1
|
Ingram RJ, Leverton LK, Daniels VC, Li J, Christian-Hinman CA. Increased GABA transmission to GnRH neurons after intrahippocampal kainic acid injection in mice is sex-specific and associated with estrous cycle disruption. Neurobiol Dis 2022; 172:105822. [PMID: 35868435 PMCID: PMC9455811 DOI: 10.1016/j.nbd.2022.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/16/2022] [Indexed: 11/25/2022] Open
Abstract
Patients with epilepsy develop reproductive endocrine comorbidities at a rate higher than that of the general population. Clinical studies have identified disrupted luteinizing hormone (LH) release patterns in patients of both sexes, suggesting potential epilepsy-associated changes in hypothalamic gonadotropin-releasing hormone (GnRH) neuron function. In previous work, we found that GnRH neuron firing is increased in diestrous females and males in the intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy. Notably, GABAA receptor activation is depolarizing in adult GnRH neurons. Therefore, here we tested the hypothesis that increased GnRH neuron firing in IHKA mice is associated with increased GABAergic drive to GnRH neurons. When ionotropic glutamate receptors (iGluRs) were blocked to isolate GABAergic postsynaptic currents (PSCs), no differences in PSC frequency were seen between GnRH neurons from control and IHKA diestrous females. In the absence of iGluR blockade, however, GABA PSC frequency was increased in GnRH neurons from IHKA females with disrupted estrous cycles, but not saline-injected controls nor IHKA females without estrous cycle disruption. GABA PSC amplitude was also increased in IHKA females with disrupted estrous cycles. These findings suggest the presence of an iGluR-dependent increase in feed-forward GABAergic transmission to GnRH neurons specific to IHKA females with comorbid cycle disruption. In males, GABA PSC frequency and amplitude were unchanged but PSC duration was reduced. Together, these findings suggest that increased GABA transmission helps drive elevated firing in IHKA females on diestrus and indicate the presence of a sex-specific hypothalamic mechanism underlying reproductive endocrine dysfunction in IHKA mice.
Collapse
Affiliation(s)
- Robbie J Ingram
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Leanna K Leverton
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Victoria C Daniels
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Jiang Li
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Catherine A Christian-Hinman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States of America.
| |
Collapse
|
2
|
Constantin S, Moenter SM, Piet R. The electrophysiologic properties of gonadotropin-releasing hormone neurons. J Neuroendocrinol 2022; 34:e13073. [PMID: 34939256 PMCID: PMC9163209 DOI: 10.1111/jne.13073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
For about two decades, recordings of identified gonadotropin-releasing hormone (GnRH) neurons have provided a wealth of information on their properties. We describe areas of consensus and debate the intrinsic electrophysiologic properties of these cells, their response to fast synaptic and neuromodulatory input, Ca2+ imaging correlates of action potential firing, and signaling pathways regulating these aspects. How steroid feedback and development change these properties, functions of GnRH neuron subcompartments and local networks, as revealed by chemo- and optogenetic approaches, are also considered.
Collapse
Affiliation(s)
- Stephanie Constantin
- Cellular and Developmental Neurobiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892-3703, USA
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Suzanne M Moenter
- Departments of Molecular & Integrative Physiology, Internal Medicine, Obstetrics & Gynecology, and the Reproductive Sciences Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard Piet
- Brain Health Research Institute & Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
3
|
Phumsatitpong C, De Guzman RM, Zuloaga DG, Moenter SM. A CRH Receptor Type 1 Agonist Increases GABA Transmission to GnRH Neurons in a Circulating-Estradiol-Dependent Manner. Endocrinology 2020; 161:5892962. [PMID: 32798220 PMCID: PMC7547842 DOI: 10.1210/endocr/bqaa140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
GnRH neurons are central regulators of reproduction and respond to factors affecting fertility, such as stress. Corticotropin-releasing hormone (CRH) is released during stress response. In brain slices from unstressed controls, CRH has opposite, estradiol-dependent effects on GnRH neuron firing depending on the CRH receptor activated; activating CRHR-1 stimulates whereas activating CRHR-2 suppresses activity. We investigated possible direct and indirect mechanisms. Mice were ovariectomized and either not treated further (OVX) or given a capsule producing high positive feedback (OVX + E) or low negative feedback (OVX + low E) physiologic circulating estradiol levels. We tested possible direct effects on GnRH neurons by altering voltage-gated potassium currents. Two types of voltage-gated potassium currents (transient IA and sustained IK) were measured; neither CRHR-1 nor CRHR-2 agonists altered potassium current density in GnRH neurons from OVX + E mice. Further, neither CRH nor receptor-specific agonists altered action potential generation in response to current injection in GnRH neurons from OVX + E mice. To test the possible indirect actions, GABAergic postsynaptic currents were monitored. A CRHR-1 agonist increased GABAergic transmission frequency to GnRH neurons from OVX + E, but not OVX, mice, whereas a CRHR-2 agonist had no effect. Finally, we tested if CRH alters the firing rate of arcuate kisspeptin neurons, which provide an important excitatory neuromodulatory input to GnRH neurons. CRH did not acutely alter firing activity of these neurons from OVX, OVX + E or OVX + low E mice. These results suggest CRH increases GnRH neuron activity in an estradiol-dependent manner in part by activating GABAergic afferents. Mechanisms underlying inhibitory effects of CRH remain unknown.
Collapse
Affiliation(s)
| | | | | | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, US
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, US
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, US
- Correspondence: Suzanne M. Moenter; 7725 Med Sci II; 1137 E Catherine St; Ann Arbor, MI 48109-5622. E-mail:
| |
Collapse
|
4
|
Moenter SM, Silveira MA, Wang L, Adams C. Central aspects of systemic oestradiol negative- and positive-feedback on the reproductive neuroendocrine system. J Neuroendocrinol 2020; 32:e12724. [PMID: 31054210 PMCID: PMC6829026 DOI: 10.1111/jne.12724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022]
Abstract
The central nervous system regulates fertility via the release of gonadotrophin-releasing hormone (GnRH). This control revolves around the hypothalamic-pituitary-gonadal axis, which operates under traditional homeostatic feedback by sex steroids from the gonads in males and most of the time in females. An exception is the late follicular phase in females, when homeostatic feedback is suspended and a positive-feedback response to oestradiol initiates the preovulatory surges of GnRH and luteinising hormone. Here, we briefly review the history of how mechanisms underlying central control of ovulation by circulating steroids have been studied, discuss the relative merit of different model systems and integrate some of the more recent findings in this area into an overall picture of how this phenomenon occurs.
Collapse
Affiliation(s)
- Suzanne M. Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109
| | - Marina A. Silveira
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| | - Luhong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| | - Caroline Adams
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109
| |
Collapse
|
5
|
Wang L, Moenter SM. Differential Roles of Hypothalamic AVPV and Arcuate Kisspeptin Neurons in Estradiol Feedback Regulation of Female Reproduction. Neuroendocrinology 2020; 110:172-184. [PMID: 31466075 PMCID: PMC7047625 DOI: 10.1159/000503006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022]
Abstract
Mammalian reproductive function includes puberty onset and completion, reproductive cyclicity, steroidogenesis, gametogenesis, fertilization, pregnancy, and lactation; all are indispensable to perpetuate species. Reproductive cycles are critical for providing the hormonal milieu needed for follicular development and maturation of eggs, but cycles, in and of themselves, do not guarantee ovulation will occur. Here, we review the roles in female reproductive neuroendocrine function of two hypothalamic populations that produce the neuropeptide kisspeptin, demonstrating distinct roles in maintaining cycles and ovulation.
Collapse
Affiliation(s)
- Luhong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA,
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA,
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA,
| |
Collapse
|
6
|
Changes in Both Neuron Intrinsic Properties and Neurotransmission Are Needed to Drive the Increase in GnRH Neuron Firing Rate during Estradiol-Positive Feedback. J Neurosci 2019; 39:2091-2101. [PMID: 30655354 DOI: 10.1523/jneurosci.2880-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 11/21/2022] Open
Abstract
Central output of gonadotropin-releasing hormone (GnRH) neurons controls fertility and is sculpted by sex-steroid feedback. A switch of estradiol action from negative to positive feedback initiates a surge of GnRH release, culminating in ovulation. In ovariectomized mice bearing constant-release estradiol implants (OVX+E), GnRH neuron firing is suppressed in the morning (AM) by negative feedback and activated in the afternoon (PM) by positive feedback; no time-of-day-dependent changes occur in OVX mice. In this daily surge model, GnRH neuron intrinsic properties are shifted to favor increased firing during positive feedback. It is unclear whether this shift and the observed concomitant increase in GABAergic transmission, which typically excites GnRH neurons, are independently sufficient for increasing GnRH neuron firing rate during positive feedback or whether both are needed. To test this, we used dynamic clamp to inject selected previously recorded trains of GABAergic postsynaptic conductances (PSgs) collected during the different feedback states of the daily surge model into GnRH neurons from OVX, OVX+E AM, and OVX+E PM mice. PSg trains mimicking positive feedback initiated more action potentials in cells from OVX+E PM mice than negative feedback or OVX (open feedback loop) trains in all three animal models, but the positive-feedback train was most effective when applied to cells during positive feedback. In silico studies of model GnRH neurons in which >1000 PSg trains were tested exhibited the same results. These observations support the hypothesis that GnRH neurons integrate fast-synaptic and intrinsic changes to increase firing rates during positive feedback.SIGNIFICANCE STATEMENT Infertility affects 15%-20% of couples; failure to ovulate is a common cause. Understanding how the brain controls ovulation is critical for new developments in both infertility treatment and contraception. Ovarian estradiol alters both the intrinsic properties of gonadotropin-releasing hormone (GnRH) neurons and synaptic inputs to these cells coincident with production of sustained GnRH release that ultimately triggers ovulation. We demonstrate here using dynamic clamp and mathematical modeling that estradiol-induced shifts in synaptic transmission alone can increase firing output, but that the intrinsic properties of GnRH neurons during positive feedback further poise these cells for increased response to higher frequency synaptic transmission. These data suggest that GnRH neurons integrate fast-synaptic and intrinsic changes to increase firing rates during the preovulatory GnRH surge.
Collapse
|
7
|
Moore AM, Abbott G, Mair J, Prescott M, Campbell RE. Mapping GABA and glutamate inputs to gonadotrophin-releasing hormone neurones in male and female mice. J Neuroendocrinol 2018; 30:e12657. [PMID: 30415474 DOI: 10.1111/jne.12657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 11/28/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) neurone function is dependent upon gonadal steroid hormone feedback, which is communicated in large part through an afferent neuronal network. The classical neurotransmitters GABA and glutamate are important regulators of GnRH neurone activity and are implicated in mediating feedback signals. In the present study, we aimed to determine whether GABAergic or glutamatergic input to GnRH neurones differs between males and females and/or exhibits morphological plasticity in response to steroid hormone feedback in females. Tissue collected from GnRH-green fluorescent protein (GFP) male and female mice in dioestrus underwent immunofluorescence labelling of GFP and either the vesicular GABA transporter (VGAT) or the vesicular glutamate transporter 2 (VGLUT2). No differences in the densities or absolute numbers of VGAT-immunoreactive (-IR) or VGLUT2-IR puncta apposed to GnRH neurones were identified between males and females. The most significant input from either neurotransmitter was to the proximal dendritic region and 80% of VGAT-IR puncta apposed to GnRH neurones co-localised with synaptophysin. Putative inputs were also assessed in ovariectomised (OVX) female mice treated with negative (OVX+E) or positive (OVX+E+E) feedback levels of oestrogen, and OVX+E+E mice were killed during the expected GnRH/luteinising hormone surge. No differences in VGLUT2-IR contacts to GnRH neurones were identified between animals under the negative-feedback influence of oestrogen (OVX+E) or the positive influence of oestrogen (OVX+E+E), regardless of cFos activation status. By contrast, a significant elevation in putative GABAergic inputs to GnRH neurones at the time of the preovulatory surge was found in the cFos-negative subset of GnRH neurones, both at the level of the soma and at the proximal dendrite. Taken together, these data suggest that, although GABAergic and glutamatergic innervation of GnRH neurones is not sexually differentiated, cyclic fluctuations in steroid hormone feedback over the female oestrous cycle result in plastic changes in GABAergic inputs to a subpopulation of GnRH neurones.
Collapse
Affiliation(s)
- Aleisha M Moore
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Georgina Abbott
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Jonathan Mair
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Changes in GABAergic Transmission to and Intrinsic Excitability of Gonadotropin-Releasing Hormone (GnRH) Neurons during the Estrous Cycle in Mice. eNeuro 2018; 5:eN-NWR-0171-18. [PMID: 30417076 PMCID: PMC6223108 DOI: 10.1523/eneuro.0171-18.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 11/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons form the final common central output pathway controlling fertility and are regulated by steroid feedback. In females, estradiol feedback action varies between negative and positive; negative feedback typically regulates episodic GnRH release whereas positive feedback initiates a surge of GnRH, and subsequently luteinizing hormone (LH) release ultimately triggering ovulation. During the estrous cycle, changes between estradiol negative and positive feedback occur with cycle stage and time of day, with positive feedback in the late afternoon of proestrus in nocturnal species. To test the hypotheses that synaptic and intrinsic properties of GnRH neurons are regulated by cycle stage and time of day, we performed whole-cell patch-clamp studies of GnRH neurons in brain slices from mice at two times considered negative feedback (diestrous PM and proestrous AM) and during positive feedback (proestrous PM). GABAergic transmission can excite GnRH neurons and was higher in cells from proestrous PM mice than cells from proestrous AM mice and approached traditional significance levels relative to cells from diestrous PM mice. Action potential response to current injection was also greater in cells from proestrous PM mice than the other two groups. Interestingly, the hormonal milieu of proestrous AM provided stronger negative feedback on both GnRH neuron excitability and GABAergic postsynaptic current (PSC) amplitude than diestrous PM. These observations demonstrate elements of both synaptic and intrinsic properties of GnRH neurons are regulated in a cycle-dependent manner and provide insight into the neurobiological mechanisms underlying cyclic changes in neuroendocrine function among states of estradiol negative and positive feedback.
Collapse
|
9
|
Estradiol Increases Glutamate and GABA Neurotransmission into GnRH Neurons via Retrograde NO-Signaling in Proestrous Mice during the Positive Estradiol Feedback Period. eNeuro 2018; 5:eN-NWR-0057-18. [PMID: 30079374 PMCID: PMC6073979 DOI: 10.1523/eneuro.0057-18.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
Surge release of gonadotropin-releasing hormone (GnRH) is essential in the activation of pituitary gonadal unit at proestrus afternoon preceded by the rise of serum 17β-estradiol (E2) level during positive feedback period. Here, we describe a mechanism of positive estradiol feedback regulation acting directly on GnRH-green fluorescent protein (GFP) neurons of mice. Whole-cell clamp and loose patch recordings revealed that a high physiological dose of estradiol (200 pM), significantly increased firing rate at proestrus afternoon. The mPSC frequency at proestrus afternoon also increased, whereas it decreased at metestrus afternoon and had no effect at proestrus morning. Inhibition of the estrogen receptor β (ERβ), intracellular blockade of the Src kinase and phosphatidylinositol 3 kinase (PI3K) and scavenge of nitric oxide (NO) inside GnRH neurons prevented the facilitatory estradiol effect indicating involvement of the ERβ/Src/PI3K/Akt/nNOS pathway in this fast, direct stimulatory effect. Immunohistochemistry localized soluble guanylate cyclase, the main NO receptor, in both glutamatergic and GABAergic terminals innervating GnRH neurons. Accordingly, estradiol facilitated neurotransmissions to GnRH neurons via both GABAA-R and glutamate/AMPA/kainate-R. These results indicate that estradiol acts directly on GnRH neurons via the ERβ/Akt/nNOS pathway at proestrus afternoon generating NO that retrogradely accelerates GABA and glutamate release from the presynaptic terminals contacting GnRH neurons. The newly explored mechanism might contribute to the regulation of the GnRH surge, a fundamental prerequisite of the ovulation.
Collapse
|
10
|
Bhattarai P, Bhattarai JP, Kim MS, Han SK. Non-genomic action of vitamin D3 on N-methyl-D-aspartate and kainate receptor-mediated actions in juvenile gonadotrophin-releasing hormone neurons. Reprod Fertil Dev 2018; 29:1231-1238. [PMID: 27225229 DOI: 10.1071/rd15357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 03/26/2016] [Indexed: 01/24/2023] Open
Abstract
Vitamin D is a versatile signalling molecule that plays a critical role in calcium homeostasis. There are several studies showing the genomic action of vitamin D in the control of reproduction; however, the quick non-genomic action of vitamin D at the hypothalamic level is not well understood. Therefore, to investigate the effect of vitamin D on juvenile gonadotrophin-releasing hormone (GnRH) neurons, excitatory neurotransmitter receptor agonists N-methyl-D-aspartate (NMDA, 30μM) and kainate (10μM) were applied in the absence or in the presence of vitamin D3 (VitaD3, 10nM). The NMDA-mediated responses were decreased by VitaD3 in the absence and in the presence of tetrodotoxin (TTX), a sodium-channel blocker, with the mean relative inward current being 0.56±0.07 and 0.66±0.07 (P<0.05), respectively. In addition, VitaD3 induced a decrease in the frequency of gamma-aminobutyric acid mediated (GABAergic) spontaneous postsynaptic currents and spontaneous postsynaptic currents induced by NMDA application with a mean relative frequency of 0.595±0.07 and 0.56±0.09, respectively. Further, VitaD3 decreased the kainate-induced inward currents in the absence and in the presence of TTX with a relative inward current of 0.64±0.06 and 0.68±0.06, respectively (P<0.05). These results suggest that VitaD3 has a non-genomic action and partially inhibits the NMDA and kainate receptor-mediated actions of GnRH neurons, suggesting that VitaD3 may regulate the hypothalamic-pituitary-gonadal (HPG) axis at the time of pubertal development.
Collapse
Affiliation(s)
- Pravin Bhattarai
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Duckjin Dong, Jeonju, Jeonbuk 561-756, South Korea
| | - Janardhan P Bhattarai
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Duckjin Dong, Jeonju, Jeonbuk 561-756, South Korea
| | - Min Sun Kim
- Department of Pediatrics, Chonbuk National University Medical School, and Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Institute of Chonbuk National University Hospital, Duckjin Dong, Jeonju, Jeonbuk 561-756, South Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Chonbuk National University, Duckjin Dong, Jeonju, Jeonbuk 561-756, South Korea
| |
Collapse
|
11
|
Burger LL, Vanacker C, Phumsatitpong C, Wagenmaker ER, Wang L, Olson DP, Moenter SM. Identification of Genes Enriched in GnRH Neurons by Translating Ribosome Affinity Purification and RNAseq in Mice. Endocrinology 2018; 159. [PMID: 29522155 PMCID: PMC6287592 DOI: 10.1210/en.2018-00001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are a nexus of fertility regulation. We used translating ribosome affinity purification coupled with RNA sequencing to examine messenger RNAs of GnRH neurons in adult intact and gonadectomized (GDX) male and female mice. GnRH neuron ribosomes were tagged with green fluorescent protein (GFP) and GFP-labeled polysomes isolated by immunoprecipitation, producing one RNA fraction enhanced for GnRH neuron transcripts and one RNA fraction depleted. Complementary DNA libraries were created from each fraction and 50-base, paired-end sequencing done and differential expression (enhanced fraction/depleted fraction) determined with a threshold of >1.5- or <0.66-fold (false discovery rate P ≤ 0.05). A core of ∼840 genes was differentially expressed in GnRH neurons in all treatments, including enrichment for Gnrh1 (∼40-fold), and genes critical for GnRH neuron and/or gonadotrope development. In contrast, non-neuronal transcripts were not enriched or were de-enriched. Several epithelial markers were also enriched, consistent with the olfactory epithelial origins of GnRH neurons. Interestingly, many synaptic transmission pathways were de-enriched, in accordance with relatively low innervation of GnRH neurons. The most striking difference between intact and GDX mice of both sexes was a marked downregulation of genes associated with oxidative phosphorylation and upregulation of glucose transporters in GnRH neurons from GDX mice. This may suggest that GnRH neurons switch to an alternate fuel to increase adenosine triphosphate production in the absence of negative feedback when GnRH release is elevated. Knowledge of the GnRH neuron translatome and its regulation can guide functional studies and can be extended to disease states, such as polycystic ovary syndrome.
Collapse
Affiliation(s)
- Laura L Burger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - Charlotte Vanacker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | | | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - Luhong Wang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
| | - David P Olson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann
Arbor, Michigan
- Department of Internal Medicine, University of Michigan, Ann Arbor,
Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor,
Michigan
- Correspondence: Laura L. Burger, PhD, University of Michigan, 7725 Med Sci II, 1137 E. Catherine
Street, Ann Arbor, Michigan 48109-5622. E-mail:
| |
Collapse
|
12
|
Zempo B, Karigo T, Kanda S, Akazome Y, Oka Y. Morphological Analysis of the Axonal Projections of EGFP-Labeled Esr1-Expressing Neurons in Transgenic Female Medaka. Endocrinology 2018; 159:1228-1241. [PMID: 29300923 DOI: 10.1210/en.2017-00873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/20/2017] [Indexed: 11/19/2022]
Abstract
Some hypothalamic neurons expressing estrogen receptor α (Esr1) are thought to transmit a gonadal estrogen feedback signal to gonadotropin-releasing hormone 1 (GnRH1) neurons, which is the final common pathway for feedback regulation of reproductive functions. Moreover, estrogen-sensitive neurons are suggested to control sexual behaviors in coordination with reproduction. In mammals, hypothalamic estrogen-sensitive neurons release the peptide kisspeptin and regulate GnRH1 neurons. However, a growing body of evidence in nonmammalian species casts doubt on the regulation of GnRH1 neurons by kisspeptin neurons. As a step toward understanding how estrogen regulates neuronal circuits for reproduction and sex behavior in vertebrates in general, we generated a transgenic (Tg) medaka that expresses enhanced green fluorescent protein (EGFP) specifically in esr1-expressing neurons (esr1 neurons) and analyzed their axonal projections. We found that esr1 neurons in the preoptic area (POA) project to the gnrh1 neurons. We also demonstrated by transcriptome and histological analyses that these esr1 neurons are glutamatergic or γ-aminobutyric acidergic (GABAergic) but not kisspeptinergic. We therefore suggest that glutamatergic and GABAergic esr1 neurons in the POA regulate gnrh1 neurons. This hypothesis is consistent with previous studies in mice that found that glutamatergic and GABAergic transmission is critical for estrogen-dependent changes in GnRH1 neuron firing. Thus, we propose that this neuronal circuit may provide an evolutionarily conserved mechanism for regulation of reproduction. In addition, we showed that telencephalic esr1 neurons project to medulla, which may control sexual behavior. Moreover, we found that some POA-esr1 neurons coexpress progesterone receptors. These neurons may form the neuronal circuits that regulate reproduction and sex behavior in response to the serum estrogen/progesterone.
Collapse
Affiliation(s)
- Buntaro Zempo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Physiology, Division of Life Sciences, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Tomomi Karigo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, California
| | - Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhisa Akazome
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Wang L, Burger LL, Greenwald-Yarnell ML, Myers MG, Moenter SM. Glutamatergic Transmission to Hypothalamic Kisspeptin Neurons Is Differentially Regulated by Estradiol through Estrogen Receptor α in Adult Female Mice. J Neurosci 2018; 38:1061-1072. [PMID: 29114074 PMCID: PMC5792470 DOI: 10.1523/jneurosci.2428-17.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 01/20/2023] Open
Abstract
Estradiol feedback regulates gonadotropin-releasing hormone (GnRH) neurons and subsequent luteinizing hormone (LH) release. Estradiol acts via estrogen receptor α (ERα)-expressing afferents of GnRH neurons, including kisspeptin neurons in the anteroventral periventricular (AVPV) and arcuate nuclei, providing homeostatic feedback on episodic GnRH/LH release as well as positive feedback to control ovulation. Ionotropic glutamate receptors are important for estradiol feedback, but it is not known where they fit in the circuitry. Estradiol-negative feedback decreased glutamatergic transmission to AVPV and increased it to arcuate kisspeptin neurons; positive feedback had the opposite effect. Deletion of ERα in kisspeptin cells decreased glutamate transmission to AVPV neurons and markedly increased it to arcuate kisspeptin neurons, which also exhibited increased spontaneous firing rate. KERKO mice had increased LH pulse frequency, indicating loss of negative feedback. These observations indicate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and neuroendocrine output by estradiol.SIGNIFICANCE STATEMENT The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Ovarian estradiol regulates the pattern of GnRH (negative feedback) and initiates a surge of release that triggers ovulation (positive feedback). GnRH neurons do not express the estrogen receptor needed for feedback (estrogen receptor α [ERα]); kisspeptin neurons in the arcuate and anteroventral periventricular nuclei are postulated to mediate negative and positive feedback, respectively. Here we extend the network through which feedback is mediated by demonstrating that glutamatergic transmission to these kisspeptin populations is differentially regulated during the reproductive cycle and by estradiol. Electrophysiological and in vivo hormone profile experiments on kisspeptin-specific ERα knock-out mice demonstrate that ERα in kisspeptin cells is required for appropriate differential regulation of these neurons and for neuroendocrine output.
Collapse
Affiliation(s)
- Luhong Wang
- Departments of Molecular and Integrative Physiology
| | | | | | - Martin G Myers
- Departments of Molecular and Integrative Physiology
- Internal Medicine
- Michigan Diabetes Research & Training Center, University of Michigan, Ann Arbor, Michigan 48109
| | - Suzanne M Moenter
- Departments of Molecular and Integrative Physiology,
- Obstetrics and Gynecology
- Internal Medicine
| |
Collapse
|
14
|
Phumsatitpong C, Moenter SM. Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice. Endocrinology 2018; 159:414-425. [PMID: 29069304 PMCID: PMC5761586 DOI: 10.1210/en.2017-00747] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/17/2017] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons.
Collapse
Affiliation(s)
- Chayarndorn Phumsatitpong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Suzanne M. Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
15
|
Dynamics of GnRH Neuron Ionotropic GABA and Glutamate Synaptic Receptors Are Unchanged during Estrogen Positive and Negative Feedback in Female Mice. eNeuro 2017; 4:eN-FTR-0259-17. [PMID: 29109970 PMCID: PMC5672547 DOI: 10.1523/eneuro.0259-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/22/2017] [Indexed: 11/21/2022] Open
Abstract
Inputs from GABAergic and glutamatergic neurons are suspected to play an important role in regulating the activity of the gonadotropin-releasing hormone (GnRH) neurons. The GnRH neurons exhibit marked plasticity to control the ovarian cycle with circulating estradiol concentrations having profound "feedback" effects on their activity. This includes "negative feedback" responsible for suppressing GnRH neuron activity and "positive feedback" that occurs at mid-cycle to activate the GnRH neurons to generate the preovulatory luteinizing hormone surge. In the present study, we employed brain slice electrophysiology to question whether synaptic ionotropic GABA and glutamate receptor signaling at the GnRH neuron changed at times of negative and positive feedback. We used a well characterized estradiol (E)-treated ovariectomized (OVX) mouse model to replicate negative and positive feedback. Miniature and spontaneous postsynaptic currents (mPSCs and sPSCs) attributable to GABAA and glutamatergic receptor signaling were recorded from GnRH neurons obtained from intact diestrous, OVX, OVX + E (negative feedback), and OVX + E+E (positive feedback) female mice. Approximately 90% of GnRH neurons exhibited spontaneous GABAA-mPSCs in all groups but no significant differences in the frequency or kinetics of mPSCs were found at the times of negative or positive feedback. Approximately 50% of GnRH neurons exhibited spontaneous glutamate mPSCs but again no differences were detected. The same was true for spontaneous PSCs in all cases. These observations indicate that the kinetics of ionotropic GABA and glutamate receptor synaptic transmission to GnRH neurons remain stable across the different estrogen feedback states.
Collapse
|
16
|
Lippincott MF, Chan YM, Rivera Morales D, Seminara SB. Continuous Kisspeptin Administration in Postmenopausal Women: Impact of Estradiol on Luteinizing Hormone Secretion. J Clin Endocrinol Metab 2017; 102:2091-2099. [PMID: 28368443 PMCID: PMC5470760 DOI: 10.1210/jc.2016-3952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022]
Abstract
CONTEXT Kisspeptin stimulates the reproductive endocrine cascade in both men and women. Circulating sex steroids are thought to modulate the ability of kisspeptin to stimulate gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) release. OBJECTIVE To probe the effects of sex steroids on kisspeptin-stimulated GnRH-induced LH pulses. PARTICIPANTS Eight healthy postmenopausal women. INTERVENTION Subjects underwent every-10-minute blood sampling to measure GnRH-induced LH secretion at baseline and in response to a continuous kisspeptin infusion (12.5 µg/kg/h) over 24 hours. A subset of the participants also received kisspeptin (0.313 µg/kg) and GnRH (75 ng/kg) intravenous boluses. RESULTS Postmenopausal women are resistant to the stimulatory effect of continuous kisspeptin on LH secretion. Postmenopausal women receiving estradiol replacement therapy are also resistant to kisspeptin initially, but they demonstrate a significant increase in LH pulse amplitude in direct proportion to the circulating estradiol concentration and duration of kisspeptin administration. CONCLUSIONS Kisspeptin administration has complex effects on GnRH, and by extension, on LH secretion. The ability of kisspeptin to affect LH secretion can be modulated by the ambient sex-steroid milieu in a time- and dose-dependent manner.
Collapse
Affiliation(s)
- Margaret F. Lippincott
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Yee-Ming Chan
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts 02115
| | - Dianali Rivera Morales
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Stephanie B. Seminara
- Harvard Reproductive Sciences Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114
| |
Collapse
|
17
|
Expression of ESR1 in Glutamatergic and GABAergic Neurons Is Essential for Normal Puberty Onset, Estrogen Feedback, and Fertility in Female Mice. J Neurosci 2016; 35:14533-43. [PMID: 26511244 DOI: 10.1523/jneurosci.1776-15.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1(lox/lox) line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1(lox/lox) mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1(lox/lox) mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1(lox/lox) mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse.
Collapse
|
18
|
Vastagh C, Rodolosse A, Solymosi N, Farkas I, Auer H, Sárvári M, Liposits Z. Differential Gene Expression in Gonadotropin-Releasing Hormone Neurons of Male and Metestrous Female Mice. Neuroendocrinology 2015; 102:44-59. [PMID: 25925152 DOI: 10.1159/000430818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Gonadotropin-releasing hormone (GnRH) neurons play a pivotal role in the regulation of the hypothalamic-pituitary gonadal axis in a sex-specific manner. We hypothesized that the differences seen in reproductive functions of males and females are associated with a sexually dimorphic gene expression profile of GnRH neurons. METHODS AND RESULTS We compared the transcriptome of GnRH neurons obtained from intact metestrous female and male GnRH-green fluorescent protein transgenic mice. About 1,500 individual GnRH neurons from each sex were sampled with laser capture microdissection followed by whole-transcriptome amplification for gene expression profiling. Under stringent selection criteria (fold change >1.6, adjusted p value 0.01), Affymetrix Mouse Genome 430 PM array analysis identified 543 differentially expressed genes. Sexual dimorphism was most apparent in gene clusters associated with synaptic communication, signal transduction, cell adhesion, vesicular transport and cell metabolism. To validate microarray results, 57 genes were selected, and 91% of their differential expression was confirmed by real-time PCR. Similarly, 88% of microarray results were confirmed with PCR from independent samples obtained by patch pipette harvesting and pooling of 30 GnRH neurons from each sex. We found significant differences in the expression of genes involved in vesicle priming and docking (Syt1, Cplx1), GABAergic (Gabra3, Gabrb3, Gabrg2) and glutamatergic (Gria1, Grin1, Slc17a6) neurotransmission, peptide signaling (Sstr3, Npr2, Cxcr4) and the regulation of intracellular ion homeostasis (Cacna1, Cacnb1, Cacng5, Kcnq2, Kcnc1). CONCLUSION The striking sexual dimorphism of the GnRH neuron transcriptome we report here contributes to a better understanding of the differences in cellular mechanisms of GnRH neurons in the two sexes.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
19
|
Hill M, Dušková M, Stárka L. Dehydroepiandrosterone, its metabolites and ion channels. J Steroid Biochem Mol Biol 2015; 145:293-314. [PMID: 24846830 DOI: 10.1016/j.jsbmb.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/06/2014] [Accepted: 05/11/2014] [Indexed: 11/20/2022]
Abstract
This review is focused on the physiological and pathophysiological relevance of steroids influencing the activities of the central and peripheral nervous systems with regard to their concentrations in body fluids and tissues in various stages of human life like the fetal development or pregnancy. The data summarized in this review shows that DHEA and its unconjugated and sulfated metabolites are physiologically and pathophysiologically relevant in modulating numerous ion channels and participate in vital functions of the human organism. DHEA and its unconjugated and sulfated metabolites including 5α/β-reduced androstane steroids participate in various physiological and pathophysiological processes like the management of GnRH cyclic release, regulation of glandular and neurotransmitter secretions, maintenance of glucose homeostasis on one hand and insulin insensitivity on the other hand, control of skeletal muscle and smooth muscle activities including vasoregulation, promotion of tolerance to ischemia and other neuroprotective effects. In respect of prevalence of steroid sulfates over unconjugated steroids in the periphery and the opposite situation in the CNS, the sulfated androgens and androgen metabolites reach relevance in peripheral organs. The unconjugated androgens and estrogens are relevant in periphery and so much the more in the CNS due to higher concentrations of most unconjugated steroids in the CNS tissues than in circulation and peripheral organs. This article is part of a Special Issue entitled "Essential role of DHEA".
Collapse
Affiliation(s)
- M Hill
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - M Dušková
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| | - L Stárka
- Steroid Hormone Unit, Institute of Endocrinology, Národní třída 8, Prague 116 94, Praha 1, CZ 116 94, Czech Republic.
| |
Collapse
|
20
|
Karigo T, Oka Y. Neurobiological study of fish brains gives insights into the nature of gonadotropin-releasing hormone 1-3 neurons. Front Endocrinol (Lausanne) 2013; 4:177. [PMID: 24312079 PMCID: PMC3832842 DOI: 10.3389/fendo.2013.00177] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/31/2013] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence suggests that up to three different molecular species of GnRH peptides encoded by different paralogs of gnrh genes are expressed by anatomically distinct groups of GnRH neurons in the brain of one vertebrate species. They are called gnrh1, gnrh2, and gnrh3. Recent evidence from molecular, anatomical, and physiological experiments strongly suggests that each GnRH system functions differently. Here, we review recent advancement in the functional studies of the three different GnRH neuron systems, mainly focusing on the electrophysiological analysis of the GnRH-green fluorescent protein (GFP) transgenic animals. The introduction of GFP-transgenic animals for the electrophysiological analysis of GnRH neurons greatly advanced our knowledge on their anatomy and electrophysiology, especially of gnrh1 neurons, which has long defied detailed electrophysiological analysis of single neurons because of their small size and scattered distribution. Based on the results of recent studies, we propose that different electrophysiological properties, especially the spontaneous patterns of electrical activities and their time-dependent changes, and the axonal projections characterize the different functions of GnRH1-3 neurons; GnRH1 neurons act as hypophysiotropic neuroendocrine regulators, and GnRH2 and GnRH3 neurons act as neuromodulators in wide areas of the brain.
Collapse
Affiliation(s)
- Tomomi Karigo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Oka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- *Correspondence: Yoshitaka Oka, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan e-mail:
| |
Collapse
|
21
|
In vivo recordings of GnRH neuron firing reveal heterogeneity and dependence upon GABAA receptor signaling. J Neurosci 2013; 33:9394-401. [PMID: 23719807 DOI: 10.1523/jneurosci.0533-13.2013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The gonadotropin-releasing hormone (GnRH) neurons are the key cells regulating fertility in all mammalian species. The scattered distribution of these neurons has made investigation of their properties extremely difficult and the key goal of recording their electrical activity in vivo near impossible. The caudal-most extension of the GnRH neuron continuum brings some cells very close to the base of the brain at the level of the anterior hypothalamic area. Taking insight from this, we developed an experimental procedure in anesthetized GnRH-GFP mice that allows the electrical activity of these GnRH neurons to be recorded in vivo. On-cell recordings revealed that the majority of GnRH neurons (86%) were spontaneously active, exhibiting a range of firing patterns, although only a minority (15%) exhibited burst firing. Mean firing frequencies ranged from 0.06 to 3.65 Hz, with the most common interspike interval being ~500 ms. All GnRH neurons tested were activated by AMPA and kisspeptin. Whereas the GABAA receptor agonist muscimol evoked excitatory, inhibitory, or mixed effects on GnRH neuron firing, the GABAA receptor antagonist picrotoxin resulted in a consistent suppression of firing. These observations represent the first electrical recordings of GnRH neurons in vivo. They reveal that GnRH neurons in vivo exhibit considerable heterogeneity in their firing patterns with both similarities and differences to firing in vitro. These variable patterns of firing in vivo are found to be critically dependent upon ongoing GABAA receptor signaling.
Collapse
|
22
|
Lomniczi A, Loche A, Castellano JM, Ronnekleiv OK, Bosch M, Kaidar G, Knoll JG, Wright H, Pfeifer GP, Ojeda SR. Epigenetic control of female puberty. Nat Neurosci 2013; 16:281-9. [PMID: 23354331 PMCID: PMC3581714 DOI: 10.1038/nn.3319] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/26/2012] [Indexed: 12/11/2022]
Abstract
The timing of puberty is controlled by many genes. The elements coordinating this process have not, however, been identified. Here we show that an epigenetic mechanism of transcriptional repression times the initiation of female puberty in rats. We identify silencers of the Polycomb group (PcG) as principal contributors to this mechanism and show that PcG proteins repress Kiss1, a puberty-activating gene. Hypothalamic expression of two key PcG genes, Eed and Cbx7, decreased and methylation of their promoters increased before puberty. Inhibiting DNA methylation blocked both events and resulted in pubertal failure. The pubertal increase in Kiss1 expression was accompanied by EED loss from the Kiss1 promoter and enrichment of histone H3 modifications associated with gene activation. Preventing the eviction of EED from the Kiss1 promoter disrupted pulsatile gonadotropin-releasing hormone release, delayed puberty and compromised fecundity. Our results identify epigenetic silencing as a mechanism underlying the neuroendocrine control of female puberty.
Collapse
Affiliation(s)
- Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gaskins GT, Moenter SM. Orexin a suppresses gonadotropin-releasing hormone (GnRH) neuron activity in the mouse. Endocrinology 2012; 153:3850-60. [PMID: 22673226 PMCID: PMC3404355 DOI: 10.1210/en.2012-1300] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH neurons are critical for the central regulation of fertility, integrating steroidal, metabolic and other cues. GnRH neurons appear to lack receptors for many of these cues, suggesting involvement of afferent systems to convey information. Orexin A (orexin) is of interest in this regard as a neuromodulator that up-regulates metabolic activity, increases wakefulness, and affects GnRH/LH release. We examined the electrophysiological response of GnRH neurons to orexin application and how this response changes with estradiol and time of day in a defined animal model. Mice were either ovariectomized (OVX) or OVX and implanted with estradiol capsules (OVX+E). GnRH neurons from OVX+E mice exhibit low firing rates in the morning, due to estradiol-negative feedback, and high firing rates in the evening, due to positive feedback. Orexin inhibited activity of GnRH neurons from OVX mice independent of time of day. In GnRH neurons from OVX+E mice, orexin was inhibitory during the evening, suggesting orexin inhibition is not altered by estradiol. No effect of orexin was observed in OVX+E morning recordings, due to low basal GnRH activity. Inhibitory effects of orexin were mediated by the type 1 orexin receptor, but antagonism of this receptor did not increase GnRH neuron activity during estradiol-negative feedback. Spike pattern analysis revealed orexin increases interevent interval by reducing the number of single spikes and bursts. Orexin reduced spikes/burst and burst duration but did not affect intraburst interval. This suggests orexin may reduce overall firing rate by suppressing spike initiation and burst maintenance in GnRH neurons.
Collapse
Affiliation(s)
- Garrett T Gaskins
- Department of Molecular and Integrative Physiology, University of Michigan, 7725 Medical Science II, 1137 East Catherine Street, Ann Arbor Michigan 48109-5622, USA
| | | |
Collapse
|
24
|
Hrabovszky E, Molnár CS, Nagy R, Vida B, Borsay BÁ, Rácz K, Herczeg L, Watanabe M, Kalló I, Liposits Z. Glutamatergic and GABAergic innervation of human gonadotropin-releasing hormone-I neurons. Endocrinology 2012; 153:2766-76. [PMID: 22510271 DOI: 10.1210/en.2011-2106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Amino acid (aa) neurotransmitters in synaptic afferents to hypothalamic GnRH-I neurons are critically involved in the neuroendocrine control of reproduction. Although in rodents the major aa neurotransmitter in these afferents is γ-aminobutyric acid (GABA), glutamatergic axons also innervate GnRH neurons directly. Our aim with the present study was to address the relative contribution of GABAergic and glutamatergic axons to the afferent control of human GnRH neurons. Formalin-fixed hypothalamic samples were obtained from adult male individuals (n = 8) at autopsies, and their coronal sections processed for dual-label immunohistochemical studies. GABAergic axons were labeled with vesicular inhibitory aa transporter antibodies, whereas glutamatergic axons were detected with antisera against the major vesicular glutamate transporter (VGLUT) isoforms, VGLUT1 and VGLUT2. The relative incidences of GABAergic and glutamatergic axonal appositions to GnRH-immunoreactive neurons were compared quantitatively in two regions, the infundibular and paraventricular nuclei. Results showed that GABAergic axons established the most frequently encountered type of axo-somatic apposition. Glutamatergic contacts occurred in significantly lower numbers, with similar contributions by their VGLUT1 and VGLUT2 subclasses. The innervation pattern was different on GnRH dendrites where the combined incidence of glutamatergic (VGLUT1 + VGLUT2) contacts slightly exceeded that of the GABAergic appositions. We conclude that GABA represents the major aa neurotransmitter in axo-somatic afferents to human GnRH neurons, whereas glutamatergic inputs occur somewhat more frequently than GABAergic inputs on GnRH dendrites. Unlike in rats, the GnRH system of the human receives innervation from the VGLUT1, in addition to the VGLUT2, subclass of glutamatergic neurons.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Williams WP, Kriegsfeld LJ. Circadian control of neuroendocrine circuits regulating female reproductive function. Front Endocrinol (Lausanne) 2012; 3:60. [PMID: 22661968 PMCID: PMC3356853 DOI: 10.3389/fendo.2012.00060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 04/13/2012] [Indexed: 01/14/2023] Open
Abstract
Female reproduction requires the precise temporal organization of interacting, estradiol-sensitive neural circuits that converge to optimally drive hypothalamo-pituitary-gonadal (HPG) axis functioning. In mammals, the master circadian pacemaker in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus coordinates reproductively relevant neuroendocrine events necessary to maximize reproductive success. Likewise, in species where periods of fertility are brief, circadian oversight of reproductive function ensures that estradiol-dependent increases in sexual motivation coincide with ovulation. Across species, including humans, disruptions to circadian timing (e.g., through rotating shift work, night shift work, poor sleep hygiene) lead to pronounced deficits in ovulation and fecundity. Despite the well-established roles for the circadian system in female reproductive functioning, the specific neural circuits and neurochemical mediators underlying these interactions are not fully understood. Most work to date has focused on the direct and indirect communication from the SCN to the gonadotropin-releasing hormone (GnRH) system in control of the preovulatory luteinizing hormone (LH) surge. However, the same clock genes underlying circadian rhythms at the cellular level in SCN cells are also common to target cell populations of the SCN, including the GnRH neuronal network. Exploring the means by which the master clock synergizes with subordinate clocks in GnRH cells and its upstream modulatory systems represents an exciting opportunity to further understand the role of endogenous timing systems in female reproduction. Herein we provide an overview of the state of knowledge regarding interactions between the circadian timing system and estradiol-sensitive neural circuits driving GnRH secretion and the preovulatory LH surge.
Collapse
Affiliation(s)
- Wilbur P. Williams
- Department of Psychology, Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA
| | - Lance J. Kriegsfeld
- Department of Psychology, Helen Wills Neuroscience Institute, University of CaliforniaBerkeley, CA, USA
- *Correspondence: Lance J. Kriegsfeld, Neurobiology Laboratory, Department of Psychology, Helen Wills Neuroscience Institute, University of California, 3210 Tolman Hall, #1650, Berkeley, CA 94720-1650, USA. e-mail:
| |
Collapse
|
26
|
Abstract
That oestradiol can have both negative- and positive-feedback actions upon the release of gonadotrophin-releasing hormone (GnRH) has been understood for decades. The vast majority of studies have investigated the effects of in vivo oestrogen administration. In the past decade, evidence has accumulated in many neuronal and non-neuronal systems indicating that, in addition to traditional genomic action via transcription factor receptors, steroids can also initiate effects rapidly via signalling cascades typically associated with the cell membrane. Here, we review work examining the rapid actions of oestradiol on GnRH neurones, addressing the questions of dose dependence, receptor subtypes, signalling cascades and intrinsic and synaptic properties that are rapidly modulated by this steroid.
Collapse
Affiliation(s)
- S M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
27
|
Constantin S, Jasoni C, Romanò N, Lee K, Herbison AE. Understanding calcium homeostasis in postnatal gonadotropin-releasing hormone neurons using cell-specific Pericam transgenics. Cell Calcium 2011; 51:267-76. [PMID: 22177387 DOI: 10.1016/j.ceca.2011.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/07/2011] [Accepted: 11/17/2011] [Indexed: 12/11/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) neurons are the key output cells of a complex neuronal network controlling fertility in mammals. To examine calcium homeostasis in postnatal GnRH neurons, we generated a transgenic mouse line in which the genetically encodable calcium indicator ratiometric Pericam (rPericam) was targeted to the GnRH neurons. This mouse model enabled real-time imaging of calcium concentrations in GnRH neurons in the acute brain slice preparation. Investigations in GnRH-rPericam mice revealed that GnRH neurons exhibited spontaneous, long-duration (~8s) calcium transients. Dual electrical-calcium recordings revealed that the calcium transients were correlated perfectly with burst firing in GnRH neurons and that calcium transients in GnRH neurons regulated two calcium-activated potassium channels that, in turn, determined burst firing dynamics in these cells. Curiously, the occurrence of calcium transients in GnRH neurons across puberty or through the estrous cycle did not correlate well with the assumption that GnRH neuron burst firing was contributory to changing patterns of pulsatile GnRH release at these times. The GnRH-rPericam mouse was also valuable in determining differential mechanisms of GABA and glutamate control of calcium levels in GnRH neurons as well as effects of G-protein-coupled receptors for GnRH and kisspeptin. The simultaneous measurement of calcium levels in multiple GnRH neurons was hampered by variable rPericam fluorescence in different GnRH neurons. Nevertheless, in the multiple recordings that were achieved no evidence was found for synchronous calcium transients. Together, these observations show the great utility of transgenic targeting strategies for investigating the roles of calcium with specified neuronal cell types.
Collapse
Affiliation(s)
- Stéphanie Constantin
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
28
|
Chan H, Prescott M, Ong Z, Herde MK, Herbison AE, Campbell RE. Dendritic spine plasticity in gonadatropin-releasing hormone (GnRH) neurons activated at the time of the preovulatory surge. Endocrinology 2011; 152:4906-14. [PMID: 21933865 DOI: 10.1210/en.2011-1522] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GnRH neuron activity is dependent on gonadal steroid hormone feedback. Altered synaptic input may be one mechanism by which steroids modify GnRH neuron activity. In other neuronal populations, steroid hormones have been shown to elicit profound effects on dendritic spine density, a measure of excitatory synaptic input. The present study examined gonadal steroid feedback effects on GnRH neuron spine density in female GnRH-green fluorescent protein (GFP) mice. Immunocytochemical labeling of GFP in this model reveals fine morphological details of GnRH neurons. Spine density and other features were quantified by confocal analysis. Ovariectomy resulted in a significant reduction in somatic spine density (27%, P < 0.05) compared with sham-operated diestrous females. However, dendritic spine density was unaltered. Positive feedback effects of estradiol on spine density were investigated using a protocol to mimic the GnRH/LH surge. Ten GnRH-GFP mice underwent an established protocol, receiving either estradiol benzoate (1 μg per 20 g body weight) or vehicle (n = 5/group) 32 h prior to being killed during the expected surge. Double-label immunofluorescence showed that all estradiol-treated females expressed cFos in a subpopulation of GnRH neurons. Spine density was determined by confocal analysis of activated (cFos-positive, n = 10 neurons/animal) and nonactivated (cFos-negative, n = 10 neurons/animal) GnRH neurons from estradiol-treated animals and for GnRH neurons (n = 20 neurons/animal) from nonsurged controls (all cFos negative). Activated GnRH neurons (cFos positive) showed a dramatic 60% increase in total spine density (0.78 ± 0.06 spines/μm) compared with nonactivated GnRH neurons (0.50 ± 0.01 spines/μm) in estradiol-treated animals (P < 0.001). Both somatic and dendritic spine density was significantly increased. Spine density was not different between nonactivated GnRH neurons from surged animals (0.50 ± 0.01 spines/μm) and GnRH neurons from nonsurged animals (0.51 ± 0.06 spines/μm). These data demonstrate that positive feedback levels of estradiol stimulate a robust increase in spine density specifically in those GnRH neurons that are activated at the time of the GnRH/LH surge.
Collapse
Affiliation(s)
- Heidi Chan
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
29
|
Pielecka-Fortuna J, DeFazio RA, Moenter SM. Voltage-gated potassium currents are targets of diurnal changes in estradiol feedback regulation and kisspeptin action on gonadotropin-releasing hormone neurons in mice. Biol Reprod 2011; 85:987-95. [PMID: 21778142 DOI: 10.1095/biolreprod.111.093492] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Estradiol has both negative and positive feedback actions upon gonadotropin-releasing hormone (GnRH) release; the latter actions trigger the preovulatory GnRH surge. Although neurobiological mechanisms of the transitions between feedback modes are becoming better understood, the roles of voltage-gated potassium currents, major contributors to neuronal excitability, are unknown. Estradiol alters two components of potassium currents in these cells: a transient current, I(A), and a sustained current, I(K). Kisspeptin is a potential mediator between estradiol and GnRH neurons and can act directly on GnRH neurons. We examined how estradiol, time of day, and kisspeptin interact to regulate these conductances in a mouse model exhibiting daily switches between estradiol negative (morning) and positive feedback (evening). Whole-cell voltage clamp recordings were made from GnRH neurons in brain slices from ovariectomized (OVX) mice and from OVX mice treated with estradiol (OVX+E). There were no diurnal changes in either I(A) or I(K) in GnRH neurons from OVX mice. In contrast, in GnRH neurons from OVX+E mice, I(A) and I(K) were greater during the morning when GnRH neuron activity is low and smaller in the evening when GnRH neuron activity is high. Estradiol increased I(A) in the morning and decreased it in the evening, relative to that in cells from OVX mice. Exogenously applied kisspeptin reduced I(A) regardless of time of day or estradiol status. Estradiol, interacting with time of day, and kisspeptin both depolarized I(A) activation. These findings extend our understanding of both the neurobiological mechanisms of estradiol negative vs. positive regulation of GnRH neurons and of kisspeptin action on these cells.
Collapse
|
30
|
Herbison AE, Moenter SM. Depolarising and hyperpolarising actions of GABA(A) receptor activation on gonadotrophin-releasing hormone neurones: towards an emerging consensus. J Neuroendocrinol 2011; 23:557-69. [PMID: 21518033 PMCID: PMC3518440 DOI: 10.1111/j.1365-2826.2011.02145.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gonadotrophin-releasing hormone (GnRH) neurones represent the final output neurones of a complex neuronal network that controls fertility. It is now appreciated that GABAergic neurones within this network provide an important regulatory influence on GnRH neurones. However, the consequences of direct GABA(A) receptor activation on adult GnRH neurones have been controversial for nearly a decade now, with both hyperpolarising and depolarising effects being reported. This review provides: (i) an overview of GABA(A) receptor function and its investigation using electrophysiological approaches and (ii) re-examines the past and present results relating to GABAergic regulation of the GnRH neurone, with a focus on mouse brain slice data. Although it remains difficult to reconcile the results of the early studies, there is a growing consensus that GABA can act through the GABA(A) receptor to exert both depolarising and hyperpolarising effects on GnRH neurones. The most recent studies examining the effects of endogenous GABA release on GnRH neurones indicate that the predominant action is that of excitation. However, we are still far from a complete understanding of the effects of GABA(A) receptor activation upon GnRH neurones. We argue that this will require not only a better understanding of chloride ion homeostasis in individual GnRH neurones, and within subcellular compartments of the GnRH neurone, but also a more integrative view of how multiple neurotransmitters, neuromodulators and intrinsic conductances act together to regulate the activity of these important cells.
Collapse
Affiliation(s)
- A E Herbison
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand.
| | | |
Collapse
|
31
|
Frequency-dependent recruitment of fast amino acid and slow neuropeptide neurotransmitter release controls gonadotropin-releasing hormone neuron excitability. J Neurosci 2011; 31:2421-30. [PMID: 21325509 DOI: 10.1523/jneurosci.5759-10.2011] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anteroventral periventricular nucleus (AVPV) is thought to play a key role in regulating the excitability of gonadotropin-releasing hormone (GnRH) neurons that control fertility. Using an angled, parahorizontal brain slice preparation we have undertaken a series of electrophysiological experiments to examine how the AVPV controls GnRH neurons in adult male and female mice. More than half (59%) of GnRH neurons located in the rostral preoptic area were found to receive monosynaptic inputs from the AVPV in a sex-dependent manner. AVPV stimulation frequencies <1 Hz generated short-latency action potentials in GnRH neurons with GABA and glutamate mediating >90% of the evoked fast synaptic currents. The AVPV GABA input was dominant and found to excite or inhibit GnRH neurons in a cell-dependent manner. Increasing the AVPV stimulation frequency to 5-10 Hz resulted in the appearance of additional poststimulus inhibitory as well as delayed excitatory responses in GnRH neurons that were independent of ionotropic amino acid receptors. The inhibition observed immediately following the end of the stimulation period was mediated partly by GABA(B) receptors, while the delayed activation was mediated by the neuropeptide kisspeptin. The latter response was essentially absent in Gpr54 knock-out mice and abolished by a Gpr54 antagonist. Together, these studies show that AVPV neurons provide direct amino acid and neuropeptidergic inputs to GnRH neurons. Low-frequency activation generates predominant GABA/glutamate release with higher frequency activation recruiting release of kisspeptin. This frequency-dependent release of amino acid and neuropeptide neurotransmitters greatly expands the range of AVPV control of GnRH neuron excitability.
Collapse
|
32
|
Williams WP, Jarjisian SG, Mikkelsen JD, Kriegsfeld LJ. Circadian control of kisspeptin and a gated GnRH response mediate the preovulatory luteinizing hormone surge. Endocrinology 2011; 152:595-606. [PMID: 21190958 PMCID: PMC3037169 DOI: 10.1210/en.2010-0943] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In spontaneously ovulating rodents, the preovulatory LH surge is initiated on the day of proestrus by a timed, stimulatory signal originating from the circadian clock in the suprachiasmatic nucleus (SCN). The present studies explored whether kisspeptin is part of the essential neural circuit linking the SCN to the GnRH system to stimulate ovulation in Syrian hamsters (Mesocricetus auratus). Kisspeptin neurons exhibit an estrogen-dependent, daily pattern of cellular activity consistent with a role in the circadian control of the LH surge. The SCN targets kisspeptin neurons via vasopressinergic (AVP), but not vasoactive intestinal polypeptide-ergic, projections. Because AVP administration can only stimulate the LH surge during a restricted time of day, we examined the possibility that the response to AVP is gated at the level of kisspeptin and/or GnRH neurons. Kisspeptin and GnRH activation were assessed after the administration of AVP during the morning (when AVP is incapable of initiating the LH surge) and the afternoon (when AVP injections stimulate the LH surge). Kisspeptin, but not GnRH, cellular activity was up-regulated after morning injections of AVP, suggesting that time-dependent sensitivity to SCN signaling is gated within GnRH but not kisspeptin neurons. In support of this possibility, we found that the GnRH system exhibits pronounced daily changes in sensitivity to kisspeptin stimulation, with maximal sensitivity in the afternoon. Together these studies reveal a novel mechanism of ovulatory control with interactions among the circadian system, kisspeptin signaling, and a GnRH gating mechanism of control.
Collapse
Affiliation(s)
- Wilbur P Williams
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720-1650, USA
| | | | | | | |
Collapse
|
33
|
Farkas I, Kalló I, Deli L, Vida B, Hrabovszky E, Fekete C, Moenter SM, Watanabe M, Liposits Z. Retrograde endocannabinoid signaling reduces GABAergic synaptic transmission to gonadotropin-releasing hormone neurons. Endocrinology 2010; 151:5818-29. [PMID: 20926585 PMCID: PMC3858799 DOI: 10.1210/en.2010-0638] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cannabinoids suppress fertility via reducing hypothalamic GnRH output. γ-Aminobutyric acid (GABA)(A) receptor (GABA(A)-R)-mediated transmission is a major input to GnRH cells that can be excitatory. We hypothesized that cannabinoids act via inhibiting GABAergic input. We performed loose-patch electrophysiological studies of acute slices from adult male GnRH-green fluorescent protein transgenic mice. Bath application of type 1 cannabinoid receptor (CB1) agonist WIN55,212 decreased GnRH neuron firing rate. This action was detectable in presence of the glutamate receptor antagonist kynurenic acid but disappeared when bicuculline was also present, indicating GABA(A)-R involvement. In immunocytochemical experiments, CB1-immunoreactive axons formed contacts with GnRH neurons and a subset established symmetric synapses characteristic of GABAergic neurotransmission. Functional studies were continued with whole-cell patch-clamp electrophysiology in presence of tetrodotoxin. WIN55,212 decreased the frequency of GABA(A)-R-mediated miniature postsynaptic currents (mPSCs) (reflecting spontaneous vesicle fusion), which was prevented with the CB1 antagonist AM251, indicating collectively that activation of presynaptic CB1 inhibits GABA release. AM251 alone increased mPSC frequency, providing evidence that endocannabinoids tonically inhibit GABA(A)-R drive onto GnRH neurons. Increased mPSC frequency was absent when diacylglycerol lipase was blocked intracellularly with tetrahydrolipstatin, showing that tonic inhibition is caused by 2-arachidonoylglycerol production of GnRH neurons. CdCl(2) in extracellular solution can maintain both action potentials and spontaneous vesicle fusion. Under these conditions, when endocannabinoid-mediated blockade of spontaneous vesicle fusion was blocked with AM251, GnRH neuron firing increased, revealing an endogenous endocannabinoid brake on GnRH neuron firing. Retrograde endocannabinoid signaling may represent an important mechanism under physiological and pathological conditions whereby GnRH neurons regulate their excitatory GABAergic inputs.
Collapse
Affiliation(s)
- Imre Farkas
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Moenter SM. Identified GnRH neuron electrophysiology: a decade of study. Brain Res 2010; 1364:10-24. [PMID: 20920482 DOI: 10.1016/j.brainres.2010.09.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 12/27/2022]
Abstract
Over the past decade, the existence of transgenic mouse models in which reporter genes are expressed under the control of the gonadotropin-releasing hormone (GnRH) promoter has made possible the electrophysiological study of these cells. Here, we review the intrinsic and synaptic properties of these cells that have been revealed by these approaches, with a particular regard to burst generation. Advances in our understanding of neuromodulation of GnRH neurons and synchronization of this network are also discussed.
Collapse
Affiliation(s)
- Suzanne M Moenter
- Department of Molecular and Integrative Physiology, 7725 Med Sci II, 1301 E Catherine St., Ann Arbor, MI 48109-5622, USA.
| |
Collapse
|
35
|
Iremonger KJ, Constantin S, Liu X, Herbison AE. Glutamate regulation of GnRH neuron excitability. Brain Res 2010; 1364:35-43. [PMID: 20807514 DOI: 10.1016/j.brainres.2010.08.071] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/18/2010] [Accepted: 08/21/2010] [Indexed: 11/28/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) neuronal network is the master controller of the reproductive axis. It is widely accepted that the amino acid transmitters GABA and glutamate play important roles in controlling GnRH neuron excitability. However, remarkably few studies have examined the functional role of direct glutamate regulation of GnRH neurons. Dual-labeling investigations have shown that GnRH neurons express receptor subunits required for AMPA, NMDA and kainate signaling in a heterogeneous manner. Electrophysiological and calcium imaging studies have confirmed this heterogeneity and shown that while the majority of adult GnRH neurons express AMPA/kainate receptors, only small sub-populations have functional NMDA or metabotropic glutamate receptors. Accumulating evidence suggests that one important role of direct glutamate signaling at GnRH neurons is for their activation at the time of puberty. Whereas in vivo studies have indicated the importance of NMDA signaling within the whole of the GnRH neuronal network, including afferent neurons and glia, investigations at the level of the GnRH neuron suggest that peripubertal changes in AMPA receptor expression may be dominant in the mouse. The sources of glutamatergic inputs to the GnRH neurons are only just beginning to be examined and include the anteroventral periventricular nucleus as well as the possibility that GnRH neurons may use glutamate as a neurotransmitter in recurrent collateral innervation. It is expected that a full understanding of the glutamatergic regulation of GnRH neurons will provide significant insight into the mechanisms underlying their control of reproductive function.
Collapse
Affiliation(s)
- Karl J Iremonger
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
36
|
Christian CA, Moenter SM. The neurobiology of preovulatory and estradiol-induced gonadotropin-releasing hormone surges. Endocr Rev 2010; 31:544-77. [PMID: 20237240 PMCID: PMC3365847 DOI: 10.1210/er.2009-0023] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 02/18/2010] [Indexed: 12/14/2022]
Abstract
Ovarian steroids normally exert homeostatic negative feedback on GnRH release. During sustained exposure to elevated estradiol in the late follicular phase of the reproductive cycle, however, the feedback action of estradiol switches to positive, inducing a surge of GnRH release from the brain, which signals the pituitary LH surge that triggers ovulation. In rodents, this switch appears dependent on a circadian signal that times the surge to a specific time of day (e.g., late afternoon in nocturnal species). Although the precise nature of this daily signal and the mechanism of the switch from negative to positive feedback have remained elusive, work in the past decade has provided much insight into the role of circadian/diurnal and estradiol-dependent signals in GnRH/LH surge regulation and timing. Here we review the current knowledge of the neurobiology of the GnRH surge, in particular the actions of estradiol on GnRH neurons and their synaptic afferents, the regulation of GnRH neurons by fast synaptic transmission mediated by the neurotransmitters gamma-aminobutyric acid and glutamate, and the host of excitatory and inhibitory neuromodulators including kisspeptin, vasoactive intestinal polypeptide, catecholamines, neurokinin B, and RFamide-related peptides, that appear essential for GnRH surge regulation, and ultimately ovulation and fertility.
Collapse
Affiliation(s)
- Catherine A Christian
- Departments of Medicine and Cell Biology, University of Virginia, Charlottesville, 22908, USA.
| | | |
Collapse
|
37
|
Diurnal in vivo and rapid in vitro effects of estradiol on voltage-gated calcium channels in gonadotropin-releasing hormone neurons. J Neurosci 2010; 30:3912-23. [PMID: 20237262 DOI: 10.1523/jneurosci.6256-09.2010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A robust surge of gonadotropin-releasing hormone (GnRH) release triggers the luteinizing hormone surge that induces ovulation. The GnRH surge is attributable to estradiol feedback, but the mechanisms are incompletely understood. Voltage-gated calcium channels (VGCCs) regulate hormone release and neuronal excitability, and may be part of the surge-generating mechanism. We examined VGCCs of GnRH neurons in brain slices from a model exhibiting daily luteinizing hormone surges. Mice were ovariectomized (OVX), and a subset was treated with estradiol implants (OVX+E). OVX+E mice exhibit negative feedback in the A.M. and positive feedback in the P.M. GnRH neurons express prominent high-voltage-activated (HVA) and small low-voltage-activated (LVA) macroscopic (whole-cell) Ca currents (I(Ca)). LVA-mediated currents were not altered by estradiol or time of day. In contrast, in OVX+E mice, HVA-mediated currents varied with time of day; HVA currents in cells from OVX+E mice were lower than those in cells from OVX mice in the A.M. but were higher in the P.M. These changes were attributable to diurnal alternations in L- and N-type components. There were no diurnal changes in any aspect of HVA-mediated I(Ca) in OVX mice. Acute in vitro treatment of cells from OVX and OVX+E mice with estradiol rapidly increased HVA currents primarily through L- and R-type VGCCs by activating estrogen receptor beta and GPR30, respectively. These results suggest multiple mechanisms contribute to the overall feedback regulation of HVA-mediated I(Ca) by estradiol. In combination with changes in synaptic inputs to GnRH neurons, these intrinsic changes in GnRH neurons may play critical roles in estradiol feedback.
Collapse
|
38
|
Maranghi F, Tassinari R, Marcoccia D, Altieri I, Catone T, De Angelis G, Testai E, Mastrangelo S, Evandri MG, Bolle P, Lorenzetti S. The food contaminant semicarbazide acts as an endocrine disrupter: Evidence from an integrated in vivo/in vitro approach. Chem Biol Interact 2010; 183:40-8. [DOI: 10.1016/j.cbi.2009.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
39
|
Pielecka-Fortuna J, Moenter SM. Kisspeptin increases gamma-aminobutyric acidergic and glutamatergic transmission directly to gonadotropin-releasing hormone neurons in an estradiol-dependent manner. Endocrinology 2010; 151:291-300. [PMID: 19880809 PMCID: PMC2803153 DOI: 10.1210/en.2009-0692] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH neurons are the final central pathway controlling fertility. Kisspeptin potently activates GnRH release via G protein-coupled receptor 54 (GPR54). GnRH neurons express GPR54, and kisspeptin can act directly; however, GPR54 is broadly expressed, suggesting indirect actions are possible. Transsynaptic mechanisms are involved in estradiol-induced potentiation of GnRH neuron response to kisspeptin. To investigate these mechanisms, separate whole-cell voltage-clamp recordings were performed of gamma-aminobutyric acid (GABA)-ergic and glutamatergic transmission to GnRH neurons in brain slices before and during kisspeptin treatment. To determine whether estradiol alters the effect of kisspeptin on synaptic transmission, mice were ovariectomized and either left with no further treatment (OVX) or treated with estradiol implants (OVX+E). Cells were first studied in the morning when estradiol exerts negative feedback. Kisspeptin increased frequency and amplitude of GABAergic postsynaptic currents (PSCs) in GnRH neurons from OVX+E mice. Blocking action potentials eliminated the effect on frequency, indicating presynaptic actions. Amplitude changes were due to postsynaptic actions. Kisspeptin also increased frequency of glutamatergic excitatory PSCs in cells from OVX+E animals. Kisspeptin did not affect either GABAergic or glutamatergic transmission to GnRH neurons in cells from OVX mice, indicating effects on transmission are estradiol dependent. In contrast to stimulatory effects on GABAergic PSC frequency during negative feedback, kisspeptin had no effect during positive feedback. These data suggest estradiol enables kisspeptin-mediated increases in GABA and glutamate transmission to GnRH neurons. Furthermore, the occlusion of the response during positive feedback implies one consequence of estradiol positive feedback is an increase in transmission to GnRH neurons mediated by endogenous kisspeptin.
Collapse
|
40
|
Constantin S, Jasoni CL, Wadas B, Herbison AE. Gamma-aminobutyric acid and glutamate differentially regulate intracellular calcium concentrations in mouse gonadotropin-releasing hormone neurons. Endocrinology 2010; 151:262-70. [PMID: 19864483 DOI: 10.1210/en.2009-0817] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple factors regulate the activity of the GnRH neurons responsible for controlling fertility. Foremost among neuronal inputs to GnRH neurons are those using the amino acids glutamate and gamma-aminobutyric acid (GABA). The present study used a GnRH-Pericam transgenic mouse line, enabling live cell imaging of intracellular calcium concentrations ([Ca(2+)](i)) to evaluate the effects of glutamate and GABA signaling on [Ca(2+)](i) in peripubertal and adult mouse GnRH neurons. Activation of GABA(A), N-methyl-d-aspartate, or alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate acid (AMPA) receptors was found to evoke an increase in [Ca(2+)](i), in subpopulations of GnRH neurons. Approximately 70% of GnRH neurons responded to GABA, regardless of postnatal age or sex. Many fewer (approximately 20%) GnRH neurons responded to N-methyl-d-aspartate, and this was not influenced by postnatal age or sex. In contrast, about 65% of adult male and female GnRH neurons responded to AMPA compared with about 14% of male and female peripubertal mice (P < 0.05). The mechanisms underlying the ability of GABA and AMPA to increase [Ca(2+)](i) in adult GnRH neurons were evaluated pharmacologically. Both GABA and AMPA were found to evoke [Ca(2+)](i) increases through a calcium-induced calcium release mechanism involving internal calcium stores and inositol-1,4,5-trisphosphate receptors. For GABA, the initial increase in [Ca(2+)](i) originated from GABA(A) receptor-mediated activation of L-type voltage-gated calcium channels, whereas for AMPA this appeared to involve direct calcium entry through the AMPA receptor. These observations show that all of the principal amino acid receptors are able to control [Ca(2+)](i) in GnRH neurons but that they do so in a postnatal age- and intracellular pathway-specific manner.
Collapse
Affiliation(s)
- Stephanie Constantin
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
41
|
GABAergic transmission to gonadotropin-releasing hormone (GnRH) neurons is regulated by GnRH in a concentration-dependent manner engaging multiple signaling pathways. J Neurosci 2009; 29:9809-18. [PMID: 19657033 DOI: 10.1523/jneurosci.2509-09.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the central regulators of fertility. GnRH stimulates or inhibits GnRH neuronal activity depending on dose. The mechanisms for these actions remain unknown. We hypothesized GnRH acts in part by altering fast synaptic transmission to GnRH neurons. GABAergic and glutamatergic postsynaptic currents (PSCs), both of which can excite these neurons, were recorded from GnRH neurons in brain slices from adult intact and orchidectomized (ORX) males. ORX enhanced the frequency of GABA transmission to GnRH neurons, but had no effect on glutamatergic transmission. Effects of ORX on GABAergic transmission were reversed by estradiol replacement, suggesting GABA is a mediator of steroid feedback in males. GABAergic neurons express type-1 GnRH receptor (GnRHR-1). Low GnRH (20 nm) reduced GABAergic PSC frequency in GnRH neurons from both ORX and intact mice. High GnRH (2 microm) had no effect on either GABAergic or glutamatergic transmission to GnRH neurons. To investigate mechanisms mediating low-dose GnRH suppression of GABAergic transmission, GABAergic PSCs were recorded after arresting G(alphai) activity with pertussis toxin (PTX). PTX abolished the suppressive effect of low GnRH. Moreover, PTX uncovered a stimulatory effect of high GnRH on GABAergic transmission. These data suggest low-dose GnRH suppresses GnRH firing rate in part by decreasing GABAergic transmission to the GnRH neurons, independent of gonadal hormone milieu. Low-dose GnRH appears to exert the suppressive effect by activating GnRHR-I coupled to G(alphai). The concentration-dependent effects of GnRH may be mediated in part by changes in affinity of GnRH to GnRHR-I coupled to different G(alpha) proteins.
Collapse
|
42
|
Differential regulation of gonadotropin-releasing hormone neuron activity and membrane properties by acutely applied estradiol: dependence on dose and estrogen receptor subtype. J Neurosci 2009; 29:5616-27. [PMID: 19403828 DOI: 10.1523/jneurosci.0352-09.2009] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are critical to controlling fertility. In vivo, estradiol can inhibit or stimulate GnRH release depending on concentration and physiological state. We examined rapid, nongenomic effects of estradiol. Whole-cell recordings were made of GnRH neurons in brain slices from ovariectomized mice with ionotropic GABA and glutamate receptors blocked. Estradiol was bath applied and measurements completed within 15 min. Estradiol from high physiological (preovulatory) concentrations (100 pm) to 100 nm enhanced action potential firing, reduced afterhyperpolarizing potential (AHP) and increased slow afterdepolarization amplitudes (ADP), and reduced I(AHP) and enhanced I(ADP). The reduction of I(AHP) was occluded by previous blockade of calcium-activated potassium channels. These effects were mimicked by an estrogen receptor (ER) beta-specific agonist and were blocked by the classical receptor antagonist ICI182780. ERalpha or GPR30 agonists had no effect. The acute stimulatory effect of high physiological estradiol on firing rate was dependent on signaling via protein kinase A. In contrast, low physiological levels of estradiol (10 pm) did not affect intrinsic properties. Without blockade of ionotropic GABA and glutamate receptors, however, 10 pm estradiol reduced firing of GnRH neurons; this was mimicked by an ERalpha agonist. ERalpha agonists reduced the frequency of GABA transmission to GnRH neurons; GABA can excite to these cells. In contrast, ERbeta agonists increased GABA transmission and postsynaptic response. These data suggest rapid intrinsic and network modulation of GnRH neurons by estradiol is dependent on both dose and receptor subtype. In cooperation with genomic actions, nongenomic effects may play a role in feedback regulation of GnRH secretion.
Collapse
|
43
|
Moenter SM, Chu Z, Christian CA. Neurobiological mechanisms underlying oestradiol negative and positive feedback regulation of gonadotrophin-releasing hormone neurones. J Neuroendocrinol 2009; 21:327-33. [PMID: 19207821 PMCID: PMC2738426 DOI: 10.1111/j.1365-2826.2009.01826.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The feedback actions of ovarian oestradiol during the female reproductive cycle are among the most unique in physiology. During most of the cycle, oestradiol exerts homeostatic, negative feedback upon the release of gonadotrophin-releasing hormone (GnRH). Upon exposure to sustained elevated oestradiol levels, however, there is a switch in the feedback effects of this hormone to positive, resulting in induction of a surge in the release of GnRH that serves as a neuroendocrine signal to initiate the ovulatory cascade. We review recent developments stemming from studies in an animal model exhibiting daily switches between positive and negative feedback that have probed the neurobiological mechanisms, including changes in neural networks and intrinsic properties of GnRH neurones, underlying this switch in oestradiol action.
Collapse
Affiliation(s)
- S M Moenter
- Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|