and frozen-thawed semen were incubated in the presence of different capacitating agents as well as with phosphatidylinositol-specific phospholipase C. These treatments, which have been successful in releasing beta-defensin 126 from macaque sperm, proved to be ineffective in bull sperm. This finding suggests that the protein behaves in a different manner in the bovine. The lack of success in removing BBD126 led us to use corpus epididymis sperm, a model in which the protein is not present, to study its functional role. Corpus sperm were incubated with cauda epididymal fluid (CEF) in the absence or presence of BBD126 antibody or with recombinant BBD126 (rBBD126). Confocal microscopy revealed that rBBD126 binds to corpus sperm with the same pattern observed for BBD126 in cauda sperm, whereas an aberrant binding pattern is observed when sperm are subject to CEF incubation. Addition of CEF increased motility as well as the number of corpus sperm migrating through cervical mucus from estrus cows. However, it decreased the ability of sperm to fertilize in vitro matured oocytes. The presence of the antibody failed to abrogate these effects. Furthermore, when rBBD126 was added in the absence of other factors and proteins from the CEF, an increase in motility was also observed and no negative effects in fertility were seen. These results suggest that BBD126 plays a key role in the acquisition of sperm motility in the epididymis.
Collapse
Affiliation(s)
| | | | - Cliona O'Farrelly
- Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Alan K Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sean Fair
- Department of Life Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Kieran G Meade
- Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
42
|
Ma X, Pan Q, Feng Y, Choudhury BP, Ma Q, Gagneux P, Ma F. Sialylation Facilitates the Maturation of Mammalian Sperm and Affects Its Survival in Female Uterus. Biol Reprod 2016; 94:123. [PMID: 27075617 PMCID: PMC4946803 DOI: 10.1095/biolreprod.115.137810] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/06/2016] [Indexed: 02/05/2023] Open
Abstract
Establishment of adequate levels of sialylation is crucial for sperm survival and function after insemination; however, the mechanism for the addition of the sperm sialome has not been identified. Here, we report evidence for several different mechanisms that contribute to the establishment of the mature sperm sialome. Directly quantifying the source of the nucleotide sugar CMP-beta-N-acetylneuraminic acid in epididymal fluid indicates that transsialylation occurs in the upper epididymis. Western blots for the low-molecular-mass sialoglycoprotein (around 20–50 kDa) in C57BL/6 mice epididymal fluid reflect that additional sialome could be obtained by glycosylphosphatidylinositol-anchored sialoglycopeptide incorporation during epididymal transit in the caput of the epididymis. Additionally, we found that in Cmah (CMP-N-acetylneuraminic acid hydroxylase)−/− transgenic mice, epididymal sperm obtained sialylated-CD52 from seminal vesicle fluid (SVF). Finally, we used Gfp (green fluorescent protein)+/+ mouse sperm to test the role of sialylation on sperm for protection from female leukocyte attack. There is very low phagocytosis of the epididymal sperm when compared to that of sperm coincubated with SVF. Treating sperm with Arthrobacter ureafaciens sialidase (AUS) increased phagocytosis even further. Our results highlight the different mechanisms of increasing sialylation, which lead to the formation of the mature sperm sialome, as well as reveal the sialome's function in sperm survival within the female genital tract.
Collapse
Affiliation(s)
- Xue Ma
- Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Pan
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Feng
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Biswa P Choudhury
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qianhong Ma
- West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Pascal Gagneux
- Glycobiology Research and Training Center and Departments of Cellular, University of California, San Diego, La Jolla, California
| | - Fang Ma
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China Glycobiology Research and Training Center and Departments of Cellular, University of California, San Diego, La Jolla, California
| |
Collapse
|
43
|
Villaverde AISB, Hetherington L, Baker MA. Quantitative Glycopeptide Changes in Rat Sperm During Epididymal Transit1. Biol Reprod 2016; 94:91. [DOI: 10.1095/biolreprod.115.134114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/04/2016] [Indexed: 12/29/2022] Open
|
44
|
Choi YH, Velez IC, Macías-García B, Riera FL, Ballard CS, Hinrichs K. Effect of clinically-related factors on in vitro blastocyst development after equine ICSI. Theriogenology 2016; 85:1289-96. [DOI: 10.1016/j.theriogenology.2015.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 11/16/2022]
|
45
|
Simon L, Murphy K, Aston KI, Emery BR, Hotaling JM, Carrell DT. Optimization of microelectrophoresis to select highly negatively charged sperm. J Assist Reprod Genet 2016; 33:679-88. [PMID: 27007874 DOI: 10.1007/s10815-016-0700-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/08/2016] [Indexed: 01/23/2023] Open
Abstract
PURPOSE The sperm membrane undergoes extensive surface remodeling as it matures in the epididymis. During this process, the sperm is encapsulated in an extensive glycocalyx layer, which provides the membrane with its characteristic negative electrostatic charge. In this study, we develop a method of microelectrophoresis and standardize the protocol to isolate sperm with high negative membrane charge. METHODS Under an electric field, the percentage of positively charged sperm (PCS), negatively charged sperm (NCS), and neutrally charged sperm was determined for each ejaculate prior to and following density gradient centrifugation (DGC), and evaluated for sperm DNA damage, and histone retention. Subsequently, PCS, NCS, and neutrally charged sperm were selected using an ICSI needle and directly analyzed for DNA damage. RESULTS When raw semen was analyzed using microelectrophoresis, 94 % were NCS. In contrast, DGC completely or partially stripped the negative membrane charge from sperm resulting PCS and neutrally charged sperm, while the charged sperm populations are increased with an increase in electrophoretic current. Following DGC, high sperm DNA damage and abnormal histone retention were inversely correlated with percentage NCS and directly correlated with percentage PCS. NCS exhibited significantly lower DNA damage when compared with control (P < 0.05) and PCS (P < 0.05). When the charged sperm population was corrected for neutrally charged sperm, sperm DNA damage was strongly associated with NCS at a lower electrophoretic current. CONCLUSION The results suggest that selection of NCS at lower current may be an important biomarker to select healthy sperm for assisted reproductive treatment.
Collapse
Affiliation(s)
- Luke Simon
- Andrology and IVF Laboratory, Department of Surgery (Urology), Salt Lake City, Utah, USA
| | - Kristin Murphy
- Andrology and IVF Laboratory, Department of Surgery (Urology), Salt Lake City, Utah, USA
| | - Kenneth I Aston
- Andrology and IVF Laboratory, Department of Surgery (Urology), Salt Lake City, Utah, USA
| | - Benjamin R Emery
- Andrology and IVF Laboratory, Department of Surgery (Urology), Salt Lake City, Utah, USA
| | - James M Hotaling
- Andrology and IVF Laboratory, Department of Surgery (Urology), Salt Lake City, Utah, USA
| | - Douglas T Carrell
- Andrology and IVF Laboratory, Department of Surgery (Urology), Salt Lake City, Utah, USA. .,Department of Obstetrics and Gynecology, Salt Lake City, Utah, USA. .,Department of Human Genetics, University of Utah, 675 Arapeen Drive, Suite 201, Salt Lake City, Utah, 84109, USA.
| |
Collapse
|
46
|
Lectin binding of human sperm associates with DEFB126 mutation and serves as a potential biomarker for subfertility. Sci Rep 2016; 6:20249. [PMID: 26832966 PMCID: PMC4735291 DOI: 10.1038/srep20249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/31/2015] [Indexed: 12/18/2022] Open
Abstract
Coating on the sperm surface, glycocalyx, plays a key role in sperm motility, maturation and fertilization. A comprehensive profile of sperm surface glycans will greatly facilitate both basic researches and clinical studies. Because of the capability of recognizing different glycan moieties, lectins are widely used in glycobiology. However, lacking high-throughput technology, limited lectins have been reported for analyzing the glycan of human sperm. In this study, we employed a lectin microarray for profiling the surface glycans of human sperm, on which 54 out of 91 lectins showed positive binding. Based on this technique, we compared lectin binding profiling of sperm with homozygous DEFB126 mutation (del/del) with that of wild type (wt/wt). DEFB126 was reported to contribute to the sialylation on sperm surface and its homozygous mutation was related to male subfertility. Six lectins (Jacalin/AIA, GHA, ACL, MPL, VVL and ABA) were found to develop lower binding affinity to sperm with del/del. Further validation showed that these lectins, especially ABA and MPL, can be potential biomarkers for clinical diagnosis of subfertility due to the mutation of DEFB126. Our research provides insight into the detection of some unexplained male subfertility, and the lectin microarray is generally applicable for infertility/subfertility sperm biomarker discovery.
Collapse
|
47
|
Affiliation(s)
- Min Liu
- Department of Life Science and Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Republic of China
| |
Collapse
|
48
|
Tecle E, Gagneux P. Sugar-coated sperm: Unraveling the functions of the mammalian sperm glycocalyx. Mol Reprod Dev 2015; 82:635-50. [PMID: 26061344 PMCID: PMC4744710 DOI: 10.1002/mrd.22500] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/30/2015] [Indexed: 01/05/2023]
Abstract
Mammalian spermatozoa are coated with a thick glycocalyx that is assembled during sperm development, maturation, and upon contact with seminal fluid. The sperm glycocalyx is critical for sperm survival in the female reproductive tract and is modified during capacitation. The complex interplay among the various glycoconjugates generates numerous signaling motifs that may regulate sperm function and, as a result, fertility. Nascent spermatozoa assemble their own glycans while the cells still possess a functional endoplasmic reticulum and Golgi in the seminiferous tubule, but once spermatogenesis is complete, they lose the capacity to produce glycoconjugates de novo. Sperm glycans continue to be modified, during epididymal transit by extracellular glycosidases and glycosyltransferases. Furthermore, epididymal cells secrete glycoconjugates (glycophosphatidylinositol-anchored glycoproteins and glycolipids) and glycan-rich microvesicles that can fuse with the maturing sperm membrane. The sperm glycocalyx mediates numerous functions in the female reproductive tract, including the following: inhibition of premature capacitation; passage through the cervical mucus; protection from innate and adaptive female immunity; formation of the sperm reservoir; and masking sperm proteins involved in fertilization. The immense diversity in sperm-associated glycans within and between species forms a remarkable challenge to our understanding of essential sperm glycan functions.
Collapse
Affiliation(s)
- Eillen Tecle
- Division of Comparative Pathology and Medicine, Department of Pathology, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California
| | - Pascal Gagneux
- Division of Comparative Pathology and Medicine, Department of Pathology, Glycobiology Research and Training Center, University of California San Diego, La Jolla, California
| |
Collapse
|
49
|
Defensins: “Simple” antimicrobial peptides or broad-spectrum molecules? Cytokine Growth Factor Rev 2015; 26:361-70. [DOI: 10.1016/j.cytogfr.2014.12.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/17/2014] [Indexed: 11/19/2022]
|
50
|
Johnson GP, Lloyd AT, O'Farrelly C, Meade KG, Fair S. Comparative genomic identification and expression profiling of a novel ?-defensin gene cluster in the equine reproductive tract. Reprod Fertil Dev 2015; 28:RD14345. [PMID: 25924226 DOI: 10.1071/rd14345] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/07/2015] [Indexed: 12/21/2022] Open
Abstract
?-defensins are small cationic proteins with potent immunoregulatory and antimicrobial activity. The number of genes encoding these peptides varies significantly between and within species but they have not been extensively characterised in the horse. Here, we describe a systematic search of the Equus caballus genome that identified a cluster of novel ?-defensin genes on Chromosome 22, which is homologous to a cluster on bovine Chromosome 13. Close genomic matches were found for orthologs of 13 of the bovine genes, which were named equine ?-defensins (eBD) 115, eBD116, eBD117, eBD119, eBD120, eBD122a, eBD123, eBD124, eBD125, eBD126, eBD127, eBD129 and eBD132. As expression of the homologous cluster in cattle was limited to the reproductive tract, tissue sections were obtained from the testis, caput, corpus and cauda epididymis and the vas deferens of three stallions and from the ovary, oviduct, uterine horn, uterus, cervix and vagina of three mares. Using a quantitative real-time polymerase chain reaction approach, each of the novel ?-defensin genes showed distinct region-specific patterns of expression. Preferential expression in the caput epididymis of these novel defensins in the stallion and in the oviduct in the mare suggests a possible role in immunoprotection of the equine reproductive tract or in fertility.
Collapse
|