1
|
Syryn H, Van de Velde J, De Clercq G, Verdin H, Dheedene A, Peelman F, Sinclair A, Ayers KL, Bathgate RAD, Cools M, De Baere E. Biallelic RXFP2 variants lead to congenital bilateral cryptorchidism and male infertility, supporting a role of RXFP2 in spermatogenesis. Hum Reprod 2024; 39:2353-2363. [PMID: 39222519 DOI: 10.1093/humrep/deae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY QUESTION Does RXFP2 disruption impair male fertility? SUMMARY ANSWER We identified biallelic variants in RXFP2 in patients with male infertility due to spermatogenic arrest at the spermatid stage, supporting a role of RXFP2 in human spermatogenesis, specifically in germ cell maturation. WHAT IS KNOWN ALREADY Since RXFP2, the receptor for INSL3, plays a crucial role in testicular descent during prenatal development, biallelic variants lead to bilateral cryptorchidism, as described in four families to date. While animal models have also suggested a function in spermatogenesis, the postnatal functions of RXFP2 and its ligand INSL3, produced in large amounts by the testes from puberty throughout adulthood, are largely unknown. STUDY DESIGN, SIZE, DURATION A family with two male members affected by impaired fertility due to spermatogenic maturation arrest and a history of bilateral cryptorchidism underwent clinical, endocrinological, histological, genomic, in vitro cellular, and in silico investigations. PARTICIPANTS/MATERIALS, SETTING, METHODS The endocrinological and histological findings were correlated with publicly available single-cell RNA sequencing (scRNA-seq) data. The genomic defects have been characterized using long-read sequencing and validated with in silico modeling and an in vitro cyclic AMP reporter gene assay. MAIN RESULTS AND THE ROLE OF CHANCE An intragenic deletion of exon 1-5 of RXFP2 (NM_130806.5) was detected in trans with a hemizygous missense variant c.229G>A, p.(Glu77Lys). The p.(Glu77Lys) variant caused no clear change in cell surface expression or ability to bind INSL3, but displayed absence of a cAMP signal in response to INSL3, indicating a loss-of-function. Testicular biopsy in the proband showed a maturation arrest at the spermatid stage, corresponding to the highest level of RXFP2 expression in scRNA-seq data, thereby providing a potential explanation for the impaired fertility. LIMITATIONS, REASONS FOR CAUTION Although this is so far the only study of human cases that supports the role of RXFP2 in spermatogenic maturation, this is corroborated by several animal studies that have already demonstrated a postnatal function of INSL3 and RXFP2 in spermatogenesis. WIDER IMPLICATIONS OF THE FINDINGS This study corroborates RXFP2 as gene implicated in autosomal recessive congenital bilateral cryptorchidism due to biallelic variants, rather than autosomal-dominant cryptorchidism due to monoallelic RXFP2 variants. Our findings also support that RXFP2 is essential in human spermatogenesis, specifically in germ cell maturation, and that biallelic disruption can cause male infertility through spermatogenic arrest at the spermatid stage. STUDY FUNDING/COMPETING INTEREST(S) Funding was provided by the Bellux Society for Pediatric Endocrinology and Diabetology (BELSPEED) and supported by a Research Foundation Flanders (FWO) senior clinical investigator grant (E.D.B., 1802220N) and a Ghent University Hospital Special Research Fund grant (M.C., FIKO-IV institutional fund). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Hannes Syryn
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Julie Van de Velde
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Pediatric Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Griet De Clercq
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Hannah Verdin
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Frank Peelman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Andrew Sinclair
- Royal Children's Hospital & Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Katie L Ayers
- Royal Children's Hospital & Department of Paediatrics, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Ross A D Bathgate
- The Florey Institute and Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
| | - Martine Cools
- Department of Pediatric Endocrinology, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Zhang SS, Larrabee L, Chang AH, Desai S, Sloan L, Wang X, Wu Y, Parvez N, Amaratunga K, Hartman AC, Whitnall A, Mason J, Barton NP, Chu AY, Davitte JM, Csakai AJ, Tibbetts CV, Tolbert AE, O'Keefe H, Polanco J, Foley J, Kmett C, Kehler J, Kozejova G, Wang F, Mayer AP, Koenig P, Foletti D, Pitts SJ, Schnackenberg CG. Discovery of RXFP2 genetic association in resistant hypertensive men and RXFP2 antagonists for the treatment of resistant hypertension. Sci Rep 2024; 14:13209. [PMID: 38851835 PMCID: PMC11162469 DOI: 10.1038/s41598-024-62804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
Hypertension remains a leading cause of cardiovascular and kidney diseases. Failure to control blood pressure with ≥ 3 medications or control requiring ≥ 4 medications is classified as resistant hypertension (rHTN) and new therapies are needed to reduce the resulting increased risk of morbidity and mortality. Here, we report genetic evidence that relaxin family peptide receptor 2 (RXFP2) is associated with rHTN in men, but not in women. This study shows that adrenal gland gene expression of RXFP2 is increased in men with hypertension and the RXFP2 natural ligand, INSL3, increases adrenal steroidogenesis and corticosteroid secretion in human adrenal cells. To address the hypothesis that RXFP2 activation is an important mechanism in rHTN, we discovered and characterized small molecule and monoclonal antibody (mAb) blockers of RXFP2. The novel chemical entities and mAbs show potent, selective inhibition of RXFP2 and reduce aldosterone and cortisol synthesis and release. The RXFP2 mAbs have suitable rat pharmacokinetic profiles to evaluate the role of RXFP2 in the development and maintenance of rHTN. Overall, we identified RXFP2 activity as a potential new mechanism in rHTN and discovered RXFP2 antagonists for the future interrogation of RXFP2 in cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Lance Larrabee
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Andrew H Chang
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Sapna Desai
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Lisa Sloan
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Xin Wang
- Research, 23andMe, 223 N Mathilda Ave., Sunnyvale, CA, 94086, USA
| | - Yixuan Wu
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Nazia Parvez
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Karen Amaratunga
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Allison C Hartman
- Medicinal Science and Technology, GSK, 1250 S. Collegeville Rd., Collegeville, PA, 19426, USA
| | - Abby Whitnall
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Joseph Mason
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Nicholas P Barton
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Audrey Y Chu
- Genomic Sciences, GSK, 300 Technology Square, Cambridge, MA, 02139, USA
| | | | - Adam J Csakai
- Medicinal Science and Technology, GSK, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | | | - Audrey E Tolbert
- Medicinal Science and Technology, GSK, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Heather O'Keefe
- Medicinal Science and Technology, GSK, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Jessie Polanco
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Joseph Foley
- Novel Human Genetics Research Unit, GSK, 1250 S. Collegeville Rd., Collegeville, PA, 19426, USA
| | - Casey Kmett
- DMPK, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Jonathan Kehler
- Bioanalysis, Immunogenicity and Biomarkers, GSK, 1250 S. Collegeville Rd., Collegeville, PA, 19426, USA
| | - Gabriela Kozejova
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Feng Wang
- DMPK, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Andrew P Mayer
- Bioanalysis, Immunogenicity and Biomarkers, GSK, 1250 S. Collegeville Rd., Collegeville, PA, 19426, USA
| | - Patrick Koenig
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Davide Foletti
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Steven J Pitts
- Research, 23andMe, 223 N Mathilda Ave., Sunnyvale, CA, 94086, USA
| | | |
Collapse
|
3
|
Li L, Lin W, Wang Z, Huang R, Xia H, Li Z, Deng J, Ye T, Huang Y, Yang Y. Hormone Regulation in Testicular Development and Function. Int J Mol Sci 2024; 25:5805. [PMID: 38891991 PMCID: PMC11172568 DOI: 10.3390/ijms25115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Wanqing Lin
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (L.L.); (W.L.); (Z.W.); (R.H.); (H.X.); (Z.L.); (J.D.); (T.Y.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China
| |
Collapse
|
4
|
Schneck NA, Mortezavi L, Olzinski AR, Posavec D, Jolivette LJ, Sikorski TW, Zhang SS, Schnackenberg CG, Licea-Perez H. Development of an LC-MS/MS assay for quantification of intact INSL3 in rat plasma. Bioanalysis 2023; 15:1169-1178. [PMID: 37676652 DOI: 10.4155/bio-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Background: Relatively large disulfide-linked polypeptides can serve as signaling molecules for a diverse array of biological processes and may be studied in animal models to investigate their function in vivo. The aim of this work was to develop an LC-MS/MS assay to measure a model peptide, INSL3, in rat plasma. Results: A dual enrichment strategy incorporating both protein precipitation and solid phase extraction was utilized to isolate INSL3 from rat plasma, followed by targeted LC-MS/MS detection. The method was able to measure full-length INSL3 (6.1 kDa) down to 0.2 ng/ml with acceptable accuracy and precision. Conclusion: The final assay was applied to support an exploratory pharmacokinetic study to evaluate steady-state concentrations of dosed INSL3 in rat plasma.
Collapse
Affiliation(s)
- Nicole A Schneck
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Lela Mortezavi
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Alan R Olzinski
- Novel Human Genetics Research Unit, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Diane Posavec
- Novel Human Genetics Research Unit, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Larry J Jolivette
- Drug Metabolism & Pharmacokinetics, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Timothy W Sikorski
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| | - Shan-Shan Zhang
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | | | - Hermes Licea-Perez
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd, Collegeville, PA 19426, USA
| |
Collapse
|
5
|
Ivell R, Mamsen LS, Andersen CY, Anand-Ivell R. Expression and Role of INSL3 in the Fetal Testis. Front Endocrinol (Lausanne) 2022; 13:868313. [PMID: 35464060 PMCID: PMC9019166 DOI: 10.3389/fendo.2022.868313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin-like peptide 3 (INSL3) is a small peptide hormone of the insulin-relaxin family which is produced and secreted by the fetal Leydig cells in the testes only. It appears to be undetectable in female fetuses. In the human fetus INSL3 synthesis begins immediately following gonadal sex determination at weeks 7 to 8 post coitum and the peptide can be detected in amniotic fluid 1 to 2 weeks later. INSL3 acts through a unique G-protein-coupled receptor, called RelaXin-like Family Peptide receptor 2 (RXFP2), which is expressed by the mesenchymal cells of the gubernacular ligament linking the testes to the inguinal wall. The role of INSL3 in the male fetus is to cause a thickening of the gubernaculum which then retains the testes in the inguinal region, while the remainder of the abdominal organs grow away in an antero-dorsal direction. This represents the first phase of testis descent and is followed later in pregnancy by the second inguino-scrotal phase whereby the testes pass into the scrotum through the inguinal canal. INSL3 acts as a significant biomarker for Leydig cell differentiation in the fetus and may be reduced by maternal exposure to endocrine disrupting chemicals, such as xenoestrogens or phthalates, leading to cryptorchidism. INSL3 may have other roles within the fetus, but as a Leydig cell biomarker its reduction acts also as a surrogate for anti-androgen action.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ravinder Anand-Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
6
|
Ivell R, Heng K, Severn K, Antonio L, Bartfai G, Casanueva FF, Huhtaniemi IT, Giwercman A, Maggi M, O’Connor DB, O’Neill TW, Punab M, Rastrelli G, Slowikowska-Hilczer J, Tournoy J, Vanderschueren D, Wu FCW, Anand-Ivell R. The Leydig cell biomarker INSL3 as a predictor of age-related morbidity: Findings from the EMAS cohort. Front Endocrinol (Lausanne) 2022; 13:1016107. [PMID: 36425465 PMCID: PMC9679513 DOI: 10.3389/fendo.2022.1016107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Insulin-like peptide 3 (INSL3) is a constitutive hormone secreted in men by the mature Leydig cells of the testes. It is an accurate biomarker for Leydig cell functional capacity, reflecting their total cell number and differentiation status. OBJECTIVES To determine the ability of INSL3 to predict hypogonadism and age-related morbidity using the EMAS cohort of older community-dwelling men. MATERIALS & METHODS Circulating INSL3 was assessed in the EMAS cohort and its cross-sectional and longitudinal relationships to hypogonadism, here defined by testosterone (T) <10.5nmol/l, and a range of age-related morbidities determined by correlation and regression analysis. RESULTS & DISCUSSION While INSL3 is an accurate measure of primary hypogonadism, secondary and compensated hypogonadism also indicate reduced levels of INSL3, implying that testicular hypogonadism does not improve even when LH levels are increased, and that ageing-related hypogonadism may combine both primary and secondary features. Unadjusted, serum INSL3, like calculated free testosterone (cFT), LH, or the T/LH ratio reflects hypogonadal status and is associated with reduced sexual function, bone mineral density, and physical activity, as well as increased occurrence of hypertension, cardiovascular disease, cancer, and diabetes. Using multiple regression analysis to adjust for a range of hormonal, anthropometric, and lifestyle factors, this relationship is lost for all morbidities, except for reduced bone mineral density, implying that INSL3 and/or its specific receptor, RXFP2, may be causally involved in promoting healthy bone metabolism. Elevated INSL3 also associates with hypertension and cardiovascular disease. When unadjusted, INSL3 in phase 1 of the EMAS study was assessed for its association with morbidity in phase 2 (mean 4.3 years later); INSL3 significantly predicts 7 out of 9 morbidity categories, behaving as well as cFT in this regard. In contrast, total T was predictive in only 3 of the 9 categories. CONCLUSION Together with its low within-individual variance, these findings suggest that assessing INSL3 in men could offer important insight into the later development of disease in the elderly.
Collapse
Affiliation(s)
- Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Kee Heng
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Katie Severn
- School of Mathematics, University of Nottingham, Nottingham, United Kingdom
| | - Leen Antonio
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Gyorgy Bartfai
- Department of Obstetrics, Gynaecology and Andrology, Albert Szent-Gyorgy Medical University, Szeged, Hungary
| | - Felipe F. Casanueva
- Department of Medicine, Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago (CHUS); CIBER de Fisiopatología Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - Ilpo T. Huhtaniemi
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | | - Mario Maggi
- Andrology Unit, “Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Terence W. O’Neill
- Centre for Epidemiology Versus Arthritis, The University of Manchester & NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Margus Punab
- Andrology Clinic, Tartu University Hospital; and Institute of Clinical Medicine, and Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Giulia Rastrelli
- Andrology Unit, “Mario Serio” Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Jos Tournoy
- Department of Geriatrics, University Hospitals Leuven, and Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Frederick C. W. Wu
- Department of Endocrinology, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Ravinder Anand-Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- *Correspondence: Ravinder Anand-Ivell,
| |
Collapse
|
7
|
Tang L, You W, Wang Q, Huang F, Shao C. MicroRNA ssa-mir-196a-4 deceases lgr8 expression in testis development of Chinese tongue sole (Cynoglossus semilaevis). Comp Biochem Physiol B Biochem Mol Biol 2021; 258:110695. [PMID: 34763077 DOI: 10.1016/j.cbpb.2021.110695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) contribute to gonadal development in animals. However, there is little information about miRNA regulation function involved in gonadal development in fish. Our group previously identified sex-related miRNAs of Chinese tongue sole (Cynoglossus semilaevis) during sex determination and differentiation by small RNA sequencing. In the present study, we characterized ssa-mir-196a-4 and its expression in testis and verified its interaction with lgr8. miRNA ssa-mir-196a-4 precursor was predicted to have a typical hairpin structure and highly conserved among various fish species. Fluorescence in situ hybridization (FISH) of ssa-mir-196a-4 in the testis of Chinese tongue sole showed that it is mainly expressed in the cytoplasm of Sertoli cells. We determined that ssa-mir-196a-4 interacted with lgr8 by bioinformatics analysis using miRanda software. According to the dual-luciferase gene reporter assay, lgr8 is a direct target of ssa-mir-196a-4. Overexpression of ssa-mir-196a-4 in the cells of the testis cell line of Chinese tongue sole decreased the expression levels of lgr8 messenger RNA (mRNA) and protein by targeting its coding sequence (CDS) region. These results suggest that ssa-mir-196a-4 acts as a post-transcriptional regulator of lgr8 and plays an important role in developing testes of Chinese tongue sole.
Collapse
Affiliation(s)
- Lili Tang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Wuxin You
- Single-Cell Center CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | | | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
8
|
Rasmussen JJ, Albrethsen J, Frandsen MN, Jørgensen N, Juul A, Kistorp C. Serum Insulin-like Factor 3 Levels Are Reduced in Former Androgen Users, Suggesting Impaired Leydig Cell Capacity. J Clin Endocrinol Metab 2021; 106:e2664-e2672. [PMID: 33693710 DOI: 10.1210/clinem/dgab129] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Illicit use of anabolic androgenic steroids (AAS) is frequently observed in men and is associated with subsequent testosterone deficiency although the long-term effect on gonadal function is still unclear. Serum insulin-like factor 3 (INSL3) has been suggested to be a superior biomarker of Leydig cell secretory capacity compared to testosterone. OBJECTIVE This study aimed to investigate serum INSL3 concentrations in AAS users. METHODS This community-based, cross-sectional study included men aged 18 to 50 years, involved in recreational strength training and allocated to 1 of 3 groups: never-AAS users as controls (n = 44), current (n = 46), or former AAS users (n = 42) with an average duration since AAS cessation of 32 (23 ; 45) months. RESULTS Serum INSL3 was lower in current AAS users and former AAS users than in controls, median (interquartile range), 0.04 µg/L (nondetectable [ND]-0.07 µg/L) and 0.39 µg/L (0.24-0.62 µg/L) vs 0.59 µg/L (0.45-0.72 µg/L), P less than .001. Former AAS users exhibited lower serum INSL3 levels than controls in a multivariable linear regression even after adjusting for serum total testosterone (TT) and other relevant confounders, (B) (95% CI), -0.16 µg/L (95% CI, -0.29 to -0.04 µg/L), P equal to .011. INSL3 and TT were not associated in the model, P equal to .821. Longer accumulated AAS duration (log2) was associated with lower serum INSL3 in former AAS users, (B) (95% CI), -0.08 (95% CI, -0.14 to -0.01), P equal to .022. Serum INSL3, but not inhibin B or testosterone, was associated with testicular size in a multivariate linear regression, (B) (95% CI); 4.7 (95% CI, 0.5 to 8.9), P equal to .030. CONCLUSION Serum INSL3 is reduced years following AAS cessation in men, independently of testosterone, suggesting persistently impaired Leydig cell capacity.
Collapse
Affiliation(s)
- Jon Jarløv Rasmussen
- Department of Endocrinology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jakob Albrethsen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
- International Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark
| | | | - Niels Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
- International Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark
- International Centre for Research and Research Training in Male Reproduction and Child Health (EDMaRC), Rigshospitalet, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Kistorp
- Department of Endocrinology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Hunter D, Heng K, Mann N, Anand-Ivell R, Ivell R. Maternal Exposure to Dibutyl Phthalate (DBP) or Diethylstilbestrol (DES) Leads to Long-Term Changes in Hypothalamic Gene Expression and Sexual Behavior. Int J Mol Sci 2021; 22:ijms22084163. [PMID: 33920546 PMCID: PMC8073651 DOI: 10.3390/ijms22084163] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Xenobiotic exposure during pregnancy and lactation has been linked to perinatal changes in male reproductive outcomes and other endocrine parameters. This pilot study wished to assess whether brief maternal exposure of rats to xenobiotics dibutyl phthalate (DBP) or diethylstilbestrol (DES) might also cause long-term changes in hypothalamic gene expression or in reproductive behavior of the resulting offspring. Time-mated female Sprague Dawley rats were given either DBP (500 mg/kg body weight, every second day from GD14.5 to PND6), DES (125 µg/kg body weight at GD14.5 and GD16.5 only), or vehicle (n = 8–12 per group) and mild endocrine disruption was confirmed by monitoring postnatal anogenital distance. Hypothalamic RNA from male and female offspring at PND10, PND24 and PND90 was analyzed by qRT-PCR for expression of aromatase, oxytocin, vasopressin, ER-alpha, ER-beta, kisspeptin, and GnRH genes. Reproductive behavior was monitored in male and female offspring from PND60 to PND90. Particularly, DES treatment led to significant changes in hypothalamic gene expression, which for the oxytocin gene was still evident at PND90, as well as in sexual behavior. In conclusion, maternal xenobiotic exposure may not only alter endocrine systems in offspring but, by impacting on brain development at a critical time, can have long-term effects on male or female sexual behavior.
Collapse
|
10
|
Evidence for existence of insulin-like factor 3 (INSL3) hormone-receptor system in the ovarian corpus luteum and extra-ovarian reproductive organs during pregnancy in goats. Cell Tissue Res 2021; 385:173-189. [PMID: 33590284 DOI: 10.1007/s00441-021-03410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Insulin-like factor 3 (INSL3), initially described as a male hormone, is expressed in female reproductive organs during the estrous cycle and pregnancy but its function has not yet been established. This study explores the function of INSL3 in pregnant Saanen goats by characterizing the expression dynamics of INSL3 and its receptor, relaxin family peptide receptor 2 (RXFP2) and by demonstrating specific INSL3 binding in reproductive organs, using molecular and immunological approaches and ligand-receptor interaction assays. We demonstrate that the corpus luteum (CL) acts as both a source and target of INSL3 in pregnant goats, while extra-ovarian reproductive organs serve as additional INSL3 targets. The expression of INSL3 and RXFP2 in the CL reached maximum levels in middle pregnancy, followed by a decrease in late pregnancy; in contrast, RXFP2 expression levels in extra-ovarian reproductive organs were higher in the mammary glands but lower in the uterus, cervix and placenta and did not significantly change during pregnancy. The functional RXFP2 enabling INSL3 to bind was identified as an ~ 85 kDa protein in both the CL and mammary glands and localized in large and small luteal cells in the CL and in tubuloalveolar and ductal epithelial cells in the mammary glands. Additionally, INSL3 also bound to multiple cell types expressing RXFP2 in the uterus, cervix and placenta in a hormone-specific and saturable manner. These results provide evidence that an active intra- and extra-ovarian INSL3 hormone-receptor system operates during pregnancy in goats.
Collapse
|
11
|
Chiang CM, Chiu HY, Jong DS, Wu LS, Lee YJ, Chiu CH. Role of the kisspeptin/KISS1 receptor system in the testicular development of mice. J Chin Med Assoc 2021; 84:203-211. [PMID: 33543882 DOI: 10.1097/jcma.0000000000000443f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Kisspeptin and its receptor KISS1R have been found to be essential regulators of reproductive function. Previous data have revealed the presence of Kiss1 and Kiss1r mRNAs in the hypothalamus and the testis of humans and rodents. However, the precise location and possible physiological role of the kisspeptin/KISS1R system in the testis remain ambiguous. METHODS We first produced an anti-KISS1R immunoglobulin Y antibody for KISS1R identification. To detect the exact sites of KISS1R and kisspeptin expression in the testis, we conducted immunohistochemistry assays on sections of testes. We used real-time polymerase chain reactions to identify Kiss1r in mice and to determine the expression levels of testicular genes. Finally, to verify the upstream regulation on the Kisspeptin/KISS1 receptor system, we treated primary mouse Leydig cells and MA-10 cells with luteinizing hormone (LH) and Br-cAMP, respectively, and examined Kiss1 and Kiss1r mRNA expression. RESULTS Immunohistochemistry assays revealed that kisspeptin was expressed in Leydig cells and KISS1R was localized in the seminiferous tubules. With real-time polymerase chain reactions, we found Kiss1r mRNA was constitutively expressed in the mouse testis from birth until the postnatal fourth week. Furthermore, mRNA expression of Kiss1 was synchronized with that of Insl3 and Cyp19a. However, the expression of the LH receptor-encoding gene increased 1 week earlier than did Kiss1 expression. This indicated that the kisspeptin/KISS1R system in the testis may be controlled by LH and cAMP signaling pathways. Finally, we confirmed that Kiss1 mRNA expression was increased in both LH-treated primary Leydig cells and Br-cAMP-treated MA-10 cells (p < 0.05). On the other hand, cotreatment of both cell lines with Br-cAMP and a protein kinase A inhibitor RP-cAMP significantly suppressed 50% of Br-cAMP-induced Kiss1 expression (p < 0.05). CONCLUSION We discovered that Kiss1 expression in mouse Leydig cells was induced by LH through the cAMP/PKA pathway. Based on the presence of kisspeptin receptors on spermatids, we inferred that kisspeptin- and development-related factors have synergistic effects on spermatogenesis. Nevertheless, more studies are required to elaborate the role of the kisspeptin/KISS1R system in testicular development.
Collapse
Affiliation(s)
- Chi-Ming Chiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Department of Orthopedics Surgery, Cardinal Tien Hospital, New Taipei City, Taiwan, ROC
- Professional Master Program for Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Hsin-Yi Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
- Division of Thoracic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Department of Medical Education, Taipei Medical University Hospital, Taipei, Taiwan, ROC
- Department of Education and Humanities in Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - De-Shien Jong
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Leang-Shin Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Yue-Jia Lee
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Hsien Chiu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
12
|
Ivell R, Alhujaili W, Kohsaka T, Anand-Ivell R. Physiology and evolution of the INSL3/RXFP2 hormone/receptor system in higher vertebrates. Gen Comp Endocrinol 2020; 299:113583. [PMID: 32800774 DOI: 10.1016/j.ygcen.2020.113583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
Although the insulin-like peptide hormone INSL3 and its cognate receptor RXFP2 (relaxin-family peptide receptor 2) have existed throughout chordate evolution, their physiological diversification appears to be linked closely with mammalian emergence and radiation. In contrast, they have been lost in birds and reptiles. Both hormone and receptor are expressed from autosomal genes which have maintained their synteny across vertebrate evolution. Whereas the INSL3 gene comprises only two exons closely linked to the JAK3 gene, RXFP2 is normally encoded by 18 exons. Both genes, however, are subject to alternative splicing to yield a variety of possibly inactive or antagonistic molecules. In mammals, the INSL3-RXFP2 dyad has maintained a probably primitive association with gametogenesis, seen also in fish, whereby INSL3 promotes the survival, growth and differentiation of male germ cells in the testis and follicle development in the ovary. In addition, however, the INSL3/RXFP2 system has adopted a typical 'neohormone' profile, essential for the promotion of internal fertilisation and viviparity; fetal INSL3 is essential for the first phase of testicular descent into a scrotum, and also appears to be associated with male phenotype, in particular horn and skeletal growth. Circulating INSL3 is produced exclusively by the mature testicular Leydig cells in male mammals and acts as a potent biomarker for testis development during fetal and pubertal development as well as in ageing. As such it can be used also to monitor seasonally breeding animals as well as to investigate environmental or lifestyle conditions affecting development. Nevertheless, most information about INSL3 and RXFP2 comes from a very limited selection of species; it will be especially useful to gain further information from a more diverse range of animals, especially those whose evolution has led them to express unusual reproductive phenotypes.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, LE2 5RD, UK; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE2 5RD, UK.
| | - Waleed Alhujaili
- School of Bioscience, University of Nottingham, Sutton Bonington, LE2 5RD, UK
| | - Tetsuya Kohsaka
- Dept. of Applied Life Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| | | |
Collapse
|
13
|
Analysis of transcript and methylation levels of INSL3 and RXFP2 in undescended and descended dog testes suggested promising biomarkers associated with cryptorchidism. Theriogenology 2020; 157:483-489. [PMID: 32898823 DOI: 10.1016/j.theriogenology.2020.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Cryptorchidism is the most common disorder of sex development (DSD) in dogs. This malformation is associated with reduced fertility and with a higher risk of gonadal cancer. Testicular descent is a complex process, and the functions of many environmental and genetic factors are crucial for the proper migration of fetal gonads into the scrotum. Among these, the hormone INSL3 (insulin-like peptide 3) and its receptor RXFP2 (relaxin family peptide receptor 2) play crucial roles in the transabdominal migration of the testes. The genetic background of canine cryptorchidism is poorly elucidated. The aim of this study was to compare the transcript and methylation levels of INSL3 and RXFP2 genes in undescended and descended testes of isolated unilateral cryptorchids, and in gonads of control male dogs with scrotal testes. Next, we searched for polymorphic variants in the 5'-regulatory regions of both genes associated with predispositions to cryptorchidism. The INSL3 transcript level was significantly higher in the undescended testes than in the descended testes of both the affected and control dogs. On the other hand, the mRNA level of RXFP2 was significantly lower in the retained gonads of cryptorchids than in the scrotal testes. The methylation level of a single CpG site located 15 bp upstream of the translation start codon in INSL3 was significantly higher in the testes of the control dogs than in both gonads of cryptorchids. The methylation level of 14 CpG sites in the coding region of INSL3 was significantly higher in undescended testes than in the scrotal testes, which may be associated with the higher mRNA levels of INSL3 observed in these samples. The methylation pattern of two CpG sites in the 5'-flanking region of RXFP2 was similar in both descended and undescended testes. We detected three and seven single nucleotide polymorphisms (SNPs) in the 5'-regulatory regions of INSL3 and RXFP2, respectively. Among these, the frequency of A > C substitution (ss7093349755) located 495 bp upstream of the transcription start site of RXFP2 differed significantly between cryptorchids and control dogs. Our study showed two possible genetic biomarkers associated with canine cryptorchidism: a hypomethylation of a single CpG site in the 5'-flanking region of INSL3, and the ss7093349755 SNP in the 5'-flanking region of RXFP2.
Collapse
|
14
|
Panagidis A, Kostopoulou E, Rojas Gil AP, Sinopidis X, Kourea H, Skiadopoulos S, Georgiou G, Spiliotis BE. Correlation between insulin-like peptide 3 and appendix testis length in congenital cryptorchidism. J Paediatr Child Health 2020; 56:1283-1289. [PMID: 32668093 DOI: 10.1111/jpc.14924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Abstract
AIM The appendix testis (AT) is a vestigial remnant of Müller's paramesonephric duct. Insulin-like 3 hormone (INSL3) is produced in the Leydig cells of the testis. We investigated the possible correlation between AT length and plasma INSL3 concentrations in patients with congenital cryptorchidism (CCO) and patients with hydrocele, who served as controls. METHODS A total of 40 patients with CCO and 34 patients with hydrocele and orthotopic testes were investigated. Sixteen patients presented high cryptorchidism and 24 low cryptorchidism. During surgery, AT was identified in 34 patients with CCO (high cryptorchidism:15, low cryptorchidism:19) and 28 controls. Plasma INSL3 levels were measured with a spectrophotometry enzyme immunoassay Elisa sandwich technique. RESULTS AT was present in 85.0% of the boys with CCO and 82.4% of the controls. A significant positive correlation was found between the AT length and INSL3 concentrations in CCO patients. CONCLUSIONS A longer AT may reflect better testicular function in boys with CCO, since it is correlated with higher INSL3 concentrations.
Collapse
Affiliation(s)
- Antonios Panagidis
- Department of Pediatric Surgery, Karamandaneion General Hospital, Patras, Greece
| | - Eirini Kostopoulou
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, University of Patras, Patras, Greece
| | - Andrea Paola Rojas Gil
- Faculty of Health Sciences, Department of Nursing, University of Peloponnese, Tripoli, Greece
| | - Xenophon Sinopidis
- Department of Pediatric Surgery, School of Medicine, University of Patras, Patras, Greece
| | - Helen Kourea
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Spyros Skiadopoulos
- Department of Medical Physics, School of Medicine, University of Patras, Patras, Greece
| | - George Georgiou
- Department of Pediatric Surgery, Karamandaneion General Hospital, Patras, Greece
| | - Bessie E Spiliotis
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
15
|
Shokri S, Tavalaee M, Ebrahimi SM, Ziaeipour S, Nasr-Esfahani MH, Nejatbakhsh R. Expression of RXFP2 receptor on human spermatozoa and the anti-apoptotic and antioxidant effects of insulin-like factor 3. Andrologia 2020; 52:e13715. [PMID: 32557760 DOI: 10.1111/and.13715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 01/16/2023] Open
Abstract
Insulin-like factor 3 (INSL3) has an important role in the human reproductive system; however, its detailed function is still mysterious. We aimed to investigate the possibility of expression of RXFP2 receptor on human spermatozoa and to determine the anti-apoptotic and antioxidant mechanism derived the binding of INSL3 and RXFP2. In this experimental study, the expression/location of the RXFP2 receptor was determined on the spermatozoa of fertile and infertile men. Twenty samples from 20 fertile men were collected and divided into 6 parts (control group, and five groups treated with INSL3 10, 100, 250, 500, 1,000 ng/ml). DNA damage, active caspase, reactive oxygen species (ROS) and sperm parameters were evaluated by TUNEL, flow cytometry, optical microscope and computer-assisted sperm analysis. The expression of RXFP2 was confirmed by Western blot. Immunocytochemistry illustrated that this receptor is expressed in the posterior half of the spermatozoa's head. The INSL3 at concentrations of 500 and 1,000 ng/ml reduced the active caspase and mitochondrial ROS, and also reduced DNA fragmentation at 1,000 ng/ml. Besides, INSL3 500 and 1,000 ng/ml significantly increased the sperm motility. This study confirmed the presence of RXFP2 receptor in fertile and infertile men's spermatozoa, indicating the highly dose-dependent efficacy of the INSL3, which may have promising impacts on the in-vitro fertilisation outcomes.
Collapse
Affiliation(s)
- Saeed Shokri
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marziyeh Tavalaee
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyyed Meisam Ebrahimi
- Department of Medical Surgical Nursing, Abhar School of Nursing, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sanaz Ziaeipour
- Department of Anatomical Sciences, School of Medicine, Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Reza Nejatbakhsh
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
16
|
Anand-Ivell R, Byrne CJ, Arnecke J, Fair S, Lonergan P, Kenny DA, Ivell R. Prepubertal nutrition alters Leydig cell functional capacity and timing of puberty. PLoS One 2019; 14:e0225465. [PMID: 31751436 PMCID: PMC6872131 DOI: 10.1371/journal.pone.0225465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Leydig cell functional capacity reflects the numbers and differentiation status of the steroidogenic Leydig cells in the testes and becomes more or less fixed in early adulthood with the final establishment of the hypothalamo-pituitary-gonadal (HPG) axis after puberty. Factors influencing Leydig cell functional capacity and its role in puberty are poorly understood. Using a bovine model of dairy bulls fed four different nutritional regimes from 1 month to 12 months, and applying circulating Insulin-like peptide 3 (INSL3) as an accurate biomarker of Leydig cell functional capacity, showed that a high plane of nutrition in the first 6 months of life, but not later, significantly increased INSL3 in young adulthood. Moreover, INSL3 concentration at 4 months indicated a marked differential in early feeding regime and correlated well (negatively) with the timing of puberty, as reflected by the age in days for the first production of an ejaculate with >50 million sperm and >10% forward motility, as well as with testis size at 18 months. Reversing the diet at 6 months was unable to rectify the trend in either parameter, unlike for other parameters such as testosterone, body weight, and scrotal circumference. This study has shown that early prepubertal nutrition is a key factor in the development of Leydig cell functional capacity in early adulthood and appears to be a key driver in the dynamic progression of puberty.
Collapse
Affiliation(s)
- Ravinder Anand-Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- * E-mail:
| | - Colin J. Byrne
- Animal and Bioscience Department, Teagasc, Dunsany, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Jonas Arnecke
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Department, Teagasc, Dunsany, Ireland
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
17
|
Karakas SE, Surampudi P. New Biomarkers to Evaluate Hyperandrogenemic Women and Hypogonadal Men. Adv Clin Chem 2018; 86:71-125. [PMID: 30144842 DOI: 10.1016/bs.acc.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Androgens can have variable effects on men and women. Women may be evaluated for androgen excess for several reasons. Typically, young premenopausal women present with clinical symptoms of hirsutism, alopecia, irregular menses, and/or infertility. The most common cause of these symptoms is polycystic ovary syndrome. After menopause, even though ovaries stop producing estrogen, they continue to produce androgen, and women can have new onset of hirsutism and alopecia. Laboratory evaluation involves measurement of the major ovarian and adrenal androgens. In women, age, phase of the menstrual cycle, menopausal status, obesity, metabolic health, and sex hormone-binding proteins significantly affect total-androgen levels and complicate interpretation. This review will summarize the clinically relevant evaluation of hyperandrogenemia at different life stages in women and highlight pitfalls associated with interpretation of commonly used hormone measurements. Hypogonadism in men is a clinical syndrome characterized by low testosterone and/or low sperm count. Symptoms of hypogonadism include decreased libido, erectile dysfunction, decreased vitality, decreased muscle mass, increased adiposity, depressed mood, osteopenia, and osteoporosis. Hypogonadism is a common disorder in aging men. Hypogonadism is observed rarely in young boys and adolescent men. Based on the defects in testes, hypothalamus, and/or pituitary glands, hypogonadism can be broadly classified as primary, secondary, and mixed hypogonadism. Diagnosis of hypogonadism in men is based on symptoms and laboratory measurement. Biomarkers in use/development for hypogonadism are classified as hormonal, Leydig and Sertoli cell function, semen, genetic/RNA, metabolic, microbiome, and muscle mass-related. These biomarkers are useful for diagnosis of hypogonadism, determination of the type of hypogonadism, identification of the underlying causes, and therapeutic assessment. Measurement of serum testosterone is usually the most important single diagnostic test for male hypogonadism. Patients with primary hypogonadism have low testosterone and increased luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Patients with secondary hypogonadism have low testosterone and low or inappropriately normal LH and FSH. This review provides an overview of hypogonadism in men and a detailed discussion of biomarkers currently in use and in development for diagnosis thereof.
Collapse
Affiliation(s)
- Sidika E Karakas
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of California at Davis, Davis, CA, United States
| | - Prasanth Surampudi
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, The University of California at Davis, Davis, CA, United States
| |
Collapse
|
18
|
Haselman JT, Kosian PA, Korte JJ, Olmstead AW, Degitz SJ. Effects of multiple life stage exposure to the fungicide prochloraz in Xenopus laevis: Manifestations of antiandrogenic and other modes of toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:240-251. [PMID: 29674245 PMCID: PMC6299828 DOI: 10.1016/j.aquatox.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 05/14/2023]
Abstract
The Larval Amphibian Growth and Development Assay (LAGDA) is an internationally harmonized testing guideline for evaluating effects of chronic chemical exposure in amphibians. In order to evaluate the effects of chronic exposure to an antiandrogenic chemical in an amphibian model, prochloraz was tested using a variation of the LAGDA design. Exposure was initiated with <1d post-fertilization embryos at nominal concentrations of 0, 6.7, 20, 60 and 180 μg/L (0, 18, 53, 159, 478 nM) and continued in flow-through conditions until two months following the median time that controls completed metamorphosis. Growth, developmental rate, circulating thyroid hormone and thyroid gland histopathology were evaluated in a subsample at completion of metamorphosis. There were no effects on growth or development at this stage, but circulating thyroid hormone was elevated in the 20, 60 and 180 μg/L treatments and minimal to mild thyroid follicular cell hypertrophy was observed histologically in the 180 μg/L treatment. Growth, overt toxicity, and reproductive development were evaluated at test termination. There were no effects on growth in either gender, but livers and kidneys exhibited treatment-related pathologies consistent with organ toxicity related to metabolism and presumably impaired excretion of prochloraz metabolites. Histological assessments of female ovaries resulted in minimal pathologies only in the 180 μg/L treatment while male testes exhibited numerous treatment-related pathologies that are consistent with previously reported antiandrogenic effects of prochloraz in other species. The most severe testis pathologies occurred in the 180 μg/L treatment; however, incidences of treatment-related pathologies occurred in all prochloraz treatments. Müllerian duct regression in males was inhibited by prochloraz exposure while Müllerian duct maturation in females was accelerated, characteristic of a feminizing effect. Gene expression levels of potential biomarkers of testis function were also measured. Relative abundance of cyp17a1 transcripts was generally unaffected by prochloraz exposure whereas the Insl3 orthologue, rflcii, was elevated by 3 and >5-fold in the 60 and 180 μg/L treatments, respectively, indicating impaired Leydig cell maturation and testosterone signaling. Overall, prochloraz exposure caused effects characteristic of an antiandrogenic mode of action, which is consistent with previously reported results in other species and supports the utility of the LAGDA design for chemical testing.
Collapse
Affiliation(s)
- Jonathan T Haselman
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Patricia A Kosian
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Joseph J Korte
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Allen W Olmstead
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Sigmund J Degitz
- US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| |
Collapse
|
19
|
Awaad A, Adly MA, Hosny D. Insulin-like 3 expression and fibrosis induction after intra-testicular injection of magnetic nanoparticles in rat testis and the ameliorative role of Echinacea purpurea extract. Biotech Histochem 2018; 93:118-132. [PMID: 29430971 DOI: 10.1080/10520295.2017.1399465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The World Health Organization has approved magnetic nanoparticles (MNP) for use as a contrast agent for magnetic resonance imaging or tumor hyperthermia treatment. MNP are toxic over time after intra-testicular injection. A clear strategy to ameliorate the toxic side effects of MNP in normal tissues after medical application has not yet been developed. We used an extract of Echinacea purpurea (EP) as a natural source of antioxidant and free radical scavenging product for detoxification of MNP in testicular tissues. MNP localization in the interstitial area of testicular tissue reduced the expression of insulin-like factor 3 (INSL3) proteins as well as serum testosterone levels. Further, MNP caused accumulation of both collagen and elastin in the interstitial area and increased the thickness of the tunica albuginea. Injection of MNP during administration of EP extract for short periods slightly reduced the toxic side effects of MNP. After extended exposure to EP extract, INSL3 expression and testosterone returned to near control levels. Also, collagen and elastin accumulation caused by MNP was reduced after extended exposure to EP extract. We believe that the ameliorative effect of EP extract is due to its antioxidant properties.
Collapse
Affiliation(s)
- A Awaad
- a Department of Zoology, Faculty of Science , Sohag University , Sohag , Egypt
| | - M A Adly
- a Department of Zoology, Faculty of Science , Sohag University , Sohag , Egypt
| | - D Hosny
- a Department of Zoology, Faculty of Science , Sohag University , Sohag , Egypt
| |
Collapse
|
20
|
Ferlin A, De Toni L, Agoulnik AI, Lunardon G, Armani A, Bortolanza S, Blaauw B, Sandri M, Foresta C. Protective Role of Testicular Hormone INSL3 From Atrophy and Weakness in Skeletal Muscle. Front Endocrinol (Lausanne) 2018; 9:562. [PMID: 30323788 PMCID: PMC6172310 DOI: 10.3389/fendo.2018.00562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023] Open
Abstract
Androgens are primarily involved in muscle growth, whilst disease-driven muscle wasting is frequently associated with hypogonadism. The Leydig cells of the testes also produce the peptide-hormone Insulin-like peptide 3 (INSL3). INSL3 displays anabolic activity on bone, a target tissue of androgens, and its plasma concentrations are diminished in male hypogonadism. Here we tested the role of INSL3 on muscle mass regulation, in physiological and pathological conditions. Studies on C2C12 cell line showed that INSL3, acting on his specific receptor RXFP2, promotes skeletal muscle protein synthesis through the Akt/mTOR/S6 pathway. Next, studies on Rxfp2 -/- mice showed that INSL3 is required to prevent excessive muscle loss after denervation. Mechanistically, denervated Rxfp2 -/- mice lacked the compensatory activation of the Akt/mTOR/S6 pathway and showed an abnormal ubiquitin-proteasome system activation. Lack of INSL3 activity resulted also in reduced contractile force. These findings underlie a role of INSL3/RXFP2 in protein turnover, contributing to muscle wasting in male hypogonadism.
Collapse
Affiliation(s)
- Alberto Ferlin
- Unit of Endocrinology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luca De Toni
- Department of Medicine, University of Padova, Padova, Italy
| | - Alexander I. Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | | | - Andrea Armani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Sergia Bortolanza
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
- *Correspondence: Marco Sandri
| | - Carlo Foresta
- Department of Medicine, University of Padova, Padova, Italy
- Carlo Foresta
| |
Collapse
|
21
|
Dai Y, Ivell R, Anand-Ivell R. Theca Cell INSL3 and Steroids Together Orchestrate the Growing Bovine Antral Follicle. Front Physiol 2017; 8:1033. [PMID: 29311967 PMCID: PMC5732917 DOI: 10.3389/fphys.2017.01033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/28/2017] [Indexed: 01/06/2023] Open
Abstract
Insulin-like peptide 3 (INSL3) and its specific receptor RXFP2 are both expressed by theca interna cells of the growing antral follicle where they form an essential regulatory element in the production of the steroid precursor androstenedione. Using primary cultures of bovine theca cells from the mid follicular phase together with steroid agonists and antagonists we have examined how ovarian steroids modulate INSL3 expression. Transcript analysis shows that these cells express estrogen receptors α and β, androgen and progesterone receptors, besides the orphan nuclear receptors SF1 and nur77. Whereas, exogenous androgens have little or no effect, the androgen antagonist bicalutamide stimulates INSL3 production. In contrast, estrogen receptor agonists, as also progesterone, are stimulatory. Importantly, estrogen receptor signaling is convergent with the protein kinase A signaling pathway activated by LH, such that the estrogen receptor antagonist can inhibit the mild stimulatory effect of LH, and vice versa the PKA antagonist H89 blocks stimulation by estradiol. A significant finding is that the major steroid metabolite androstenedione appears to act predominantly as an estrogen and not an androgen in this system. Transfection of INSL3 gene promoter-reporter constructs together with various steroid receptor expression plasmids supports these findings and shows that steroid action uses non-classical pathways not requiring canonical steroid-responsive elements in the proximal promoter region. Together, the results indicate that increasing estrogens in the follicular phase stimulate a feedforward loop driving INSL3 signaling and thereby promoting steroidogenesis in the growing antral follicle until the LH surge which effectively switches off INSL3 expression.
Collapse
Affiliation(s)
- Yanzhenzi Dai
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom.,School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom.,School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
22
|
Divergence of insulin superfamily ligands, receptors and Igf binding proteins in marine versus freshwater stickleback: Evidence of selection in known and novel genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 25:53-61. [PMID: 29149730 DOI: 10.1016/j.cbd.2017.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/04/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022]
Abstract
Three-spine stickleback (Gasterosteus aculeatus) is a teleost model for understanding genetic, physiological and morphological changes accompanying freshwater (FW) adaptation. There is growing evidence that the insulin superfamily plays important roles in traits involved in marine and FW adaptation. We performed a candidate gene analysis to look for evidence of selection on 33 insulin superfamily ligand-receptor genes and insulin-like growth factor binding proteins (Igfbp's) in stickleback. Using genotype data from 11 marine and 10 FW populations, we calculated the number of SNPs per site in regulatory and intronic regions, the number of synonymous and nonsynonymous mutations in coding regions, Wright's fixation index (Fst), and performed t-tests to identify SNPs with divergent genotype frequencies between marine/FW versus Atlantic/Pacific populations. Next, we analysed genome-wide transcriptome data from eight tissues to assess differential gene expression. Two Igfbp's (Igfbp2a and Igfbp5a) show evidence of divergent adaptation between life-history types, and a cluster of nonsynonymous mutations in Igfbp5a exhibit high Fst in exons apparently alternatively spliced in gill. We find evidence of selection on the relaxin family ligand-receptor gene pair, Insl3-Rxfp2, known to be involved in male spermatogenesis and bone metabolism, and in the 5' regulatory region of Igf2. We also confirmed the gene and coding sequence of two unannotated relaxin family ligands. These analyses underscore the utility of candidate gene studies and indicate directions for further exploration of the function of insulin superfamily genes in FW adaptation.
Collapse
|
23
|
Dai Y, Ivell R, Liu X, Janowski D, Anand-Ivell R. Relaxin-Family Peptide Receptors 1 and 2 Are Fully Functional in the Bovine. Front Physiol 2017. [PMID: 28634453 PMCID: PMC5459885 DOI: 10.3389/fphys.2017.00359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In most mammals the peptide hormone relaxin is a key physiological component regulating early pregnancy and birth. However, synteny analysis shows that the gene encoding ovarian relaxin-2 is deleted in cows and sheep. While, these ruminants appear to exhibit a relaxin-like physiology, as in other mammals, until now a molecular understanding of this has been lacking. Cloning and expression analysis of the cognate bovine receptor for relaxin, RXFP1, as well as of the structurally related receptor, RXFP2, in female tissues, shows that these are expressed in a similar way to other mammals. RXFP1 transcripts are found in ovarian theca cells, endometrium, and myometrium, whereas RXFP2 transcripts are expressed in ovarian theca cells, oocytes, as well as in myometrium. Transfection of receptor-expressing gene constructs into HEK293 cells indicates that bovine RXFP1 has a greater EC50 at 10–50 nM for porcine or human relaxin, compared to human RXFP1. For bovine RXFP2, in contrast, the EC50 is <1 nM for its cognate ligand, bovine INSL3, but also 10–30 nM for porcine or human relaxin. Functional analysis shows that bovine myometrial cells are able to respond to exogenous relaxin and INSL3 with a significant increase in cAMP. Although expressing mRNA for both RXFP1 and RXFP2, bovine follicular theca cells only respond to INSL3 with a dose-dependent increase in cAMP. Altogether the results suggest that the cow is able to compensate for the missing hormone, and moreover imply that relaxin analogs could offer an important therapeutic option in treating female ruminant infertility.
Collapse
Affiliation(s)
- Yanzhenzi Dai
- School of Biosciences, University of NottinghamNottingham, United Kingdom.,Leibniz Institute for Farm Animal BiologyDummerstorf, Germany
| | - Richard Ivell
- School of Biosciences, University of NottinghamNottingham, United Kingdom.,Leibniz Institute for Farm Animal BiologyDummerstorf, Germany.,School of Biological Sciences, University of AdelaideAdelaide, SA, Australia
| | - Xuan Liu
- Leibniz Institute for Farm Animal BiologyDummerstorf, Germany
| | - Dana Janowski
- Leibniz Institute for Farm Animal BiologyDummerstorf, Germany
| | - Ravinder Anand-Ivell
- School of Biosciences, University of NottinghamNottingham, United Kingdom.,Leibniz Institute for Farm Animal BiologyDummerstorf, Germany
| |
Collapse
|
24
|
Ivell R, Agoulnik AI, Anand‐Ivell R. Relaxin-like peptides in male reproduction - a human perspective. Br J Pharmacol 2017; 174:990-1001. [PMID: 27933606 PMCID: PMC5406299 DOI: 10.1111/bph.13689] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/10/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
The relaxin family of peptide hormones and their cognate GPCRs are becoming physiologically well-characterized in the cardiovascular system and particularly in female reproductive processes. Much less is known about the physiology and pharmacology of these peptides in male reproduction, particularly as regards humans. H2-relaxin is involved in prostate function and growth, while insulin-like peptide 3 (INSL3) is a major product of the testicular Leydig cells and, in the adult, appears to modulate steroidogenesis and germ cell survival. In the fetus, INSL3 is a key hormone expressed shortly after sex determination and is responsible for the first transabdominal phase of testicular descent. Importantly, INSL3 is becoming a very useful constitutive biomarker reflecting both fetal and post-natal development. Nothing is known about roles for INSL4 in male reproduction and only very little about relaxin-3, which is mostly considered as a brain peptide, or INSL5. The former is expressed at very low levels in the testes, but has no known physiology there, whereas the INSL5 knockout mouse does exhibit a testicular phenotype with mild effects on spermatogenesis, probably due to a disruption of glucose homeostasis. INSL6 is a major product of male germ cells, although it is relatively unexplored with regard to its physiology or pharmacology, except that in mice disruption of the INSL6 gene leads to a disruption of spermatogenesis. Clinically, relaxin analogues may be useful in the control of prostate cancer, and both relaxin and INSL3 have been considered as sperm adjuvants for in vitro fertilization. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Richard Ivell
- School of BiosciencesUniversity of NottinghamNottinghamLE12 5RDUK
- School of Veterinary and Medical SciencesUniversity of NottinghamNottinghamLE12 5RDUK
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
| | | |
Collapse
|
25
|
Pitia AM, Uchiyama K, Sano H, Kinukawa M, Minato Y, Sasada H, Kohsaka T. Functional insulin-like factor 3 (INSL3) hormone-receptor system in the testes and spermatozoa of domestic ruminants and its potential as a predictor of sire fertility. Anim Sci J 2016; 88:678-690. [PMID: 27592693 DOI: 10.1111/asj.12694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 11/30/2022]
Abstract
Insulin-like factor 3 (INSL3) is essential for fetal testis descent, and has been implicated in the testicular and sperm functions in adult males; however, similar functions in domestic ruminants remain largely unknown. This study investigated the functional INSL3 hormone-receptor system in adult ruminant testes and spermatozoa, and explored its potential to diagnose the fertility of sires. Testes and spermatozoa were obtained from fertile bulls, rams and he-goats, whereas subfertile testes and spermatozoa were obtained only from bulls. As expected, INSL3 was visualized in Leydig cells, while we clearly demonstrated that the functional receptor, relaxin family peptide receptor 2 (RXFP2), enabling INSL3 to bind was identified in testicular germ cells and in the sperm equatorial segment of bulls, rams and he-goats. In comparison to fertile bulls, the percentage of INSL3- and RXFP2-expressing cells and their expression levels per cell were significantly reduced in the testes of subfertile bulls. In addition, the population of INSL3-binding spermatozoa was also significantly reduced in the semen of subfertile bulls. These results provide evidence for a functional INSL3 hormone-receptor system operating in ruminant testes and spermatozoa, and its potential to predict subfertility in sires.
Collapse
Affiliation(s)
- Ali M Pitia
- Division of Animal Resource Production, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Laboratory of Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Kyoko Uchiyama
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Hiroaki Sano
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masashi Kinukawa
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Yoshiaki Minato
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Hiroshi Sasada
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tetsuya Kohsaka
- Division of Animal Resource Production, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Laboratory of Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
26
|
Ferlin A, De Toni L, Sandri M, Foresta C. Relaxin and insulin-like peptide 3 in the musculoskeletal system: from bench to bedside. Br J Pharmacol 2016; 174:1015-1024. [PMID: 27059798 DOI: 10.1111/bph.13490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscles and bones form a joined functional unit sharing a complex mechanical, biochemical and hormonal crosstalk. A number of factors, including sex hormones, physiologically regulate the musculoskeletal system. Striking gender differences in muscle and bone mass, and function are mainly caused by distinct actions exerted by oestrogens and androgens. However, relaxin and relaxin-related peptides, such as insulin-like peptide 3 (INSL3), might contribute to these sex-associated differences in physiological and pathological conditions (such as osteoporosis and sarcopenia). Relaxin is a 'pregnancy' hormone, but it is also produced from the prostate gland, and has recently attracted attention as a potential drug for cardiovascular disorders and fibrosis. In contrast, INSL3 is a male-specific hormone produced by the Leydig cells of the testis with a fundamental role in testicular descent during fetal life. Recent evidence suggests that both hormones have interesting roles in the musculoskeletal system. Relaxin and INSL3, by finely tuning bone formation and resorption, are involved in bone remodelling processes, and relaxin contributes to the healing of injured ligaments and promotes skeletal muscle regeneration. Here, we review the most recent findings on the effects of relaxin and INSL3 on skeletal muscle and the cell components of bone. In the light of the experimental evidence available and animal models, their clinical implications are also discussed. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Alberto Ferlin
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Luca De Toni
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy.,Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Carlo Foresta
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| |
Collapse
|
27
|
Hannan M, Kawate N, Kubo Y, Pathirana I, Büllesbach E, Hatoya S, Inaba T, Takahashi M, Tamada H. Expression analyses of insulin-like peptide 3, RXFP2, LH receptor, and 3β-hydroxysteroid dehydrogenase in testes of normal and cryptorchid dogs. Theriogenology 2015. [DOI: 10.1016/j.theriogenology.2015.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Braun BC, Müller K, Jewgenow K. Expression profiles of relaxin family peptides and their receptors indicate their influence on spermatogenesis in the domestic cat (Felis catus). Domest Anim Endocrinol 2015; 52:25-34. [PMID: 25704248 DOI: 10.1016/j.domaniend.2015.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/26/2022]
Abstract
Disturbed spermatogenesis is a common problem in felines. Studying spermatogenesis in the domestic cat can improve the understanding of the biological background and help to counteract fertility problems in other feline species. Here, we analyzed 3 relaxin family peptides (relaxin, relaxin-3, and INSL3) and their receptors (RXFP1, RXFP2, and RXFP3) as potential spermatogenic factors involving their expression in the testis at different stages of its development. It may be concluded from its stage-dependent expression that relaxin, together with RXFP1, appears to be involved in the first stage of spermatogenesis, whereas relaxin-3 via binding to RXFP3 influences spermiogenesis. Furthermore, correlations were observed between relaxin, relaxin-3, RXFP1, RXFP2 and RXFP3 messenger RNA expression, and the relative numbers of haploid cells in testes. The peptide INSL3 was highly expressed at all testis development stages. Because of the low and stage-independent expression of its receptor RXFP2, an auto- and/or paracrine function of INSL3 in spermatogenesis seems unlikely. In the adult testis, messenger RNA expression of relaxin, RXFP1, and RXFP3 predominantly occurs in the tubular testis compartment, whereas INLS3 is mainly expressed in the interstitium.
Collapse
Affiliation(s)
- B C Braun
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF 700430, 10324 Berlin, Germany.
| | - K Müller
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF 700430, 10324 Berlin, Germany
| | - K Jewgenow
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF 700430, 10324 Berlin, Germany
| |
Collapse
|
29
|
INSL3 stimulates spermatogonial differentiation in testis of adult zebrafish (Danio rerio). Cell Tissue Res 2015; 363:579-88. [PMID: 26077926 PMCID: PMC4735252 DOI: 10.1007/s00441-015-2213-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/08/2015] [Indexed: 01/04/2023]
Abstract
INSL3 (insulin-like peptide 3) is a relaxin peptide family member expressed by Leydig cells in the vertebrate testis. In mammals, INSL3 mediates testicular descent during embryogenesis but information on its function in adults is limited. In fish, the testes remain in the body cavity, although the insl3 gene is still expressed, suggesting yet undiscovered, evolutionary older functions. Anti-Müllerian hormone (Amh), in addition to inhibiting spermatogonial differentiation and androgen release, inhibits the Fsh (follicle-stimulating hormone)-induced increase in insl3 transcript levels in zebrafish testis. Therefore, the two growth factors might have antagonistic effects. We examine human INSL3 (hINSL3) effects on zebrafish germ cell proliferation/differentiation and androgen release by using a testis tissue culture system. hINSL3 increases the proliferation of type A undifferentiated (Aund) but not of type A differentiating (Adiff) spermatogonia, while reducing the proliferation of Sertoli cells associated with proliferating Aund. Since the area occupied by Aund decreases and that of Adiff increases, we conclude that hINSL3 recruits Aund into differentiation; this is supported by the hINSL3-induced down-regulation of nanos2 transcript levels, a marker of single Aund spermatogonia in zebrafish and other vertebrates. Pulse-chase experiments with a mitosis marker also indicate that hINSL3 promotes spermatogonial differentiation. However, hINSL3 does not modulate basal or Fsh-stimulated androgen release or growth factor transcript levels, including those of amh. Thus, hINSL3 seems to recruit Aund spermatogonia into differentiation, potentially mediating an Fsh effect on spermatogenesis.
Collapse
|
30
|
Expression of insulin-like factor 3 hormone-receptor system in the reproductive organs of male goats. Cell Tissue Res 2015; 362:407-20. [PMID: 26017634 DOI: 10.1007/s00441-015-2206-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Relaxin-like factor (RLF), generally known as insulin-like factor 3 (INSL3), is essential for testis descent during fetal development. However, its role in adult males is not fully understood. We investigate the function of INSL3 in male Saanen goats by identifying cell types expressing its receptor, relaxin/insulin-like family peptide receptor (RXFP)2 and by characterizing the developmental expression pattern of INSL3 and RXFP2 and the binding of INSL3 to target cells in the male reproductive system. A highly specific RXFP2 antibody that co-localizes with an anti-FLAG antibody in HEK-293 cells recognizes RXFP2-transcript-expressing cells in the testis. INSL3 and RXFP2 mRNA expression is upregulated in the testis, starting from puberty. INSL3 mRNA and protein expression has been detected in Leydig cells, whereas RXFP2 mRNA and protein localize to Leydig cells, to meiotic and post-meiotic germ cells and to the epithelium and smooth muscle of the cauda epididymis and vas deferens. INSL3 binds to all of these tissues and cell types, with the exception of Leydig cells, in a hormone-specific and saturable manner. These results provide evidence for a functional intra- and extra-testicular INSL3 ligand-receptor system in adult male goats.
Collapse
|
31
|
Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 2015; 67:389-440. [PMID: 25761609 PMCID: PMC4394689 DOI: 10.1124/pr.114.009472] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Cyclic AMP/physiology
- Humans
- International Agencies
- Ligands
- Models, Molecular
- Pharmacology/trends
- Pharmacology, Clinical/trends
- Protein Isoforms/agonists
- Protein Isoforms/chemistry
- Protein Isoforms/classification
- Protein Isoforms/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/agonists
- Receptors, Peptide/chemistry
- Receptors, Peptide/classification
- Receptors, Peptide/metabolism
- Relaxin/agonists
- Relaxin/analogs & derivatives
- Relaxin/antagonists & inhibitors
- Relaxin/metabolism
- Second Messenger Systems
- Societies, Scientific
- Terminology as Topic
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Ross A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Steve W Sutton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Thomas B Dschietzig
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| |
Collapse
|
32
|
O'Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, Slowikowska-Hilczer J, Kula K, Szarras-Czapnik M, Milne L, Mitchell RT, Smith LB. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J 2014; 29:894-910. [PMID: 25404712 PMCID: PMC4422361 DOI: 10.1096/fj.14-255729] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leydig cell number and function decline as men age, and low testosterone is associated with all “Western” cardio-metabolic disorders. However, whether perturbed androgen action within the adult Leydig cell lineage predisposes individuals to this late-onset degeneration remains unknown. To address this, we generated a novel mouse model in which androgen receptor (AR) is ablated from ∼75% of adult Leydig stem cell/cell progenitors, from fetal life onward (Leydig cell AR knockout mice), permitting interrogation of the specific roles of autocrine Leydig cell AR signaling through comparison to adjacent AR-retaining Leydig cells, testes from littermate controls, and to human testes, including from patients with complete androgen insensitivity syndrome (CAIS). This revealed that autocrine AR signaling is dispensable for the attainment of final Leydig cell number but is essential for Leydig cell maturation and regulation of steroidogenic enzymes in adulthood. Furthermore, these studies reveal that autocrine AR signaling in Leydig cells protects against late-onset degeneration of the seminiferous epithelium in mice and inhibits Leydig cell apoptosis in both adult mice and patients with CAIS, possibly via opposing aberrant estrogen signaling. We conclude that autocrine androgen action within Leydig cells is essential for the lifelong support of spermatogenesis and the development and lifelong health of Leydig cells.—O’Hara, L., McInnes, K., Simitsidellis, I., Morgan, S., Atanassova, N., Slowikowska-Hilczer, J., Kula, K., Szarras-Czapnik, M., Milne, L., Mitchell, R. T., Smith, L. B. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men.
Collapse
Affiliation(s)
- Laura O'Hara
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Kerry McInnes
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Ioannis Simitsidellis
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Stephanie Morgan
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Nina Atanassova
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jolanta Slowikowska-Hilczer
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Krzysztof Kula
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Maria Szarras-Czapnik
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Laura Milne
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Rod T Mitchell
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Lee B Smith
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
33
|
Hunter D, Anand-Ivell R, Danner S, Ivell R. Models of in vitro spermatogenesis. SPERMATOGENESIS 2014; 2:32-43. [PMID: 22553488 PMCID: PMC3341244 DOI: 10.4161/spmg.19383] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Understanding the mechanisms that lead to the differentiation of male germ cells from their spermatogonial stem cells through meiosis to give rise to mature haploid spermatozoa has been a major quest for many decades. Unlike most other cell types this differentiation process is more or less completely dependent upon the cells being located within the strongly structured niche provided by mature Sertoli cells within an intact seminiferous epithelium. While much new information is currently being obtained through the application and description of relevant gene mutations, there is still a considerable need for in vitro models with which to explore the mechanisms involved. Not only are systems of in vitro spermatogenesis important for understanding the basic science, they have marked pragmatic value in offering ex vivo systems for the artificial maturation of immature germ cells from male infertility patients, as well as providing opportunities for the transgenic manipulation of male germ cells. In this review, we have summarized literature relating to simplistic culturing of germ cells, co-cultures of germ cells with other cell types, especially with Sertoli cells, cultures of seminiferous tubule fragments, and briefly mention the opportunities of xenografting larger testicular pieces. The majority of methods are successful in allowing the differentiation of small steps in the progress of spermatogonia to spermatozoa; few tolerate the chromosomal reduction division through meiosis, and even fewer seem able to complete the complex morphogenesis which results in freely swimming spermatozoa. However, recent progress with complex culture environments, such as 3-d matrices, suggest that possibly success is now not too far away.
Collapse
|
34
|
Johansen ML, Anand-Ivell R, Mouritsen A, Hagen CP, Mieritz MG, Søeborg T, Johannsen TH, Main KM, Andersson AM, Ivell R, Juul A. Serum levels of insulin-like factor 3, anti-Müllerian hormone, inhibin B, and testosterone during pubertal transition in healthy boys: a longitudinal pilot study. Reproduction 2014; 147:529-35. [DOI: 10.1530/rep-13-0435] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insulin-like factor 3 (INSL3) is a promising marker of Leydig cell function with potentially high clinical relevance. Limited data of INSL3 levels in relation to other reproductive hormones in healthy pubertal boys exist. In this study, we aimed to evaluate longitudinal serum changes in INSL3 compared with LH, FSH, testosterone, inhibin B, and anti-Müllerian hormone (AMH) during puberty in healthy boys. Ten boys were included from the longitudinal part of the COPENHAGEN Puberty Study. Pubertal evaluation, including testicular volume, was performed and blood samples were drawn every 6 months for 5 years. Serum concentrations of testosterone were determined by a newly developed LC–MS/MS method, and serum concentrations of INSL3, AMH, inhibin B, FSH, and LH respectively were determined by validated immunoassays. The results showed that serum INSL3 levels increased progressively with increasing age, pubertal onset, and testicular volume. In six of the ten boys, LH increased before the first observed increase in INSL3. In the remaining four boys, the increase in LH and INSL3 was observed at the same examination. The increases in serum concentrations of LH, testosterone, and INSL3 were not parallel or in ordered succession and varied interindividually. We demonstrated that INSL3 concentrations were tightly associated with pubertal onset and increasing testicular volume. However, the pubertal increases in LH, INSL3, and testosterone concentrations were not entirely parallel, suggesting that INSL3 and testosterone may be regulated differently. Thus, we speculate that INSL3 provides additional information on Leydig cell differentiation and function during puberty compared with traditional markers of testicular function.
Collapse
|
35
|
Minagawa I, Sagata D, Pitia AM, Kohriki H, Shibata M, Sasada H, Hasegawa Y, Kohsaka T. Dynamics of insulin-like factor 3 and its receptor expression in boar testes. J Endocrinol 2014; 220:247-61. [PMID: 24464024 DOI: 10.1530/joe-13-0430] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Relaxin-like factor (RLF), now mainly known as insulin-like factor 3 (INSL3), is essential for testis descent during fetal development; however, its function in the adult testis is still being elucidated. As a major step toward understanding the as-yet-unknown function of INSL3 in boars, this study aimed to develop a time-resolved fluoroimmunoassay for boar INSL3, characterize the dynamics of INSL3 expression during development, and demonstrate the expression of the INSL3 hormone-receptor system in the testis. All samples were collected from Duroc boars. The sensitivity of the assay system established was 8.2 pg/well (164 pg/ml), and no cross-reactivity with other hormones, such as porcine relaxin, was observed. Circulating INSL3 was shown to increase progressively during development. INSL3 secreted from the Leydig cells was released not only into the blood circulation but also into the interstitial and seminiferous compartments in sufficient concentrations. A testicular fractionation study revealed that its receptor RXFP2 transcripts were expressed mainly in testicular germ cells. In addition, INSL3 bound to the germ cell membranes in a hormone-specific and saturable manner. These results reveal that INSL3 secreted into the interstitial compartment from the Leydig cells is transported into the seminiferous compartments, where its receptor RXFP2 is expressed mainly in the germ cells to which INSL3 binds, suggesting that INSL3 functions as a paracrine factor on seminiferous germ cells.
Collapse
Affiliation(s)
- Itaru Minagawa
- Laboratory of Animal Reproduction and Physiology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan Division of Animal Resource Production, The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan Shizuoka Swine and Poultry Experimental Station, Kikugawa, Shizuoka, Japan Laboratory of Animal Reproduction, School of Veterinary Medicine, Kitasato University, Towada, Japan School of Veterinary Medicine, Animal Sciences High-Tech Research Center, Kitasato University, Towada, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bay K, Anand-Ivell R. Human Testicular Insulin-Like Factor 3 and Endocrine Disrupters. VITAMINS & HORMONES 2014; 94:327-48. [DOI: 10.1016/b978-0-12-800095-3.00012-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Ivell R, Heng K, Anand-Ivell R. Insulin-Like Factor 3 and the HPG Axis in the Male. Front Endocrinol (Lausanne) 2014; 5:6. [PMID: 24478759 PMCID: PMC3902607 DOI: 10.3389/fendo.2014.00006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/13/2014] [Indexed: 11/30/2022] Open
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis comprises pulsatile GnRH from the hypothalamus impacting on the anterior pituitary to induce expression and release of both LH and FSH into the circulation. These in turn stimulate receptors on testicular Leydig and Sertoli cells, respectively, to promote steroidogenesis and spermatogenesis. Both Leydig and Sertoli cells exhibit negative feedback to the pituitary and/or hypothalamus via their products testosterone and inhibin B, respectively, thereby allowing tight regulation of the HPG axis. In particular, LH exerts both acute control on Leydig cells by influencing steroidogenic enzyme activity, as well as chronic control by impacting on Leydig cell differentiation and gene expression. Insulin-like peptide 3 (INSL3) represents an additional and different endpoint of the HPG axis. This Leydig cell hormone interacts with specific receptors, called RXFP2, on Leydig cells themselves to modulate steroidogenesis, and on male germ cells, probably to synergize with androgen-dependent Sertoli cell products to support spermatogenesis. Unlike testosterone, INSL3 is not acutely regulated by the HPG axis, but is a constitutive product of Leydig cells, which reflects their number and/or differentiation status and their ability therefore to produce various factors including steroids, together this is referred to as Leydig cell functional capacity. Because INSL3 is not subject to the acute episodic fluctuations inherent in the HPG axis itself, it serves as an excellent marker for Leydig cell differentiation and functional capacity, as in puberty, or in monitoring the treatment of hypogonadal patients, and at the same time buffering the HPG output.
Collapse
Affiliation(s)
- Richard Ivell
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, SA , Australia ; Leibniz Institute for Farm Animal Biology , Dummerstorf , Germany
| | - Kee Heng
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, SA , Australia
| | | |
Collapse
|
38
|
Antibody selection for immunocytochemical characterization of the male reproductive system in Psittaciformes. Theriogenology 2013; 80:597-608. [PMID: 23910890 DOI: 10.1016/j.theriogenology.2013.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 11/24/2022]
Abstract
The success of breeding programs is limited by the sparse knowledge about endocrine regulation and biochemical reactions in the psittacine male tract. The immunocytochemical analysis of parrots' testicular tissues provides an insight into their reproductive system but is often hampered by the lack of reliable antibodies. In the present study, we tested a large panel of antibodies raised against steroid receptors, steroidogenic enzymes, relaxin peptides including their receptors, and proliferation markers on paraffin sections of testicular tissue from eight psittacine genera representing three continents. All investigated species displayed the tested markers in somatic and germ cells of testis and epididymis, even though cell distribution was partly heterogenous and in species-specific patterns. The 17β-hydroxysteroid-dehydrogenase-2, 3β-hydroxysteroid-dehydrogenase, and smooth muscle actin allowed the cross-species differentiation between active and nonactive gonads. The remaining steroidogenic enzymes, steroid receptors, relaxin peptides, and Ki67 proved to be suitable to define reproductive activity depending on the parrot species. Adapting immunocytochemical methods to different psittacines was successful, though various cellular expression patterns do not allow the transfer of results among different parrot species. However, the availability of a reliable repertory of sexual markers is important to examine reproductive biology of psittacine birds.
Collapse
|
39
|
Siqin, Minagawa I, Okuno M, Yamada K, Sugawara Y, Nagura Y, Hamano KI, Park EY, Sasada H, Kohsaka T. The active form of goat insulin-like peptide 3 (INSL3) is a single-chain structure comprising three domains B-C-A, constitutively expressed and secreted by testicular Leydig cells. Biol Chem 2013; 394:1181-94. [DOI: 10.1515/hsz-2012-0357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/14/2013] [Indexed: 11/15/2022]
Abstract
Abstract
Relaxin-like factor (RLF), also called insulin-like peptide 3 (INSL3), is a member of the insulin/relaxin gene family and is produced by testicular Leydig cells. While the understanding of its effects is growing, very little is known about the structural and functional properties of native INSL3. Here, we demonstrate that native INSL3 isolated from goat testes is a single-chain structure with full biological activity, and is constitutively expressed and secreted by Leydig cells. Using a series of chromatography steps, native INSL3 was highly purified as a single 12-kDa peak as revealed by SDS-PAGE. MS/MS analysis provided 81% sequence coverage and revealed a distinct single-chain structure consisting of the B-, C-, and A-domains deduced previously from the INSL3 cDNA sequence. Moreover, the N-terminal peptide was six amino acid residues longer than predicted. Native INSL3 exhibited full bioactivity in HEK-293 cells expressing the receptor for INSL3. Immunoelectron microscopy and Western blot analysis revealed that INSL3 was secreted by Leydig cells through the constitutive pathway into blood and body fluids. We conclude, therefore, that goat INSL3 is constitutively secreted from Leydig cells as a B-C-A single-chain structure with full biological activity.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Biomarkers of prepubertal testicular function have become widely available only in recent years. The aim of this review is to update the knowledge on key biomarkers used to assess hypogonadism in boys. RECENT FINDINGS Sertoli cells are the most representative cells of the prepubertal testis. Anti-Müllerian hormone and inhibin B are essential biomarkers of Sertoli cell function. Also, INSL3 arises as an additional marker of Leydig cell dysfunction. SUMMARY The widespread use of these biomarkers has enhanced our knowledge on the pathophysiology and diagnosis of prepubertal male hypogonadism. Beyond their well known germ-cell toxicity, oncologic treatments may also affect Sertoli cell function. Pathophysiology is not the same in all aneuploidies leading to infertility: while hypogonadism is not evident until mid-puberty in Klinefelter syndrome, it is established in early infancy in Down syndrome. In Noonan syndrome, the occurrence of primary hypogonadism depends on the existence of cryptorchidism, and Prader-Willi syndrome may present with either primary or combined forms of hypogonadism. Prepubertal testicular markers have also provided insights into the effects of environmental disruptors on gonadal function from early life, and helped dissipate concerns about testicular function in boys born preterm or small for gestational age or conceived by assisted reproductive technique procedures.
Collapse
Affiliation(s)
- Clara Valeri
- Centro de Investigaciones Endocrinológicas (CEDIE), División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | | |
Collapse
|
41
|
Hampel U, Klonisch T, Sel S, Schulze U, Garreis F, Seitmann H, Zouboulis CC, Paulsen FP. Insulin-like factor 3 promotes wound healing at the ocular surface. Endocrinology 2013; 154:2034-45. [PMID: 23539510 DOI: 10.1210/en.2012-2201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tear fluid is known to contain many different hormones with relevance for ocular surface homeostasis. We studied the presence and functional role of insulin-like factor 3 (INSL3) and its cognate receptor RXFP2 (relaxin/insulin-like family peptide receptor 2) at the ocular surface and in tears. Expression of human INSL3 and RXFP2 was determined in tissues of the ocular surface and lacrimal apparatus; in human corneal (HCE), conjunctival (HCjE), and sebaceous (SC) epithelial cell lines; and in human tears by RT-PCR and ELISA. We investigated effects of human recombinant INSL3 (hrINSL3) on cell proliferation and cell migration and the influence of hrINSL3 on the expression of MMP2, -9, and -13 and TIMP1 and -2 was quantified by real-time PCR and ELISA in HCE, HCjE, and SC cells. We used a C57BL/6 mouse corneal defect model to elucidate the effect of topical application of hrINSL3 on corneal wound healing. INSL3 and RXFP2 transcripts and INSL3 protein were detected in all tissues and cell lines investigated. Significantly higher concentrations of INSL3 were detected in tears from male vs. female volunteers. Stimulation of HCE, HCjE, and SC with hrINSL3 significantly increased cell proliferation in HCjE and SC and migration of HCjE. Treatment with hrINSL3 for 24 hours regulated MMP2, TIMP1, and TIMP2 expression. The local application of hrINSL3 onto denuded corneal surface resulted in significantly accelerated corneal wound healing in mice. These findings suggest a novel and gender-specific role for INSL3 and cognate receptor RXFP2 signaling in ocular surface homeostasis and determined a novel role for hrINSL3 in corneal wound healing.
Collapse
Affiliation(s)
- Ulrike Hampel
- Department of Anatomy II, Friedrich Alexander University Erlangen-Nürnberg, Faculty of Medicine, Universitätsstrasse 19, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Anand-Ivell R, Dai Y, Ivell R. Neohormones as biomarkers of reproductive health. Fertil Steril 2013; 99:1153-60. [DOI: 10.1016/j.fertnstert.2012.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022]
|
43
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Brief maternal exposure of rats to the xenobiotics dibutyl phthalate or diethylstilbestrol alters adult-type Leydig cell development in male offspring. Asian J Androl 2013; 15:261-8. [PMID: 23314658 DOI: 10.1038/aja.2012.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Maternal exposure to estrogenic xenobiotics or phthalates has been implicated in the distortion of early male reproductive development, referred to in humans as the testicular dysgenesis syndrome. It is not known, however, whether such early gestational and/or lactational exposure can influence the later adult-type Leydig cell phenotype. In this study, Sprague-Dawley rats were exposed to dibutyl phthalate (DBP; from gestational day (GD) 14.5 to postnatal day (PND) 6) or diethylstilbestrol (DES; from GD14.5 to GD16.5) during a short gestational/lactational window, and male offspring subsequently analysed for various postnatal testicular parameters. All offspring remained in good health throughout the study. Maternal xenobiotic treatment appeared to modify specific Leydig cell gene expression in male offspring, particularly during the dynamic phase of mid-puberty, with serum INSL3 concentrations showing that these compounds led to a faster attainment of peak values, and a modest acceleration of the pubertal trajectory. Part of this effect appeared to be due to a treatment-specific impact on Leydig cell proliferation during puberty for both xenobiotics. Taken together, these results support the notion that maternal exposure to certain xenobiotics can also influence the development of the adult-type Leydig cell population, possibly through an effect on the Leydig stem cell population.
Collapse
|
45
|
Huang Z, Rivas B, Agoulnik AI. Insulin-like 3 signaling is important for testicular descent but dispensable for spermatogenesis and germ cell survival in adult mice. Biol Reprod 2012; 87:143. [PMID: 23100620 DOI: 10.1095/biolreprod.112.103382] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Relaxin family peptide receptor 2 (RXFP2) is the cognate receptor of a peptide hormone insulin-like 3 (INSL3). INSL3 is expressed at high levels in both fetal and adult Leydig cells. Deletion of Insl3 or Rxfp2 genes in mice caused cryptorchidism resulting from a failure of gubernaculum development. Using a novel mouse transgenic line with a knock-in LacZ reporter in the Rxfp2 locus, we detected a robust Rxfp2 expression in embryonic and early postnatal gubernaculum in males and in postmeiotic spermatogenic cells in adult testis. To study the role of INSL3/RXFP2 signaling in male reproduction, we produced a floxed Rxfp2 allele and used the Cre/loxP approach to delete Rxfp2 in different tissues. Using Cre transgene driven by retinoic acid receptor beta promoter, conditional gene targeting in gubernacular mesenchymal cells at early embryonic stages caused high intraabdominal cryptorchidism as in males with a global deletion of Rxfp2. However, when the Rxfp2 was deleted in gubernacular smooth or striated muscle cells, no abnormalities of testicular descent or testis development were found. Specific ablation of Rxfp2 in male germ cells using Stra8-icre transgene did not affect testis descent, spermatogenesis, or fertility in adult males. No significant change in germ cell apoptosis was detected in mutant males. In summary, our data indicate that the INSL3/RXFP2 signaling is important for testicular descent but dispensable for spermatogenesis and fertility in adult males.
Collapse
Affiliation(s)
- Zaohua Huang
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | | | | |
Collapse
|
46
|
Abe M, Hojo T, Kozai K, Okuda K. Possible role of insulin-like factor 3 in the bovine corpus luteum. J Vet Med Sci 2012; 75:629-32. [PMID: 23220928 DOI: 10.1292/jvms.12-0423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insulin-like factor 3 (INSL3) is a local regulator in mammalian gonads, but little is known of its function in bovine corpus luteum (CL). Here, we show that RXFP2 protein, the receptor of INSL3, was expressed throughout the estrous cycle and significantly high at the early luteal stage compared to the regressed luteal stage. INSL3 stimulated progesterone secretion, but not prostaglandin F2α and viability in cultured luteal cells. Together, these results suggest that INSL3 plays a luteotropic role as a local regulator in the bovine CL.
Collapse
Affiliation(s)
- Misato Abe
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
47
|
Pathirana IN, Kawate N, Büllesbach EE, Takahashi M, Hatoya S, Inaba T, Tamada H. Insulin-like peptide 3 stimulates testosterone secretion in mouse Leydig cells via cAMP pathway. ACTA ACUST UNITED AC 2012; 178:102-6. [PMID: 22800961 DOI: 10.1016/j.regpep.2012.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/30/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
Abstract
Testicular Leydig cells secrete insulin-like peptide 3 (INSL3) and express its receptor, RXFP2. However, the effects of INSL3 on endocrine function of Leydig cells are unknown. The present study examines the effects of INSL3 on mouse Leydig cells taking testosterone and cAMP secretions as endpoints. Leydig cells were isolated from testicular interstitial cells obtained from 8-week-old male mice. Cells were then plated in the presence or absence of mouse, human, canine or bovine INSL3 (0-100 ng/ml) for 18 h in multiwell-plates (96 wells) in different cell densities (2500, 5000, 10,000 or 20,000 cells per well). The effects of bovine INSL3 (100 ng/ml) on testosterone secretion by Leydig cells were examined in the presence or absence of, an adenylate cyclase inhibitor, SQ 22536 (1μM) or INSL3 antagonist (bovine and human; 100 ng/ml). Testosterone and cAMP in spent medium were measured by enzyme immunoassay. All INSL3 species tested significantly stimulated the testosterone secretion in Leydig cells, and the maximum stimulation was observed with 100 ng/ml bovine INSL3 at the lowest Leydig cell density (2500 cells per well). Moreover, bovine INSL3 (100 ng/ml) significantly stimulated the cAMP production from Leydig cells maximally at 1h, and remained significantly elevated even at 18 h. SQ 22536 and INSL3 antagonists (bovine and human) significantly reduced INSL3-stimulated testosterone secretion from Leydig cells. Taken together, stimulatory effects of INSL3 on testosterone secretion in Leydig cells are exerted via the activation of cAMP, suggesting a new autocrine function of INSL3 in males.
Collapse
Affiliation(s)
- Indunil N Pathirana
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Relaxin-like factor (RLF)/insulin-like peptide 3 (INSL3) is secreted from testicular Leydig cells as a monomeric protein comprising three domains B-C-A with full biological activity in boars. Biochem J 2012; 441:265-73. [PMID: 21899516 PMCID: PMC3242508 DOI: 10.1042/bj20111107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RLF (relaxin-like factor), also known as INSL3 (insulin-like peptide 3), is a novel member of the relaxin/insulin gene family that is expressed in testicular Leydig cells. Despite the implicated role of RLF/INSL3 in testis development, its native conformation remains unknown. In the present paper we demonstrate for the first time that boar testicular RLF/INSL3 is isolated as a monomeric structure with full biological activity. Using a series of chromatography steps, the native RLF/INSL3 was highly purified as a single peak in reverse-phase HPLC. MS/MS (tandem MS) analysis of the trypsinized sample provided 66% sequence coverage and revealed a distinct monomeric structure consisting of the B-, C- and A-domains deduced previously from the RLF/INSL3 cDNA. Moreover, the N-terminal peptide was four amino acid residues longer than predicted previously. MS analysis of the intact molecule and PMF (peptide mass fingerprinting) analysis at 100% sequence coverage confirmed this structure and indicated the existence of three site-specific disulfide bonds. RLF/INSL3 retained full bioactivity in HEK (human embryonic kidney)-293 cells expressing RXFP2 (relaxin/insulin-like family peptide receptor 2), the receptor for RLF/INSL3. Furthermore, RLF/INSL3 was found to be secreted from Leydig cells into testicular venous blood. Collectively, these results indicate that boar RLF/INSL3 is secreted from testicular Leydig cells as a B-C-A monomeric structure with full biological activity.
Collapse
|
49
|
Bay K, Andersson AM. Human testicular insulin-like factor 3: in relation to development, reproductive hormones and andrological disorders. ACTA ACUST UNITED AC 2011; 34:97-109. [PMID: 20550598 DOI: 10.1111/j.1365-2605.2010.01074.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Knockout of the gene encoding insulin-like factor 3 (INSL3) results in cryptorchidism in mice due to disruption of the transabdominal phase of testicular descent. This finding was essential for understanding the complete course of testis descensus, and wound up years of speculations regarding the endocrine regulation of this process. INSL3 is, along with testosterone, a major secretory product of testicular Leydig cells. In addition to its crucial function in testicular descent, INSL3 is suggested to play a paracrine role in germ cell survival and an endocrine role in bone metabolism. INSL3 is produced in human prenatal and neonatal, and in adult Leydig cells to various extents, and is in a developmental context regulated like testosterone, with production during second trimester, an early postnatal peak and increasing secretion during puberty, resulting in high adult serum levels. INSL3 production is entirely dependent on the state of Leydig cell differentiation, and is stimulated by the long-term trophic effects mediated by luteinizing hormone (LH). Once differentiated, Leydig cells apparently express INSL3 in a constitutive manner, and the hormone is thereby insensitive to the acute, steroidogenic effects of LH, which for example is an important factor in the regulation of testosterone. Clinically, serum INSL3 levels can turn out to be a usable tool to monitor basal Leydig cell function in patients with various disorders affecting Leydig cell function. According to animal studies, foetal INSL3 production is, directly or indirectly, sensitive to oestrogenic or anti-androgenic compounds. This provides important insight into the mechanism by which maternal exposure to endocrine disrupters can result in cryptorchidism in the next generation. Conclusively, INSL3 is an interesting testicular hormone with potential clinical value as a marker for Leydig cell function. It should be considered on a par with testosterone in the evaluation of testicular function and the consequences of Leydig cell dysfunction.
Collapse
Affiliation(s)
- K Bay
- University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark.
| | | |
Collapse
|
50
|
Abstract
Complete testicular descent is a sign of, and a prerequisite for, normal testicular function in adult life. The process of testis descent is dependent on gubernacular growth and reorganization, which is regulated by the Leydig cell hormones insulin-like peptide 3 (INSL3) and testosterone. Investigation of the role of INSL3 and its receptor, relaxin-family peptide receptor 2 (RXFP2), has contributed substantially to our understanding of the hormonal control of testicular descent. Cryptorchidism is a common congenital malformation, which is seen in 2-9% of newborn boys, and confers an increased risk of infertility and testicular cancer in adulthood. Although some cases of isolated cryptorchidism in humans can be ascribed to known genetic defects, such as mutations in INSL3 or RXFP2, the cause of cryptorchidism remains unknown in most patients. Several animal and human studies are currently underway to test the hypothesis that in utero factors, including environmental and maternal lifestyle factors, may be involved in the etiology of cryptorchidism. Overall, the etiology of isolated cryptorchidism seems to be complex and multifactorial, involving both genetic and nongenetic components.
Collapse
|