1
|
Damyanova KB, Nixon B, Johnston SD, Gambini A, Benitez PP, Lord T. Spermatogonial stem cell technologies: applications from human medicine to wildlife conservation†. Biol Reprod 2024; 111:757-779. [PMID: 38993049 PMCID: PMC11473898 DOI: 10.1093/biolre/ioae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.
Collapse
Affiliation(s)
- Katerina B Damyanova
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Stephen D Johnston
- School of Environment, The University of Queensland, Gatton, QLD 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Andrés Gambini
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Patricio P Benitez
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Tessa Lord
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Ghasemi N, Azizi H, Skutella T. Unraveling the Significance of Nanog in the Generation of Embryonic Stem-like Cells from Spermatogonia Stem Cells: A Combined In Silico Analysis and In Vitro Experimental Approach. Int J Mol Sci 2024; 25:4833. [PMID: 38732061 PMCID: PMC11084519 DOI: 10.3390/ijms25094833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 05/13/2024] Open
Abstract
Embryonic stem-like cells (ES-like cells) are promising for medical research and clinical applications. Traditional methods involve "Yamanaka" transcription (OSKM) to derive these cells from somatic cells in vitro. Recently, a novel approach has emerged, obtaining ES-like cells from spermatogonia stem cells (SSCs) in a time-related process without adding artificial additives to cell cultures, like transcription factors or small molecules such as pten or p53 inhibitors. This study aims to investigate the role of the Nanog in the conversion of SSCs to pluripotent stem cells through both in silico analysis and in vitro experiments. We used bioinformatic methods and microarray data to find significant genes connected to this derivation path, to construct PPI networks, using enrichment analysis, and to construct miRNA-lncRNA networks, as well as in vitro experiments, immunostaining, and Fluidigm qPCR analysis to connect the dots of Nanog significance. We concluded that Nanog is one of the most crucial differentially expressed genes during SSC conversion, collaborating with critical regulators such as Sox2, Dazl, Pou5f1, Dnmt3, and Cdh1. This intricate protein network positions Nanog as a pivotal factor in pathway enrichment for generating ES-like cells, including Wnt signaling, focal adhesion, and PI3K-Akt-mTOR signaling. Nanog expression is presumed to play a vital role in deriving ES-like cells from SSCs in vitro. Finding its pivotal role in this path illuminates future research and clinical applications.
Collapse
Affiliation(s)
- Nima Ghasemi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol 49767, Iran;
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol 49767, Iran;
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany;
| |
Collapse
|
3
|
Li C, Bi R, Wang L, Ma YH, Yao YG, Zheng P. Characterization of long-term ex vivo expansion of tree shrew spermatogonial stem cells. Zool Res 2023; 44:1080-1094. [PMID: 37914523 PMCID: PMC10802108 DOI: 10.24272/j.issn.2095-8137.2023.317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
Tree shrews ( Tupaia belangeri chinensis) share a close relationship to primates and have been widely used in biomedical research. We previously established a spermatogonial stem cell (SSC)-based gene editing platform to generate transgenic tree shrews. However, the influences of long-term expansion on tree shrew SSC spermatogenesis potential remain unclear. Here, we examined the in vivo spermatogenesis potential of tree shrew SSCs cultured across different passages. We found that SSCs lost spermatogenesis ability after long-term expansion (>50 passages), as indicated by the failure to colonize the seminiferous epithelium and generate donor spermatogonia (SPG)-derived spermatocytes or spermatids marking spermatogenesis. RNA sequencing (RNA-seq) analysis of undifferentiated SPGs across different passages revealed significant gene expression changes after sub-culturing primary SPG lines for more than 40 passages on feeder layers. Specifically, DNA damage response and repair genes (e.g., MRE11, SMC3, BLM, and GEN1) were down-regulated, whereas genes associated with mitochondrial function (e.g., NDUFA9, NDUFA8, NDUFA13, and NDUFB8) were up-regulated after expansion. The DNA damage accumulation and mitochondrial dysfunction were experimentally validated in high-passage cells. Supplementation with nicotinamide adenine dinucleotide (NAD +) precursor nicotinamide riboside (NR) exhibited beneficial effects by reducing DNA damage accumulation and mitochondrial dysfunction in SPG elicited by long-term culture. Our research presents a comprehensive analysis of the genetic and physiological attributes critical for the sustained expansion of undifferentiated SSCs in tree shrews and proposes an effective strategy for extended in vitro maintenance.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yu-Hua Ma
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China. E-mail:
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China. E-mail:
| |
Collapse
|
4
|
Wu J, Kang K, Liu S, Ma Y, Yu M, Zhao X. Recent Progress of In Vitro 3D Culture of Male Germ Stem Cells. J Funct Biomater 2023; 14:543. [PMID: 37998112 PMCID: PMC10672244 DOI: 10.3390/jfb14110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Male germline stem cells (mGSCs), also known as spermatogonial stem cells (SSCs), are the fundamental seed cells of male animal reproductive physiology. However, environmental influences, drugs, and harmful substances often pose challenges to SSCs, such as population reduction and quality decline. With advancements in bioengineering technology and biomaterial technology, an increasing number of novel cell culture methods and techniques have been employed for studying the proliferation and differentiation of SSCs in vitro. This paper provides a review on recent progress in 3D culture techniques for SSCs in vitro; we summarize the microenvironment of SSCs and spermatocyte development, with a focus on scaffold-based culture methods and 3D printing cell culture techniques for SSCs. Additionally, decellularized testicular matrix (DTM) and other biological substrates are utilized through various combinations and approaches to construct an in vitro culture microenvironment suitable for SSC growth. Finally, we present some perspectives on current research trends and potential opportunities within three areas: the 3D printing niche environment, alternative options to DTM utilization, and advancement of the in vitro SSC culture technology system.
Collapse
Affiliation(s)
- Jiang Wu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Kai Kang
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Siqi Liu
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Yaodan Ma
- Coastal Agricultural College, Guangdong Ocean University, Zhanjiang 524000, China; (J.W.)
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
5
|
Zhang W, Xia S, Xiao W, Song Y, Tang L, Cao M, Yang J, Wang S, Li Z, Xu C, Liu J, Zhao S, Yang C, Wang J. A single-cell transcriptomic landscape of mouse testicular aging. J Adv Res 2023; 53:219-234. [PMID: 36528294 PMCID: PMC10658307 DOI: 10.1016/j.jare.2022.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Advanced paternal age of reproduction is an increasing trend, especially in developed countries and areas. This trend results in elevated risks of adverse reproductive outcomes such as reduced fertility rates, increased pregnancy loss, and poor childhood health. Yet, a systematic profiling of aging-associated molecular and cellular alterations in testicular tissue is still missing. OBJECTIVES We aimed to dissect aging-associated molecular characteristics in testes of mice. METHODS Single-cell transcriptomic sequencing and analysis were conducted in testes of young (2 months old) and old mice (24 months old). Immunofluorescences and immunochemistry were used to characterize aging-associated phenotypes and verify single cell sequence results. RESULTS Here, we constructed the first single-cell transcriptomic atlases of testes of young and old mice. In-depth dissection of aging-dependent transcriptional alterations in specific cell types revealed multiple dysregulated biological processes such as increased 'senescence-associated secretory phenotype' and 'inflammation', which were major aging-associated characteristics. Further analysis of aging-related differentially expressed genes uncovered a disrupted balance of undifferentiated and differentiated spermatogonia stem cells in spermatogonia, indicative of a potential role of spermatogonia stem cells in aging-associated subfertility. Importantly, for the first time, our results identified an increased subtype of aging-specific macrophages, which may contribute to a hostile proinflammatory microenvironment during testicular aging. CONCLUSION Taken together, our findings depict the distinct single-cell transcriptional features of the aged mouse testes and provide enormous resources for a comprehensive understanding of the cell-type-specific molecular mechanisms underlying mouse testicular aging, which may shed light on developing novel potential diagnostic biomarkers and therapeutic targets for age-associated male subfertility.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Siyu Xia
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523000, China
| | - Li Tang
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523000, China
| | - Min Cao
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Jing Yang
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Shuang Wang
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Zhijie Li
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Chengchao Xu
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Jianqiao Liu
- Key Laboratory for Reproductive Medicine of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Shanchao Zhao
- Department of Urology, the Third Affiliated Hospital of Southern Medical University, and Nanfang Hospital, Southern Medical University, Guangzhou, 510500, China.
| | - Chuanbin Yang
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Jigang Wang
- Department of Nephrology, and Shenzhen key Laboratory of Kidney Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen 518020, China; Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan 523000, China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
6
|
Liao J, Suen HC, Luk ACS, Yang L, Lee AWT, Qi H, Lee TL. Transcriptomic and epigenomic profiling of young and aged spermatogonial stem cells reveals molecular targets regulating differentiation. PLoS Genet 2021; 17:e1009369. [PMID: 34237055 PMCID: PMC8291634 DOI: 10.1371/journal.pgen.1009369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/20/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Spermatogonial stem cells (SSC), the foundation of spermatogenesis and male fertility, possess lifelong self-renewal activity. Aging leads to the decline in stem cell function and increased risk of paternal age-related genetic diseases. In the present study, we performed a comparative genomic analysis of mouse SSC-enriched undifferentiated spermatogonia (Oct4-GFP+/KIT-) and differentiating progenitors (Oct4-GFP+/KIT+) isolated from young and aged testes. Our transcriptome data revealed enormous complexity of expressed coding and non-coding RNAs and alternative splicing regulation during SSC differentiation. Further comparison between young and aged undifferentiated spermatogonia suggested these differentiation programs were affected by aging. We identified aberrant expression of genes associated with meiosis and TGF-β signaling, alteration in alternative splicing regulation and differential expression of specific lncRNAs such as Fendrr. Epigenetic profiling revealed reduced H3K27me3 deposition at numerous pro-differentiation genes during SSC differentiation as well as aberrant H3K27me3 distribution at genes in Wnt and TGF-β signaling upon aging. Finally, aged undifferentiated spermatogonia exhibited gene body hypomethylation, which is accompanied by an elevated 5hmC level. We believe this in-depth molecular analysis will serve as a reference for future analysis of SSC aging.
Collapse
Affiliation(s)
- Jinyue Liao
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hoi Ching Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alfred Chun Shui Luk
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lele Yang
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Annie Wing Tung Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Huayu Qi
- Guangzhou Regenerative Medicine and Health Bioland Laboratory, Guangzhou Institutes of Biomedicine and Health, Guangzhou, China
| | - Tin-Lap Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
7
|
Zhao H, Song L, Ma N, Liu C, Dun Y, Zhou Z, Yuan D, Zhang C. The dynamic changes of Nrf2 mediated oxidative stress, DNA damage and base excision repair in testis of rats during aging. Exp Gerontol 2021; 152:111460. [PMID: 34175407 DOI: 10.1016/j.exger.2021.111460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 11/15/2022]
Abstract
Accumulation of oxidative stress, DNA damage and impaired DNA repair appear to play critical roles in the decline of testicular function with aging. However, when those factors begin to lose control in testis during aging has not yet been well understood. This study was designed to assess the changes of oxidative stress and DNA damage status, and DNA repair capacity in testis during aging. Thus, male Sprague-Dawley rats at 3, 9, 15 and 24 months of age were used to delineate the dynamic changes in testicular weight and index, testosterone concentration, testicular histology, Nrf2-mediated oxidative stress, DNA damage, DNA repair and apoptosis. Results showed that testicular weight and index, testosterone concentration and spermatid number progressively declined from 9 to 24 months of age. Similarly, seminiferous tubule diameters and seminiferous epithelium heights gradually diminished with aging. Nrf2-mediated antioxidant defense ability was significantly impaired in testis with increasing age including decreased the activity of SOD and the expression levels of Nrf2, HO-1 and NQO-1, and increased the contents of MDA. In addition, DNA damage including DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) also progressively increased accompanied by increased levels of 8-hydroxydeoxyguanosine (8-OHdG) and γ-H2AX, and activated ATM/Chk2 and ATR/Chk1 pathway. Consistent with the results of Nrf2 pathway, the expression levels of APE1, OGG1 and XRCC1 involved in base excision DNA repair (BER) pathway increased from 3 to 9 months of age, and then gradually decreased after 9 months of age. Finally, TUNEL and Western blot results further confirmed germ cell apoptosis progressively increased from 3 to 24 months of age as evidenced by decreased ratio of Bcl-2/Bax and levels of Bcl-2 expression, and increased Bax expression levels. Taken together, our results suggest that downregulation of antioxidant ability mediated by Nrf2 pathway and impairment of BER capacity might correlate with increased DNA damage, and then induce declining testicular function during aging after adult.
Collapse
Affiliation(s)
- Haixia Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Laixin Song
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Na Ma
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chaoqi Liu
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yaoyan Dun
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zhiyong Zhou
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Ding Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.
| | - Changcheng Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
8
|
Pediatric and Adolescent Oncofertility in Male Patients-From Alpha to Omega. Genes (Basel) 2021; 12:genes12050701. [PMID: 34066795 PMCID: PMC8150386 DOI: 10.3390/genes12050701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
This article reviews the latest information about preserving reproductive potential that can offer enhanced prospects for future conception in the pediatric male population with cancer, whose fertility is threatened because of the gonadotoxic effects of chemotherapy and radiation. An estimated 400,000 children and adolescents aged 0–19 years will be diagnosed with cancer each year. Fertility is compromised in one-third of adult male survivors of childhood cancer. We present the latest approaches and techniques for fertility preservation, starting with fertility preservation counselling, a clinical practice guideline used around the world and finishing with recent advances in basic science and translational research. Improving strategies for the maturation of germ cells in vitro combined with new molecular techniques for gene editing could be the next scientific keystone to eradicate genetic diseases such as cancer related mutations in the offspring of cancer survivors.
Collapse
|
9
|
Voigt AL, Thiageswaran S, de Lima e Martins Lara N, Dobrinski I. Metabolic Requirements for Spermatogonial Stem Cell Establishment and Maintenance In Vivo and In Vitro. Int J Mol Sci 2021; 22:1998. [PMID: 33670439 PMCID: PMC7922219 DOI: 10.3390/ijms22041998] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
The spermatogonial stem cell (SSC) is a unique adult stem cell that requires tight physiological regulation during development and adulthood. As the foundation of spermatogenesis, SSCs are a potential tool for the treatment of infertility. Understanding the factors that are necessary for lifelong maintenance of a SSC pool in vivo is essential for successful in vitro expansion and safe downstream clinical usage. This review focused on the current knowledge of prepubertal testicular development and germ cell metabolism in different species, and implications for translational medicine. The significance of metabolism for cell biology, stem cell integrity, and fate decisions is discussed in general and in the context of SSC in vivo maintenance, differentiation, and in vitro expansion.
Collapse
Affiliation(s)
| | | | | | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; (A.L.V.); (S.T.); (N.d.L.e.M.L.)
| |
Collapse
|
10
|
Amstislavsky SY, Brusentsev EY, Petrova OM, Naprimerov VA, Levinson AL. Development and Aging of the Mammalian Reproductive System. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Huang G, Liu L, Wang H, Gou M, Gong P, Tian C, Deng W, Yang J, Zhou TT, Xu GL, Liu L. Tet1 Deficiency Leads to Premature Reproductive Aging by Reducing Spermatogonia Stem Cells and Germ Cell Differentiation. iScience 2020; 23:100908. [PMID: 32114381 PMCID: PMC7049665 DOI: 10.1016/j.isci.2020.100908] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/08/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Ten-eleven translocation (Tet) enzymes are involved in DNA demethylation, important in regulating embryo development, stem cell pluripotency and tumorigenesis. Alterations of DNA methylation with age have been shown in various somatic cell types. We investigated whether Tet1 and Tet2 regulate aging. We showed that Tet1-deficient mice undergo a progressive reduction of spermatogonia stem cells and spermatogenesis and thus accelerated infertility with age. Tet1 deficiency decreases 5hmC levels in spermatogonia and downregulates a subset of genes important for cell cycle, germ cell differentiation, meiosis and reproduction, such as Ccna1 and Spo11, resulting in premature reproductive aging. Moreover, Tet1 and 5hmC both regulate signaling pathways key for stem cell development, including Wnt and PI3K-Akt, autophagy and stress response genes. In contrast, effect of Tet2 deficiency on male reproductive aging is minor. Hence, Tet1 maintains spermatogonia stem cells with age, revealing an important role of Tet1 in regulating stem cell aging. Tet1 regulates stem cell aging and differentiation Tet1 plays an important role in maintaining spermatogonial stem cells Loss of Tet1 results in exhaustion of spermatogonia and premature reproductive aging Effect of Tet2 deficiency on reproductive aging in males is minor
Collapse
Affiliation(s)
- Guian Huang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Linlin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Huasong Wang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Mo Gou
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Gong
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Chenglei Tian
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wei Deng
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jiao Yang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Tian-Tian Zhou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Zhao H, Ma N, Chen Q, You X, Liu C, Wang T, Yuan D, Zhang C. Decline in testicular function in ageing rats: Changes in the unfolded protein response and mitochondrial apoptotic pathway. Exp Gerontol 2019; 127:110721. [DOI: 10.1016/j.exger.2019.110721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/03/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
13
|
Jalali SS, Talebi J, Allymehr M, Soleimanzadeh A, Razi M. Effects of nano-selenium on mRNA expression of markers for spermatogonial stem cells in the testis of broiler breeder males. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:139-144. [PMID: 31338147 PMCID: PMC6626653 DOI: 10.30466/vrf.2018.86992.2128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
Abstract
Fertility is one of the most important parameters in breeder farms and cockerels play an outstanding role in the fertility of eggs in broiler breeder farms. Todays, supplementation of chicken diet with additives such as organic selenium is used to increase fertility. The aim of this study was to evaluate the effects of different levels of nano-selenium (Nano-Se) on the expression of molecular markers of spermatogonial stem cells (SSCs) in the testis of broiler breeder males. A total of 30 roosters of 40 weeks of age were randomly divided into five groups. Groups were as follows: 1) control (normal diet) group, 2) diet supplemented with 0.30 mg kg-1 sodium selenite, 3) diet supplemented with 0.15 mg kg-1 Nano-Se, 4) diet supplemented with 0.30 mg kg-1 Nano-Se, and 5) diet supplemented with 0.60 mg kg-1 Nano-Se. At the end of the experimental period (5th week), birds were autopsied and samples from testis of all birds were collected. The testis samples were used to examine the β1-integrin (CD29), thy-1 (CD90) and NANOG mRNA expression by real-time PCR. The results showed that testis of the groups fed with the diets supplemented with 0.60 mg kg-1 and 0.15 mg kg-1 of Nano-Se had the highest and lowest mRNA expression of SSCs markers, respectively. In conclusion, the present study indicated that Nano-Se had advantages over sodium selenite. Diet supplemented with 0.60 mg kg-1 of Nano-Se may contribute to optimal fertility via increasing the mRNA expression of SSCs markers of roosters’ testis and could be used to delay the reduction of fertility caused by aging in broiler breeder males.
Collapse
Affiliation(s)
- Seyed Sattar Jalali
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Jalali Talebi
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Manoochehr Allymehr
- Department of Poultry Health and Diseases, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
14
|
Declining testicular function in the aging stallion: Management options and future therapies. Anim Reprod Sci 2019; 207:171-179. [PMID: 31227324 DOI: 10.1016/j.anireprosci.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022]
Abstract
Declining fertility in association with declining testicular function is commonly seen as stallions age and can be the cause of significant economic losses in the equine breeding industry. This manuscript describes how to clinically recognize the signs of age-related declining testicular function (testicular degeneration) and also provides mare and stallion management strategies for improving reproductive outcomes. Finally, the current understanding of the pathophysiology of the disease is presented, including the results of recent studies that are beginning to uncover the underlying causes for age-related declines in testicular function in stallions. These new findings provide a basis for possible future treatments that could delay the effects of aging on the testis.
Collapse
|
15
|
Pieri NCG, Mançanares ACF, de Souza AF, Fernandes H, Diaza AMG, Bressan FF, Roballo KCS, Casals JB, Binelli M, Ambrósio CE, Dos Santos Martins D. Xenotransplantation of canine spermatogonial stem cells (cSSCs) regulated by FSH promotes spermatogenesis in infertile mice. Stem Cell Res Ther 2019; 10:135. [PMID: 31109365 PMCID: PMC6528206 DOI: 10.1186/s13287-019-1250-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Background Xenotransplantation of spermatogonial stem cells (SSCs) has become a popular topic in various research fields because manipulating these cells can provide insights into the mechanisms associated with germ cell lines and the entire spermatogenesis process; moreover, these cells can be used in several biotechnology applications. To achieve successful xenotransplantation, the in vitro microenvironment in which SSCs are cultured should be an ideal microenvironment for self-renewal and similar to the in vivo testicular microenvironment. The age of the donor, the correct spermatogenesis cycle, and the quality of the donor tissue are also important. Although cell culture-related factors, such as the in vitro supplementation of hormonal factors, are known to promote successful xenotransplantation in mice, little is known about the influence of these factors on SSCs in vitro or in vivo in other mammalian species, such as dogs (Canis lupus familiaris). In this context, the goals of this study were to test the effect of follicle-stimulating hormone (FSH) on canine spermatogonial stem cell (cSSC) cultures since this hormone is related to the glial cell-derived neurotrophic factor (GDNF) signaling pathway, which is responsible for the self-renewal and maintenance of these cells in vivo, and to investigate the microenvironment of the SSC culture after FSH supplementation. Additionally, in vivo analyses of transplanted FSH-supplemented cSSCs in the testes of infertile mice were performed to assess the capacity of cSSCs to develop, maintain, and restore spermatogenesis. Methods SSCs from canine prepubertal testes (aged 3 months) were cultured in vitro in the presence of FSH (10 IU L−1). GFRA1 transcript expression was detected to confirm the spermatogonia population in culture and the effect of FSH on these cells. The protein and transcript levels of late germ cell markers (GFRA1, DAZL, STRA8, PLZF, and CD49f) and a pluripotency marker (OCT4) were detected at 72 and 120 h to confirm the cSSC phenotype. In vivo experiments were performed by transplanting GFP+ cSSCs into infertile mice, and a 10-week follow-up was performed. Histological and immunofluorescence analyses were performed to confirm the repopulation capacity after cSSC xenotransplantation in the testis. Results Supplementation with FSH in cell culture increased the number of cSSCs positive for GFRA1. The cSSCs were also positive for the pluripotency and early germline marker OCT4 and the late germline markers PLZF, DAZL, C-kit, and GFRA-1. The in vivo experiments showed that the cSSCs xenotransplanted into infertile mouse testes were able to repopulate germline cells in the seminiferous tubules of mice. Conclusions In conclusion, our results showed for the first time that the treatment of cSSC cultures with FSH can promote in vitro self-renewal, increase the population of germline cells, and possibly influence the success of spermatogenesis in infertile mice in vivo.
Collapse
Affiliation(s)
- Naira Caroline Godoy Pieri
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil. .,Department of Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil.
| | | | - Aline Fernanda de Souza
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil
| | - Hugo Fernandes
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil
| | - Angela Maria Gonella Diaza
- North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Marianna, FL, USA
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil
| | - Kelly Cristine Santos Roballo
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil.,School of Pharmacy at University of Wyoming, 1000 E. University Avenue, Laramie, 82071, USA
| | - Juliana Barbosa Casals
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil
| | - Mario Binelli
- Department of Animal Sciences, University of Florida, L.E. "Red" Larson Building, Bldg. 499, Room 122 C, Gainesville, FL, 32611-0910, USA
| | - Carlos Eduardo Ambrósio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil
| | - Daniele Dos Santos Martins
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, SP, Brazil.,Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, SP, Brazil
| |
Collapse
|
16
|
Erwin AA, Blumenstiel JP. Aging in the Drosophila ovary: contrasting changes in the expression of the piRNA machinery and mitochondria but no global release of transposable elements. BMC Genomics 2019; 20:305. [PMID: 31014230 PMCID: PMC6480902 DOI: 10.1186/s12864-019-5668-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 01/06/2023] Open
Abstract
Background Evolutionary theory indicates that the dynamics of aging in the soma and reproductive tissues may be distinct. This difference arises from the fact that only the germline lineage establishes future generations. In the soma, changes in the landscape of heterochromatin have been proposed to have an important role in aging. This is because redistribution of heterochromatin during aging has been linked to the derepression of transposable elements and an overall loss of somatic gene regulation. A role for changes in the chromatin landscape in the aging of reproductive tissues is less well established. Whether or not epigenetic factors, such as heterochromatin marks, are perturbed in aging reproductive tissues is of interest because, in special cases, epigenetic variation may be heritable. Using mRNA sequencing data from late-stage egg chambers in Drosophila melanogaster, we characterized the landscape of altered gene and transposable element expression in aged reproductive tissues. This allowed us to test the hypothesis that reproductive tissues may differ from somatic tissues in their response to aging. Results We show that age-related expression changes in late-stage egg chambers tend to occur in genes residing in heterochromatin, particularly on the largely heterochromatic 4th chromosome. However, these expression differences are seen as both decreases and increases during aging, inconsistent with a general loss of heterochromatic silencing. We also identify an increase in expression of the piRNA machinery, suggesting an age-related increased investment in the maintenance of genome stability. We further identify a strong age-related reduction in the expression of mitochondrial transcripts. However, we find no evidence for global TE derepression in reproductive tissues. Rather, the observed effects of aging on TEs are primarily strain and family specific. Conclusions These results identify unique responses in somatic versus reproductive tissue with regards to aging. As in somatic tissues, female reproductive tissues show reduced expression of mitochondrial genes. In contrast, the piRNA machinery shows increased expression during aging. Overall, these results also indicate that global loss of TE control observed in other studies may be unique to the soma and sensitive to genetic background and TE family. Electronic supplementary material The online version of this article (10.1186/s12864-019-5668-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra A Erwin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| |
Collapse
|
17
|
Kanatsu-Shinohara M, Morimoto H, Watanabe S, Shinohara T. Reversible inhibition of the blood-testis barrier protein improves stem cell homing in mouse testes. J Reprod Dev 2018; 64:511-522. [PMID: 30175719 PMCID: PMC6305854 DOI: 10.1262/jrd.2018-093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Stem cell homing is a complex phenomenon that involves multiple steps; thus far, attempts to increase homing efficiency have met with limited success. Spermatogonial stem cells (SSCs)
migrate to the niche after microinjection into seminiferous tubules, but the homing efficiency is very low. Here we report that reversible disruption of the blood-testis barrier (BTB)
between Sertoli cells enhances the homing efficiency of SSCs. We found that SSCs on a C57BL/6 background are triggered to proliferate in vitro when MHY1485, which stimulates
MTORC, were added to culture medium. However, the cultured cells did not produce offspring by direct injection into the seminiferous tubules. When acyline, a gonadotropin-releasing hormone
(GnRH) analogue, was administered into infertile recipients, SSC colonization increased by ~5-fold and the recipients sired offspring. In contrast, both untreated individuals and recipients
that received leuprolide, another GnRH analogue, remained infertile. Acyline not only decreased CLDN5 expression but also impaired the BTB, suggesting that increased colonization was caused
by efficient SSC migration through the BTB. Enhancement of stem cell homing by tight junction protein manipulation constitutes a new approach to improve homing efficiency, and similar
strategy may be applicable to other self-renewing tissues.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Satoshi Watanabe
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Spermatogonial stem cell transplantation and male infertility: Current status and future directions. Arab J Urol 2017; 16:171-180. [PMID: 29713548 PMCID: PMC5922182 DOI: 10.1016/j.aju.2017.11.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/25/2017] [Accepted: 11/26/2017] [Indexed: 01/07/2023] Open
Abstract
Objective To summarise the current state of research into spermatogonial stem cell (SSC) therapies with a focus on future directions, as SSCs show promise as a source for preserving or initiating fertility in otherwise infertile men. Materials and methods We performed a search for publications addressing spermatogonial stem cell transplantation in the treatment of male infertility. The search engines PubMed and Google Scholar were used from 1990 to 2017. Search terms were relevant for spermatogonial stem cell therapies. Titles of publications were screened for relevance; abstracts were read, if related and full papers were reviewed for directly pertinent original research. Results In all, 58 papers were found to be relevant to this review, and were included in appropriate subheadings. This review discusses the various techniques that SSCs are being investigated to treat forms of male infertility. Conclusions Evidence does not yet support clinical application of SSCs in humans. However, significant progress in the in vitro and in vivo development of SSCs, including differentiation into functional germ cells, gives reason for cautious optimism for future research.
Collapse
Key Words
- ART, assisted reproductive technologies
- Allograft
- BMP4, bone morphogenetic protein 4
- Bcl6b, B-Cell CLL/Lymphoma 6B
- CD(24)(34), cluster of differentiation (24)(34)
- FGF2, Fibroblast growth factor 2
- FISH, fluorescence in situ hybridisation
- Fertility preservation
- GDNF, glial cell line-derived neurotrophic factor
- ICSI, intracytoplasmic sperm injection
- ID4, inhibitor of differentiation 4
- KS, Klinefelter syndrome
- Male infertility
- Non-obstructive azoospermia
- Onco-fertility
- PGC, primordial germ cells
- PLZF, promyelocytic leukaemia zinc finger
- PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
- RA(R), retinoic acid (receptor)
- SPG, spermatogonia
- SSC, spermatogonial stem cell
- Stem cell therapy
- Stra8, stimulated by RA 8
- ZBTB, zinc finger and broad complex/Tramtrack/bric-a-brac
- c-Kit, KIT Proto-oncogene receptor tyrosine kinase
Collapse
|
19
|
Kanatsu-Shinohara M, Tanaka T, Ogonuki N, Ogura A, Morimoto H, Cheng PF, Eisenman RN, Trumpp A, Shinohara T. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal. Genes Dev 2017; 30:2637-2648. [PMID: 28007786 PMCID: PMC5204355 DOI: 10.1101/gad.287045.116] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/21/2016] [Indexed: 12/21/2022]
Abstract
Here, Kanatsu-Shinohara et al. investigated the mechanisms underlying Myc regulation of spermatogonial stem cell (SSC) fate. Their findings suggest that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kyoto 606-8501, Japan
| | - Takashi Tanaka
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | - Atsuo Ogura
- Bioresource Center, RIKEN, Tsukuba 305-0074, Japan
| | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Pei Feng Cheng
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforshungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Helsel AR, Oatley MJ, Oatley JM. Glycolysis-Optimized Conditions Enhance Maintenance of Regenerative Integrity in Mouse Spermatogonial Stem Cells during Long-Term Culture. Stem Cell Reports 2017; 8:1430-1441. [PMID: 28392219 PMCID: PMC5425612 DOI: 10.1016/j.stemcr.2017.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/08/2023] Open
Abstract
The application of spermatogonial stem cell (SSC) transplantation for regenerating male fertility requires amplification of SSC number in vitro during which the integrity to re-establish spermatogenesis must be preserved. Conventional conditions supporting proliferation of SSCs from mouse pups have been the basis for developing methodology with adult human cells but are unrefined. We found that the integrity to regenerate spermatogenesis after transplantation declines with advancing time in primary cultures of pup SSCs and that the efficacy of deriving cultures from adult SSCs is limited with conventional conditions. To address these deficiencies, we optimized the culture environment to favor glycolysis as the primary bioenergetics process. In these conditions, regenerative integrity of pup and adult SSCs was significantly improved and the efficiency of establishing primary cultures was 100%. Collectively, these findings suggest that SSCs are primed for conditions favoring glycolytic activity, and matching culture environments to their bioenergetics is critical for maintaining functional integrity. Regenerative integrity of SSCs declines over time in conventional culture Glycolysis-optimized (GO) culture improves regenerative integrity of SSCs GO conditions enhance the long-term culture of SSCs from adult mice
Collapse
Affiliation(s)
- Aileen R Helsel
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Melissa J Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
21
|
Nakajima R, Okano H, Noce T. JMJD1C Exhibits Multiple Functions in Epigenetic Regulation during Spermatogenesis. PLoS One 2016; 11:e0163466. [PMID: 27649575 PMCID: PMC5029890 DOI: 10.1371/journal.pone.0163466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/08/2016] [Indexed: 01/19/2023] Open
Abstract
Jmjd1C is one of the Jmjd1 family genes that encode putative demethylases against histone H3K9 and non-histone proteins and has been proven to play an indispensable role in mouse spermatogenesis. Here, we analyzed a newly-bred transgenic mouse strain carrying a Jmjd1C loss-of-function allele in which a β-geo cassette was integrated into the intron of the Jmjd1C locus. Jmjd1C gene-trap homozygous testes exhibited malformations in postmeiotic processes and a deficiency in the long-term maintenance of undifferentiated spermatogonia. Some groups of spermatids in the homozygous testis showed abnormal organization and incomplete elongation from the first wave of spermatogenesis onwards. Moreover, histone H4K16 acetylation, which is required for the onset of chromatin remodeling, appeared to be remarkably decreased. These effects may not have been a result of the drastic decrease in gene expression related to the events but instead may have been due to the lack of interaction between JMJD1C and its partner proteins, such as MDC1 and HSP90. Additionally, significant decreases in Oct4 expression and NANOG- and OCT4-expressing spermatogonia were found in the Jmjd1C homozygous mature testis, suggesting that JMJD1C may participate in the maintenance of spermatogonial stem cell self-renewal by up-regulating Oct4 expression. These results indicate that JMJD1C has multiple functions during spermatogenesis through interactions with different partners during the spermatogenic stages.
Collapse
Affiliation(s)
- Ryusuke Nakajima
- Department of Physiology, Keio University School of Medicine, 35 Shinamomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- * E-mail:
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinamomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiaki Noce
- Department of Physiology, Keio University School of Medicine, 35 Shinamomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Former: Mitsubishi-Kagaku Institute of Life Science, 11 Minami-Ooya, Machida, Tokyo, Japan
| |
Collapse
|
22
|
Yamada M, De Chiara L, Seandel M. Spermatogonial Stem Cells: Implications for Genetic Disorders and Prevention. Stem Cells Dev 2016; 25:1483-1494. [PMID: 27596369 PMCID: PMC5035912 DOI: 10.1089/scd.2016.0210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spermatogonial stem cells (SSCs) propagate mammalian spermatogenesis throughout male reproductive life by continuously self-renewing and differentiating, ultimately, into sperm. SSCs can be cultured for long periods and restore spermatogenesis upon transplantation back into the native microenvironment in vivo. Conventionally, SSC research has been focused mainly on male infertility and, to a lesser extent, on cell reprogramming. With the advent of genome-wide sequencing technology, however, human studies have uncovered a wide range of pathogenic alleles that arise in the male germ line. A subset of de novo point mutations was shown to originate in SSCs and cause congenital disorders in children. This review describes both monogenic diseases (eg, Apert syndrome) and complex disorders that are either known or suspected to be driven by mutations in SSCs. We propose that SSC culture is a suitable model for studying the origin and mechanisms of these diseases. Lastly, we discuss strategies for future clinical implementation of SSC-based technology, from detecting mutation burden by sperm screening to gene correction in vitro.
Collapse
Affiliation(s)
- Makiko Yamada
- Joan and Sanford I Weill Medical College of Cornell University, 12295, Surgery, New York, New York, United States ;
| | - Letizia De Chiara
- Joan and Sanford I Weill Medical College of Cornell University, 12295, Surgery, New York, New York, United States ;
| | - Marco Seandel
- Joan and Sanford I Weill Medical College of Cornell University, 12295, Surgery, New York, New York, United States ;
| |
Collapse
|
23
|
Schultz MB, Sinclair DA. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 2016; 143:3-14. [PMID: 26732838 DOI: 10.1242/dev.130633] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan.
Collapse
Affiliation(s)
- Michael B Schultz
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sinclair
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Lovelace DL, Gao Z, Mutoji K, Song YC, Ruan J, Hermann BP. The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia. Development 2016; 143:1893-906. [PMID: 27068105 DOI: 10.1242/dev.132761] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Spermatogonial stem cells (SSCs) maintain spermatogenesis throughout adulthood through balanced self-renewal and differentiation, yet the regulatory logic of these fate decisions is poorly understood. The transcription factors Sal-like 4 (SALL4) and promyelocytic leukemia zinc finger (PLZF; also known as ZBTB16) are known to be required for normal SSC function, but their targets are largely unknown. ChIP-seq in mouse THY1(+) spermatogonia identified 4176 PLZF-bound and 2696 SALL4-bound genes, including 1149 and 515 that were unique to each factor, respectively, and 1295 that were bound by both factors. PLZF and SALL4 preferentially bound gene promoters and introns, respectively. Motif analyses identified putative PLZF and SALL4 binding sequences, but rarely both at shared sites, indicating significant non-autonomous binding in any given cell. Indeed, the majority of PLZF/SALL4 shared sites contained only PLZF motifs. SALL4 also bound gene introns at sites containing motifs for the differentiation factor DMRT1. Moreover, mRNA levels for both unique and shared target genes involved in both SSC self-renewal and differentiation were suppressed following SALL4 or PLZF knockdown. Together, these data reveal the full profile of PLZF and SALL4 regulatory targets in undifferentiated spermatogonia, including SSCs, which will help elucidate mechanisms controlling the earliest cell fate decisions in spermatogenesis.
Collapse
Affiliation(s)
- Dawn L Lovelace
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Zhen Gao
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Kazadi Mutoji
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yuntao Charlie Song
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Brian P Hermann
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
25
|
Ozawa M, Fukuda T, Sakamoto R, Honda H, Yoshida N. The Histone Demethylase FBXL10 Regulates the Proliferation of Spermatogonia and Ensures Long-Term Sustainable Spermatogenesis in Mice. Biol Reprod 2016; 94:92. [PMID: 26984996 DOI: 10.1095/biolreprod.115.135988] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/08/2016] [Indexed: 01/15/2023] Open
Abstract
The F-box and leucine-rich repeat protein 10 (Fbxl10) gene encodes a protein that catalyzes demethylation of H3K4 and H3K36. In this study, we show the important roles of FBXL10 as a histone demethylase in sustainable sperm production using mice in which the JmjC domain of Fbxl10 was deleted (Fbxl10(DeltaJ/DeltaJ)). In histological analysis, testis sections from 10-wk-old Fbxl10(DeltaJ/DeltaJ) mice appeared normal. On the other hand, testes from 7-mo-old Fbxl10(DeltaJ/DeltaJ) mice contained a greater ratio of seminiferous tubules exhibiting degeneration of spermatogenesis. Further analysis using an in vitro spermatogonia culture system, that is, germline stem cells (GSCs), revealed that Fbxl10(DeltaJ/DeltaJ) GSCs expressed a significantly higher level of P21 and P19 mRNA, cyclin-dependent kinase inhibitors and also known as cellular senescence markers, than wild-type (WT) GSCs. Furthermore, the ratio of Fbxl10(DeltaJ/DeltaJ) GSCs in G0/G1 phase was higher and the ratios in S and G2/M phases were lower than the corresponding ratios of WT GSCs, and the doubling speed of Fbxl10(DeltaJ/DeltaJ) GSCs was significantly slower than that of WT GSCs. In addition to these in vitro results, an in vivo study indicated that recovery of spermatogenesis after a transient reduction in the number of testicular germ cells by busulfan treatment was significantly slower in Fbxl10(DeltaJ/DeltaJ) mice than in WT mice. These data suggest that Fbxl10 plays important roles in long-term sustainable spermatogenesis via regulating cell cycle.
Collapse
Affiliation(s)
- Manabu Ozawa
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Fukuda
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Reiko Sakamoto
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Honda
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Nobuaki Yoshida
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Nickkholgh B, Mizrak SC, van Daalen SKM, Korver CM, Sadri-Ardekani H, Repping S, van Pelt AMM. Genetic and epigenetic stability of human spermatogonial stem cells during long-term culture. Fertil Steril 2014; 102:1700-7.e1. [PMID: 25256932 DOI: 10.1016/j.fertnstert.2014.08.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To determine the genetic and epigenetic stability of human spermatogonial stem cells (SSCs) during long-term culture. DESIGN Experimental basic science study. SETTING Reproductive biology laboratory. PATIENT(S) Cryopreserved human testicular tissue from two prostate cancer patients with normal spermatogenesis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Testicular cells before and 50 days after culturing were subjected to ITGA6 magnetic-activated cell sorting to enrich for SSCs. Individual spermatogonia were analyzed for aneuploidies with the use of single-cell 24-chromosome screening. Furthermore, the DNA methylation statuses of the paternally imprinted genes H19, H19-DMR (differentially methylated region), and MEG3 and the maternally imprinted genes KCNQ1OT1 and PEG3 were identified by means of bisulfite sequencing. RESULTS(S) Aneuploidy screening showed euploidy with no chromosomal abnormalities in all cultured and most noncultured spermatogonia from both patients. The methylation assays demonstrated demethylation of the paternally imprinted genes H19, H19-DMR, and MEG3 of 11%-28%, 43%-68%, and 18%-26%, respectively, and increased methylation of the maternally imprinted genes PEG 3 and KCNQ1OT of 13%-50% and 30%-38%, respectively, during culture. CONCLUSION(S) In the current culture system for human SSCs propagation, genomic stability is preserved, which is important for future clinical use. Whether the observed changes in methylation status have consequences on functionality of SSCs or health of offspring derived from transplanted SSCs requires further investigation.
Collapse
Affiliation(s)
- Bita Nickkholgh
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - S Canan Mizrak
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Saskia K M van Daalen
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cindy M Korver
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hooman Sadri-Ardekani
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sjoerd Repping
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ans M M van Pelt
- Center for Reproductive Medicine, Women's and Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Kanatsu-Shinohara M, Ogonuki N, Matoba S, Morimoto H, Ogura A, Shinohara T. Improved serum- and feeder-free culture of mouse germline stem cells. Biol Reprod 2014; 91:88. [PMID: 25210127 DOI: 10.1095/biolreprod.114.122317] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial stem cells (SSCs) undergo self-renewal division, which can be recapitulated in vitro. Attempts to establish serum-free culture conditions for SSCs have met with limited success. Although we previously reported that SSCs can be cultured without serum on laminin-coated plates, the growth rate and SSC concentration were relatively low, which made it inefficient for culturing large numbers of SSCs. In this study, we report on a novel culture medium that showed improved SSC maintenance. We used Iscove modified Dulbecco medium, supplemented with lipid mixture, fetuin, and knockout serum replacement. In the presence of glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), SSCs cultured on laminin-coated plates could proliferate for more than 5 mo and maintained normal karyotype and androgenetic DNA methylation patterns in imprinted genes. Germ cell transplantation showed that SSCs in the serum-free medium proliferated more actively than those in the serum-supplemented medium and that the frequency of SSCs was comparable between the two culture media. Cultured cells underwent germline transmission. Development of a new serum- and feeder-free culture method for SSCs will facilitate studies into the effects of microenvironments on self-renewal and will stimulate further improvements to derive SSC cultures from different animal species.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency, PRESTO, Kyoto, Japan
| | | | | | - Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency, CREST, Kyoto, Japan
| |
Collapse
|
28
|
Abstract
Spermatogenesis originates from spermatogonial stem cells (SSCs). Development of the spermatogonial transplantation technique in 1994 provided the first functional assay to characterize SSCs. In 2000, glial cell line-derived neurotrophic factor was identified as a SSC self-renewal factor. This discovery not only provided a clue to understand SSC self-renewing mechanisms but also made it possible to derive germline stem (GS) cell cultures in 2003. In vitro culture of GS cells demonstrated their potential pluripotency and their utility in germline modification. However, in vivo SSC analyses have challenged the traditional concept of SSC self-renewal and have revealed their relationship with the microenvironment. An improved understanding of SSC self-renewal through functional assays promises to uncover fundamental principles of stem cell biology and will enable us to use these cells for applications in animal transgenesis and medicine.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; ,
| | | |
Collapse
|
29
|
Paul C, Nagano M, Robaire B. Aging Results in Molecular Changes in an Enriched Population of Undifferentiated Rat Spermatogonia1. Biol Reprod 2013; 89:147. [DOI: 10.1095/biolreprod.113.112995] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
30
|
Kuroki S, Akiyoshi M, Tokura M, Miyachi H, Nakai Y, Kimura H, Shinkai Y, Tachibana M. JMJD1C, a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice. Biol Reprod 2013; 89:93. [PMID: 24006281 DOI: 10.1095/biolreprod.113.108597] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
JmjC domain-containing proteins are a class of enzymes responsible for histone demethylation. Previous studies revealed that the JmjC domain-containing protein KDM3A possesses intrinsic demethylase activity toward lysine 9 of histone H3 and plays essential roles in spermiogenesis. In contrast, the biological roles of JMJD1C, a KDM3A homolog in mice, are largely unknown. Here we present the crucial role of JMJD1C in male gametogenesis. Jmjd1c-deficient males became infertile due to the progressive reduction of germ cells after 3 mo of age. Importantly, Jmjd1c-deficient testes frequently contained abnormal tubules lacking developmentally immature germ cells. JMJD1C is most abundantly expressed in undifferentiated spermatogonia in mouse testis. The numbers of ZBTB16-positive spermatogonia and apoptotic germ cells in Jmjd1c-deficient testes decreased and increased in an age-dependent manner, respectively. Our studies demonstrated that JMJD1C contributes to the long-term maintenance of the male germ line.
Collapse
Affiliation(s)
- Shunsuke Kuroki
- Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang P, Suo LJ, Wang YF, Shang H, Li GX, Hu JH, Li QW. Effects of GDNF and LIF on mouse spermatogonial stem cells proliferation in vitro. Cytotechnology 2013; 66:309-16. [PMID: 23896701 DOI: 10.1007/s10616-013-9574-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 04/19/2013] [Indexed: 01/01/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the only type of cells that transmit genes to the subsequent generations. The proliferation, cultivation and identification of SSCs in vitro are critical to understanding of male infertility, genetic resources and conservation of endangered species. To investigate the effects of glial cell-derived neurotrophic factor (GDNF) and leukemia inhibitory factor (LIF) on the proliferation of mouse SSCs in vitro, supplement of GDNF and/or LIF were designed to culture SSCs. The testes of 6-8 d mouse were harvested and digested by two-step enzyme digestion method. The SSCs and Sertoli cells were separated by differential plating. Then the SSCs were identified by alkaline phosphatase staining, RT-PCR and indirect immunofluorescence cell analysis. The cellular proliferation capacity was measured by methyl thiazolyl tetrazolium assay. The results showed that addition of 20 and 40 ng/ml of GDNF could strongly promote growth of mouse SSCs (p < 0.05). There was no significant difference between LIF treatment groups and the control group in promoting proliferation of the mouse SSCs (p > 0.05). However, the combination of 20 ng/ml GDNF and 1,000 U/ml LIF could significantly enhance the invitro proliferation of mouse SSCs (p < 0.05), and the OD490 value was 0.696 at day 5 of culture when the density of SSCs was 5-10 × 10(4) cells/ml.
Collapse
Affiliation(s)
- Peng Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
32
|
Kofman AE, Huszar JM, Payne CJ. Transcriptional analysis of histone deacetylase family members reveal similarities between differentiating and aging spermatogonial stem cells. Stem Cell Rev Rep 2013; 9:59-64. [PMID: 22729928 DOI: 10.1007/s12015-012-9392-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The differentiation of adult stem cells involves extensive chromatin remodeling, mediated in part by the gene products of histone deacetylase (HDAC) family members. While the transcriptional downregulation of HDACs can impede stem cell self-renewal in certain contexts, it may also promote stem cell maintenance under other circumstances. In self-renewing, differentiating, and aging spermatogonial stem cells (SSCs), the gene expression dynamics of HDACs have not yet been characterized. To gain further insight with these studies, we analyzed the transcriptional profiles of six HDAC family members, previously identified to be the most highly expressed in self-renewing SSCs, during stem cell differentiation and aging. Here we discovered that in both differentiating and aging SSCs the expression of Sirt4 increases, while the expression of Hdac2, Hdac6, and Sirt1 decreases. When SSCs are exposed to the lifespan-enhancing drug rapamycin in vivo, the resultant HDAC gene expression patterns are opposite of those seen in the differentiating and aging SSCs, with increased Hdac2, Hdac6, and Sirt1 and decreased Hdac8, Hdac9, and Sirt4. Our findings suggest that HDACs important for stem cell maintenance and oxidative capacity are downregulated as adult stem cells differentiate or age. These results provide important insights into the epigenetic regulation of stem cell differentiation and aging in mammals.
Collapse
Affiliation(s)
- Amber E Kofman
- Human Molecular Genetics Program, Children's Memorial Research Center, Chicago, IL 60614, USA
| | | | | |
Collapse
|
33
|
Firlej V, Barraud-Lange V, Fouchet P. Stem cell therapy for male infertility takes a step forward. Cell Stem Cell 2013; 11:585-6. [PMID: 23122284 DOI: 10.1016/j.stem.2012.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The feasibility of using spermatogonial stem cells (SSCs) for cell-based infertility treatment has suffered from a lack of evidence in a preclinical nonhuman primate model. In this issue, Hermann et al. (2012) demonstrate that autologous and allogeneic transplantation of SSCs in testes of rhesus macaques produced functional sperm.
Collapse
Affiliation(s)
- Virginie Firlej
- Institut National de la Santé et de la Recherche Médicale, Unité 1016, Institut Cochin, Paris, France
| | | | | |
Collapse
|
34
|
Martin LA, Seandel M. Serial enrichment of spermatogonial stem and progenitor cells (SSCs) in culture for derivation of long-term adult mouse SSC lines. J Vis Exp 2013:e50017. [PMID: 23462452 DOI: 10.3791/50017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Spermatogonial stem and progenitor cells (SSCs) of the testis represent a classic example of adult mammalian stem cells and preserve fertility for nearly the lifetime of the animal. While the precise mechanisms that govern self-renewal and differentiation in vivo are challenging to study, various systems have been developed previously to propagate murine SSCs in vitro using a combination of specialized culture media and feeder cells(1-3). Most in vitro forays into the biology of SSCs have derived cell lines from neonates, possibly due to the difficulty in obtaining adult cell lines(4). However, the testis continues to mature up until ~5 weeks of age in most mouse strains. In the early post-natal period, dramatic changes occur in the architecture of the testis and in the biology of both somatic and spermatogenic cells, including alterations in expression levels of numerous stem cell-related genes. Therefore, neonatally-derived SSC lines may not fully recapitulate the biology of adult SSCs that persist after the adult testis has reached a steady state. Several factors have hindered the production of adult SSC lines historically. First, the proportion of functional stem cells may decrease during adulthood, either due to intrinsic or extrinsic factors(5,6). Furthermore, as with other adult stem cells, it has been difficult to enrich SSCs sufficiently from total adult testicular cells without using a combination of immunoselection or other sorting strategies(7). Commonly employed strategies include the use of cryptorchid mice as a source of donor cells due to a higher ratio of stem cells to other cell types(8). Based on the hypothesis that removal of somatic cells from the initial culture disrupts interactions with the stem cell niche that are essential for SSC survival, we previously developed methods to derive adult lines that do not require immunoselection or cryptorchid donors but rather employ serial enrichment of SSCs in culture, referred to hereafter as SESC(2,3). The method described below entails a simple procedure for deriving adult SSC lines by dissociating adult donor seminiferous tubules, followed by plating of cells on feeders comprised of a testicular stromal cell line (JK1)(3). Through serial passaging, strongly adherent, contaminating non-germ cells are depleted from the culture with concomitant enrichment of SSCs. Cultures produced in this manner contain a mixture of spermatogonia at different stages of differentiation, which contain SSCs, based on long-term self renewal capability. The crux of the SESC method is that it enables SSCs to make the difficult transition from self-renewal in vivo to long-term self-renewal in vitro in a radically different microenvironment, produces long-term SSC lines, free of contaminating somatic cells, and thereby enables subsequent experimental manipulation of SSCs.
Collapse
Affiliation(s)
- Laura A Martin
- Department of Surgery, Weill Cornell Medical College, NY, USA
| | | |
Collapse
|
35
|
Lee YA, Kim YH, Kim BJ, Kim BG, Kim KJ, Auh JH, Schmidt JA, Ryu BY. Cryopreservation in trehalose preserves functional capacity of murine spermatogonial stem cells. PLoS One 2013; 8:e54889. [PMID: 23349986 PMCID: PMC3551902 DOI: 10.1371/journal.pone.0054889] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/17/2012] [Indexed: 12/16/2022] Open
Abstract
Development of techniques to isolate, culture, and transplant human spermatogonial stem cells (SSCs) has the future potential to treat male infertility. To maximize the efficiency of these techniques, methods for SSC cryopreservation need to be developed to bank SSCs for extended periods of time. Although, it has been demonstrated that SSCs can reinitiate spermatogenesis after freezing, optimal cryopreservation protocols that maximize SSC proliferative capacity post-thaw have not been identified. The objective of this study was to develop an efficient cryopreservation technique for preservation of SSCs. To identify efficient cryopreservation methods for long-term preservation of SSCs, isolated testis cells enriched for SSCs were placed in medium containing dimethyl sulfoxide (DMSO) or DMSO and trehalose (50 mM, 100 mM, or 200 mM), and frozen in liquid nitrogen for 1 week, 1 month, or 3 months. Freezing in 50 mM trehalose resulted in significantly higher cell viability compared to DMSO at all thawing times and a higher proliferation rate compared to DMSO for the 1 week freezing period. Freezing in 200 mM trehalose did not result in increased cell viability; however, proliferation activity was significantly higher and percentage of apoptotic cells was significantly lower compared to DMSO after freezing for 1 and 3 months. To confirm the functionality of SSCs frozen in 200 mM trehalose, SSC transplantation was performed. Donor SSCs formed spermatogenic colonies and sperm capable of generating normal progeny. Collectively, these results indicate that freezing in DMSO with 200 mM trehalose serves as an efficient method for the cryopreservation of SSCs.
Collapse
Affiliation(s)
- Yong-An Lee
- Department of Animal Science and Technology, Chung-Ang University, Ansung, Gyeonggi-Do, Korea
| | - Yong-Hee Kim
- Department of Animal Science and Technology, Chung-Ang University, Ansung, Gyeonggi-Do, Korea
| | - Bang-Jin Kim
- Department of Animal Science and Technology, Chung-Ang University, Ansung, Gyeonggi-Do, Korea
| | - Byung-Gak Kim
- Department of Animal Science and Technology, Chung-Ang University, Ansung, Gyeonggi-Do, Korea
| | - Ki-Jung Kim
- Department of Animal Science and Technology, Chung-Ang University, Ansung, Gyeonggi-Do, Korea
| | - Joong-Hyuck Auh
- Department of Food Science and Technology, Chung-Ang University, Ansung, Gyeonggi-Do, Korea
| | - Jonathan A. Schmidt
- Department of Science, Spokane Community College, Spokane, Washington, United States of America
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Ansung, Gyeonggi-Do, Korea
| |
Collapse
|
36
|
Kofman AE, McGraw MR, Payne CJ. Rapamycin increases oxidative stress response gene expression in adult stem cells. Aging (Albany NY) 2012; 4:279-89. [PMID: 22529334 PMCID: PMC3371763 DOI: 10.18632/aging.100451] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Balancing quiescence with proliferation is of paramount importance for adult stem cells in order to avoid hyperproliferation and cell depletion. In some models, stem cell exhaustion may be reversed with the drug rapamycin, which was shown can suppress cellular senescence in vitro and extend lifespan in animals. We hypothesized that rapamycin increases the expression of oxidative stress response genes in adult stem cells, and that these gene activities diminish with age. To test our hypothesis, we exposed mice to rapamycin and then examined the transcriptome of their spermatogonial stem cells (SSCs). Gene expression microarray analysis revealed that numerous oxidative stress response genes were upregulated upon rapamycin treatment, including superoxide dismutase 1, glutathione reductase, and delta-aminolevulinate dehydratase. When we examined the expression of these genes in 55-week-old wild type SSCs, their levels were significantly reduced compared to 3-week-old SSCs, suggesting that their downregulation is coincident with the aging process in adult stem cells. We conclude that rapamycin-induced stimulation of oxidative stress response genes may promote cellular longevity in SSCs, while a decline in gene expression in aged stem cells could reflect the SSCs' diminished potential to alleviate oxidative stress, a hallmark of aging.
Collapse
Affiliation(s)
- Amber E Kofman
- Human Molecular Genetics Program, Children's Memorial Research Center, Chicago, IL 60614, USA
| | | | | |
Collapse
|
37
|
Turner RM, Zeng W. The Emerging Pathophysiology of Age-related Testicular Degeneration with a Focus on the Stallion and an Update on Potential Therapies. Reprod Domest Anim 2012; 47 Suppl 4:178-86. [DOI: 10.1111/j.1439-0531.2012.02073.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Ishii K, Kanatsu-Shinohara M, Toyokuni S, Shinohara T. FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development 2012; 139:1734-43. [PMID: 22491947 DOI: 10.1242/dev.076539] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factor 2 (FGF2) and glial cell line-derived neurotrophic factor (GDNF) are required to recapitulate spermatogonial stem cell (SSC) self-renewal in vitro. Although studies have revealed the role of the GDNF signaling pathway in SSCs, little is known about how FGF2 is involved. In the present study, we assessed the role of the FGF2 signaling pathway using a mouse germline stem (GS) cell culture system that allows in vitro expansion of SSCs. Adding GDNF or FGF2 induced phosphorylation of MAPK1/3, and adding the MAP2K1 inhibitor PD0325091 reduced GS cell proliferation and MAPK1/3 phosphorylation. Moreover, GS cells transfected with an activated form of Map2k1 not only upregulated Etv5 and Bcl6b gene expression, but also proliferated in an FGF2-independent manner, suggesting that they act downstream of MAP2K1 signaling to drive SSC self-renewal. Although GS cells transfected with Map2k1, Etv5 or Bcl6b showed normal spermatogonial markers, transplanting GS cells expressing Bcl6b into infertile mouse testes resulted in the formation of a germ cell tumor, suggesting that excessive self-renewal signals causes tumorigenic conversion. These results show that FGF2 depends on MAP2K1 signaling to drive SSC self-renewal via upregulation of the Etv5 and Bcl6b genes.
Collapse
Affiliation(s)
- Kei Ishii
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|