1
|
Chin PY, Moldenhauer LM, Lubell WD, Olson DM, Chemtob S, Keelan JA, Robertson SA. Inhibition of interleukin-1 signaling protects against Group B streptococcus-induced preterm birth and fetal loss in mice. J Reprod Immunol 2025; 169:104520. [PMID: 40139077 DOI: 10.1016/j.jri.2025.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/20/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Group B streptococcus is a common microbial agent associated with spontaneous preterm birth and fetal inflammatory response syndrome. In this study, we evaluated the utility of rytvela, a novel peptide antagonist of the interleukin-1 receptor, to suppress inflammatory activation, prolong gestation and improve neonatal outcomes induced in mice by Group B streptococcus. Pregnant mice were administered rytvela or PBS on gestation day 16.5, immediately prior and following surgical administration of heat-killed Group B streptococcus (hkGBS) or PBS into the uterine cavity. Treatment with rytvela prevented preterm delivery and alleviated fetal demise in utero and in the perinatal phase elicited by hkGBS. Compared to pups exposed to hkGBS alone, pups of dams co-administered rytvela exhibited substantially improved survival and growth through to weaning. Analysis by qPCR showed expression of inflammatory cytokine genes Il1b, Il6, Tnf, and Ifng in uterine tissues, and Il1b, Il6, and Tnf in fetal membranes, were stimulated by hkGBS and this increase was suppressed by co-administration of rytvela. Premature induction of uterine activation gene Ptgs2 in the myometrium was also attenuated by rytvela treatment. These data show that activation of IL1-mediated signaling in response to Group B streptococcus triggers an inflammatory cascade that causes preterm parturition and fetal inflammatory injury, and that rytvela can suppress inflammatory mediators to substantially improve pregnancy and fetal outcomes. Our findings add to accumulating evidence supporting clinical investigation of rytvela for fetal protection and delaying preterm birth.
Collapse
Affiliation(s)
- Peck Y Chin
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lachlan M Moldenhauer
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montreal, Quebec H3T1J4, Canada
| | - David M Olson
- Departments of Obstetrics & Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, Alberta T6G2S2, Canada
| | - Sylvain Chemtob
- Department of Pharmacology, Université de Montréal, Montreal, Quebec H3T1J4, Canada
| | - Jeffrey A Keelan
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6008, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Romero R, Meyyazhagan A, Hassan SS, Creasy GW, Conde-Agudelo A. Vaginal Progesterone to Prevent Spontaneous Preterm Birth in Women With a Sonographic Short Cervix: The Story of the PREGNANT Trial. Clin Obstet Gynecol 2024; 67:433-457. [PMID: 38576410 PMCID: PMC11047312 DOI: 10.1097/grf.0000000000000867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The PREGNANT trial was a randomized, placebo-controlled, multicenter trial designed to determine the efficacy and safety of vaginal progesterone (VP) to reduce the risk of birth < 33 weeks and of neonatal complications in women with a sonographic short cervix (10 to 20 mm) in the mid-trimester (19 to 23 6/7 wk). Patients allocated to receive VP had a 45% lower rate of preterm birth (8.9% vs 16.1%; relative risk = 0.55; 95% CI: 0.33-0.92). Neonates born to mothers allocated to VP had a 60% reduction in the rate of respiratory distress syndrome. This article reviews the background, design, execution, interpretation, and impact of the PREGNANT Trial.
Collapse
Affiliation(s)
- Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
- Centre of Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Sonia S. Hassan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
- Office of Women’s Health, Integrative Biosciences Center, Wayne State University, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - George W. Creasy
- Center for Biomedical Research, Population Council, New York, New York
| | - Agustin Conde-Agudelo
- Oxford Maternal and Perinatal Health Institute, Green Templeton College, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Lopez TE, Zhang H, Bouysse E, Neiers F, Ye XY, Garrido C, Wendremaire M, Lirussi F. A pivotal role for the IL-1β and the inflammasome in preterm labor. Sci Rep 2024; 14:4234. [PMID: 38378749 PMCID: PMC10879161 DOI: 10.1038/s41598-024-54507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
During labor, monocytes infiltrate massively the myometrium and differentiate into macrophages secreting high levels of reactive oxygen species and of pro-inflammatory cytokines (i.e. IL-1β), leading to myometrial contraction. Although IL-1β is clearly implicated in labor, its function and that of the inflammasome complex that cleaves the cytokine in its active form, has never been studied on steps preceding contraction. In this work, we used our model of lipopolysaccharide-induced preterm labor to highlight their role. We demonstrated that IL-1β was secreted by the human myometrium during labor or in presence of infection and was essential for myometrial efficient contractions as its blockage with an IL-1 receptor antagonist (Anakinra) or a neutralizing antibody completely inhibited the induced contractions. We evaluated the implication of the inflammasome on myometrial contractions and differentiation stages of labor onset. We showed that the effects of macrophage-released IL-1β in myometrial cell transactivation were blocked by inhibition of the inflammasome, suggesting that the inflammasome by producing IL-1β was essential in macrophage/myocyte crosstalk during labor. These findings provide novel innovative approaches in the management of preterm labor, specifically the use of an inflammasome inhibitor to block the precursor stages of labor before the acquisition of the contractile phenotype.
Collapse
Affiliation(s)
- T E Lopez
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France
- Faculty of Medicine and Pharmacy, University of Burgundy, 21000, Dijon, France
| | - H Zhang
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - E Bouysse
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France
- Faculty of Medicine and Pharmacy, University of Burgundy, 21000, Dijon, France
| | - F Neiers
- Faculty of Medicine and Pharmacy, University of Burgundy, 21000, Dijon, France
| | - X Y Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - C Garrido
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France
- Faculty of Medicine and Pharmacy, University of Burgundy, 21000, Dijon, France
- Cancer Center George-François Leclerc, 21000, Dijon, France
| | - M Wendremaire
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France
- Faculty of Medicine and Pharmacy, University of Burgundy, 21000, Dijon, France
| | - Frédéric Lirussi
- INSERM U1231, Labex LIPSTIC and Label of Excellence from la Ligue Nationale Contre le Cancer, 21000, Dijon, France.
- Laboratory of Pharmacology-Toxicology, Platform PACE, University Hospital Besançon, 25000, Besançon, France.
- Faculty of Medicine and Pharmacy, University of Franche-Comté, 25000, Besançon, France.
| |
Collapse
|
4
|
The Expression of IL-1β Correlates with the Expression of Galectin-3 in the Tissue at the Maternal-Fetal Interface during the Term and Preterm Labor. J Clin Med 2022; 11:jcm11216521. [PMID: 36362749 PMCID: PMC9656499 DOI: 10.3390/jcm11216521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The inflammatory processes that occur at the maternal−fetal interface are considered one of the factors that are responsible for preterm birth. The pro-inflammatory roles of the Gal-3-induced activation of NLRP3 inflammasome and the consecutive production of IL-1β have been described in several acute and chronic inflammatory diseases, but the role of this inflammatory axis in parturition has not been studied. The aim of this study was to analyze the protein expression of Gal-3, NLRP3, and IL-1β in the decidua, villi, and fetal membranes, and to analyze their mutual correlation and correlation with the clinical parameters of inflammation in preterm birth (PTB) and term birth (TB). The study included 40 women that underwent a preterm birth (gestational age of 25.0−36.6) and histological chorioamnionitis (PTB) and control subjects, 22 women that underwent a term birth (gestational age of 37.0−41.6) without histological chorioamnionitis (TB). An analysis of the tissue sections that were stained with anti- Gal-3, -NLRP3, and -IL-1β antibodies was assessed by three independent investigators. The expression levels of Gal-3 and IL-1β were significantly higher (p < 0.001) in the decidua, villi, and fetal membranes in the PTB group when they compared to those of the TB group, while there was no difference in the expression of NLRP3. A further analysis revealed that there was no correlation between the protein expression of NLRP3 and the expression of Gal-3 and IL-1β, but there was a correlation between the expression of Gal-3 and IL-1β in decidua (R = 0.401; p = 0.008), villi (R = 0.301; p = 0.042) and the fetal membranes (R = 0.428; p = 0.002) in both of the groups, PTB and TB. In addition, the expression of Gal-3 and IL-1β in decidua and the fetal membranes was in correlation with the parameters of inflammation in the maternal and fetal blood (C-reactive protein, leukocyte number, and fibrinogen). The strong correlation between the expression of Gal-3 and IL-1β in the placental and fetal tissues during labor indicates that Gal-3 may participate in the regulation of the inflammatory processes in the placenta, leading to increased production of IL-1β, a cytokine that plays the main role in both term and preterm birth.
Collapse
|
5
|
Miller AS, Hidalgo TN, Abrahams VM. Human fetal membrane IL-1β production in response to bacterial components is mediated by uric-acid induced NLRP3 inflammasome activation. J Reprod Immunol 2022; 149:103457. [PMID: 34875574 PMCID: PMC8792319 DOI: 10.1016/j.jri.2021.103457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Inflammatory interleukin-1β (IL-1β) is an important mediator of preterm birth. IL-1β secretion is mediated by the inflammasome that processes pro-IL-1β into its active form. However the mechanisms involved at the level of the fetal membrane (FM) are not fully understood. This study sought to determine the FM compartment involved in IL-1β production in response to bacterial components and to evaluate the mechanism of inflammasome activation. Since IL-18 is also mediated by the inflammasome and IL-8 is a chemoattractant that contributes to neutrophil recruitment in chorioamnionitis, we also evaluated the production of these factors. A human explant system was used to evaluate the response of the chorion, amnion, and intact FMs to the bacterial components lipopolysaccharide (LPS), peptidoglycan (PGN), or muramyl dipeptide (MDP). The chorion was the major source of IL-1β and IL-8 production in response to LPS, PGN, and MDP. LPS, PGN, and MDP induced FM IL-1β and IL-18 secretion in a non-pyroptotic manner through activation of the NLRP3 inflammasome with contributions from ATP release through Pannexin-1, and ROS signaling. Since LPS, PGN, and MDP are not known to activate NLRP3 directly, the role of uric acid as a potential mediator was assessed. FMs produced elevated uric acid in response to LPS, PGN and MDP. FM IL-1β secretion was inhibited by allopurinol, which blocks uric acid production, for LPS and PGN, and to a lesser degree, MDP. These findings shed light on the mechanisms by which fetal membrane inflammation and subsequent preterm birth may arise.
Collapse
Affiliation(s)
- Alex S. Miller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Tiffany N. Hidalgo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Vikki M. Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT,Corresponding Author: Vikki M. Abrahams PhD. Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, LSOG 305C, New Haven, CT 06510, USA. ; Phone: 203-785-2175
| |
Collapse
|
6
|
Leimert KB, Xu W, Princ MM, Chemtob S, Olson DM. Inflammatory Amplification: A Central Tenet of Uterine Transition for Labor. Front Cell Infect Microbiol 2021; 11:660983. [PMID: 34490133 PMCID: PMC8417473 DOI: 10.3389/fcimb.2021.660983] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022] Open
Abstract
In preparation for delivery, the uterus transitions from actively maintaining quiescence during pregnancy to an active parturient state. This transition occurs as a result of the accumulation of pro-inflammatory signals which are amplified by positive feedback interactions involving paracrine and autocrine signaling at the level of each intrauterine cell and tissue. The amplification events occur in parallel until they reach a certain threshold, ‘tipping the scale’ and contributing to processes of uterine activation and functional progesterone withdrawal. The described signaling interactions all occur upstream from the presentation of clinical labor symptoms. In this review, we will: 1) describe the different physiological processes involved in uterine transition for each intrauterine tissue; 2) compare and contrast the current models of labor initiation; 3) introduce innovative models for measuring paracrine inflammatory interactions; and 4) discuss the therapeutic value in identifying and targeting key players in this crucial event for preterm birth.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Wendy Xu
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Magdalena M Princ
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Prairie E, Côté F, Tsakpinoglou M, Mina M, Quiniou C, Leimert K, Olson D, Chemtob S. The determinant role of IL-6 in the establishment of inflammation leading to spontaneous preterm birth. Cytokine Growth Factor Rev 2021; 59:118-130. [PMID: 33551331 DOI: 10.1016/j.cytogfr.2020.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022]
Abstract
Preterm birth (PTB) and its consequences are a major public health concern as preterm delivery is the main cause of mortality and morbidity at birth. There are many causes of PTB, but inflammation is undeniably associated with the process of premature childbirth and fetal injury. At present, treatments clinically available mostly involve attempt to arrest contractions (tocolytics) but do not directly address upstream maternal inflammation on development of the fetus. One of the possible solutions may lie in the modulation of inflammatory mediators. Of the many pro-inflammatory cytokines involved in the induction of PTB, IL-6 stands out for its pleiotropic effects and its involvement in both acute and chronic inflammation. Here, we provide a detailed review of the effects of IL-6 on the timing of childbirth, its occurrence during PTB and its indissociable roles with associated fetal tissue damage.
Collapse
Affiliation(s)
- Elizabeth Prairie
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - France Côté
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Marika Tsakpinoglou
- Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Michael Mina
- Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada.
| | - Kelycia Leimert
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - David Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada.
| |
Collapse
|
8
|
Leimert KB, Verstraeten BSE, Messer A, Nemati R, Blackadar K, Fang X, Robertson SA, Chemtob S, Olson DM. Cooperative effects of sequential PGF2α and IL-1β on IL-6 and COX-2 expression in human myometrial cells†. Biol Reprod 2020; 100:1370-1385. [PMID: 30794283 DOI: 10.1093/biolre/ioz029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/17/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
The change from the state of pregnancy to the state of parturition, which we call uterine transitioning, requires the actions of inflammatory mediators and results in an activated uterus capable of performing the physiology of labor. Interleukin (IL)-1β and prostaglandin (PG)F2α are two key mediators implicated in preparing the uterus for labor by regulating the expression of uterine activation proteins (UAPs) and proinflammatory cytokines and chemokines. To investigate this process, primary human myometrial smooth muscle cells (HMSMC) isolated from the lower segment of women undergoing elective cesarean sections at term (not in labor) were used to test the inflammatory cytokine and UAP outputs induced by PGF2α and IL-1β alone or in sequential combinations. PGF2α and IL-1β regulate mRNA abundance of the PGF2α receptor FP, the IL-1 receptor system, interleukin 6, and other UAPs (OXTR, COX2), driving positive feedback interactions to further amplify their own proinflammatory effects. Sequential stimulation of HMSMC by PGF2α and IL-1β in either order results in amplified upregulation of IL-6 and COX-2 mRNA and protein, compared to their effects individually. These profound increases were unique to myometrium and not observed with stimulation of human fetal membrane explants. These results suggest that PGF2α and IL-1β act cooperatively upstream in the birth cascade to maximize amplification of IL-6 and COX-2, to build inflammatory load and thereby promote uterine transition. Targeting PGF2α or IL-1β, their actions, or intermediates (e.g. IL-6) would be an effective therapeutic intervention for preterm birth prevention or delay.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Angela Messer
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Rojin Nemati
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Kayla Blackadar
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Fang
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah A Robertson
- Department of Obstetrics and Gynecology, University of Adelaide, Adelaide, South Australia, Australia
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
| | - David M Olson
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Leimert KB, Messer A, Gray T, Fang X, Chemtob S, Olson DM. Maternal and fetal intrauterine tissue crosstalk promotes proinflammatory amplification and uterine transition†. Biol Reprod 2020; 100:783-797. [PMID: 30379983 DOI: 10.1093/biolre/ioy232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/06/2018] [Accepted: 10/29/2018] [Indexed: 12/24/2022] Open
Abstract
Birth is a complex biological event requiring genetic, cellular, and physiological changes to the uterus, resulting in a uterus activated for completing the physiological processes of labor. We define the change from the state of pregnancy to the state of parturition as uterine transitioning, which requires the actions of inflammatory mediators and localized paracrine interactions between intrauterine tissues. Few studies have examined the in vitro interactions between fetal and maternal gestational tissues within this proinflammatory environment. Thus, we designed a co-culture model to address this gap, incorporating primary term human myometrium smooth muscle cells (HMSMCs) with human fetal membrane (hFM) explants to study interactions between the tissues. We hypothesized that crosstalk between tissues at term promotes proinflammatory expression and uterine transitioning for parturition. Outputs of 40 cytokines and chemokines encompassing a variety of proinflammatory roles were measured; all but one increased significantly with co-culture. Eighteen of the 39 cytokines increased to a higher abundance than the sum of the effect of each tissue cultured separately. In addition, COX2 and IL6 but not FP and OXTR mRNA abundance significantly increased in both HMSMCs and hFM in response to co-culture. These data suggest that synergistic proinflammatory upregulation within intrauterine tissues is involved with uterine transitioning.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Angela Messer
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Theora Gray
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Fang
- Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - David M Olson
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Departments of Obstetrics & Gynecology, and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Chen Z, Liu Q, Zhu Z, Xiang F, Wu R, Kang X. Toll-like receptor 4 contributes to uterine activation by upregulating pro-inflammatory cytokine and CAP expression via the NF-κB/P38MAPK signaling pathway during pregnancy. J Cell Physiol 2019; 235:513-525. [PMID: 31236964 DOI: 10.1002/jcp.28991] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/29/2019] [Indexed: 11/06/2022]
Abstract
Evidence indicates that inflammatory response is significant during the physiological process of human parturition; however, the specific signaling pathway that triggers inflammation is undefined. Toll-like receptors (TLRs) are key upstream gatekeepers that control inflammatory activation before preterm delivery. Our previous study showed that TLR4 expression was significantly increased in human pregnancy tissue during preterm and term labor. Therefore, we explore whether TLR4 plays a role in term labor by initiating inflammatory responses, therefore promoting uterine activation. The results showed that expression of TLR4, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α), CC chemokine ligand 2 (CCL-2), and uterine contraction-associated proteins (CAPs) was upregulated in the human and mice term labor (TL) group compared with the not-in-labor (TNL) group, and the TLR4 level positively correlated with CAP expression. In pregnant TLR4-knockout (TLR4-/- ) mice, gestation length was extended by 8 hr compared with the wild-type group, and the expression of IL-1β, IL-6, TNF-α, CCL-2, and CAPs was decreased in TLR4-/- mice. Furthermore, nuclear factor-κB (NF-κB) and P38MAPK activation is involved in the initiation of labor but was inhibited in TLR4-/- mice. In uterine smooth muscle cells, the expression of inflammatory cytokines and CAPs decreased when the NF-κB and P38MAPK pathway was inhibited. Our data suggest that TLR4 is a key factor in regulating the inflammatory response that drives uterine activation and delivery initiation via activating the NF-κB/P38MAPK pathway.
Collapse
Affiliation(s)
- Zixi Chen
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaoli Liu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaowei Zhu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangdong Kang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Romero R, Conde-Agudelo A, Da Fonseca E, O'Brien JM, Cetingoz E, Creasy GW, Hassan SS, Nicolaides KH. Vaginal progesterone for preventing preterm birth and adverse perinatal outcomes in singleton gestations with a short cervix: a meta-analysis of individual patient data. Am J Obstet Gynecol 2018; 218:161-180. [PMID: 29157866 PMCID: PMC5987201 DOI: 10.1016/j.ajog.2017.11.576] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The efficacy of vaginal progesterone for preventing preterm birth and adverse perinatal outcomes in singleton gestations with a short cervix has been questioned after publication of the OPPTIMUM study. OBJECTIVE To determine whether vaginal progesterone prevents preterm birth and improves perinatal outcomes in asymptomatic women with a singleton gestation and a midtrimester sonographic short cervix. STUDY DESIGN We searched MEDLINE, EMBASE, LILACS, and CINAHL (from their inception to September 2017); Cochrane databases; bibliographies; and conference proceedings for randomized controlled trials comparing vaginal progesterone vs placebo/no treatment in women with a singleton gestation and a midtrimester sonographic cervical length ≤25 mm. This was a systematic review and meta-analysis of individual patient data. The primary outcome was preterm birth <33 weeks of gestation. Secondary outcomes included adverse perinatal outcomes and neurodevelopmental and health outcomes at 2 years of age. Individual patient data were analyzed using a 2-stage approach. Pooled relative risks with 95% confidence intervals were calculated. Quality of evidence was assessed using the GRADE methodology. RESULTS Data were available from 974 women (498 allocated to vaginal progesterone, 476 allocated to placebo) with a cervical length ≤25 mm participating in 5 high-quality trials. Vaginal progesterone was associated with a significant reduction in the risk of preterm birth <33 weeks of gestation (relative risk, 0.62; 95% confidence interval, 0.47-0.81; P = .0006; high-quality evidence). Moreover, vaginal progesterone significantly decreased the risk of preterm birth <36, <35, <34, <32, <30, and <28 weeks of gestation; spontaneous preterm birth <33 and <34 weeks of gestation; respiratory distress syndrome; composite neonatal morbidity and mortality; birthweight <1500 and <2500 g; and admission to the neonatal intensive care unit (relative risks from 0.47-0.82; high-quality evidence for all). There were 7 (1.4%) neonatal deaths in the vaginal progesterone group and 15 (3.2%) in the placebo group (relative risk, 0.44; 95% confidence interval, 0.18-1.07; P = .07; low-quality evidence). Maternal adverse events, congenital anomalies, and adverse neurodevelopmental and health outcomes at 2 years of age did not differ between groups. CONCLUSION Vaginal progesterone decreases the risk of preterm birth and improves perinatal outcomes in singleton gestations with a midtrimester sonographic short cervix, without any demonstrable deleterious effects on childhood neurodevelopment.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI.
| | - Agustin Conde-Agudelo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Eduardo Da Fonseca
- Departamento de Obstetrícia e Ginecologia, Hospital do Servidor Publico Estadual "Francisco Morato de Oliveira" and School of Medicine, University of São Paulo, São Paulo, Brazil
| | - John M O'Brien
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY
| | - Elcin Cetingoz
- Department of Obstetrics and Gynecology, Turkish Red Crescent Altintepe Medical Center, Maltepe, Istanbul, Turkey
| | - George W Creasy
- Center for Biomedical Research, Population Council, New York, NY
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Kypros H Nicolaides
- Harris Birthright Research Center for Fetal Medicine, King's College Hospital, London, United Kingdom
| |
Collapse
|
12
|
Reciprocal regulation of β 2-adrenoceptor-activated cAMP response-element binding protein signalling by arrestin2 and arrestin3. Cell Signal 2017; 38:182-191. [PMID: 28733084 DOI: 10.1016/j.cellsig.2017.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
Abstract
Activation of Gs coupled receptors (e.g. β2-adrenoreceptor (β2AR)) expressed within the uterine muscle layer (myometrium), promotes intracellular cAMP generation, inducing muscle relaxation through short-term inhibition of contractile proteins, and longer-term modulation of cellular phenotype to promote quiescence. In the myometrium cAMP-driven modulation of cell phenotype is facilitated by CREB activity, however despite the importance of CREB signalling in the promotion of myometrial quiescence during pregnancy, little is currently known regarding the molecular mechanisms involved. Thus, we have characterised β-adrenoceptor-stimulated CREB signalling in the immortalised ULTR human myometrial cell line. The non-selective β-adrenoceptor agonist isoprenaline induced time- and concentration-dependent CREB phosphorylation, which was abolished by the β2AR selective antagonist ICI118,551. β2AR-stimulated CREB phosphorylation was mediated through a short-term PKA-dependent phase, and longer-term Src/p38 MAPK-dependent/PKA-independent phase. Since in model cells, arrestin2 can facilitate β2AR-mediated Src/p38 recruitment, we examined whether CREB signalling was activated through a similar process in myometrial cells. Depletion of arrestin2 attenuated p38 phosphorylation, whilst arrestin3 depletion enhanced and prolonged isoprenaline-stimulated p38 signals, which was reversed following inhibition of Src. Knockdown of arrestin2 led to enhanced short-term (up to 10min), and attenuated longer-term (>10min) isoprenaline-stimulated CREB phosphorylation. Contrastingly, removal of arrestin3 enhanced and prolonged isoprenaline-stimulated CREB phosphorylation, whilst depletion of both arrestins abolished CREB signals at time points >5min. In summary, we have delineated the molecular mechanisms coupling β2AR activity to CREB signalling in ULTR myometrial cells, revealing a biphasic activation process encompassing short-term PKA-dependent, and prolonged Src/arrestin2/p38-dependent components. Indeed, our data highlight a novel arrestin-mediated modulation of CREB signalling, suggesting a reciprocal relationship between arrestin2 and arrestin3, wherein recruitment of arrestin3 restricts the ability of β2AR to activate prolonged CREB phosphorylation by precluding recruitment of an arrestin2/Src/p38 complex.
Collapse
|
13
|
Chin PY, Dorian CL, Hutchinson MR, Olson DM, Rice KC, Moldenhauer LM, Robertson SA. Novel Toll-like receptor-4 antagonist (+)-naloxone protects mice from inflammation-induced preterm birth. Sci Rep 2016; 6:36112. [PMID: 27819333 PMCID: PMC5098167 DOI: 10.1038/srep36112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/11/2016] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptor 4 (TLR4) activation by bacterial infection, or by sterile inflammatory insult is a primary trigger of spontaneous preterm birth. Here we utilize mouse models to investigate the efficacy of a novel small molecule TLR4 antagonist, (+)-naloxone, the non-opioid isomer of the opioid receptor antagonist (−)-naloxone, in infection-associated preterm birth. Treatment with (+)-naloxone prevented preterm delivery and alleviated fetal demise in utero elicited by i.p. LPS administration in late gestation. A similar effect with protection from preterm birth and perinatal death, and partial correction of reduced birth weight and postnatal mortality, was conferred by (+)-naloxone administration after intrauterine administration of heat-killed E. coli. Local induction by E. coli of inflammatory cytokine genes Il1b, Il6, Tnf and Il10 in fetal membranes was suppressed by (+)-naloxone, and cytokine expression in the placenta, and uterine myometrium and decidua, was also attenuated. These data demonstrate that inhibition of TLR4 signaling with the novel TLR4 antagonist (+)-naloxone can suppress the inflammatory cascade of preterm parturition, to prevent preterm birth and perinatal death. Further studies are warranted to investigate the utility of small molecule inhibition of TLR-driven inflammation as a component of strategies for fetal protection and delaying preterm birth in the clinical setting.
Collapse
Affiliation(s)
- Peck Yin Chin
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Camilla L Dorian
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Mark R Hutchinson
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA, 5005, Australia
| | - David M Olson
- Departments of Obstetrics &Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, Alberta T6G2S2, Canada
| | - Kenner C Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA
| | - Lachlan M Moldenhauer
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sarah A Robertson
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
14
|
Inhibition of the FACT Complex Reduces Transcription from the Human Cytomegalovirus Major Immediate Early Promoter in Models of Lytic and Latent Replication. J Virol 2016; 90:4249-4253. [PMID: 26865717 DOI: 10.1128/jvi.02501-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/02/2016] [Indexed: 12/24/2022] Open
Abstract
The successful colonization of the majority of the population by human cytomegalovirus is a direct result of the virus's ability to establish and, more specifically, reactivate from latency. The underlying cellular factors involved in viral reactivation remain unknown. Here, we show that the host complexfacilitateschromatintranscription (FACT) binds to the major immediate early promoter (MIEP) and that inhibition of this complex reduces MIEP transactivation, thus inhibiting viral reactivation.
Collapse
|
15
|
Sotiriadis G, Dodagatta-Marri E, Kouser L, Alhamlan FS, Kishore U, Karteris E. Surfactant Proteins SP-A and SP-D Modulate Uterine Contractile Events in ULTR Myometrial Cell Line. PLoS One 2015; 10:e0143379. [PMID: 26641881 PMCID: PMC4671565 DOI: 10.1371/journal.pone.0143379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/04/2015] [Indexed: 01/27/2023] Open
Abstract
Pulmonary surfactant proteins SP-A and SP-D are pattern recognition innate immune molecules. However, there is extrapulmonary existence, especially in the amniotic fluid and at the feto-maternal interface. There is sufficient evidence to suggest that SP-A and SP-D are involved in the initiation of labour. This is of great importance given that preterm birth is associated with increased mortality and morbidity. In this study, we investigated the effects of recombinant forms of SP-A and SP-D (rhSP-A and rhSP-D, the comprising of trimeric lectin domain) on contractile events in vitro, using a human myometrial cell line (ULTR) as an experimental model. Treatment with rhSP-A or rhSP-D increased the cell velocity, distance travelled and displacement by ULTR cells. rhSP-A and rhSP-D also affected the contractile response of ULTRs when grown on collagen matrices showing reduced surface area. We investigated this effect further by measuring contractility-associated protein (CAP) genes. Treatment with rhSP-A and rhSP-D induced expression of oxytocin receptor (OXTR) and connexin 43 (CX43). In addition, rhSP-A and rhSP-D were able to induce secretion of GROα and IL-8. rhSP-D also induced the expression of IL-6 and IL-6 Ra. We provide evidence that SP-A and SP-D play a key role in modulating events prior to labour by reconditioning the human myometrium and in inducing CAP genes and pro-inflammatory cytokines thus shifting the uterus from a quiescent state to a contractile one.
Collapse
Affiliation(s)
- Georgios Sotiriadis
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Eswari Dodagatta-Marri
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Lubna Kouser
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Uday Kishore
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| | - Emmanouil Karteris
- Centre for Infection, Immunity and Disease Mechanisms, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
- Institute of Environment, Heath and Societies, Brunel University London, Uxbridge, UB8 3PH, United Kingdom
| |
Collapse
|
16
|
Nadeau-Vallée M, Obari D, Quiniou C, Lubell WD, Olson DM, Girard S, Chemtob S. A critical role of interleukin-1 in preterm labor. Cytokine Growth Factor Rev 2015; 28:37-51. [PMID: 26684042 DOI: 10.1016/j.cytogfr.2015.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/24/2015] [Accepted: 11/03/2015] [Indexed: 12/16/2022]
Abstract
Preterm birth (PTB) is a leading cause of neonatal mortality and morbidity worldwide, and represents a heavy economic and social burden. Despite its broad etiology, PTB has been firmly linked to inflammatory processes. Pro-inflammatory cytokines are produced in gestational tissues in response to stressors and can prematurely induce uterine activation, which precedes the onset of preterm labor. Of all cytokines implicated, interleukin (IL)-1 has been largely studied, revealing a central role in preterm labor. However, currently approved IL-1-targeting therapies have failed to show expected efficacy in pre-clinical studies of preterm labor. Herein, we (a) summarize animal and human studies in which IL-1 or IL-1-targeting therapeutics are implicated with preterm labor, (b) focus on novel IL-1-targeting therapies and diagnostic tests, and (c) develop the case for commercialization and translation means to hasten their development.
Collapse
Affiliation(s)
- Mathieu Nadeau-Vallée
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montréal H3C 3J7, Canada
| | - Dima Obari
- Department of Pharmacology, Université de Montréal, Montréal H3C 3J7, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada
| | - William D Lubell
- Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - David M Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton AB TG6 2S2, Canada
| | - Sylvie Girard
- Departments of Obstetrics and Gynecology, CHU Sainte-Justine Research Centre, Montréal H3T 1C5, Canada.
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montréal H3T 1C5, Canada.
| |
Collapse
|
17
|
Wahid HH, Dorian CL, Chin PY, Hutchinson MR, Rice KC, Olson DM, Moldenhauer LM, Robertson SA. Toll-Like Receptor 4 Is an Essential Upstream Regulator of On-Time Parturition and Perinatal Viability in Mice. Endocrinology 2015; 156:3828-41. [PMID: 26151355 PMCID: PMC4588813 DOI: 10.1210/en.2015-1089] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An inflammatory response is instrumental in the physiological process of parturition but the upstream signals initiating inflammation are undefined. Because endogenous ligands for Toll-like receptor 4 (TLR4) are released in late gestation, we hypothesized that on-time labor requires TLR4 signaling, to trigger a cytokine and leukocyte response and accelerate the parturition cascade. In pregnant TLR4-deficient (Tlr4-/-) mice, average gestation length was extended by 13 hours and increased perinatal mortality was seen compared with wild-type controls. Quantification of cytokine and uterine activation gene expression showed that late gestation induction of Il1b, Il6, Il12b, and Tnf expression seen in control placenta and fetal membranes was disrupted in Tlr4-/- mice, and accompanied by a transient delay in expression of uterine activation genes, including prostaglandin F receptor, oxytocin receptor, and connexin-43. Leukocyte populations were altered before birth in TLR4-deficient females, with fewer neutrophils and macrophages in the placenta, and fewer dendritic cells and more regulatory T cells in the myometrium. Administration of TLR4 ligand lipopolysaccharide to pregnant wild-type mice induced cytokine expression and fetal loss, whereas Tlr4-/- pregnancies were protected. The small molecule TLR4 antagonist (+)-naloxone increased mean duration of gestation by 16 hours in wild-type mice. Collectively, these data demonstrate that TLR4 is a key upstream regulator of the inflammatory response acting to drive uterine activation and control the timing of labor. Because causal pathways for term and preterm labor converge with TLR4, interventions to manipulate TLR4 signaling may have therapeutic utility for women at risk of preterm labor, or in postterm pregnancy.
Collapse
Affiliation(s)
- Hanan H Wahid
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Camilla L Dorian
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Peck Yin Chin
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Mark R Hutchinson
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Kenner C Rice
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - David M Olson
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Lachlan M Moldenhauer
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| | - Sarah A Robertson
- Robinson Research Institute and School of Medicine (H.H.W., C.D., P.Y.C., M.R.H., L.M.M., S.A.R.), University of Adelaide, Adelaide SA 5005, Australia; Chemical Biology Research Branch (K.C.R.), National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland 20892; and Departments of Obstetrics and Gynecology, Pediatrics and Physiology (D.M.O.), University of Alberta, Edmonton, Canada AB TG62S2
| |
Collapse
|
18
|
Nadeau-Vallée M, Quiniou C, Palacios J, Hou X, Erfani A, Madaan A, Sanchez M, Leimert K, Boudreault A, Duhamel F, Rivera JC, Zhu T, Noueihed B, Robertson SA, Ni X, Olson DM, Lubell W, Girard S, Chemtob S. Novel Noncompetitive IL-1 Receptor-Biased Ligand Prevents Infection- and Inflammation-Induced Preterm Birth. THE JOURNAL OF IMMUNOLOGY 2015; 195:3402-15. [PMID: 26304990 DOI: 10.4049/jimmunol.1500758] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022]
Abstract
Preterm birth (PTB) is firmly linked to inflammation regardless of the presence of infection. Proinflammatory cytokines, including IL-1β, are produced in gestational tissues and can locally upregulate uterine activation proteins. Premature activation of the uterus by inflammation may lead to PTB, and IL-1 has been identified as a key inducer of this condition. However, all currently available IL-1 inhibitors are large molecules that exhibit competitive antagonism properties by inhibiting all IL-1R signaling, including transcription factor NF-κB, which conveys important physiological roles. We hereby demonstrate the efficacy of a small noncompetitive (all-d peptide) IL-1R-biased ligand, termed rytvela (labeled 101.10) in delaying IL-1β-, TLR2-, and TLR4-induced PTB in mice. The 101.10 acts without significant inhibition of NF-κB, and instead selectively inhibits IL-1R downstream stress-associated protein kinases/transcription factor c-jun and Rho GTPase/Rho-associated coiled-coil-containing protein kinase signaling pathways. The 101.10 is effective at decreasing proinflammatory and/or prolabor genes in myometrium tissue and circulating leukocytes in all PTB models independently of NF-κB, undermining NF-κB role in preterm labor. In this work, biased signaling modulation of IL-1R by 101.10 uncovers a novel strategy to prevent PTB without inhibiting NF-κB.
Collapse
Affiliation(s)
- Mathieu Nadeau-Vallée
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Christiane Quiniou
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Julia Palacios
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Xin Hou
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Atefeh Erfani
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Ankush Madaan
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Mélanie Sanchez
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Kelycia Leimert
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta TG6 2S2, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta TG6 2S2, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta TG6 2S2, Canada
| | - Amarilys Boudreault
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - François Duhamel
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - José Carlos Rivera
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Maisonneuve-Rosemont Hospital, Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Tang Zhu
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Baraa Noueihed
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada
| | - Sarah A Robertson
- Department of Obstetrics and Gynecology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xin Ni
- Department of Obstetrics and Gynecology, Second Military Medical University, Shanghai 200433, China
| | - David M Olson
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta TG6 2S2, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta TG6 2S2, Canada; Department of Physiology, University of Alberta, Edmonton, Alberta TG6 2S2, Canada
| | - William Lubell
- Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvie Girard
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Obstetrics and Gynecology, CHU Sainte-Justine Research Centre, Montreal, Quebec H3T 1C5, Canada; and Department of Physiology, CHU Sainte-Justine Research Centre, Montreal, Quebec H3T 1C5, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Ophthalmology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Department of Pharmacology, CHU Sainte-Justine Research Center, Montreal, Quebec H3T 1C5, Canada; Maisonneuve-Rosemont Hospital, Research Center, Montreal, Quebec H1T 2M4, Canada;
| |
Collapse
|
19
|
Sykes L, MacIntyre DA, Teoh TG, Bennett PR. Anti-inflammatory prostaglandins for the prevention of preterm labour. Reproduction 2014; 148:R29-40. [PMID: 24890751 DOI: 10.1530/rep-13-0587] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Preterm birth occurs in 10-12% of pregnancies and is the primary cause of neonatal mortality and morbidity. Tocolytic therapies have long been the focus for the prevention of preterm labour, yet they do not significantly improve neonatal outcome. A direct causal link exists between infection-induced inflammation and preterm labour. As inflammation and infection are independent risk factors for poor neonatal outcome, recent research focus has been shifted towards exploring the potential for anti-inflammatory strategies. Nuclear factor kappa B (NFκB) is a transcription factor that controls the expression of many labour-associated genes including PTGS2 (COX2), prostaglandins (PGs) and the oxytocin receptor (OXTR) as well as key inflammatory genes. Targeting the inhibition of NFκB is therefore an attractive therapeutic approach for both the prevention of preterm labour and for reducing neonatal exposure to inflammation. While PGs are considered to be pro-labour and pro-inflammatory, the cyclopentenone PG 15-deoxy-Δ(12,14)PGJ2 (15d-PGJ2) exhibits anti-inflammatory properties via the inhibition of NFκB in human amniocytes, myocytes and peripheral blood mononuclear cells in vitro. 15d-PGJ2 also delays inflammation-induced preterm labour in the mouse and significantly increases pup survival. This review examines the current understanding of inflammation in the context of labour and discusses how anti-inflammatory PGs may hold promise for the prevention of preterm labour and improved neonatal outcome.
Collapse
Affiliation(s)
- Lynne Sykes
- Parturition Research GroupDepartment of Surgery and Cancer, Institute of Reproduction and Developmental Biology, Imperial College London, London W12 0NN, UKSt Mary's HospitalImperial College Healthcare NHS Trust, London W1 2NY, UK
| | - David A MacIntyre
- Parturition Research GroupDepartment of Surgery and Cancer, Institute of Reproduction and Developmental Biology, Imperial College London, London W12 0NN, UKSt Mary's HospitalImperial College Healthcare NHS Trust, London W1 2NY, UK
| | - Tiong Ghee Teoh
- Parturition Research GroupDepartment of Surgery and Cancer, Institute of Reproduction and Developmental Biology, Imperial College London, London W12 0NN, UKSt Mary's HospitalImperial College Healthcare NHS Trust, London W1 2NY, UK
| | - Phillip R Bennett
- Parturition Research GroupDepartment of Surgery and Cancer, Institute of Reproduction and Developmental Biology, Imperial College London, London W12 0NN, UKSt Mary's HospitalImperial College Healthcare NHS Trust, London W1 2NY, UK
| |
Collapse
|
20
|
Lannagan TRM, Wilson MR, Denison F, Norman JE, Catalano RD, Jabbour HN. Prokineticin 1 induces a pro-inflammatory response in murine fetal membranes but does not induce preterm delivery. Reproduction 2013; 146:581-91. [PMID: 24051059 PMCID: PMC3805954 DOI: 10.1530/rep-13-0295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mechanisms that regulate the induction of term or preterm delivery (PTD) are not fully understood. Infection is known to play a role in the induction of pro-inflammatory cascades in uteroplacental tissues associated with preterm pathological parturition. Similar but not identical cascades are evident in term labour. In the current study, we used a mouse model to evaluate the role of prokineticins in term and preterm parturition. Prokineticins are multi-functioning secreted proteins that signal through G-protein-coupled receptors to induce gene expression, including genes important in inflammatory responses. Expression of prokineticins (Prok1 and Prok2) was quantified in murine uteroplacental tissues by QPCR in the days preceding labour (days 16-19). Prok1 mRNA expression increased significantly on D18 in fetal membranes (compared with D16) but not in uterus or placenta. Intrauterine injection of PROK1 on D17 induced fetal membrane mRNA expression of the pro-inflammatory mediators Il6, Il1b, Tnf, Cxcl2 and Cxcl5, which are not normally up-regulated until D19 of pregnancy. However, intrauterine injection of PROK1 did not result in PTD. As expected, injection of lipopolysaccharide (LPS) induced PTD, but this was not associated with changes in expression of Prok1 or its receptor (Prokr1) in fetal membranes. These results suggest that although Prok1 exhibits dynamic mRNA regulation in fetal membranes preceding labour and induces a pro-inflammatory response when injected into the uterus on D17, it is insufficient to induce PTD. Additionally, prokineticin up-regulation appears not to be part of the LPS-induced inflammatory response in mouse fetal membranes.
Collapse
|
21
|
Xu C, Long A, Fang X, Wood SL, Slater DM, Ni X, Olson DM. Effects of PGF2α on the expression of uterine activation proteins in pregnant human myometrial cells from upper and lower segment. J Clin Endocrinol Metab 2013; 98:2975-83. [PMID: 23678036 DOI: 10.1210/jc.2012-2829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The lower and upper segments of the uterus may play different roles in the process of parturition. The switch from pregnancy to delivery involves changes in expression of uterine activation proteins (UAPs). Prostaglandin (PG) F2α has multiple and complex roles in the birth process in addition to its vital contractile role. OBJECTIVE The purpose of this study was to investigate whether PGF2α regulates the expression of UAPs in human myometrium and to compare PGF2α actions in lower and upper segments. DESIGN Cultured human myometrial cells from upper and lower segments were treated with PGF2α. Western blotting was used to determine the levels of connexin 43 (CX-43), prostaglandin endoperoxide synthase-2 (PTGS-2; cyclooxygenase-2), oxytocin receptor (OTR), and PGF2α receptor (PTGFR) in the cells. The small interfering RNA approach was used to knock down PTGFR. RESULTS PGF2α dose dependently increased CX-43 and PTGS-2 while decreasing PTGFR in upper and lower segments. PGF2α increased OTR in the lower segment while decreasing it in the upper segment. PGF2α lost its effects on PTGS-2 and OTR in PTGFR knockdown cells, but its effect on CX-43 remained. AL8810, a specific antagonist of PTGFR, reversed the actions of PGF2α on UAPs except for CX-43 in the lower segment. Indomethacin reversed the PGF2α-induced effects on CX-43 and PTGS-2, but it did not alter PGF2α-induced PTGFR and OTR expression. The stimulatory effects of PGF2α were enhanced in the presence of IL-1β, which reversed the inhibitory effect of PGF2α on PTGFR. CONCLUSION PGF2α regulates UAPs in both upper and lower segment cells through either direct or indirect pathways, indicating that PGF2α uniquely participates in uterine preparation for the onset of labor.
Collapse
Affiliation(s)
- Chen Xu
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, Shanghai, China 200433, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Matsunaga T, El-Kabbani O, Hara A. Aldo-Keto Reductases as New Therapeutic Targets for Colon Cancer Chemoresistance. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7070-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Dong K, Zhang MX, Liu Y, Su XL, Chen B, Zhang XL. Peroxisome proliferator-activated receptor alpha expression changes in human pregnant myometrium. Reprod Sci 2012; 20:654-60. [PMID: 23144166 DOI: 10.1177/1933719112461187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) has been demonstrated to exhibit anti-inflammatory activities that are hypothesized to play a key role in labor suppression and maintenance of uterine quiescence. The aim of this study was to identify pregnancy- and labor-associated changes in PPARα in human myometrium. For this investigation, human myometrium was obtained from premenopausal women, and the study participants were categorized into the following 4 groups: nonpregnant (NP; n = 10), preterm not in labor (PNL; n = 10, gestation range 20-35 weeks), term not in labor (TNL; n = 20, gestation range 37-41 weeks), and term in labor (TL; n = 20, gestation range 37-41 weeks). Immunohistochemistry was used to locate and confirm the expression of PPARα. Relative quantitative real-time polymerase chain reaction (PCR) and Western blotting were employed to study the expression of anti-inflammatory PPARα and proinflammatory interleukin 1β (IL-1β). Immunohistochemistry indicated that PPARα was located in the nucleus of uterine smooth muscle cells. Compared to other groups, in PNL group, the PPARα messenger RNA (mRNA) and protein increased significantly. Decreased PPARα mRNA and protein expressions in myometrium were associated with labor while IL-1β increased remarkably. There were negative correlations between PPARα and IL-1β on mRNA (r = -.765, P < .01) and protein (r = -.624, P < .01) levels analyzed using Pearson test. In conclusion, human pregnancy is associated with changes in expression of PPARα and IL-1β in myometrium. The changes observed suggest that PPARα may play a role in maintaining pregnancy or initiating labor through inhibiting the expression of IL-1β in human myometrium.
Collapse
Affiliation(s)
- Kun Dong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | |
Collapse
|
24
|
Alexander HA, Sooranna SR, Myatt L, Johnson MR. Myometrial tumor necrosis factor-α receptors increase with gestation and labor and modulate gene expression through mitogen-activated kinase and nuclear factor-κB. Reprod Sci 2012; 19:43-54. [PMID: 22228740 DOI: 10.1177/1933719111413297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previously, we found that myometrial tumor necrosis factor-α (TNF-α) messenger RNA (mRNA) expression did not increase with preterm or term labor. To further investigate the role of TNF-α in human labor, we studied TNF-α receptor (TNFR1A and B) expression, regulation, and associated intracellular signaling pathways in human myometrial samples obtained both before and after the onset of labor and in primary cultures of uterine smooth muscle cells (USMCs). We found that the mRNA expression of both receptors increased with advancing gestation and labor and protein levels of TNFR1B were significantly higher in term laboring myometrial samples than in nonlabor controls. Tumor necrosis factor- treatment of USMCs activated all mitogen-activated protein kinase (MAPK) subtypes and nuclear factor κ-B (NF-κB). The TNF-α induced increases in the expression of TNFR1B and prostaglandin H synthase type 2 were reduced by inhibitors of NF-κB and MAPKs, respectively. The TNF-α induced increase in interleukin 8 (IL-8) appeared to be independent of MAPK and NF-κB pathway. These data suggest that the uterus may become more sensitive to the action of TNF-α with advancing gestation and labor and that TNF-α acts via MAPK and NF-κB to promote labor-associated gene expression.
Collapse
Affiliation(s)
- Helen A Alexander
- Imperial College Parturition Research Group, Academic Department of Obstetrics & Gynaecology, Imperial College School of Medicine Chelsea and Westminster Hospital, London, UK
| | | | | | | |
Collapse
|
25
|
|
26
|
Gorowiec MR, Catalano RD, Norman JE, Denison FC, Jabbour HN. Prokineticin 1 induces inflammatory response in human myometrium: a potential role in initiating term and preterm parturition. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2709-19. [PMID: 21983634 PMCID: PMC3228917 DOI: 10.1016/j.ajpath.2011.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/21/2011] [Accepted: 08/18/2011] [Indexed: 01/14/2023]
Abstract
The infiltration of human myometrium and cervix with leukocytes and the formation of a pro-inflammatory environment within the uterus have been associated with the initiation of both term and preterm parturition. The mechanism regulating the onset of this pro-inflammatory cascade is not fully elucidated. We demonstrate that prokineticin 1 (PROK1) is up-regulated in human myometrium and placenta during labor. The expression of PROK1 receptor remains unchanged during labor and is abundantly expressed in the myometrium. Gene array analysis identified 65 genes up-regulated by PROK1 in human myometrium, mainly cytokines and chemokines, including IL-1β, chemokine C-C motif ligand 3, and colony-stimulating factor 3. In addition, we demonstrate that PROK1 increases the expression of chemokine C-C motif ligand 20, IL-6, IL-8, prostaglandin synthase 2, and prostaglandin E(2) and F(2α) secretion. The treatment of myometrial explants with 100 ng/mL of lipopolysaccharide up-regulates the expression of PROK1, PROK1 receptor, and inflammatory mediators. The infection of myometrial explants with lentiviral microRNA targeting PROK1, preceding treatment with lipopolysaccharide, reduces the expression of inflammatory genes. We propose that PROK1 is a novel inflammatory mediator that can contribute to the onset of human parturition at term and partially mediate premature onset of inflammatory pathways during bacterial infection.
Collapse
Affiliation(s)
- Marta R Gorowiec
- Medical Research Council Human Reproductive Sciences Unit, The Queen's Medical Research Institute, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Janowski BA, Corey DR. Minireview: Switching on progesterone receptor expression with duplex RNA. Mol Endocrinol 2010; 24:2243-52. [PMID: 20592161 PMCID: PMC2999478 DOI: 10.1210/me.2010-0067] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/26/2010] [Indexed: 01/24/2023] Open
Abstract
It has long been appreciated that gene expression is regulated by protein complexes at promoters. More recently, research has demonstrated that small duplex RNAs such as micro-RNAs and short interfering RNAs complementary to mRNA provide another layer of regulation. Evidence now supports the existence of regulatory pathways that use small duplex RNAs to control transcription. Synthetic RNAs complementary to gene promoters [antigene RNAs (agRNAs)] can either activate or inhibit gene expression. Activity of agRNAs is mediated by argonaute, a protein required for RNA interference. Unlike protein transcription factors, agRNAs do not bind to chromosomal DNA but recognize noncoding transcripts that overlap gene promoters or 3'-gene termini. This review describes recent studies with agRNAs and focuses on the robust and potent agRNA-mediated regulation of progesterone receptor. The ability of small RNAs to alter transcription provides a new layer of potential regulation for gene expression.
Collapse
Affiliation(s)
- Bethany A Janowski
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75205, USA.
| | | |
Collapse
|
28
|
Transcriptional regulation by small RNAs at sequences downstream from 3' gene termini. Nat Chem Biol 2010; 6:621-9. [PMID: 20581822 DOI: 10.1038/nchembio.400] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/25/2010] [Indexed: 01/06/2023]
Abstract
Transcriptome studies reveal many noncoding transcripts overlapping 3' gene termini. The function of these transcripts is unknown. Here we have characterized transcription at the progesterone receptor (PR) locus and identified noncoding transcripts that overlap the 3' end of the gene. Small RNAs complementary to sequences beyond the 3' terminus of PR mRNA modulated expression of PR, recruited argonaute 2 to a 3' noncoding transcript, altered occupancy of RNA polymerase II, induced chromatin changes at the PR promoter and affected responses to physiological stimuli. We found that the promoter and 3' terminal regions of the PR locus are in close proximity, providing a potential mechanism for RNA-mediated control of transcription over long genomic distances. These results extend the potential for small RNAs to regulate transcription to target sequences beyond the 3' termini of mRNA.
Collapse
|
29
|
Prokineticins: novel mediators of inflammatory and contractile pathways at parturition? Mol Hum Reprod 2010; 16:311-9. [DOI: 10.1093/molehr/gaq014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Cui XL, Chang B, Myatt L. Expression and distribution of NADPH oxidase isoforms in human myometrium--role in angiotensin II-induced hypertrophy. Biol Reprod 2009; 82:305-12. [PMID: 19812300 DOI: 10.1095/biolreprod.109.080275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The renin-angiotensin system is upregulated in pregnant women and may play a role in myometrial hypertrophy during pregnancy. We examined whether angiotensin II could induce myometrial protein synthesis as determined by (3)H-leucine incorporation in an immortalized human myometrial smooth muscle cell line (ULTR cells). The effects of angiotensin II were mediated by NADPH oxidase because diphenylene iodonium abolished angiotensin II-induced protein synthesis. We investigated gene expression and cellular localization of NADPH oxidase isoforms in ULTR cells and confirmed expression of NOX1, NOX4, and NOX5 in myometrial tissue. Angiotensin II induced a cellular redistribution and upregulation of NOX5 protein without altering NOX1 and NOX4 expression. It seems the effect of angiotensin II relies on the type 1 receptor (AT1), because losartan significantly blocked angiotensin II-induced increase in (3)H-leucine incorporation. We conclude that NADPH oxidase mediates angiotensin II-stimulated protein synthesis downstream of AT1 in myometrium smooth muscle cells.
Collapse
Affiliation(s)
- Xiao-Lan Cui
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA.
| | | | | |
Collapse
|
31
|
Willets JM, Brighton PJ, Mistry R, Morris GE, Konje JC, Challiss RAJ. Regulation of oxytocin receptor responsiveness by G protein-coupled receptor kinase 6 in human myometrial smooth muscle. Mol Endocrinol 2009; 23:1272-80. [PMID: 19423652 PMCID: PMC5419184 DOI: 10.1210/me.2009-0047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/29/2009] [Indexed: 11/19/2022] Open
Abstract
Oxytocin plays an important role in the progression, timing, and modulation of uterine contraction during labor and is widely used as an uterotonic agent. We investigated the mechanisms regulating oxytocin receptor (OTR) signaling in human primary myometrial smooth muscle cells and the ULTR cell-line. Oxytocin produced concentration-dependent increases in both total [(3)H]inositol phosphate accumulation and intracellular Ca(2+) concentration ([Ca(2+)](i)); however, responses were greater and more reproducible in the ULTR cell line. Assessment of phospholipase C activity in single cells revealed that the OTR desensitizes rapidly (within 5 min) in the presence of oxytocin (100 nm). To characterize OTR desensitization further, cells were stimulated with a maximally effective concentration of oxytocin (100 nm, 30 sec) followed by a variable washout period and a second identical application of oxytocin. This brief exposure to oxytocin caused a marked decrease (>70%) in OTR responsiveness to rechallenge and was fully reversed by increasing the time period between agonist challenges. To assess involvement of G protein-coupled receptor kinases (GRKs) in OTR desensitization, cells were transfected with small interfering RNAs to cause specific > or =75% knockdown of GRKs 2, 3, 5, or 6. In both primary myometrial and ULTR cells, knockdown of GRK6 largely prevented oxytocin-induced OTR desensitization; in contrast, selective depletion of GRKs 2, 3, or 5 was without effect. These data indicate that GRK6 recruitment is a cardinal effector of OTR responsiveness and provide mechanistic insight into the likely in vivo regulation of OTR signaling in uterine smooth muscle.
Collapse
Affiliation(s)
- Jonathon M Willets
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, United Kingdom.
| | | | | | | | | | | |
Collapse
|
32
|
Brighton PJ, McDonald J, Taylor AH, Challiss RAJ, Lambert DG, Konje JC, Willets JM. Characterization of anandamide-stimulated cannabinoid receptor signaling in human ULTR myometrial smooth muscle cells. Mol Endocrinol 2009; 23:1415-27. [PMID: 19477951 DOI: 10.1210/me.2009-0097] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence highlights the importance of the endocannabinoid anandamide (AEA) as a key mediator in reproductive physiology. Current data suggest potential roles for AEA in gametogenesis, fertilization, and parturition. AEA exerts its actions through two G protein-coupled receptors, termed cannabinoid receptor 1 (CB1), and 2 (CB2), and the ligand-gated transient receptor potential vanilloid receptor type 1 (TRPV1) ion channel. At present, the cellular mechanism(s) and consequences of AEA signaling in reproductive tissues, especially the myometrium, are poorly understood. Here, we examine the expression of CB1, CB2, and TRPV1 in the human myometrial smooth muscle cell-line (ULTR) and characterize intracellular signaling after stimulation with AEA. Radioligand binding analysis revealed a total CB receptor expression of 76 +/- 24 fmol/mg protein, with both quantitative PCR and competition binding studies indicating a negligible CB2 component. AEA caused Galpha(i/o)-dependent inhibition of adenylate cyclase to reduce intracellular cAMP levels. In addition, AEA caused a 2.5- to 3.5-fold increase in ERK activation, which was ablated by inhibition of Galpha(i/o), phosphoinositide-3-kinase and Src-kinase activities, but not by inhibition of Ca(2+)/calmodulin-dependent protein kinase or protein kinase C activities. TRPV1 channel activation with capsaicin failed to activate ERK. Consistent with these findings, the selective agonists, arachidonyl-2-chloroethylamide (CB1) and L759656 (CB2), and selective antagonists AM251 (CB1) and JTE907 (CB2), provided pharmacological evidence that the ERK signaling pathway is activated through endogenously expressed CB1. These findings provide an insight into myometrial AEA signaling, highlighting a potential role for endocannabinoids in the regulation of gene expression in myometrial smooth muscle cells.
Collapse
Affiliation(s)
- Paul J Brighton
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies, University of Leicester, Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Olson DM, Christiaens I, Gracie S, Yamamoto Y, Mitchell BF. Emerging tocolytics: challenges in designing and testing drugs to delay preterm delivery and prolong pregnancy. Expert Opin Emerg Drugs 2009; 13:695-707. [PMID: 19046135 DOI: 10.1517/14728210802568764] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The global rate of preterm delivery (before 37 completed weeks of pregnancy) is increasing and there are no effective means available to prevent this rise. Prematurity is the principal cause of neonatal mortality and a major cause of pediatric morbidity and long-term disability. Current strategies to prolong pregnancy are based on inhibiting the mechanisms that effect uterine smooth muscle (myometrium) contractions in women who are in preterm labor. Most drugs in this group were developed for other purposes. Newer strategies are designed to maintain a state of uterine quiescence and pregnancy, preventing the myometrium from initiating contractions and entering preterm labor. Again, it may be possible to use existing drugs for pregnancy maintenance. Several financial and practical barriers exist for developing completely new drugs to delay labor. Designing clinical trials to test tocolytics is complicated, as the health of two patients must be considered and the nature of preterm birth and its outcomes are different at early preterm labor (< 28 weeks) and late preterm labor (34 - 36 weeks).
Collapse
Affiliation(s)
- David M Olson
- University of Alberta, AHFMR Interdisciplinary Team in Preterm Birth and Healthy Outcomes, Department of Obstetrics and Gynecology, 220 HMRC, Edmonton, T6G 2S2, Alberta, Canada.
| | | | | | | | | |
Collapse
|
34
|
Engineer N, Sooranna SR, Liang Z, Bennett PR, Johnson MR. Influence of extracellular matrix on cytokine stimulated pro-labour gene expression in human uterine myocytes. Reprod Sci 2008; 15:950-60. [PMID: 19050328 DOI: 10.1177/1933719108322439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cellular function is modulated by the interaction with the extracellular matrix within the myometrium. We formed the hypothesis that the cytokine-stimulated pro-labour gene expression by human uterine smooth muscle cells would be increased by growing the cells on collagen-coated plates. Primary cultures of human uterine smooth muscle cells grown on uncoated plates and on plates coated with collagen were exposed to the inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta and interleukin-6) and assessed the messenger RNA expression of oxytocin receptor, interleukin-8, prostaglandin H synthase type-2 and prostaglandin F(2) alpha receptor. Basal pro-labour gene expression was unaffected by collagen coating and the response to the inflammatory cytokines was similar for oxytocin receptor and prostaglandin H synthase type-2, but appeared to be reduced for interleukin-8 and enhanced for FP. Collagen coating made no significant impact on basal integrin expression and interleukin-1beta induced phosphorylation of extracellular-regulated-kinase1/2 and RelA subunit of nuclear factor-kappa B (p65). We conclude that growing human uterine smooth muscle cells on collagen-coated plates may modulate the pro-labour gene response to the inflammatory cytokines.
Collapse
Affiliation(s)
- Neelam Engineer
- Department of Maternal Fetal Medicine, Imperial College School of Medicine, Chelsea & Westminster Hospital, London, UK.
| | | | | | | | | |
Collapse
|
35
|
Gotsch F, Romero R, Kusanovic JP, Erez O, Espinoza J, Kim CJ, Vaisbuch E, Than NG, Mazaki-Tovi S, Chaiworapongsa T, Mazor M, Yoon BH, Edwin S, Gomez R, Mittal P, Hassan SS, Sharma S. The anti-inflammatory limb of the immune response in preterm labor, intra-amniotic infection/inflammation, and spontaneous parturition at term: a role for interleukin-10. J Matern Fetal Neonatal Med 2008; 21:529-47. [PMID: 18609361 DOI: 10.1080/14767050802127349] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The anti-inflammatory limb of the immune response is crucial for dampening inflammation. Spontaneous parturition at term and preterm labor (PTL) are mediated by inflammation in the cervix, membranes, and myometrium. This study focuses on the changes in the amniotic fluid concentrations of the anti-inflammatory cytokine interleukin (IL)- 10. The objectives of this study were to determine whether there is a relationship between amniotic fluid concentrations of IL-10 and gestational age, parturition (at term and preterm), and intra-amniotic infection/inflammation (IAI). STUDY DESIGN A cross-sectional study was conducted including 301 pregnant women in the following groups: (1) mid-trimester of pregnancy who delivered at term (n = 112); (2) mid-trimester who delivered preterm neonates (n = 30); (3) term not in labor without IAI (n = 40); (4) term in labor without IAI (n = 24); (5) term in labor with IAI (n = 20); (6) PTL without IAI who delivered at term (n = 31); (7) PTL without IAI who delivered preterm (n = 30); (8) PTL with IAI who delivered preterm (n = 14). IL-10 concentrations in amniotic fluid were determined by a specific and sensitive immunoassay. Non-parametric statistics were used for analysis. RESULTS (1) IL-10 was detectable in amniotic fluid and its median concentration did not change with gestational age from mid-trimester to term. (2) Patients in labor at term had a significantly higher median amniotic fluid IL-10 concentration than that of patients at term not in labor (p = 0.04). (3) Women at term in labor with IAI had a significantly higher median amniotic fluid IL-10 concentration than that of patients at term in labor without IAI (p = 0.02). (4) Women with PTL and IAI who delivered preterm had a significantly higher median amniotic fluid concentration of IL-10 than those without IAI who delivered preterm and than those who delivered at term (p = 0.009 and p < 0.001, respectively). (5) Among patients with preterm labor without IAI, those who delivered preterm had a significantly higher median amniotic fluid IL-10 concentration than those who delivered at term (p = 0.03). CONCLUSIONS The anti-inflammatory cytokine IL-10 is detectable in the amniotic fluid of normal pregnant women. Spontaneous parturition at term and in preterm gestation is associated with increased amniotic fluid concentrations of IL-10. IAI (preterm and at term) is also associated with increased amniotic fluid concentrations of IL-10. We propose that IL-10 has a role in the regulation of the immune response in vivo by initiating actions that dampen inflammation.
Collapse
Affiliation(s)
- Francesca Gotsch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Inflammatory processes in preterm and term parturition. J Reprod Immunol 2008; 79:50-7. [PMID: 18550178 DOI: 10.1016/j.jri.2008.04.002] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/20/2008] [Accepted: 04/15/2008] [Indexed: 11/22/2022]
Abstract
A role for the pro-inflammatory cytokines interleukin (IL)-1beta, IL-6, IL-8 and tumor necrosis factor alpha (TNF-alpha) is evident in term and preterm delivery, and this is independent of the presence of infection. All uterine tissues progress through a staged transformation near the end of pregnancy that leads from relative uterine quiescence and maintenance of pregnancy to the activation of the uterus that prepares it for the work of labour and production of stimulatory molecules that trigger the onset of labour and delivery. The uterus is activated by pro-inflammatory cytokines through stimulation of the expression and production of uterine activation proteins (UAPs). One of these actions is the stimulation of prostaglandin (PG) synthesis. Particularly important for labour is PGF(2alpha) and its receptor, PTGFR. In addition, pro-inflammatory cytokines are able to increase the synthesis of matrix metalloproteinases (MMPs), vascular endothelial growth factor (VEGF) and the progesterone receptor C isoform, which leads to decreased tissue progesterone responsiveness. Some of these effects are replicated by PGF(2alpha), suggesting that it may act via its receptor to amplify the direct actions of cytokines. In turn, VEGF may enhance leukocyte recruitment to the uterus, and MMP-9 may promote activation of inactive pro-form cytokines. Pro-inflammatory cytokines also decrease the activity of 11beta-hydroxysteroid dehydrogenase, which likely increases intrauterine cortisol concentrations. In turn, cortisol may drive PG synthesis. Together these feed-forward mechanisms activate the uterus, trigger the production of uterine contractile stimulants and lead to labour and delivery.
Collapse
|
37
|
Willets JM, Taylor AH, Shaw H, Konje JC, Challiss RAJ. Selective regulation of H1 histamine receptor signaling by G protein-coupled receptor kinase 2 in uterine smooth muscle cells. Mol Endocrinol 2008; 22:1893-907. [PMID: 18511496 DOI: 10.1210/me.2007-0463] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Histamine stimulates uterine contraction; however, little is known regarding the mechanism or regulation of uterine histamine receptor signaling. Here we investigated the regulation of Galpha(q/11)-coupled histamine receptor signaling in human myometrial smooth muscle cells using the inositol 1,4,5-trisphosphate biosensor pleckstrin homology domain of phospholipase-delta1 tagged to enhanced green fluorescent protein and the Ca(2+)-sensitive dye Fluo-4. Histamine addition caused concentration-dependent increases in inositol 1,4,5-trisphosphate and [Ca(2+)](i) in the ULTR human uterine smooth muscle cell line and primary human myometrial cells. These effects were completely inhibited by the H(1) histamine receptor antagonist, diphenhydramine, and were unaffected by the H(2) histamine receptor antagonist, cimetidine. ULTR and primary myometrial cells were transfected with either dominant-negative G protein-coupled receptor kinases (GRKs) or small interfering RNAs targeting specific GRKs to assess the roles of this protein kinase family in H(1) histamine receptor desensitization. Dominant-negative GRK2, but not GRK5 or GRK6, prevented H(1) histamine receptor desensitization. Similarly, transfection with short interfering RNAs (that each caused >70% depletion of the targeted GRK) for GRK2, but not GRK3 or GRK6, also prevented H(1) histamine receptor desensitization. Our data suggest that histamine stimulates phospholipase C-signaling in myometrial smooth muscle cells through H(1) histamine receptors and that GRK2 recruitment is a key mechanism in the regulation of H(1) histamine receptor signaling in human uterine smooth muscle. These data provide insights into the in situ regulation of this receptor subtype and may inform pathophysiological functioning in preterm labor and other conditions involving uterine smooth muscle dysregulation.
Collapse
Affiliation(s)
- Jonathon M Willets
- Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, United Kingdom.
| | | | | | | | | |
Collapse
|
38
|
Chevillard G, Derjuga A, Devost D, Zingg HH, Blank V. Identification of interleukin-1β regulated genes in uterine smooth muscle cells. Reproduction 2007; 134:811-22. [DOI: 10.1530/rep-07-0289] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We analyzed the response of uterine smooth muscle cells to interleukin-1β (IL-1β). We first showed that PHM1-31 myometrial cells, our cellular model, are contractile. To determine the molecular mechanisms of uterine smooth muscle cell activation by proinflammatory cytokines, we performed genechip expression array profiling studies of PHM1-31 cells in the absence and the presence of IL-1β. In total, we identified 198 known genes whose mRNA levels are significantly modulated (> 2.0-fold change) following IL-1β exposure. We confirmed the expression changes for selected genes by independent mRNA and protein analysis. The group of genes induced by IL-1β includes transcription factors and inflammatory response genes such as nuclear factor of κ light polypeptide gene enhancer in B-cells (NFκB), pentraxin-related gene (PTX3), and tumor necrosis factor α-induced protein 3/A20 (TNFAIP3/A20). We also found up-regulation of chemokines like C-X-C motif ligand 3 (CXCL3) and extracellular matrix remodeling signaling molecules like tenascin C (TNC). Our data suggest that IL-1β elicits the rapid activation of a cellular network of genes particularly implicated in inflammatory response that may create a cellular environment favorable for myometrial cell contraction. Our results provide novel insights into the mechanisms of uterine smooth muscle cell regulation and possibly infection-induced preterm labor.
Collapse
|
39
|
Romero R. Prevention of spontaneous preterm birth: the role of sonographic cervical length in identifying patients who may benefit from progesterone treatment. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2007; 30:675-86. [PMID: 17899585 DOI: 10.1002/uog.5174] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|