1
|
Mazzarella R, Sánchez JM, Fernandez-Fuertes B, Egido SG, McDonald M, Álvarez-Barrientos A, González E, Falcón-Pérez JM, Azkargorta M, Elortza F, González ME, Lonergan P, Rizos D. Embryo-Induced Changes in the Protein Profile of Bovine Oviductal Extracellular Vesicles. Mol Cell Proteomics 2025; 24:100935. [PMID: 40024377 PMCID: PMC11994978 DOI: 10.1016/j.mcpro.2025.100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/30/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025] Open
Abstract
The study of early maternal-embryonic cross-talk remains one of the most challenging topics in reproductive biology. Understanding the physiological mechanisms involved in the interactions between the maternal reproductive tract and the developing embryo is essential for enhancing bovine reproductive efficiency. This complex communication starts within the oviduct, where the modulation of biological processes important for ensuring embryo quality is partially facilitated through extracellular vesicles (EVs). Utilizing a combination of in vivo and in vitro models this study had three main objectives: 1) to examine the protein cargo of EVs isolated from the oviductal fluid (OF) of cyclic and pregnant heifers to understand their role in maternal-embryonic communication in vivo; 2) to characterize the protein profile of EVs in conditioned medium (CM) resulting from the culture of oviductal explants alone (Exp) or in the presence of 8- to 16-cell stage embryos (Exp + Emb); and 3) to compare the protein cargo of EVs from Exp with EVs from cyclic heifers and EVs from Exp + Emb with EVs from pregnant heifers. Proteins were considered "identified" if detected in at least three out of five replicates and considered "exclusive" if detected in at least three out of five replicates within one group but absent in all samples of other groups. We identified 659 and 1476 proteins in the OF-EVs of cyclic and pregnant heifers, respectively. Among these, 644 proteins were identified in OF-EVs from both cyclic and pregnant heifers, and 40 proteins were exclusive to OF-EVs from the pregnant group. Within the 644 proteins identified in both groups, 31 were identified as differently abundant proteins (DAPs). In pregnant heifers, DAPs were mainly related to genome activation, DNA repair, embryonic cell differentiation, migration, and immune tolerance. In vitro, we identified 841 proteins in the CM-EVs from Exp alone, 613 from Exp + Emb, and 111 in the CM-EVs from Emb alone. In the qualitative analysis between the three in vitro groups, 81 proteins were identified in all groups, 452 were common to Exp and Exp + Emb, 17 were common to Exp and Emb, 5 were common to Exp + Emb and Emb, 4 were unique to Exp, 6 were unique to Exp + Emb, and none were unique to Emb. Proteins identified when there is an interaction between the oviduct and the embryo in vitro, corresponding to the Exp + Emb group, were associated with immune tolerance, structural activity, binding, and cytoskeletal regulation. In vivo and in vitro EVs exhibit distinct qualitative and quantitative protein contents, both when comparing EVs produced in the absence of an embryo (Cyclic and Exp) and those that have undergone embryo-oviduct interaction (Pregnant and Exp + Emb). The observed changes in the protein cargo of EVs due to maternal-embryonic communication in vivo and in vitro suggest that the interaction between the embryo and the maternal milieu initiates within the oviduct and is potentially facilitated by EVs and their protein contents.
Collapse
Affiliation(s)
| | | | | | | | - Michael McDonald
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | - Esperanza González
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Juan Manuel Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas (CIBEReh), Madrid, Spain
| | - Mikel Azkargorta
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Félix Elortza
- Proteomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Maria Encina González
- Department of Anatomy and Embryology, Veterinary Faculty, Complutense University of Madrid (UCM), Madrid, Spain
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Dimitrios Rizos
- Department of Animal Reproduction, INIA-CSIC, Madrid, Spain.
| |
Collapse
|
2
|
Zhang Z, Tang X, Li D, Tong X, Min L, Chen W, Ju X, Xu B. The Identification of RPL4 as a Hub Gene Associated with Goat Litter Size via Weighted Gene Co-Expression Network Analysis. Animals (Basel) 2024; 14:1470. [PMID: 38791687 PMCID: PMC11117213 DOI: 10.3390/ani14101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Reproduction in goats is a highly complex and dynamic process of life regulation, involving coordinated regulation from various aspects such as central nervous system regulation, reproductive system development, oocyte maturation, and fertilized egg development. In recent years, researchers have identified numerous genes associated with goat reproductive performance through high-throughput sequencing, single-cell sequencing, gene knockout, and other techniques. However, there is still an urgent need to explore marker genes related to goat reproductive performance. In this study, a single-cell RNA sequencing dataset of oocytes (GSE136005) was obtained from the Gene Expression Omnibus (GEO) database. Weighted Gene Co-expression Network Analysis (WGCNA) was utilized to identify modules highly correlated with goat litter size. Through gene function enrichment analysis, it was found that genes within the modules were mainly enriched in adhesive junctions, cell cycle, and other signaling pathways. Additionally, the top 30 hub genes with the highest connectivity in WGCNA were identified. Subsequently, using Protein-Protein Interaction (PPI) network analysis, the top 30 genes with the highest connectivity within the modules were identified. The intersection of hub genes, key genes in the PPI network, and differentially expressed genes (DEGs) led to the identification of the RPL4 gene as a key marker gene associated with reproductive capacity in goat oocytes. Overall, our study reveals that the RPL4 gene in oocytes holds promise as a biological marker for assessing goat litter size, deepening our understanding of the regulatory mechanisms underlying goat reproductive performance.
Collapse
Affiliation(s)
- Zhifei Zhang
- Key Laboratory of Animal Nutrition and Feed Science in South Chian, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Z.Z.); (X.T.); (D.L.); (X.T.); (L.M.); (W.C.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517500, China
| | - Xueying Tang
- Key Laboratory of Animal Nutrition and Feed Science in South Chian, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Z.Z.); (X.T.); (D.L.); (X.T.); (L.M.); (W.C.)
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dagang Li
- Key Laboratory of Animal Nutrition and Feed Science in South Chian, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Z.Z.); (X.T.); (D.L.); (X.T.); (L.M.); (W.C.)
| | - Xiong Tong
- Key Laboratory of Animal Nutrition and Feed Science in South Chian, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Z.Z.); (X.T.); (D.L.); (X.T.); (L.M.); (W.C.)
| | - Li Min
- Key Laboratory of Animal Nutrition and Feed Science in South Chian, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Z.Z.); (X.T.); (D.L.); (X.T.); (L.M.); (W.C.)
| | - Weidong Chen
- Key Laboratory of Animal Nutrition and Feed Science in South Chian, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Z.Z.); (X.T.); (D.L.); (X.T.); (L.M.); (W.C.)
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517500, China
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bin Xu
- Key Laboratory of Animal Nutrition and Feed Science in South Chian, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China; (Z.Z.); (X.T.); (D.L.); (X.T.); (L.M.); (W.C.)
| |
Collapse
|
3
|
Jung S, Sul H, Oh D, Jung YG, Lee J, Hyun SH. Slow freezing cryopreservation of Korean bovine blastocysts with an additional sucrose pre-equilibration step. Front Vet Sci 2024; 11:1400899. [PMID: 38659455 PMCID: PMC11039926 DOI: 10.3389/fvets.2024.1400899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Embryo cryopreservation is a valuable technique used for preserving genetic resources for long periods. However, the survival rate of embryos is dependent on the method used. Therefore, in this study, we evaluated the efficiency of slow freezing method but with an additional dehydration step prior to freezing to overcome the formation of ice crystals. Methods Oocytes collected from the ovaries of native Korean cattle subjected to in vitro fertilization were cultured for 7 days until the formation of expanded blastocysts. Before freezing, the blastocysts were placed in four pre-equilibration media: a control medium with no addition of sucrose, and three experimental media with the addition of 0.1, 0.25, and 0.5 M sucrose, respectively. Then, the pre-equilibrated embryos were frozen. Embryo survival and hatching rates were evaluated morphologically at 24, 48, and 72 h after thawing. Immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and gene expression analysis of the re-expanded blastocytes were examined 24 h after freeze-thawing. Results The survival rate was significantly higher in the 0.1 M group than in the control group (p < 0.05), and the hatching rate at 72 h was significantly higher in the 0.25 and 0.5 M groups than in the control group (p < 0.05). TUNEL-positive cells were significantly lower in the 0.25 M group than in the control group (12.5 ± 0.9 vs. 8.3 ± 0.8; p < 0.05). The gene expression of BCL2 associated X, heat shock protein 70 kDa, and aquaporin 3 in the 0.25 M group was significantly lower than that in the control group (p < 0.05). Conclusion Our study revealed that treatment with 0.25 M sucrose before slow freezing improved the viability of bovine embryos after freeze-thawing.
Collapse
Affiliation(s)
- Seungki Jung
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- ET Biotech Co. Ltd., Jangsu, Republic of Korea
| | | | - Dongjin Oh
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | | | - Joohyeong Lee
- Department of Companion Animal Industry, Semyung University, Jecheon, Republic of Korea
| | - Sang-Hwan Hyun
- Veterinary Medical Center and College of Veterinary Medicine, Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Yu T, Ning J, Chen M, Wang F, Liu G, Wang Q, Xu X, Wang C, Lu X. Potential Involvement of DNA Methylation in Hybrid Sterility in Hermaphroditic Argopecten Scallops. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:701-717. [PMID: 37548862 DOI: 10.1007/s10126-023-10233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
DNA methylation is an important epigenetic modification factor in regulating fertility. Corresponding process remains poorly investigated in hermaphroditic scallops. The interspecific F1 hybrids between the hermaphroditic bay scallops (Argopecten irradians) and Peruvian scallops (Argopecten purpuratus) exhibited significant heterosis in yield, but sterility in hybrids obstructs the utilization of the genetic resources. However, the determination mechanism of hybrid sterility in the hermaphroditic Argopecten scallops is still unclear. In this study, the effect of DNA methylation in the hybrid sterility of hermaphroditic Argopecten scallops was explored. The results showed that the mean methylation level was higher in sterile hybrids than fertile hybrids, especially on chromosome 11 of the paternal parent. A total of 61,062 differentially methylated regions (DMRs) were identified, containing 3619 differentially methylated genes (DMGs) and 1165 differentially methylated promoters that are located in the DMRs of CG sequence context. The hyper-methylated genes were enriched into five KEGG pathways, including ubiquitin-mediated proteolysis, ECM-receptor interaction, non-homologous end-joining, notch signaling, and the mismatch repair pathways. The DMGs might induce hybrid sterility by inhibition of oogenesis and egg maturation, induction of apoptosis, increased ROS, and insufficient ATP supply. Our results would enrich the determination mechanism of hybrid sterility and provide new insights into the utilization of the genetic resources of the interspecific hybrids.
Collapse
Affiliation(s)
- Tieying Yu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
| | - Min Chen
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
| | - Fukai Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, Shandong, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Ltd., 264006, Yantai, China
| | - Quanchao Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed, Ltd., 264006, Yantai, China
| | - Chunde Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China
- College of Marine Science and Engineering, Qingdao Agricultural University, 266109, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 264003, Yantai, Shandong, China.
| |
Collapse
|
5
|
Biase FH, Moorey SE, Schnuelle JG, Rodning S, Ortega MS, Spencer TE. Extensive rewiring of the gene regulatory interactions between in vitro-produced conceptuses and endometrium during attachment. PNAS NEXUS 2023; 2:pgad284. [PMID: 37711857 PMCID: PMC10498941 DOI: 10.1093/pnasnexus/pgad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/16/2023]
Abstract
Pregnancy loss is a significant problem when embryos produced in vitro are transferred to a synchronized uterus. Currently, mechanisms that underlie losses of in vitro-produced embryos during implantation are largely unknown. We investigated this problem using cattle as a model of conceptus attachment by analyzing transcriptome data of paired extraembryonic membrane and endometrial samples collected on gestation days 18 and 25, which spans the attachment window in cattle. We identified that the transfer of an in vitro-produced embryo caused a significant alteration in transcript abundance of hundreds of genes in extraembryonic and endometrial tissues on gestation days 18 and 25, when compared to pregnancies initiated by artificial insemination. Many of the genes with altered transcript abundance are associated with biological processes that are relevant to the establishment of pregnancy. An integrative analysis of transcriptome data from the conceptus and endometrium identified hundreds of putative ligand-receptor pairs. There was a limited variation of ligand-receptor pairs in pregnancies initiated by in vitro-produced embryos on gestation day 18, and no alteration was observed on gestation day 25. In parallel, we identified that in vitro production of embryos caused an extensive alteration in the coexpression of genes expressed in the extraembryonic membranes and the corresponding endometrium on both gestation days. Both the transcriptional dysregulation that exists in the conceptus or endometrium independently and the rewiring of gene transcription between the conceptus and endometrium are a potential component of the mechanisms that contribute to pregnancy losses caused by in vitro production of embryos.
Collapse
Affiliation(s)
- Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Julie G Schnuelle
- Department of Clinical Sciences, Auburn University, Auburn, AL 36849, USA
| | - Soren Rodning
- Department of Animal Science, Auburn University, Auburn, AL 36849, USA
| | - Marta Sofia Ortega
- Department of Animal and Dairy Sciences, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Meinecke B, Meinecke-Tillmann S. Lab partners: oocytes, embryos and company. A personal view on aspects of oocyte maturation and the development of monozygotic twins. Anim Reprod 2023; 20:e20230049. [PMID: 37547564 PMCID: PMC10399133 DOI: 10.1590/1984-3143-ar2023-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
The present review addresses the oocyte and the preimplantation embryo, and is intended to highlight the underlying principle of the "nature versus/and nurture" question. Given the diversity in mammalian oocyte maturation, this review will not be comprehensive but instead will focus on the porcine oocyte. Historically, oogenesis was seen as the development of a passive cell nursed and determined by its somatic compartment. Currently, the advanced analysis of the cross-talk between the maternal environment and the oocyte shows a more balanced relationship: Granulosa cells nurse the oocyte, whereas the latter secretes diffusible factors that regulate proliferation and differentiation of the granulosa cells. Signal molecules of the granulosa cells either prevent the precocious initiation of meiotic maturation or enable oocyte maturation following hormonal stimulation. A similar question emerges in research on monozygotic twins or multiples: In Greek and medieval times, twins were not seen as the result of the common course of nature but were classified as faults. This seems still valid today for the rare and until now mainly unknown genesis of facultative monozygotic twins in mammals. Monozygotic twins are unique subjects for studies of the conceptus-maternal dialogue, the intra-pair similarity and dissimilarity, and the elucidation of the interplay between nature and nurture. In the course of in vivo collections of preimplantation sheep embryos and experiments on embryo splitting and other microsurgical interventions we recorded observations on double blastocysts within a single zona pellucida, double inner cell masses in zona-enclosed blastocysts and double germinal discs in elongating embryos. On the basis of these observations we add some pieces to the puzzle of the post-zygotic genesis of monozygotic twins and on maternal influences on the developing conceptus.
Collapse
Affiliation(s)
- Burkhard Meinecke
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Ambulatorische und Geburtshilfliche Veterinärklinik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Sabine Meinecke-Tillmann
- Institut für Reproduktionsbiologie, Tierärztliche Hochschule Hannover, Hanover, Germany
- Institut für Tierzucht und Haustiergenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
7
|
Biomarkers for Early Detection, Prognosis, and Therapeutics of Esophageal Cancers. Int J Mol Sci 2023; 24:ijms24043316. [PMID: 36834728 PMCID: PMC9968115 DOI: 10.3390/ijms24043316] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Esophageal cancer (EC) is the deadliest cancer worldwide, with a 92% annual mortality rate per incidence. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are the two major types of ECs, with EAC having one of the worst prognoses in oncology. Limited screening techniques and a lack of molecular analysis of diseased tissues have led to late-stage presentation and very low survival durations. The five-year survival rate of EC is less than 20%. Thus, early diagnosis of EC may prolong survival and improve clinical outcomes. Cellular and molecular biomarkers are used for diagnosis. At present, esophageal biopsy during upper endoscopy and histopathological analysis is the standard screening modality for both ESCC and EAC. However, this is an invasive method that fails to yield a molecular profile of the diseased compartment. To decrease the invasiveness of the procedures for diagnosis, researchers are proposing non-invasive biomarkers for early diagnosis and point-of-care screening options. Liquid biopsy involves the collection of body fluids (blood, urine, and saliva) non-invasively or with minimal invasiveness. In this review, we have critically discussed various biomarkers and specimen retrieval techniques for ESCC and EAC.
Collapse
|
8
|
Adhikari B, Lee CN, Khadka VS, Deng Y, Fukumoto G, Thorne M, Caires K, Odani J, Mishra B. RNA-Sequencing based analysis of bovine endometrium during the maternal recognition of pregnancy. BMC Genomics 2022; 23:494. [PMID: 35799127 PMCID: PMC9264496 DOI: 10.1186/s12864-022-08720-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/24/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Maternal recognition is the crucial step for establishing pregnancy in cattle. This study aims to identify endometrial genes and biological pathways involved in the maternal recognition of pregnancy. Caruncular endometrial tissues were collected from Day 15-17 of gestation (pregnant), non-pregnant (absence of conceptus), and cyclic (non-bred) heifers. RESULTS Total RNAs were isolated from the caruncular endometrial tissues of pregnant, non-pregnant, and cyclic heifers, and were subjected to high-throughput RNA-sequencing. The genes with at least two-fold change and Benjamini and Hochberg p-value ≤ 0.05 were considered differentially expressed genes and further confirmed with quantitative real-time PCR. A total of 107 genes (pregnant vs cyclic) and 98 genes (pregnant vs non-pregnant) were differentially expressed in the pregnant endometrium. The most highly up-regulated genes in the pregnant endometrium were MRS2, CST6, FOS, VLDLR, ISG15, IFI6, MX2, C15H11ORF34, EIF3M, PRSS22, MS4A8, and TINAGL1. Interferon signaling, immune response, nutrient transporter, synthesis, and secretion of proteins are crucial pathways during the maternal recognition of pregnancy. CONCLUSIONS The study demonstrated that the presence of conceptus at Day 15-17 of gestation affects the endometrial gene expression related to endometrial remodeling, immune response, nutrients and ion transporters, and relevant signaling pathways in the caruncular region of bovine endometrium during the maternal recognition of pregnancy.
Collapse
Affiliation(s)
- Bindu Adhikari
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Chin N Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Vedbar S Khadka
- Department of Quantitative Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Glen Fukumoto
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Mark Thorne
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Kyle Caires
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jenee Odani
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
9
|
Simmet K, Kurome M, Zakhartchenko V, Reichenbach HD, Springer C, Bähr A, Blum H, Philippou-Massier J, Wolf E. OCT4/POU5F1 is indispensable for the lineage differentiation of the inner cell mass in bovine embryos. FASEB J 2022; 36:e22337. [PMID: 35486003 DOI: 10.1096/fj.202101713rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 01/01/2023]
Abstract
The mammalian blastocyst undergoes two lineage segregations, that is, formation of the trophectoderm and subsequently differentiation of the hypoblast (HB) from the inner cell mass, leaving the epiblast (EPI) as the remaining pluripotent lineage. To clarify the expression patterns of markers specific for these lineages in bovine embryos, we analyzed day 7, 9, and 12 blastocysts completely produced in vivo by staining for OCT4, NANOG, SOX2 (EPI), and GATA6, SOX17 (HB) and identified genes specific for these developmental stages in a global transcriptomics approach. To study the role of OCT4, we generated OCT4-deficient (OCT4 KO) embryos via somatic cell nuclear transfer or in vitro fertilization. OCT4 KO embryos reached the expanded blastocyst stage by day 8 but lost NANOG and SOX17 expression, while SOX2 and GATA6 were unaffected. Blastocysts transferred to recipient cows from day 6 to 9 expanded, but the OCT4 KO phenotype was not rescued by the uterine environment. Exposure of OCT4 KO embryos to exogenous FGF4 or chimeric complementation with OCT4 intact embryos did not restore NANOG or SOX17 in OCT4-deficient cells. Our data show that OCT4 is required cell autonomously for the maintenance of pluripotency of the EPI and differentiation of the HB in bovine embryos.
Collapse
Affiliation(s)
- Kilian Simmet
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Mayuko Kurome
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Valeri Zakhartchenko
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | | | - Claudia Springer
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Andrea Bähr
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Julia Philippou-Massier
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Eckhard Wolf
- Gene Center, Department of Veterinary Sciences, Institute of Molecular Animal Breeding and Biotechnology, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Oberschleißheim, Germany.,Bavarian State Research Center for Agriculture, Institute of Animal Breeding, Poing, Germany
| |
Collapse
|
10
|
Northrop-Albrecht EJ, Rich JJJ, Cushman RA, Yao R, Ge X, Perry GA. Influence of conceptus presence and preovulatory estradiol exposure on uterine gene transcripts and proteins around maternal recognition of pregnancy in beef cattle. Mol Cell Endocrinol 2022; 540:111508. [PMID: 34800604 DOI: 10.1016/j.mce.2021.111508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022]
Abstract
The uterine environment must provide sufficient endocrine conditions and nutrients for pregnancy maintenance and conceptus survival. The objective of this study was to determine the effects of preovulatory estradiol and conceptus presence on uterine transcripts and uterine luminal fluid (ULF) proteins. Beef cows/heifers were synchronized and artificially inseminated (d 0). Uteri were flushed (d 16); conceptuses and endometrial biopsies were collected. Total cellular RNA was extracted from endometrium for RNA sequencing and RT-PCR validation. There were two independent ULF pools made for each of the following groups: highE2/conceptus, highE2/noconceptus, lowE2/conceptus, and lowE2/noconceptus that were analyzed using the 2D LC-MS/MS based iTRAQ method. There were 64 differentially expressed genes (DEGs) and 77 differentially expressed proteins (DEPs) in common among the highE2/conceptus vs highE2/noconceptus and lowE2/conceptus vs lowE2/noconceptus groups. In summary, the interaction between preovulatory estradiol and the conceptus induces the expression of genes, proteins, and pathways necessary for pregnancy.
Collapse
Affiliation(s)
| | - Jerica J J Rich
- Department of Animal Science, South Dakota State University, Brookings, SD, USA
| | - Robert A Cushman
- USDA, Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE, USA
| | - Runan Yao
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - Xijin Ge
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, USA
| | - George A Perry
- Department of Animal Science, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
11
|
Yang L, Wang L, Wu J, Wang H, Yang G, Zhang L. Changes in Expression of Complement Components in the Ovine Spleen during Early Pregnancy. Animals (Basel) 2021; 11:ani11113183. [PMID: 34827915 PMCID: PMC8614503 DOI: 10.3390/ani11113183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
During early gestation in humans, complement regulation is essential for normal fetal growth. It is supposed that a complement pathway participates in maternal splenic immune regulation at the early stage of gestation in ewes. The aim of this study was to analyze the effects of early pregnancy on the expression of complement components in the maternal spleen of ewes. In this study, ovine spleens were sampled on day 16 of nonpregnancy, and days 13, 16 and 25 of gestation. RT-qPCR, Western blot and immunohistochemical analysis were used to detect the changes in expression of complement components in the ovine maternal spleens. Our results reveal that C1q was upregulated during early gestation, C1r, C1s, C2, C3 and C5b increased at day 25 of gestation and C4a and C9 peaked at days 13 and 16 of gestation. In addition, C3 protein was located in the capsule, trabeculae and splenic cords. In conclusion, our results show for the first time that there was modification in the expression of complement components in the ovine spleen at the early stage of gestation, and complement pathways may participate in modulating splenic immune responses at the early stage of gestation.
Collapse
|
12
|
Zhang L, Zhang Q, Wang H, Feng P, Yang G, Yang L. Effects of early pregnancy on the complement system in the ovine thymus. Vet Res Commun 2021; 46:137-145. [PMID: 34559379 DOI: 10.1007/s11259-021-09837-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022]
Abstract
The complement system is crucial for the innate immune system, and complement activation is related to abnormal pregnancy in mice and humans. It is hypothesized that the complement system participates in maternal thymic immune regulation during early pregnancy in sheep. In this study, maternal thymuses were sampled on day 16 of the estrous cycle, and days 13, 16 and 25 of gestation in sheep. Quantitative real-time PCR, Western blot and immunohistochemistry analyses were used to analyze the expression of the complement components C1q, C1r, C1s, C2, C3, C4a, C5b and C9 in the maternal thymus. The results revealed that the mRNA and protein expression of C1r, C1s, C2, C3 and C4a was inhibited by early pregnancy, and the pregnancy recognition signal induced upregulation of C1q, C5b and C9 expression at day 16 of gestation. Furthermore, C3 protein was mostly located in epithelial reticular cells and thymic corpuscles, which may be involved in immune regulation. In summary, early pregnancy inhibits the complement system in the maternal thymus, which may be essential for the maternal immune regulation and successful pregnancy in sheep.
Collapse
Affiliation(s)
- Leying Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Qiongao Zhang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Haichao Wang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Pengfei Feng
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Gengxin Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Ling Yang
- Department of Animal Science, School of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China.
| |
Collapse
|
13
|
Gegenfurtner K, Fröhlich T, Flenkenthaler F, Kösters M, Fritz S, Desnoës O, Le Bourhis D, Salvetti P, Sandra O, Charpigny G, Mermillod P, Lonergan P, Wolf E, Arnold GJ. Genetic merit for fertility alters the bovine uterine luminal fluid proteome†. Biol Reprod 2021; 102:730-739. [PMID: 31786596 DOI: 10.1093/biolre/ioz216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023] Open
Abstract
Over the last decades, fertility of dairy cows has declined due to selection strategies focusing on milk yield. To study the effect of genetic merit for fertility on the proteome of the bovine uterine luminal fluid, Holstein heifers with low- and two groups of heifers with high-fertility index (high-fertility Holstein and Montbéliarde) were investigated. To focus on the maternal effect, heifers from all groups were synchronized and received on Day 7 high-quality embryos. Uterine luminal fluid from Day 19 pregnant heifers was analyzed in a holistic proteomic approach using nano-LC-MS/MS analysis combined with a label-free quantification approach. In total, 1737 proteins were identified, of which 597 differed significantly in abundance between the three groups. The vast majority of proteome differences was found comparing both high-fertility groups to the low-fertility Holstein group, showing that the genetic predisposition for fertility is prevalent regarding the uterine luminal fluid proteome. Evaluation of this dataset using bioinformatic tools revealed an assignment of higher abundant proteins in low-fertility Holstein to several metabolic processes, such as vitamin metabolic process, which comprises folate receptor alpha (FOLR1) and retinol-binding protein, indicating an involvement of disturbed metabolic processes in decreased fertility. Moreover, immune system-related proteins - lactotransferrin and chromogranin A - were enriched in low-fertility cows together with interferon tau 3 h and interferon tau-2. Our results indicate that the genetic merit for fertility leads to substantial quantitative differences at the level of proteins in uterine fluid of pregnant animals, thus altering the microenvironment for the early conceptus.
Collapse
Affiliation(s)
- Katrin Gegenfurtner
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | - Miwako Kösters
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| | | | | | | | | | - Olivier Sandra
- Unités Mixtes de Recherche Biologie du Développement et Reproduction, Institut National de Recherche Agronomique (INRA), Environment and Agronomy (ENVA), Université Paris Saclay, Jouy en Josas, France
| | - Gilles Charpigny
- Unités Mixtes de Recherche Biologie du Développement et Reproduction, Institut National de Recherche Agronomique (INRA), Environment and Agronomy (ENVA), Université Paris Saclay, Jouy en Josas, France
| | - Pascal Mermillod
- Institut National de Recherche Agronomique, UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany, Munich, Germany
| |
Collapse
|
14
|
Kim YC, Jeong BH. Phylogenetic and topological analyses of the bovine interferon-induced transmembrane protein (IFITM3). Acta Vet Hung 2021; 69:14-22. [PMID: 33861724 DOI: 10.1556/004.2021.00010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/08/2021] [Indexed: 11/19/2022]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) plays a pivotal role in antiviral capacity in several species. However, to date, investigations of the IFITM3 protein in cattle have been rare. According to recent studies, interspecific differences in the IFITM3 protein result in several unique features of the IFITM3 protein relative to primates and birds. Thus, in the present study, we investigated the bovine IFITM3 protein based on nucleotide and amino acid sequences to find its distinct features. We found that the bovine IFITM3 gene showed a significantly different length and homology relative to other species, including primates, rodents and birds. Phylogenetic analyses indicated that the bovine IFITM3 gene and IFITM3 protein showed closer evolutionary distance with primates than with rodents. However, cattle showed an independent clade among primates, rodents and birds. Multiple sequence alignment of the IFITM3 protein indicated that the bovine IFITM3 protein contains 36 bovine-specific amino acids. Notably, the bovine IFITM3 protein was predicted to prefer inside-to-outside topology of intramembrane domain 1 (IMD1) and inside-to-outside topology of transmembrane domain 2 by TMpred and three membrane embedding domains according to the SOSUI system.
Collapse
Affiliation(s)
- Yong-Chan Kim
- 1Korea Zoonosis Research Institute, Jeonbuk National University, 820-120 Hana-ro, Iksan, Jeonbuk 54531, Republic of Korea
- 2Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54531, Republic of Korea
| | - Byung-Hoon Jeong
- 1Korea Zoonosis Research Institute, Jeonbuk National University, 820-120 Hana-ro, Iksan, Jeonbuk 54531, Republic of Korea
- 2Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54531, Republic of Korea
| |
Collapse
|
15
|
mRNA Expressions of Candidate Genes in Gestational Day 16 Conceptus and Corresponding Endometrium in Repeat Breeder Dairy Cows with Suboptimal Uterine Environment Following Transfer of Different Quality Day 7 Embryos. Animals (Basel) 2021; 11:ani11041092. [PMID: 33920430 PMCID: PMC8070175 DOI: 10.3390/ani11041092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The mRNA expression of Interferon-τ (IFNT), IFN stimulated genes (ISG15, CTSL1, RSAD2, SLC2A1, CXCL10, and SLC27A6), Peroxisome proliferator-activated receptors (PPARA, D, and G), and Retinoid X receptors (RXRA, B, and G) genes and proteins (IFNT, ISG15, CXCL10, PPARG, RXRG, SLC2A1, and SLC27A6) were lower and MUC1 at mRNA and protein levels, was greater in gestation day (GD) 16 embryo and corresponding endometrium of subclinical endometritis cows, and in cows following transfer of poor quality embryo (Grade 3). All genes and proteins but MUC1 expression was lower in GD16 tubular conceptus and corresponding endometrium vs. GD16 filamentous conceptus and matching endometrium in cows with SCE and in cows following the transfer of Grade 3 embryo. Disrupted embryo-uterine communication by altered expression of candidate genes in SCE cows, and in cows following the transfer of poor GD7 embryo negatively programs the conceptus development and plausibly affects the conceptus survival. Abstract Effect of the gestational day (GD) 7 embryo quality grade (QG) and subclinical endometritis (SCE) on mRNA and protein expressions of candidate genes [Interferon-τ (IFNT), IFN stimulated genes (ISG15, CTSL1, RSAD2, SLC2A1, CXCL10, and SLC27A6), Peroxisome proliferator activated receptors (PPARA, D, and G), Retinoid X receptors (RXRA, B, and G), and Mucin-1 (MUC1)] in GD16 conceptus and corresponding endometrium were evaluated. After screening of performance records (n = 2389) and selection of repeat breeders (n = 681), cows with SCE (≥6% polymorphonuclear neutrophils—PMN; n = 180) and no-SCE (<6%PMN; n = 180) received GD7 embryos of different QGs. Based on GD16 conceptus recovery, cows with SCE (n = 30) and No- SCE (n = 30) that received GD7 embryos QG1 (good, n = 20), 2 (fair, n = 20), and 3 (poor, n = 20) were included for gene analysis. mRNA and protein expressions (IFNT, ISG15, CXCL10, PPARG, RXRG, SLC2A1, and SLC27A6) differed between SCE and embryo QG groups. All genes but MUC1 and all proteins but MUC1 expression was greater in filamentous conceptus and corresponding endometrium vs. tubular conceptus and matching endometrium in SCE and embryo QG groups. In conclusion, disrupted embryo-uterine communication by altered expression of candidate genes in SCE cows, and in cows following the transfer of poor embryo negatively programs the conceptus development and plausibly affects conceptus survival.
Collapse
|
16
|
Hall JG. The mystery of monozygotic twinning II: What can monozygotic twinning tell us about Amyoplasia from a review of the various mechanisms and types of monozygotic twinning? Am J Med Genet A 2021; 185:1822-1835. [PMID: 33765349 DOI: 10.1002/ajmg.a.62177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/12/2022]
Abstract
Monozygotic (MZ) twins ("identical twins") are essentially unique to human beings. Why and how they arise is not known. This article reviews the possible different types of MZ twinning recognized in the previous article on twins and arthrogryposis. There appear to be at least three subgroups of MZ twinning: spontaneous, familial, and those related to artificial reproductive technologies. Each is likely to have different etiologies and different secondary findings. Spontaneous MZ twinning may relate to "overripe ova." Amyoplasia, a specific nongenetic form of arthrogryposis, appears to occur in spontaneous MZ twinning and may be related to twin-twin transfusion.
Collapse
Affiliation(s)
- Judith G Hall
- University of British Columbia and Children's and Women's Health Centre of British Columbia, Department of Pediatrics and Medical Genetics, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Zang X, Zhou C, Wang W, Gan J, Li Y, Liu D, Liu G, Hong L. Differential MicroRNA Expression Involved in Endometrial Receptivity of Goats. Biomolecules 2021; 11:biom11030472. [PMID: 33810054 PMCID: PMC8004627 DOI: 10.3390/biom11030472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Endometrial receptivity represents one of the leading factors affecting the successful implantation of embryos during early pregnancy. However, the mechanism of microRNAs (miRNAs) to establish goat endometrial receptivity remains unclear. This study was intended to identify potential miRNAs and regulatory mechanisms associated with establishing endometrial receptivity through integrating bioinformatics analysis and experimental verification. MiRNA expression profiles were obtained by high-throughput sequencing, resulting in the detection of 33 differentially expressed miRNAs (DEMs), followed by their validation through quantitative RT-PCR. Furthermore, 10 potential transcription factors (TFs) and 1316 target genes of these DEMs were obtained, and the TF–miRNA and miRNA–mRNA interaction networks were constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these miRNAs were significantly linked to establishing endometrial receptivity. Moreover, the fluorescence in situ hybridization (FISH) analysis, dual-luciferase report assay, and immunohistochemistry (IHC) analysis corroborated that chi-miR-483 could directly bind to deltex E3 ubiquitin ligase 3L (DTX3L) to reduce its expression level. In conclusion, our findings contribute to a better understanding of molecular mechanisms regulating the endometrial receptivity of goats, and they provide a reference for improving embryo implantation efficiency.
Collapse
Affiliation(s)
- Xupeng Zang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Chen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Wenjing Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jianyu Gan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.L.); (L.H.); Tel.: +86-02085281859 (L.H.)
| | - Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.L.); (L.H.); Tel.: +86-02085281859 (L.H.)
| |
Collapse
|
18
|
Suwik K, Boruszewska D, Sinderewicz E, Kowalczyk-Zieba I, Staszkiewicz-Chodor J, Woclawek-Potocka I. Expression profile of developmental competence gene markers in comparison with prostaglandin F 2α synthesis and action in the early- and late-cleaved pre-implantation bovine embryos. Reprod Domest Anim 2021; 56:437-447. [PMID: 33320992 DOI: 10.1111/rda.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Abstract
The kinetics of early cleavage stages can affect embryo quality. The bovine model of early- and late-cleaved embryos has been described in the literature and is deemed a useful tool in the field of oocyte developmental competence studies. The expression of genes demonstrating developmental potential differs between early- and late-cleaved embryos. Previously, we demonstrated that prostaglandin F2α synthase (PGFS) and prostaglandin F2α receptor (PTGFR) expression depend on the developmental stage and embryo quality. In the present study, we used the same model to determine the mRNA expression profile of developmentally important genes (IGF1R, IGF2R, PLAC8, OCT4, SOX2) in early, expanded and hatched blastocysts obtained from the early- and late-cleaved group of embryos, as well as to correlate the transcription levels of these embryonic gene markers with the transcription levels of PGFS and PTGFR. The mRNA expression of PGFS, PTGFR and factors described as gene markers of embryonic implantation ability and developmental competence genes was determined by real-time PCR. The obtained results were analysed using statistical software GraphPad prism 6.05. During the course of our analyses, we observed that the transcript abundance of most analysed genes tends to be higher in the late-rather than in the early cleaved group of embryos, as well as in B and/or C grade embryos rather than in A grade embryos. On the other hand, for the early cleaved group of blastocysts with cavity, we detected higher PLAC8 mRNA expression for grade A embryos compared with grade C embryos. It suggests that the mRNA expression level of genes depends on the quality of embryos but differs according to various factors including the method of production or culture method. Moreover, numerous correlations between analysed gene markers and PGF2α synthase and PGF2α receptor suggest that PGF2α plays a role in the crucial steps of bovine embryo development.
Collapse
Affiliation(s)
- Katarzyna Suwik
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Emilia Sinderewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Staszkiewicz-Chodor
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
19
|
Zou X, Yuan M, Zhang T, Zheng N, Wu Z. EVs Containing Host Restriction Factor IFITM3 Inhibited ZIKV Infection of Fetuses in Pregnant Mice through Trans-placenta Delivery. Mol Ther 2021; 29:176-190. [PMID: 33002418 PMCID: PMC7791082 DOI: 10.1016/j.ymthe.2020.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/09/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) infection can lead to neurological complications and fetal defects, and it has attracted global public health concerns. Effective treatment for ZIKV infection remains elusive, and a preventative vaccine is not yet available. Therapeutics for fetuses need to overcome placenta barriers to reach the fetuses and require higher safety standards. In the present study, we engineered mammalian extracellular vesicles (EVs) to deliver a host restriction factor, interferon-induced transmembrane protein 3 (IFITM3), for the treatment of ZIKV infection. Our results demonstrated that the IFITM3-containing EVs (IFITM3-Exos) suppressed ZIKV viremia by a 2-log reduction in pregnant mice. Moreover, the engineered EVs effectively delivered IFITM3 protein across the placental barrier and suppressed ZIKV in the fetuses with significant reduction of viremia in key fetal organs as measured by quantitative real-time PCR. Mechanistic study showed that IFITM3 was delivered to late endosomes/lysosomes where it inhibited viral entry into the host cells. Our study demonstrated that EVs could act as a cross-placenta drug delivery vehicle to the fetus, and IFITM3, an endogenous restriction factor, is a potential treatment for ZIKV infection during pregnancy.
Collapse
Affiliation(s)
- Xue Zou
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Meng Yuan
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Tongyu Zhang
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
Chaney HL, Grose LF, Charpigny G, Behura SK, Sheldon IM, Cronin JG, Lonergan P, Spencer TE, Mathew DJ. Conceptus-induced, interferon tau-dependent gene expression in bovine endometrial epithelial and stromal cells†. Biol Reprod 2020; 104:669-683. [PMID: 33330929 DOI: 10.1093/biolre/ioaa226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/13/2020] [Accepted: 12/13/2020] [Indexed: 12/21/2022] Open
Abstract
Bovine endometrium consists of epithelial and stromal cells that respond to conceptus interferon tau (IFNT), the maternal recognition of pregnancy (MRP) signal, by increasing expression of IFN-stimulated genes (ISGs). Endometrial epithelial and stromal-cell-specific ISGs are largely unknown but hypothesized to have essential functions during pregnancy establishment. Bovine endometrial epithelial cells were cultured in inserts above stromal fibroblast (SF) cells for 6 h in medium alone or with IFNT. The epithelial and SF transcriptomic response was analyzed separately using RNA sequencing and compared to a list of 369 DEGs recently identified in intact bovine endometrium in response to elongating bovine conceptuses and IFNT. Bovine endometrial epithelial and SF shared 223 and 70 DEGs in common with the list of 369 endometrial DEGs. Well-known ISGs identified in the epithelial and SF were ISG15, MX1, MX2, and OAS2. DEGs identified in the epithelial but not SF included a number of IRF molecules (IRF1, IRF2, IRF3, and IRF8), mitochondria SLC transporters (SLC25A19, SLC25A28, and SLC25A30), and a ghrelin receptor. Expression of ZC3HAV1, an anti-retroviral gene, increased specifically within the SF. Gene ontology analysis identified the type I IFN signaling pathway and activation of nuclear factor kappa B transcription factors as biological processes associated with the epithelial cell DEGs. This study has identified biologically relevant IFNT-stimulated genes within specific endometrial cell types. The findings provide critical information regarding the effects of conceptus IFNT on specific endometrial compartments during early developmental processes in cattle.
Collapse
Affiliation(s)
- Heather L Chaney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Lindsay F Grose
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - I Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, UK
| | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Daniel J Mathew
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
21
|
Interaction of preimplantation factor with the global bovine endometrial transcriptome. PLoS One 2020; 15:e0242874. [PMID: 33284816 PMCID: PMC7721156 DOI: 10.1371/journal.pone.0242874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
Preimplantation factor (PIF) is an embryo derived peptide which exerts an immune modulatory effect on human endometrium, promoting immune tolerance to the embryo whilst maintaining the immune response to invading pathogens. While bovine embryos secrete PIF, the effect on the bovine endometrium is unknown. Maternal recognition of pregnancy is driven by an embryo-maternal cross talk, however the process differs between humans and cattle. As many embryos are lost during the early part of pregnancy in cattle, a greater knowledge of factors affecting the embryo-maternal crosstalk, such as PIF, is needed to improve fertility. Therefore, for the first time, we demonstrate the effect of synthetic PIF (sPIF) on the bovine transcriptome in an ex vivo bovine endometrial tissue culture model. Explants were cultured for 30h with sPIF (100nM) or in control media. Total RNA was analysed via RNA-sequencing. As a result of sPIF treatment, 102 genes were differentially expressed compared to the control (Padj<0.1), although none by more than 2-fold. The majority of genes (78) were downregulated. Pathway analysis revealed targeting of several immune based pathways. Genes for the TNF, NF-κB, IL-17, MAPK and TLR signalling pathways were down-regulated by sPIF. However, some immune genes were demonstrated to be upregulated following sPIF treatment, including C3. Steroid biosynthesis was the only over-represented pathway with all genes upregulated. We demonstrate that sPIF can modulate the bovine endometrial transcriptome in an immune modulatory manner, like that in the human endometrium, however, the regulation of genes was much weaker than in previous human work.
Collapse
|
22
|
El-Sheikh Ali H, Scoggin K, Linhares Boakari Y, Dini P, Loux S, Fedorka C, Esteller-Vico A, Ball B. Kinetics of placenta-specific 8 (PLAC8) in equine placenta during pregnancy and placentitis. Theriogenology 2020; 160:81-89. [PMID: 33189077 DOI: 10.1016/j.theriogenology.2020.10.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023]
Abstract
Placenta-specific 8 (PLAC8) is one of the placenta-regulatory genes which is highly conserved among eutherian mammals. However, little is known about its expression in equine placenta (chorioallantois; CA and endometrium; EN) during normal and abnormal pregnancy. Therefore, the current study was designed to 1) elucidate the expression of PLAC8 in equine embryonic membranes during the preimplantation period, 2) characterize the expression profile of PLAC8 in equine CA (45d, 4mo, 6mo, 10 mo, 11 mo and postpartum) and EN (14d, 4mo, 6mo, 10 mo, and 11 mo) obtained from pregnant mares (n = 4/timepoint), as well as, d14 non-pregnant EN (n = 4), and 3) investigate the expression profile of PLAC8 in ascending placentitis (n = 5) and in nocardioform placentitis (n = 6) in comparison to normal CA. In the preimplantation period, PLAC8 mRNA was not abundant in the trophectoderm of d8 equine embryo and d14 conceptus, while it was abundant later in d 30, 31, 34, and 45 chorion. In normal pregnancy, PLAC8 mRNA expression in CA at 45 d gradually decline to reach nadir at 6mo before gradually increasing to its peak at 11mo and postpartum CA. The mRNA expression of PLAC8 was significantly upregulated in CA from mares with ascending and nocardioform placentitis compared to control mares. Immunohistochemistry revealed that PLAC8 is localized in equine chorionic epithelium and immune cells. Our results revealed that PLAC8 expression in equine chorion is dynamic during pregnancy and is regulated in an implantation-dependent manner. Moreover, PLAC8 is implicated in the immune response in CA during equine ascending placentitis and nocardioform placentitis.
Collapse
Affiliation(s)
- Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA; Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, 35516, Egypt
| | - Kirsten Scoggin
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Yatta Linhares Boakari
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA; Department of Clinical Sciences, Auburn University College of Veterinary Medicine, Auburn, AL, 36849, USA
| | - Pouya Dini
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA; Faculty of Veterinary Medicine, Ghent University, Merelbeke, B-9820, Belgium
| | - Shavahn Loux
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Carleigh Fedorka
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Alejandro Esteller-Vico
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Barry Ball
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
23
|
van der Weijden VA, Puntar B, Rudolf Vegas A, Milojevic V, Schanzenbach CI, Kowalewski MP, Drews B, Ulbrich SE. Endometrial luminal epithelial cells sense embryo elongation in the roe deer independent of interferon-tau†. Biol Reprod 2020; 101:882-892. [PMID: 31317179 DOI: 10.1093/biolre/ioz129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous intrauterine changes take place across species during embryo development. Following fertilization in July/August, the European roe deer (Capreolus capreolus) embryo undergoes diapause until embryonic elongation in December/January. Embryonic elongation prior to implantation is a common feature among ungulates. Unlike many other ruminants, the roe deer embryo does not secrete interferon-tau (IFNτ). This provides the unique opportunity to unravel IFNτ-independent signaling pathways associated with maternal recognition of pregnancy (MRP). This study aimed at identifying the cell-type-specific endometrial gene expression changes associated with the MRP at the time of embryo elongation that are independent of IFNτ in roe deer. The messenger RNA (mRNA) expression of genes known to be involved in embryo-maternal communication in cattle, pig, sheep, and mice was analyzed in laser capture microdissected (LMD) endometrial luminal, glandular epithelial, as well as stromal cells. The mRNA transcript abundances of the estrogen (ESR1), progesterone receptor (PGR), and IFNτ-stimulated genes were lower in the luminal epithelium in the presence of an elongated embryo compared to diapause. Retinol Binding Protein-4 (RBP4), a key factor involved in placentation, was more abundant in the luminal epithelium in the presence of an elongated embryo. The progesterone receptor localization was visualized by immunohistochemistry, showing an absence in the luminal epithelium and an overall lower abundance with time and thus prolonged progesterone exposure. Our data show a developmental stage-specific mRNA expression pattern in the luminal epithelium, indicating that these cells sense the presence of an elongated embryo in an IFNτ-independent manner.
Collapse
Affiliation(s)
| | - Brina Puntar
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Alba Rudolf Vegas
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Vladimir Milojevic
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Corina I Schanzenbach
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Drews
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
24
|
Vitorino Carvalho A, Eozenou C, Richard C, Forde N, Healey GD, Giraud-Delville C, Mansouri-Attia N, Lonergan P, Sheldon IM, Sandra O. Bovine scavenger receptor class A (SR-A) exhibit specific patterns of regulation in the endometrium during the oestrous cycle and early pregnancy. Reprod Fertil Dev 2020; 31:1078-1090. [PMID: 30922439 DOI: 10.1071/rd18411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/14/2019] [Indexed: 01/04/2023] Open
Abstract
In mammals, tight regulation of maternal endometrial function is critical for pregnancy success. In bovine species, endometrial expression of members of the scavenger receptor class A (SR-A) has been listed in high-throughput analyses, but very little is known about the involvement of these immune factors during implantation in mammals. To provide first insights into the contribution of SR-A to endometrial physiology, we analysed the expression and regulation of all members of SR-A (SR-A1, SR-A3-SR-A6) during the oestrous cycle and early pregnancy in cattle. Levels of SR-A1 were increased on Day 20 of pregnancy, whereas SR-A3 levels were increased on Day 13 of the oestrous cycle and of the pregnancy. Although SR-A4 levels were reduced on Day 20 of the oestrous cycle, they remained high in pregnant animals. SR-A5 levels increased by Day 13 of the oestrous cycle and decreased on Day 20, but remained high in pregnant animals. Interferon-τ does not affect SR-A gene expression, whereas progesterone regulates the expression of the SR-A3 and SR-A5 transcripts. Endometrial SR-A3 appeared significantly higher in cows carrying invitro-produced embryos than in AI cows. Our data suggest that members of the SR-A family are involved in endometrial remodelling and regulation of endometrial gland physiology, both processes being critical for implantation in mammals.
Collapse
Affiliation(s)
- A Vitorino Carvalho
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; and Present address: BOA, INRA, Université de Tours, 37380 Nouzilly, France; and Corresponding author.
| | - C Eozenou
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; and Present address: Human Developmental Genetics, Institut Pasteur, Paris, 75724, France
| | - C Richard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - N Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - G D Healey
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - C Giraud-Delville
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - N Mansouri-Attia
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; and Present address: Braverman IVF and Reproductive Immunology, 888 Park Avenue, New York City, NY 10075, USA
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - I M Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - O Sandra
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| |
Collapse
|
25
|
Mathew DJ, Sánchez JM, Passaro C, Charpigny G, Behura SK, Spencer TE, Lonergan P. Interferon tau-dependent and independent effects of the bovine conceptus on the endometrial transcriptome†. Biol Reprod 2020; 100:365-380. [PMID: 30203055 DOI: 10.1093/biolre/ioy199] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
This study investigated bovine conceptus-induced modifications to the endometrial transcriptome related to effects of interferon tau (IFNT), conceptus origin (in vivo vs. in vitro), and conceptus sex. In vitro (IVF) or in vivo (superovulation and artificial insemination, AI) produced blastocysts were transferred into recipient heifers on day 7 of the estrous cycle. On day 15, IVF- or AI-derived conceptuses were obtained by uterine flushing and individually placed on endometrial explants in media for 6 h. Explants were also cultured with media alone as a control or media containing 100 ng/mL IFNT. Total explant RNA was analyzed by RNA-Seq. Incubation of endometrium with IFNT or IVF- or AI-derived conceptuses changed (P ≤ 0.001) expression of 491, 498, and 576 transcripts, respectively, compared to the control. Further, 369 differentially expressed genes (DEGs) were common between explants exposed to IFNT or a conceptus. A total of 240 DEGs were uniquely altered by conceptuses (IVF- and AI-derived) but not IFNT. Of these transcripts, 46 were shared between the IVF and AI groups, while 61 and 133 were specific to IVF and AI conceptuses, respectively. Five genes [melanophilin (MLPH), prominin-2 (PROM2), myeloid associated differentiation marker (MYADM), vomeronasal 1 receptor 4 like (VN1R4L) and 5-hydroxytryptamine receptor 1A (HTR1A)] were more abundant in endometrium exposed to female compared to male conceptuses (P < 0.001). A single gene [ADP-ribosylation factor like GTPase 4C (ARL4C)] was more abundant in response to male conceptuses (P < 0.001) than female conceptuses. These data support the hypothesis that conceptus regulation of gene expression in the endometrium is complex and involves factors other than IFNT that may have a biological role in pregnancy establishment.
Collapse
Affiliation(s)
- Daniel J Mathew
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.,Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - José M Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
26
|
Sena-Netto SB, Sprícigo JFW, Leme LO, Guimarães ALS, Caixeta FMC, Dode MAN, Pivato I. The Replacement of Fetal Bovine Serum with Bovine Serum Albumin During Oocyte Maturation and Embryo Culture Does Not Improve Blastocyst Quality After Slow Freezing Cryopreservation. Biopreserv Biobank 2020; 18:171-179. [PMID: 32105516 DOI: 10.1089/bio.2019.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the present study, four experimental groups were used: fresh embryos, cultured during in vitro maturation and in vitro culture in media supplemented with bovine serum albumin (BSA) (fresh BSA) or fetal bovine serum (FBS) (fresh FBS); and two groups of cryopreserved and thawed embryos, produced under the same conditions (frozen BSA and frozen FBS). Experiment 1 evaluated the protein source effect on embryo development and response to cryopreservation. At day 7, half of the expanded blastocysts (Bx) from each group were cryopreserved and warmed and the other half were used as controls. After warming, embryos were incubated under the same conditions for 48 hours, and the hatching rate was measured at 24 and 48 hours. The total and the apoptotic cell numbers were measured in a subset of Bx after 24 hours. Experiment 2 used the Bx of experiment 1 to compare the expression of KRT8, PLAC8, FOSL1, HSP1A1, and HSPA5 genes in hatched blastocysts at 24 and 48 hours for all groups. The FBS group showed a higher percentage (p < 0.05) of embryos (42.8% vs. 27.9%) and higher rates of Bx (75.0% vs. 63.8%) on day 7, compared with the BSA group. At 24 hours postwarming, the fresh FBS group showed the highest hatching rate (p < 0.05) in comparison with other treatments. However, at 48 hours, the hatching rate was similar (p > 0.05) among groups: fresh FBS (68.1% ± 23.3%), fresh BSA (70.0% ± 31.0%), frozen FBS (39.2 ± 27.1), and frozen BSA (38.2 ± 23.9). After 24 hours, frozen BSA showed a higher number of cells compared with frozen FBS (p < 0.05). The expression of the PLAC8 gene was higher (p < 0.05) in fresh BSA embryos compared with frozen FBS embryos at 24 hours. In the present study, BSA replacement reduced embryo development, but did not affect the response to cryopreservation. However, upregulation of the PLAC8 gene suggests that embryos cultured in BSA might have better quality to support further development.
Collapse
Affiliation(s)
- Severino B Sena-Netto
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, Brazil
| | - José F W Sprícigo
- Department of Animal Science, University of Guelph, Guelph, Canada.,Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Reproduction, Brasília, Brazil
| | - Ligiane O Leme
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Reproduction, Brasília, Brazil.,Federal University of Espírito Santo, Alegre, Brazil
| | - Ana L S Guimarães
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, Brazil
| | - Felippe M C Caixeta
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, Brazil
| | - Margot A N Dode
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Reproduction, Brasília, Brazil
| | - Ivo Pivato
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, Brazil
| |
Collapse
|
27
|
Chen L, Pan X, Guo W, Gan Z, Zhang YH, Niu Z, Huang T, Cai YD. Investigating the gene expression profiles of cells in seven embryonic stages with machine learning algorithms. Genomics 2020; 112:2524-2534. [PMID: 32045671 DOI: 10.1016/j.ygeno.2020.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 02/07/2020] [Indexed: 12/15/2022]
Abstract
The development of embryonic cells involves several continuous stages, and some genes are related to embryogenesis. To date, few studies have systematically investigated changes in gene expression profiles during mammalian embryogenesis. In this study, a computational analysis using machine learning algorithms was performed on the gene expression profiles of mouse embryonic cells at seven stages. First, the profiles were analyzed through a powerful Monte Carlo feature selection method for the generation of a feature list. Second, increment feature selection was applied on the list by incorporating two classification algorithms: support vector machine (SVM) and repeated incremental pruning to produce error reduction (RIPPER). Through SVM, we extracted several latent gene biomarkers, indicating the stages of embryonic cells, and constructed an optimal SVM classifier that produced a nearly perfect classification of embryonic cells. Furthermore, some interesting rules were accessed by the RIPPER algorithm, suggesting different expression patterns for different stages.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China; College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China; Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China.
| | - XiaoYong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China.
| | - Wei Guo
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zijun Gan
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Zhibin Niu
- College of Intelligence and Computing, Tianjin University, Tianjin 300072, China.
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
28
|
Vineeth MR, Surya T, Sivalingam J, Kumar A, Niranjan SK, Dixit SP, Singh K, Tantia MS, Gupta ID. Genome-wide discovery of SNPs in candidate genes related to production and fertility traits in Sahiwal cattle. Trop Anim Health Prod 2019; 52:1707-1715. [DOI: 10.1007/s11250-019-02180-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022]
|
29
|
Progesterone Supplementation During the Pre-implantation Period Influences Interferon-Stimulated Gene Expression in Lactating Dairy Cows. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2019-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
This study examined the effect of progesterone (P4) supplementation from Days 16 to 18 post-AI on interferon-stimulated gene (ISG) expression on Day 19 in high-producing dairy cows. Gene expression levels were measured in peripheral blood mononuclear cells. Possible relationships between ISG expression and the incidence of pregnancy failure were also investigated. Cows were alternately assigned on Day 16 post-AI to a control (C: n = 13) or treatment group (P4: n = 14). Out of 27 cows, 12 returned to oestrus before pregnancy diagnosis and 9 were diagnosed as pregnant on Day 28. ISG expression was assessed in all cows. Expression levels for the genes OAS1, ISG15, MX1 and MX2 were higher for pregnant than for non-pregnant cows (P=0.04; P<0.001; P=0.02; P=0.045; respectively). A significant (P=0.01) interaction was observed between the treatment and positive pregnancy diagnosis groups on Day 28 post-AI for the probability of showing ISG expression. This interaction suggests that in cows not pregnant on Day 28, P4 supplementation may have led to increased ISG15 mRNA expression on Day 19. Lower ISG15 expression was detected for cows returning to oestrus than for pregnant cows (P<0.001). However, cows with a negative pregnancy diagnosis showed intermediate values, differences being non-significant when compared to cows returning to oestrus or pregnant cows. Our results suggest that P4 supplementation during the pre-implantation period promotes conceptus signalling.
Collapse
|
30
|
Sánchez JM, Mathew DJ, Behura SK, Passaro C, Charpigny G, Butler ST, Spencer TE, Lonergan P. Bovine endometrium responds differentially to age-matched short and long conceptuses†. Biol Reprod 2019; 101:26-39. [PMID: 30977805 PMCID: PMC6614577 DOI: 10.1093/biolre/ioz060] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 12/15/2022] Open
Abstract
This study combined in vitro production of bovine blastocysts, multiple embryo transfer techniques, and a conceptus-endometrial explant co-culture system to test the hypothesis that bovine endometrium exposed to long vs. short day 15 conceptuses would exhibit a different transcriptome profile reflective of potential for successful pregnancy establishment. Bovine endometrial explants collected at the late luteal stage of the estrous cycle were cultured in RPMI medium for 6 h with nothing (control), 100 ng/mL recombinant ovine interferon tau (IFNT), a long day 15 conceptus, or a short day 15 conceptus. Transcriptional profiling of the endometrial explants found that exposure of endometrium to IFNT, long conceptuses, or short conceptuses altered (P < 0.05) expression of 491, 498, and 230 transcripts, respectively, compared to the control. Further analysis revealed three categories of differentially expressed genes (DEG): (i) commonly responsive to exposure to IFNT and conceptuses, irrespective of size (n = 223); (ii) commonly responsive to IFNT and long conceptuses only (n = 168); and genes induced by the presence of a conceptus but independent of IFNT (n = 108). Of those 108 genes, 101 were exclusively induced by long conceptuses and functional analysis revealed that regulation of molecular function, magnesium-ion transmembrane transport, and clathrin coat assembly were the principal gene ontologies associated with these DEG. In conclusion, bovine endometrium responds differently to age-matched conceptuses of varying size in both an IFNT-dependent and -independent manner, which may be reflective of the likelihood of successful pregnancy establishment.
Collapse
Affiliation(s)
- José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Daniel J Mathew
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Claudia Passaro
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Stephen T Butler
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
31
|
Locatelli Y, Forde N, Blum H, Graf A, Piégu B, Mermillod P, Wolf E, Lonergan P, Saint-Dizier M. Relative effects of location relative to the corpus luteum and lactation on the transcriptome of the bovine oviduct epithelium. BMC Genomics 2019; 20:233. [PMID: 30898106 PMCID: PMC6427878 DOI: 10.1186/s12864-019-5616-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Lactation and associated metabolic stresses during the post-partum period have been shown to impair fertility in dairy cows. The oviduct plays key roles in embryo development and the establishment of pregnancy in cattle. The aim of this study was to investigate the effects of lactation and location relative to the corpus luteum (CL) on the transcriptome of the bovine oviduct epithelium. RESULTS An original animal model was used. At 60 days post-partum, Holstein lactating (n = 4) and non-lactating (i.e. never milked after calving; n = 5) cows, as well as control nulliparous heifers (n = 5), were slaughtered on Day 3 following induced estrus, and epithelial samples from the oviductal ampulla and isthmus ipsilateral and contralateral to the corpus luteum (CL) were recovered for RNA sequencing. In the oviduct ipsilateral to the CL, differentially expressed genes (DEGs) were identified between heifers compared with both postpartum cow groups. However, only 15 DEGs were identified between post-partum lactating and non-lactating cows in the ipsilateral isthmus and none were identified in the ipsilateral ampulla. In contrast, 192 and 2583 DEGs were identified between ipsilateral and contralateral ampulla and isthmus, respectively. In both regions, more DEGs were identified between ipsilateral and contralateral oviducts in non-lactating cows and heifers than in lactating cows. Functional annotation of the DEGs associated with comparisons between metabolic groups highlighted a number of over-represented biological functions and cell pathways including immune response and cholesterol/steroid biosynthesis. CONCLUSIONS Gene expression in the oviduct epithelium, particularly in the isthmus, was more affected by the location relative to the CL than by lactation at Day 3 post-estrus. Furthermore, the effect of the proximity to the CL was modulated by the metabolic status of the cow.
Collapse
Affiliation(s)
- Yann Locatelli
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, Nouzilly, France
- MNHN, Laboratoire de la Réserve Zoologique de la Haute Touche, Obterre, France
| | - Niamh Forde
- Division of Reproduction and Early Development, Faculty of Medicine and Health Sciences, University of Leeds, Nouzilly, UK
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Leeds, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Leeds, Germany
| | - Benoît Piégu
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, Nouzilly, France
| | - Pascal Mermillod
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, Nouzilly, France
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Leeds, Germany
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Marie Saint-Dizier
- UMR85 PRC, INRA, CNRS 7247, Université de Tours, IFCE, Nouzilly, France
- Université de Tours, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours, France
| |
Collapse
|
32
|
Flöter VL, Bauersachs S, Fürst RW, Krebs S, Blum H, Reichenbach M, Ulbrich SE. Exposure of pregnant sows to low doses of estradiol-17β impacts on the transcriptome of the endometrium and the female preimplantation embryos†. Biol Reprod 2019; 100:624-640. [PMID: 30260370 DOI: 10.1093/biolre/ioy206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/30/2018] [Accepted: 09/25/2018] [Indexed: 11/14/2022] Open
Abstract
Maternal exposure to estrogens can induce long-term adverse effects in the offspring. The epigenetic programming may start as early as the period of preimplantation development. We analyzed the effects of gestational estradiol-17β (E2) exposure with two distinct low doses, corresponding to the acceptable daily intake "ADI" and close to the no-observed-effect level "NOEL", and a high dose (0.05, 10, and 1000 μg E2/kg body weight daily, respectively). The E2 doses were orally applied to sows from insemination until sampling at day 10 of pregnancy and compared to carrier-treated controls leading to a significant increase in E2 in plasma, bile and selected somatic tissues including the endometrium in the high-dose group. Conjugated and unconjugated E2 metabolites were as well elevated in the NOEL group. Although RNA-sequencing revealed a dose-dependent effect of 14, 17, and 27 differentially expressed genes (DEG) in the endometrium, single embryos were much more affected with 982 DEG in female blastocysts of the high-dose group, while none were present in the corresponding male embryos. Moreover, the NOEL treatment caused 62 and 3 DEG in female and male embryos, respectively. Thus, we detected a perturbed sex-specific gene expression profile leading to a leveling of the transcriptome profiles of female and male embryos. The preimplantation period therefore demonstrates a vulnerable time window for estrogen exposure, potentially constituting the cause for lasting consequences. The molecular fingerprint of low-dose estrogen exposure on developing embryos warrants a careful revisit of effect level thresholds.
Collapse
Affiliation(s)
- Veronika L Flöter
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.,Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | - Stefan Bauersachs
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | - Rainer W Fürst
- Physiology Weihenstephan, Technische Universität München, Freising, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center of the Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Myriam Reichenbach
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center of the Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.,Physiology Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
33
|
Campos C, Hartling I, Kaur M, Fernandes A, Santos R, Cerri R. Intramammary infusion of lipopolysaccharide promotes inflammation and alters endometrial gene expression in lactating Holstein cows. J Dairy Sci 2018; 101:10440-10455. [DOI: 10.3168/jds.2018-14393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
|
34
|
Moraes JGN, Behura SK, Geary TW, Hansen PJ, Neibergs HL, Spencer TE. Uterine influences on conceptus development in fertility-classified animals. Proc Natl Acad Sci U S A 2018; 115:E1749-E1758. [PMID: 29432175 PMCID: PMC5828633 DOI: 10.1073/pnas.1721191115] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A major unresolved issue is how the uterus influences infertility and subfertility in cattle. Serial embryo transfer was previously used to classify heifers as high-fertile (HF), subfertile (SF), or infertile (IF). To assess pregnancy loss, two in vivo-produced embryos were transferred into HF, SF, and IF heifers on day 7, and pregnancy outcome was assessed on day 17. Pregnancy rate was substantially higher in HF (71%) and SF (90%) than IF (20%) heifers. Elongating conceptuses were about twofold longer in HF than SF heifers. Transcriptional profiling detected relatively few differences in the endometrium of nonpregnant HF, SF, and IF heifers. In contrast, there was a substantial difference in the transcriptome response of the endometrium to pregnancy between HF and SF heifers. Considerable deficiencies in pregnancy-dependent biological pathways associated with extracellular matrix structure and organization as well as cell adhesion were found in the endometrium of SF animals. Distinct gene expression differences were also observed in conceptuses from HF and SF animals, with many of the genes decreased in SF conceptuses known to be embryonic lethal in mice due to defects in embryo and/or placental development. Analyses of biological pathways, key players, and ligand-receptor interactions based on transcriptome data divulged substantial evidence for dysregulation of conceptus-endometrial interactions in SF animals. These results support the ideas that the uterus impacts conceptus survival and programs conceptus development, and ripple effects of dysregulated conceptus-endometrial interactions elicit loss of the postelongation conceptus in SF cattle during the implantation period of pregnancy.
Collapse
Affiliation(s)
- Joao G N Moraes
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Thomas W Geary
- Fort Keogh Livestock and Range Research Laboratory, United States Department of Agriculture Agricultural Research Service, Miles City, MT 59301
| | - Peter J Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA 99164
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211;
| |
Collapse
|
35
|
Sheikh AA, Hooda OK, Dang AK. Interferon tau stimulated gene expression and proinflammatory cytokine profile relative to insemination in dairy cows. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1440777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aasif Ahmad Sheikh
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Om Kanwar Hooda
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Ajay Kumar Dang
- Lactation and Immuno-Physiology Laboratory, Animal Physiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
36
|
Barua S, Macedo A, Kolb DS, Wynne-Edwards KE, Klein C. Milk-fat globule epidermal growth factor 8 (MFGE8) is expressed at the embryo– and fetal–maternal interface in equine pregnancy. Reprod Fertil Dev 2018; 30:585-590. [DOI: 10.1071/rd17094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/14/2017] [Indexed: 01/18/2023] Open
Abstract
Milk-fat globule epidermal growth factor (EGF) 8 protein (MFGE8), also known as lactadherin, promotes cell adhesion in an Arg-Gly-Asp (RGD)-dependent modus via integrins. In the present study, the expression of MFGE8 was examined in equine endometrium during oestrus and at Days 12 and 16 after ovulation in pregnant and non-pregnant mares and in mares during the 5th month of gestation. Results demonstrated that MFGE8 is expressed at the embryo– and fetal–maternal interface in equine pregnancy. In non-pregnant endometrium its expression was upregulated by oestrogen, a finding that was confirmed using endometrial explant culture. MFGE8 was expressed at similar levels by conceptuses collected 13 and 14 days after ovulation and by allantochorion sampled during the 5th month of gestation. Pericytes of endometrial blood vessels displayed strong MFGE8 expression upon in situ hybridisation. During the 5th month of gestation, the fetal side of the allantochorionic villi in particular displayed pronounced staining upon in situ hybridisation, confirming that MFGE8 expression is not restricted to early pregnancy but persists and is present at the fetal–maternal interface. Potential roles of MFGE8 in equine pregnancy include mediating cell–cell adhesion, promotion of angiogenesis and placental transfer of fatty acids.
Collapse
|
37
|
Hashiyada Y. The contribution of efficient production of monozygotic twins to beef cattle breeding. J Reprod Dev 2017; 63:527-538. [PMID: 29033399 PMCID: PMC5735263 DOI: 10.1262/jrd.2017-096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Production of sires with high breeding potential is indispensable for prompt and reliable breeding using their semen in the cattle industry. Currently, in Japan, we aim to further the production of Japanese black sires via a new
breeding system that uses genetically homologous monozygotic twins so that better growth performance and carcass traits can be translated to the increased production of beef with higher economic value. Several studies have
reported that monozygotic twins are produced by embryo bisection. On the other hand, with the evolution and stabilization of in vitro fertilization technology, it has become possible to produce multiple
monozygotic twin calves from blastomeres separated from a cleavage-stage embryo. This review attempts to clarify breeding practices through revalidation of the factors that affect the production efficiency of monozygotic twin
calves by embryo bisection. Furthermore, the establishment of a system for monozygotic twin embryo production via the simplified technique of blastomere separation is reviewed while showing data from our previously performed
studies.
Collapse
|
38
|
Shen Y, Sun Y, Zhang L, Liu H. Effects of DTX3L on the cell proliferation, adhesion, and drug resistance of multiple myeloma cells. Tumour Biol 2017; 39:1010428317703941. [PMID: 28653881 DOI: 10.1177/1010428317703941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cell adhesion-mediated drug resistance is an important factor that influences the effects of chemotherapy in multiple myeloma. DTX3L, a ubiquitin ligase, plays a key role in cell-cycle-related process. Here, we found that the expression of DTX3L gradually increased during the proliferation of myeloma cells, which resulted in arrest of the cell cycle in the G1 phase and promoted the adherence of myeloma cells to fibronectin or bone marrow stromal cells. In addition, silencing of DTX3L improved sensitivity to chemotherapy drugs in multiple myeloma cell lines adherent to bone marrow stromal cells and increased the expression of caspase-3 and poly-adenosine diphosphate-ribose polymerase, two markers of apoptosis. Finally, we also found that DTX3L expression was regulated by focal adhesion kinase. Taken together, the results of this study show that DTX3L plays an important role in the proliferation and cell adhesion-mediated drug resistance of multiple myeloma cells and as such may play a key role in the development of multiple myeloma.
Collapse
Affiliation(s)
- Yaodong Shen
- 1 Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yuxiang Sun
- 2 Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Linlin Zhang
- 1 Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China.,2 Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - Hong Liu
- 1 Department of Hematology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| |
Collapse
|
39
|
Vitorino Carvalho A, Eozenou C, Healey GD, Forde N, Reinaud P, Chebrout M, Gall L, Rodde N, Padilla AL, Delville CG, Leveugle M, Richard C, Sheldon IM, Lonergan P, Jolivet G, Sandra O. Analysis of STAT1 expression and biological activity reveals interferon-tau-dependent STAT1-regulated SOCS genes in the bovine endometrium. Reprod Fertil Dev 2017; 28:459-74. [PMID: 25116692 DOI: 10.1071/rd14034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/12/2014] [Indexed: 01/24/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins are critical for the regulation of numerous biological processes. In cattle, microarray analyses identified STAT1 as a differentially expressed gene in the endometrium during the peri-implantation period. To gain new insights about STAT1 during the oestrous cycle and early pregnancy, we investigated STAT1 transcript and protein expression, as well as its biological activity in bovine tissue and cells of endometrial origin. Pregnancy increased STAT1 expression on Day 16, and protein and phosphorylation levels on Day 20. In cyclic and pregnant females, STAT1 was located in endometrial cells but not in the luminal epithelium at Day 20 of pregnancy. The expression of STAT1 during the oestrous cycle was not affected by progesterone supplementation. In vivo and in vitro, interferon-tau (IFNT) stimulated STAT1 mRNA expression, protein tyrosine phosphorylation and nuclear translocation. Using chromatin immunoprecipitation in IFNT-stimulated endometrial cells, we demonstrated an increase of STAT1 binding on interferon regulatory factor 1 (IRF1), cytokine-inducible SH2-containing protein (CISH), suppressor of cytokine signaling 1 and 3 (SOCS1, SOCS3) gene promoters consistent with the induction of their transcripts. Our data provide novel molecular insights into the biological functions of STAT1 in the various cells composing the endometrium during maternal pregnancy recognition and implantation.
Collapse
Affiliation(s)
- A Vitorino Carvalho
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - C Eozenou
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - G D Healey
- Centre for Reproductive Immunology, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - N Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - P Reinaud
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - M Chebrout
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - L Gall
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - N Rodde
- INRA, UPR1258 Centre National des Ressources Génomiques Végétales, F-31326 Castanet Tolosan, France
| | - A Lesage Padilla
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - C Giraud Delville
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - M Leveugle
- INRA, UR1077 Unité Mathématique Informatique et Génome, Jouy-en-Josas, France
| | - C Richard
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - I M Sheldon
- Centre for Reproductive Immunology, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - G Jolivet
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - O Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
40
|
Boruszewska D, Kowalczyk-Zieba I, Sinderewicz E, Grycmacher K, Staszkiewicz J, Woclawek-Potocka I. The effect of lysophosphatidic acid together with interferon tau on the global transcriptomic profile in bovine endometrial cells. Theriogenology 2017; 92:111-120. [PMID: 28237325 DOI: 10.1016/j.theriogenology.2017.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
In cows, lysophosphatidic acid (LPA), which acts in an auto/paracrine manner, serves as a luteotropic factor during early pregnancy by stimulating progesterone and prostaglandin E2 secretion, thus protecting the bovine corpus luteum and early embryo development. Our hypothesis was that LPA exerted some local effects on the bovine endometrium prior to early embryo-maternal interactions and that interferon tau (IFNτ), the pregnancy recognition signal, modulated this action. In the present study, we applied an in vitro model involving whole-transcriptomic profiling to examine the effects of LPA on gene expression in bovine endometrial cells. Microarray analyses revealed 36, 269 and 284 differentially expressed transcripts in bovine endometrial cells in the control vs. LPA, control vs. LPA + IFNτ and LPA vs. LPA + IFNτ groups, respectively. The expression of matrix metalloproteinase 13 (MMP13) and radical S-adenosyl methionine domain containing 2 (RSAD2) was increased in the LPA-treated endometrial cells. Among the transcripts differentially regulated by LPA together with IFNτ, many of the genes were classical- or novel-type I IFN-stimulated genes (ISGs). The results indicated that 10 of the 16 analyzed genes showed a positive correlation with their corresponding microarray data upon real-time PCR validation, indicating a considerable consistency between both techniques. In summary, these transcriptional profiling studies identified a number of genes that were regulated by LPA alone and LPA together with IFNτ in endometrial cells from the bovine uterus. Available studies support the idea that LPA, which acts in an auto/paracrine manner on the endometrium, alters the expression of genes that are probably important for uterine receptivity, maternal immune tolerance to the embryo and conceptus growth and development during early pregnancy. Moreover, the differentially expressed genes (DEGs) that increased in the LPA + IFNτ-treated endometrial cells are largely in response to IFNτ actions and are possibly associated with crucial biological processes during the peri-implantation period of pregnancy.
Collapse
Affiliation(s)
- Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Emilia Sinderewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Katarzyna Grycmacher
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Joanna Staszkiewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland.
| |
Collapse
|
41
|
Wang Y, Hu T, Wu L, Liu X, Xue S, Lei M. Identification of non-coding and coding RNAs in porcine endometrium. Genomics 2017; 109:43-50. [DOI: 10.1016/j.ygeno.2016.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/16/2016] [Accepted: 11/26/2016] [Indexed: 12/22/2022]
|
42
|
Cagnone G, Sirard MA. The embryonic stress response to in vitro culture: insight from genomic analysis. Reproduction 2016; 152:R247-R261. [DOI: 10.1530/rep-16-0391] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/05/2016] [Indexed: 12/18/2022]
Abstract
Recent genomic studies have shed light on the impact of in vitro culture (IVC) on embryonic homeostasis and the differential gene expression profiles associated with lower developmental competence. Consistently, the embryonic stress responses to IVC conditions correlate with transcriptomic changes in pathways related to energetic metabolism, extracellular matrix remodelling and inflammatory signalling. These changes appear to result from a developmental adaptation that enhances a Warburg-like effect known to occur naturally during blastulation. First discovered in cancer cells, the Warburg effect (increased glycolysis under aerobic conditions) is thought to result from mitochondrial dysfunction. In the case of IVC embryos, culture conditions may interfere with mitochondrial maturation and oxidative phosphorylation, forcing cells to rely on glycolysis in order to maintain energetic homeostasis. While beneficial in the short term, such adaptations may lead to epigenetic changes with potential long-term effects on implantation, foetal growth and post-natal health. We conclude that lessening the detrimental effects of IVC on mitochondrial activity would lead to significantly improved embryo quality.
Collapse
|
43
|
Salehi R, Colazo MG, Tsoi S, Behrouzi A, Tsang BK, Dyck MK, Oba M, Ambrose DJ. Morphologic and transcriptomic assessment of bovine embryos exposed to dietary long-chain fatty acids. Reproduction 2016; 152:715-726. [PMID: 27651519 DOI: 10.1530/rep-16-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/19/2016] [Indexed: 11/08/2022]
Abstract
The main objectives of this study were to determine the influence of diets enriched in α-linolenic, linoleic or oleic acid on the development and transcriptomic profile of embryos collected from dairy cattle. Non-lactating Holstein cows received one of the three diets supplemented with 8% rolled oilseeds: flax (FLX, n = 8), sunflower (SUN, n = 7) or canola (CAN, n = 8). After a minimum 35-day diet adaptation, cows were superovulated, artificially inseminated and ova/embryos recovered non-surgically after 7.5 days. Cows fed FLX had less degenerated embryos and more viable embryos than those fed CAN or SUN. In total, 175 genes were differentially expressed in blastocysts from cows fed FLX than in cows fed CAN or SUN. These differentially expressed genes were mainly involved in cellular growth and proliferation, cellular development, and cell survival and viability. In conclusion, dietary n-3 polyunsaturated fatty acids reduced early embryonic degeneration possibly through improving embryonic cell survival and viability.
Collapse
Affiliation(s)
- Reza Salehi
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.,Departments of Obstetrics and Gynecology & Cellular and Molecular MedicineInterdisciplinary School of Health Sciences, University of Ottawa, and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Marcos G Colazo
- Livestock Research BranchAlberta Agriculture and Forestry, Edmonton, Alberta, Canada
| | - Stephen Tsoi
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Amir Behrouzi
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Benjamin K Tsang
- Departments of Obstetrics and Gynecology & Cellular and Molecular MedicineInterdisciplinary School of Health Sciences, University of Ottawa, and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Macau Institute for Applied Research in Medicine and HealthState Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Michael K Dyck
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Masahito Oba
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Divakar J Ambrose
- Department of AgriculturalFood and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada .,Livestock Research BranchAlberta Agriculture and Forestry, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
Scolari SC, Pugliesi G, Strefezzi RDF, Andrade SC, Coutinho LL, Binelli M. Dynamic remodeling of endometrial extracellular matrix regulates embryo receptivity in cattle. Reproduction 2016; 153:REP-16-0237. [PMID: 27754873 DOI: 10.1530/rep-16-0237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/17/2016] [Indexed: 01/26/2023]
Abstract
We aimed to evaluate in the bovine endometrium whether (1) key genes involved in endometrial extracellular matrix (ECM) remodeling are regulated by the endocrine peri-ovulatory milieu; and (2) specific endometrial ECM-related transcriptome can be linked to pregnancy outcome. In Experiment 1, pre-ovulatory follicle growth of cows was manipulated to obtain two groups with specific endocrine peri-ovulatory profiles: the Large Follicle-Large CL group (LF-LCL) served as a paradigm for greater receptivity and fertility and showed greater plasma pre-ovulatory estradiol and post-ovulatory progesterone concentrations when compared to the Small Follicle-Small CL group (SF-SCL). Endometrium was collected on days 4 and 7 of the estrous cycle. Histology revealed a greater abundance of total collagen content in SF-SCL on day 4 endometrium. In Experiment 2, cows were artificially inseminated and, six days later, endometrial biopsies were collected. Cows were retrospectively divided into pregnant and non-pregnant (P vs. NP) groups after diagnosis on day 30. In both experiments, expression of genes related to ECM remodeling in the endometrium was studied by RNAseq and qPCR. Gene ontology analysis showed an inhibition in the expression of ECM-related genes in the high receptivity groups (LF-LCL and P). Specifically, there was down-regulation of TGFB2, ADAMTS2, 5 and 14, TIMP3 and COL1A2, COL3A1, COL7A1 and COL3A3 in the LF-LCL and P groups. In summary, the overlapping set of genes differently expressed in both fertility models: (1) suggests that disregulation of ECM remodeling can impair receptivity and (2) can be used as markers to predict pregnancy outcome in cattle.
Collapse
Affiliation(s)
| | - Guilherme Pugliesi
- G Pugliesi, Department of Animal Reproduction, University of São Paulo, Pirassununga, Brazil
| | | | - Sónia Cristina Andrade
- S Andrade, Department of Animal Science, ESALQ-USP, University of São Paulo, Pirassununga, Brazil
| | - Luiz Lehmann Coutinho
- L Coutinho, Department of Animal Science, ESALQ-USP, University of São Paulo, Pirassununga, Brazil
| | - Mario Binelli
- M Binelli, Animal Reproduction, University of São Paulo, Pirassununga, 13635-900, Brazil
| |
Collapse
|
45
|
Forde N, Maillo V, O'Gaora P, Simintiras CA, Sturmey RG, Ealy AD, Spencer TE, Gutierrez-Adan A, Rizos D, Lonergan P. Sexually Dimorphic Gene Expression in Bovine Conceptuses at the Initiation of Implantation. Biol Reprod 2016; 95:92. [PMID: 27488033 PMCID: PMC5333939 DOI: 10.1095/biolreprod.116.139857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023] Open
Abstract
In cattle, maternal recognition of pregnancy occurs on Day 16 via secretion of interferon tau (IFNT) by the conceptus. The endometrium can distinguish between embryos with different developmental competencies. In eutherian mammals, X-chromosome inactivation (XCI) is required to ensure an equal transcriptional level of most X-linked genes for both male and female embryos in adult tissues, but this process is markedly different in cattle than mice. We examined how sexual dimorphism affected conceptus transcript abundance and amino acid composition as well as the endometrial transcriptome during the peri-implantation period of pregnancy. Of the 5132 genes that were differentially expressed on Day 19 in male compared to female conceptuses, 2.7% were located on the X chromosome. Concentrations of specific amino acids were higher in the uterine luminal fluid of male compared to female conceptuses, while female conceptuses had higher transcript abundance of specific amino acid transporters (SLC6A19 and SLC1A35). Of note, the endometrial transcriptome was not different in cattle gestating a male or a female conceptus. These data support the hypothesis that, far from being a blastocyst-specific phenomenon, XCI is incomplete before and during implantation in cattle. Despite differences in transcript abundance and amino acid utilization in male versus female conceptuses, the sex of the conceptus itself does not elicit a different transcriptomic response in the endometrium.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | - Peadar O'Gaora
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Constantine A Simintiras
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Roger G Sturmey
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
46
|
Buragohain L, Kumar R, Nanda T, Phulia SK, Mohanty AK, Kumar S, Balhara S, Ghuman SPS, Singh I, Balhara AK. Serum MX2 Protein as Candidate Biomarker for Early Pregnancy Diagnosis in Buffalo. Reprod Domest Anim 2016; 51:453-60. [DOI: 10.1111/rda.12700] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/09/2016] [Indexed: 11/30/2022]
Affiliation(s)
- L Buragohain
- College of Veterinary Sciences; LUVAS; Hisar Haryana India
| | - R Kumar
- Central Institute for Research on Buffaloes; Hisar Haryana India
| | - T Nanda
- College of Veterinary Sciences; LUVAS; Hisar Haryana India
| | - SK Phulia
- Central Institute for Research on Buffaloes; Hisar Haryana India
| | - AK Mohanty
- National Dairy Research Institute; Karnal Haryana India
| | - S Kumar
- National Dairy Research Institute; Karnal Haryana India
| | - S Balhara
- Central Institute for Research on Buffaloes; Hisar Haryana India
| | - SPS Ghuman
- Department of Veterinary Gynaecology and Obstetrics; College of Veterinary Science; Guru Angad Dev Veterinary and Animal Science University; Ludhiana Punjab India
| | - I Singh
- Central Institute for Research on Buffaloes; Hisar Haryana India
| | - AK Balhara
- Central Institute for Research on Buffaloes; Hisar Haryana India
| |
Collapse
|
47
|
Maillo V, de Frutos C, O'Gaora P, Forde N, Burns GW, Spencer TE, Gutierrez-Adan A, Lonergan P, Rizos D. Spatial differences in gene expression in the bovine oviduct. Reproduction 2016; 152:37-46. [PMID: 27069007 DOI: 10.1530/rep-16-0074] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
Abstract
The aim of this study was to compare the transcriptome of the oviductal isthmus of pregnant heifers with that of cyclic heifers as well as to investigate spatial differences between the transcriptome of the isthmus and ampulla of the oviduct in pregnant heifers. After synchronizing crossbred beef heifers, those in standing oestrus (=Day 0) were randomly assigned to cyclic (non-bred, n=6) or pregnant (artificially inseminated, n=11) groups. They were slaughtered on Day 3 and both oviducts from each animal were isolated and cut in half to separate ampulla and isthmus. Each portion was flushed to confirm the presence of an oocyte/embryo and was then opened longitudinally and scraped to obtain epithelial cells which were snap-frozen. Oocytes and embryos were located in the isthmus of the oviduct ipsilateral to the corpus luteum Microarray analysis of oviductal cells revealed that proximity to the corpus luteum did not affect the transcriptome of the isthmus, irrespective of pregnancy status. However, 2287 genes were differentially expressed (P<0.01) between the ampulla and isthmus of the oviduct ipsilateral to the corpus luteum in pregnant animals. Gene ontology revealed that the main biological processes overrepresented in the isthmus were synthesis of nitrogen, lipids, nucleotides, steroids and cholesterol as well as vesicle-mediated transport, cell cycle, apoptosis, endocytosis and exocytosis, whereas cell motion, motility and migration, DNA repair, calcium ion homeostasis, carbohydrate biosynthesis, and regulation of cilium movement and beat frequency were overrepresented in the ampulla. In conclusion, large differences in gene expression were observed between the isthmus and ampulla of pregnant animals at Day 3 after oestrus.
Collapse
Affiliation(s)
- Veronica Maillo
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Celia de Frutos
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Peadar O'Gaora
- School of Biomolecular and Biomedical SciencesUniversity College Dublin, Belfield, Dublin 4, Ireland
| | - Niamh Forde
- Division of Reproduction and Early DevelopmentLeeds Institute of Cardiovascular and Molecular Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, UK
| | - Gregory W Burns
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's HealthUniversity of Missouri, Columbia, Missouri
| | - Thomas E Spencer
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's HealthUniversity of Missouri, Columbia, Missouri
| | - Alfonso Gutierrez-Adan
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin 4, Ireland
| | - Dimitrios Rizos
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
48
|
Oguejiofor CF, Cheng Z, Abudureyimu A, Fouladi-Nashta AA, Wathes DC. Global transcriptomic profiling of bovine endometrial immune response in vitro. I. Effect of lipopolysaccharide on innate immunity. Biol Reprod 2015; 93:100. [PMID: 26353891 DOI: 10.1095/biolreprod.115.128868] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/17/2015] [Indexed: 11/01/2022] Open
Abstract
The dysregulation of endometrial immune response to bacterial lipopolysaccharide (LPS) has been implicated in uterine disease and infertility in the postpartum dairy cow, although the mechanisms are not clear. Here, we investigated whole-transcriptomic gene expression in primary cultures of mixed bovine epithelial and stromal endometrial cells. Cultures were exposed to LPS for 6 h, and cellular response was measured by bovine microarray. Approximately 30% of the 1006 genes altered by LPS were classified as being involved in immune response. Cytokines and chemokines (IL1A, CX3CL1, CXCL2, and CCL5), interferon (IFN)-stimulated genes (RSAD2, MX2, OAS1, ISG15, and BST2), and the acute phase molecule SAA3 were the most up-regulated genes. Ingenuity Pathway Analysis identified up-regulation of many inflammatory cytokines and chemokines, which function to attract immune cells to the endometrium, together with vascular adhesion molecules and matrix metalloproteinases, which can facilitate immune cell migration from the tissue toward the uterine lumen. Increased expression of many IFN-signaling genes, immunoproteasomes, guanylate-binding proteins, and genes involved in the intracellular recognition of pathogens suggests important roles for these molecules in the innate defense against bacterial infections. Our findings confirmed the important role of endometrial cells in uterine innate immunity, whereas the global approach used identified several novel immune response pathways triggered by LPS in the endometrium. Additionally, many genes involved in endometrial response to the conceptus in early pregnancy were also altered by LPS, suggesting one mechanism whereby an ongoing response to infection may interfere with the establishment of pregnancy.
Collapse
Affiliation(s)
- Chike F Oguejiofor
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Zhangrui Cheng
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - Ayimuguli Abudureyimu
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom Life Science and Engineering College, Northwest University for Nationalities, Lanzhou, China
| | - Ali A Fouladi-Nashta
- Department of Comparative Biomedical Sciences, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| | - D Claire Wathes
- Department of Production and Population Health, Royal Veterinary College, North Mymms, Hertfordshire, United Kingdom
| |
Collapse
|
49
|
Boruszewska D, Sinderewicz E, Kowalczyk-Zieba I, Grycmacher K, Woclawek-Potocka I. The effect of lysophosphatidic acid during in vitro maturation of bovine cumulus-oocyte complexes: cumulus expansion, glucose metabolism and expression of genes involved in the ovulatory cascade, oocyte and blastocyst competence. Reprod Biol Endocrinol 2015; 13:44. [PMID: 25981539 PMCID: PMC4438640 DOI: 10.1186/s12958-015-0044-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/12/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In the cow, lysophosphatidic acid (LPA) acts as an auto-/paracrine factor, through its receptors LPAR1-4, on oocytes and cumulus cells during in vitro maturation (IVM). The aim of the present work was to determine the effect of LPA during IVM of bovine oocytes on: 1) oocyte maturation; 2) apoptosis of COCs; 3) expression of genes involved in developmental competence and apoptosis in bovine oocytes and subsequent blastocysts; 4) cumulus expansion and expression of genes involved in the ovulatory cascade in cumulus cells; 5) glucose metabolism and expression of genes involved in glucose utilization in cumulus cells; 6) cleavage and blastocyst rates on Day 2 and Day 7 of in vitro culture, respectively. METHODS Cumulus-oocyte complexes (COCs) were matured in vitro in the presence or absence of LPA (10(-5) M) for 24 h. Following maturation, we determined: oocyte maturation stage, cumulus expansion, COCs apoptosis and glucose and lactate levels in the maturation medium. Moreover, COCs were either used for gene expression analysis or fertilized in vitro. The embryos were cultured until Day 7 to assess cleavage and blastocyst rates. Oocytes, cumulus cells and blastocysts were used for gene expression analysis. RESULTS Supplementation of the maturation medium with LPA enhanced oocyte maturation rates and stimulated the expression of developmental competence-related factors (OCT4, SOX2, IGF2R) in oocytes and subsequent blastocysts. Moreover, LPA reduced the occurrence of apoptosis in COCs and promoted an antiapoptotic balance in the transcription of genes involved in apoptosis (BAX and BCL2) either in oocytes or blastocysts. LPA increased glucose uptake by COCs via augmentation of GLUT1 expression in cumulus cells as well as stimulating lactate production via the enhancement of PFKP expression in cumulus cells. LPA did not affect cumulus expansion as visually assessed, however, it stimulated upstream genes of cumulus expansion cascade, AREG and EREG. CONCLUSIONS Supplementation of the maturation medium with LPA improves oocyte maturation rates, decreases extent of apoptosis in COCs and sustains the expression of developmental competence related factors during oocyte maturation and subsequently affects gene expression profile at the blastocyst stage. We also demonstrate that LPA directs glucose metabolism toward the glycolytic pathway during IVM.
Collapse
Affiliation(s)
- Dorota Boruszewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Emilia Sinderewicz
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Ilona Kowalczyk-Zieba
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Katarzyna Grycmacher
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Izabela Woclawek-Potocka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
50
|
Zhao H, Sui L, Miao K, An L, Wang D, Hou Z, Wang R, Guo M, Wang Z, Xu J, Wu Z, Tian J. Comparative analysis between endometrial proteomes of pregnant and non-pregnant ewes during the peri-implantation period. J Anim Sci Biotechnol 2015; 6:18. [PMID: 26023329 PMCID: PMC4447021 DOI: 10.1186/s40104-015-0017-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early pregnancy failure has a profound impact on both human reproductive health and animal production. 2/3 pregnancy failures occur during the peri-implantation period; however, the underlying mechanism(s) remains unclear. Well-organized modification of the endometrium to a receptive state is critical to establish pregnancy. Aberrant endometrial modification during implantation is thought to be largely responsible for early pregnancy loss. RESULT In this study, using well-managed recipient ewes that received embryo transfer as model, we compared the endometrial proteome between pregnant and non-pregnant ewes during implantation period. After embryo transfer, recipients were assigned as pregnant or non-pregnant ewes according to the presence or absence of an elongated conceptus at Day 17 of pregnancy. By comparing the endometrial proteomic profiles between pregnant and non-pregnant ewes, we identified 94 and 257 differentially expressed proteins (DEPs) in the endometrial caruncular and intercaruncular areas, respectively. Functional analysis showed that the DEPs were mainly associated with immune response, nutrient transport and utilization, as well as proteasome-mediated proteolysis. CONCLUSION These analysis imply that dysfunction of these biological processes or pathways of DEP in the endometrium is highly associated with early pregnancy loss. In addition, many proteins that are essential for the establishment of pregnancy showed dysregulation in the endometrium of non-pregnant ewes. These proteins, as potential candidates, may contribute to early pregnancy loss.
Collapse
Affiliation(s)
- Haichao Zhao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Linlin Sui
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China.,Department of Biochemistry and Molecular, Dalian Medical University, Dalian, 116044 China
| | - Kai Miao
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Lei An
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Dong Wang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, 100193 China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193 China
| | - Rui Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Min Guo
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Zhilong Wang
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Jiqiang Xu
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000 People's Republic of China
| | - Zhonghong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| | - Jianhui Tian
- Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National engineering laboratory for animal breeding, College of Animal Sciences and Technology, China Agricultural University, No.2 Yuanmingyuan Xi Lu, Haidian, Beijing, 100193 China
| |
Collapse
|