1
|
Zaniker EJ, Zhang J, Russo D, Huang R, Suritis K, Drake RS, Barlow-Smith E, Shalek AK, Woodruff TK, Xiao S, Goods BA, Duncan FE. Follicle-intrinsic and spatially distinct molecular programs drive follicle rupture and luteinization during ex vivo mammalian ovulation. Commun Biol 2024; 7:1374. [PMID: 39443665 PMCID: PMC11500180 DOI: 10.1038/s42003-024-07074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
During ovulation, the apical wall of the preovulatory follicle breaks down to facilitate gamete release. In parallel, the residual follicle wall differentiates into a progesterone-producing corpus luteum. Disruption of ovulation, whether through contraceptive intervention or infertility, has implications for women's health. In this study, we harness the power of an ex vivo ovulation model and machine-learning guided microdissection to identify differences between the ruptured and unruptured sides of the follicle wall. We demonstrate that the unruptured side exhibits clear markers of luteinization after ovulation while the ruptured side exhibits cell death signals. RNA-sequencing of individual follicle sides reveals 2099 differentially expressed genes (DEGs) between follicle sides without ovulation induction, and 1673 DEGs 12 h after induction of ovulation. Our model validates molecular patterns consistent with known ovulation biology even though this process occurs in the absence of the ovarian stroma, vasculature, and immune cells. We further identify previously unappreciated pathways including amino acid transport and Jag-Notch signaling on the ruptured side and glycolysis, metal ion processing, and IL-11 signaling on the unruptured side of the follicle. This study yields key insights into follicle-inherent, spatially-defined pathways that underlie follicle rupture, which may further understanding of ovulation physiology and advance women's health.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Daniela Russo
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Ruixu Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Kristine Suritis
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Riley S Drake
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Alex K Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Brittany A Goods
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Zaniker EJ, Hashim PH, Gauthier S, Ankrum JA, Campo H, Duncan FE. Three-Dimensionally Printed Agarose Micromold Supports Scaffold-Free Mouse Ex Vivo Follicle Growth, Ovulation, and Luteinization. Bioengineering (Basel) 2024; 11:719. [PMID: 39061801 PMCID: PMC11274170 DOI: 10.3390/bioengineering11070719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Ex vivo follicle growth is an essential tool, enabling interrogation of folliculogenesis, ovulation, and luteinization. Though significant advancements have been made, existing follicle culture strategies can be technically challenging and laborious. In this study, we advanced the field through development of a custom agarose micromold, which enables scaffold-free follicle culture. We established an accessible and economical manufacturing method using 3D printing and silicone molding that generates biocompatible hydrogel molds without the risk of cytotoxicity from leachates. Each mold supports simultaneous culture of multiple multilayer secondary follicles in a single focal plane, allowing for constant timelapse monitoring and automated analysis. Mouse follicles cultured using this novel system exhibit significantly improved growth and ovulation outcomes with comparable survival, oocyte maturation, and hormone production profiles as established three-dimensional encapsulated in vitro follicle growth (eIVFG) systems. Additionally, follicles recapitulated aspects of in vivo ovulation physiology with respect to their architecture and spatial polarization, which has not been observed in eIVFG systems. This system offers simplicity, scalability, integration with morphokinetic analyses of follicle growth and ovulation, and compatibility with existing microphysiological platforms. This culture strategy has implications for fundamental follicle biology, fertility preservation strategies, reproductive toxicology, and contraceptive drug discovery.
Collapse
Affiliation(s)
- Emily J. Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (E.J.Z.); (P.H.H.); (S.G.)
| | - Prianka H. Hashim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (E.J.Z.); (P.H.H.); (S.G.)
| | - Samuel Gauthier
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (E.J.Z.); (P.H.H.); (S.G.)
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52245, USA;
| | - Hannes Campo
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (E.J.Z.); (P.H.H.); (S.G.)
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (E.J.Z.); (P.H.H.); (S.G.)
| |
Collapse
|
3
|
Silva BR, Nascimento DR, Costa FC, Azevedo AV, Paulino LRFM, Aguiar FLN, Batista ALPS, Donato MAM, Silva JRV. Melatonin improves the viability and ultrastructure of bovine oocyte-granulosa complexes of in vitro cultured early antral follicles. Reprod Domest Anim 2024; 59:e14543. [PMID: 38459831 DOI: 10.1111/rda.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/21/2023] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
This study aims to investigate the effects of melatonin on follicular growth, viability and ultrastructure, as well as on the levels of mRNA for antioxidant enzymes, reactive oxygen species (ROS) and meiotic progression in oocytes from in vitro cultured bovine early antral follicles. To this end, isolated early antral follicles (500-600 μm) were cultured in TCM-199+ alone or supplemented with 10-6 , 10-7 or 10-8 M melatonin at 38.5°C with 5% CO2 for 8 days. Follicle diameters were evaluated at days 0, 4 and 8 of culture. At the end of culture, ultrastructure, chromatin configuration, viability (calcein-AM and ethidium homodimer-1 staining), and the levels of ROS and mRNA for catalase (CAT), superoxide dismutase (SOD) and peroxiredoxin 6 (PRDX6) and glutathione peroxidase (GPx) were investigated in oocyte-granulosa cell complexes (OGCs). The results showed that early antral follicles cultured with 10-6 and 10-8 M melatonin had a progressive and significant increase in their diameters throughout the culture period (p < .05). Additionally, oocytes from follicles cultured with 10-7 or 10-8 M melatonin had increased fluorescence for calcein-AM, while those cultured with 10-6 or 10-7 M had reduced fluorescence for ethidium homodimer-1. Different from follicles cultured in other treatments, those cultured with 10-8 M melatonin had well-preserved ultrastructure of oocyte and granulosa cells. Melatonin, however, did not influence the levels of ROS, the mitochondrial activity, oocyte meiotic resumption and expression mRNA for SOD, CAT, GPX1 and PRDX6. In conclusion, the presence of 10-8 M melatonin in culture medium improves viability and preserves the ultrastructure of oocyte and granulosa cells of early antral follicles cultured in vitro.
Collapse
Affiliation(s)
- Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Danisvânia R Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Francisco C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Antônia V Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Francisco L N Aguiar
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil
| | - Ana L P S Batista
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| | - Mariana A M Donato
- Laboratory of Ultrastructure, CNPqAM/FIOCRUZ, Federal University of Pernambuco, Recife, PE, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral, CE, Brazil
| |
Collapse
|
4
|
Subiran Adrados C, Cadenas J, Polat SL, Tjäder AS, Blanche P, Kristensen SG. Exploring the potential use of platelet rich plasma (PRP) from adult and umbilical cord blood in murine follicle culture. Reprod Biol 2024; 24:100851. [PMID: 38237503 DOI: 10.1016/j.repbio.2023.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 04/02/2024]
Abstract
Ovarian follicle culture is a powerful tool to study follicular physiology and has potential applications in clinical and commercial settings. Despite remarkable progress, recreating folliculogenesis in vitro remains challenging for many mammalian species. This study investigates the impact of platelet-rich plasma (PRP) derived from adult blood (human platelet lysate, hPL) and umbilical cord blood (Umbilical cord plasma, UCP) on murine pre-antral follicle culture and oocyte maturation. Pre-antral follicles were cultured individually for 10 days with fetal bovine serum (FBS) serving as the control and two PRP sources (hPL and UCP) and their activated forms (Ac-hPL and Ac-UCP). The results suggest that neither hPL nor UCP, regardless of activation status, improved follicle culture outcomes compared to FBS. Interestingly, activation did not significantly impact the main functional outcomes such as maturation rates, survival, and growth. Oestradiol secretion and oocyte diameter, often considered hallmarks of follicle quality, did not show significant differences between matured and non-matured oocytes across the treatment groups. However, gene expression analysis revealed a significant upregulation of Gdf-9 and Bmp-15 mRNA levels in oocytes from the Ac-UCP group, regardless of maturation stage, suggesting that the accumulation of the mRNA could be due to potential challenges in translation in the Ac-UCP group. In conclusion, this study challenges the hypothesis that PRP, as a serum source, could improve follicle culture outcomes compared to FBS, the gold standard in murine follicle culture. Further research is needed to understand the species-specific effects of PRP and explore other potential factors affecting follicle culture and oocyte quality.
Collapse
Affiliation(s)
- Cristina Subiran Adrados
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jesús Cadenas
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Sofie Lund Polat
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Anna Sanderhage Tjäder
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Paul Blanche
- Department of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, Entrance B, 2nd floor, 1014 Copenhagen, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, Department of Fertility, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Nagashima JB, Zenilman S, Raab A, Aranda-Espinoza H, Songsasen N. Comparative Tensile Properties and Collagen Patterns in Domestic Cat ( Felis catus) and Dog ( Canis lupus familiaris) Ovarian Cortical Tissues. Bioengineering (Basel) 2023; 10:1285. [PMID: 38002409 PMCID: PMC10669533 DOI: 10.3390/bioengineering10111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The importance of the ovarian extracellular environment and tissue rigidity on follicle survival and development has gained attention in recent years. Our laboratory has anecdotally observed differences in the rigidity of domestic cat and dog ovarian cortical tissues, which have been postulated to underlie the differences in in vitro culture responses between the species, wherein cat ovarian tissues display higher survival in extended incubation. Here, the tensile strengths of cat and dog ovarian cortical tissues were compared via micropipette aspiration. The underlying collagen patterns, including fiber length, thickness, alignment, curvature, branch points and end points, and overall tissue lacunary and high-density matrix (HDM) were quantified via picrosirius red staining and TWOMBLI analysis. Finally, we explored the potential of MMP (-1 and -9) and TIMP1 supplementation in modulating tissue rigidity, collagen structure, and follicle activation in vitro. No differences in stiffness were observed between cat or dog cortical tissues, or pre- versus post-pubertal status. Cat ovarian collagen was characterized by an increased number of branch points, thinner fibers, and lower HDM compared with dog ovarian collagen, and cat tissues exposed to MMP9 in vitro displayed a reduced Young's modulus. Yet, MMP exposure had a minor impact on follicle development in vitro in either species. This study contributes to our growing understanding of the interactions among the physical properties of the ovarian microenvironment, collagen patterns, and follicle development in vitro.
Collapse
Affiliation(s)
- Jennifer B. Nagashima
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA;
| | - Shoshana Zenilman
- College of Veterinary Medicine, Cornell University, 144 East Ave, Ithaca, NY 14850, USA
| | - April Raab
- College of Veterinary Medicine, Michigan State University, 784 Wilson Rd., East Lansing, MI 48824, USA
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, 3108 A. James Clark Hall, College Park, MD 20742, USA;
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA 22630, USA;
| |
Collapse
|
6
|
Dovolou E, Giannoulis T, Nanas I, Amiridis GS. Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows. Animals (Basel) 2023; 13:1846. [PMID: 37889768 PMCID: PMC10252019 DOI: 10.3390/ani13111846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Global warming is a significant threat to the sustainability and profitability of the dairy sector, not only in tropical or subtropical regions but also in temperate zones where extreme summer temperatures have become a new and challenging reality. Prolonged exposure of dairy cows to high temperatures compromises animal welfare, increases morbidity, and suppresses fertility, resulting in devastating economic losses for farmers. To counteract the deleterious effects of heat stress, cattl e employ various adaptive thermoregulatory mechanisms including molecular, endocrine, physiological, and behavioral responses. These adaptations involve the immediate secretion of heat shock proteins and cortisol, followed by a complex network of disrupted secretion of metabolic and reproductive hormones such as prolactin, ghrelin, ovarian steroid, and pituitary gonadotrophins. While the strategic heat stress mitigation measures can restore milk production through modifications of the microclimate and nutritional interventions, the summer fertility records remain at low levels compared to those of the thermoneutral periods of the year. This is because sustainment of high fertility is a multifaceted process that requires appropriate energy balance, undisrupted mode of various hormones secretion to sustain the maturation and fertilizing competence of the oocyte, the normal development of the early embryo and unhampered maternal-embryo crosstalk. In this review, we summarize the major molecular and endocrine responses to elevated temperatures in dairy cows, as well as the impacts on maturing oocytes and early embryos, and discuss the consequences that heat stress brings about in dairy cattle fertility.
Collapse
Affiliation(s)
- Eleni Dovolou
- Laboratory of Reproduction, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Themistoklis Giannoulis
- Laboratory of Genetics, Faculty of Animal Science, University of Thessaly, 41223 Larissa, Greece;
| | - Ioannis Nanas
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| | - Georgios S. Amiridis
- Department of Obstetrics & Reproduction, Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece;
| |
Collapse
|
7
|
Converse A, Zaniker EJ, Amargant F, Duncan FE. Recapitulating folliculogenesis and oogenesis outside the body: encapsulated in vitro follicle growth†. Biol Reprod 2023; 108:5-22. [PMID: 36136744 PMCID: PMC9843677 DOI: 10.1093/biolre/ioac176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 01/21/2023] Open
Abstract
Folliculogenesis is a tightly coordinated process essential for generating a fertilization-competent gamete while also producing gonadal hormones that sustain endocrine function. In vitro follicle growth systems have been critical to our understanding of key events in folliculogenesis, such as gonadotropin-independent and dependent growth, steroid hormone production, and oocyte growth and maturation (cytoplasmic and meiotic). Although there are several successful follicle culture strategies, the following protocol details an encapsulated in vitro follicle growth (eIVFG) system for use with mouse ovarian follicles. Encapsulated IVFG is performed with alginate hydrogels, which are biologically inert, maintains cell-to-cell interactions between granulosa cells and the oocyte, and preserves follicle architecture as found in the ovary. The system supports follicle growth, development, and differentiation from the early primary follicle to the antral follicle stage. Moreover, post-folliculogenesis events including meiotic maturation, ovulation, and luteinization are also supported. Importantly, the culture of secondary follicles has successfully resulted in viable pups after blastocyst transfer. This alginate-based eIVFG system is versatile and has broad applications as a tool for interrogating the fundamental biology of the ovarian follicle in a controlled manner, a screening platform for toxicity and bioactivity, and a potential fertility preservation method for endangered species as well as humans.
Collapse
Affiliation(s)
- Aubrey Converse
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illnois, USA
| | - Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illnois, USA
| | - Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illnois, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illnois, USA
| |
Collapse
|
8
|
Ghorbani S, Eyni H, Norahan MH, Zarrintaj P, Urban N, Mohammadzadeh A, Mostafavi E, Sutherland DS. Advanced bioengineering of female germ cells to preserve fertility. Biol Reprod 2022; 107:1177-1204. [PMID: 35947985 PMCID: PMC10144627 DOI: 10.1093/biolre/ioac160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/14/2022] Open
Abstract
Oogenesis and folliculogenesis are considered as complex and species-specific cellular differentiation processes, which depend on the in vivo ovarian follicular environment and endocrine cues. Considerable efforts have been devoted to driving the differentiation of female primordial germ cells toward mature oocytes outside of the body. The recent experimental attempts have laid stress on offering a suitable microenvironment to assist the in vitro folliculogenesis and oogenesis. Despite developing a variety of bioengineering techniques and generating functional mature gametes through in vitro oogenesis in earlier studies, we still lack knowledge of appropriate microenvironment conditions for building biomimetic culture systems for female fertility preservation. Therefore, this review paper can provide a source for a large body of scientists developing cutting-edge in vitro culture systems for female germ cells or setting up the next generation of reproductive medicine as feasible options for female infertility treatment. The focal point of this review outlines advanced bioengineering technologies such as 3D biofabricated hydrogels/scaffolds and microfluidic systems utilized with female germlines for fertility preservation through in vitro folliculogenesis and oogenesis.
Collapse
Affiliation(s)
- Sadegh Ghorbani
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Hossein Eyni
- Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Hadi Norahan
- School of Engineering and Sciences, Tecnologico de Monterrey Unviersity, Monterrey, NL, Mexico
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Nadine Urban
- Freiburg Centre for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
| | | | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Babayev E, Xu M, Shea LD, Woodruff TK, Duncan FE. Follicle isolation methods reveal plasticity of granulosa cell steroidogenic capacity during mouse in vitro follicle growth. Mol Hum Reprod 2022; 28:6693628. [PMID: 36069625 PMCID: PMC9802420 DOI: 10.1093/molehr/gaac033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Indexed: 01/07/2023] Open
Abstract
Follicles are the functional unit of the ovary and several methods have been developed to grow follicles ex vivo, which recapitulate key events of oogenesis and folliculogenesis. Enzymatic digestion protocols are often used to increase the yield of follicles from the ovary. However, the impact of these protocols on the outermost theca and granulosa cells, and thereby follicle function, is not well defined. To investigate the impact of enzymatic digestion on follicle function, we collected preantral follicles from CD1 mice either by enzymatic digestion (Enzy-FL) or mechanical isolation (Mech-FL) and compared follicle growth, steroidogenesis and cell differentiation within an encapsulated in vitro follicle growth system which maintains the 3D architecture of the oocyte and its surrounding somatic cells. Follicles were encapsulated in 0.5% alginate and cultured for 8 days. Compared with Enzy-FL, Mech-FL grew more rapidly and produced significantly higher levels of androstenedione, estradiol and progesterone. The expression of theca-interstitial cell marker genes, Cyp17a1, which encodes 17-hydroxylase/17, 20-lyase and catalyzes the hydroxylation of pregnenolone and progesterone to 17-hydroxypregnenolone and 17-hydroxyprogesterone, and the conversion of these products into dehydroepiandrosterone and androstenedione, and Star, which encodes a transport protein essential for cholesterol entry into mitochondria, were also higher in Mech-FL than in Enzy-FL. Mech-FL maintained an intact theca-interstitial layer on the outer edge of the follicle that phenocopied in vivo patterns as confirmed by alkaline phosphatase staining, whereas theca-interstitial cells were absent from Enzy-FL from the onset of culture. Therefore, preservation of the theca cell layer at the onset of culture better supports follicle growth and function. Interestingly, granulosa cells in the outermost layers of Enzy-FL expressed CYP17A1 by Day 4 of culture while maintaining inhibin α-subunit expression and a cuboidal nucleus. Thus, in the absence of theca-interstitial cells, granulosa cells have the potential to differentiate into androgen-producing cells. This work may have implications for human follicle culture, where enzymatic isolation is required owing to the density of the ovarian cortex.
Collapse
Affiliation(s)
| | | | - Lonnie D Shea
- Member of the Oncofertility Consortium, Michigan State University, East Lansing, MI, USA,Institute of Bionanotechnology in Medicine, Northwestern University, Chicago, IL, USA,Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Teresa K Woodruff
- Correspondence address. Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA. E-mail: (F.E.D.); Department of Obstetrics and Gynecology and Department of Biomedical Engineering, Michigan State University, 965 Wilson Road, Room A626B, East Lansing, MI 48824-1316, USA. E-mail: (T.K.W.)
| | - Francesca E Duncan
- Correspondence address. Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Lurie 10-109, Chicago, IL 60611, USA. E-mail: (F.E.D.); Department of Obstetrics and Gynecology and Department of Biomedical Engineering, Michigan State University, 965 Wilson Road, Room A626B, East Lansing, MI 48824-1316, USA. E-mail: (T.K.W.)
| |
Collapse
|
10
|
Herta AC, Mengden L, Akin N, Billooye K, Coucke W, Leersum J, Cava-Cami B, Saucedo-Cuevas L, Klamt F, Smitz J, Anckaert E. Characterization of carbohydrate metabolism in in vivo and in vitro grown and matured mouse antral follicles. Biol Reprod 2022; 107:998-1013. [PMID: 35717588 DOI: 10.1093/biolre/ioac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/14/2022] [Accepted: 06/12/2022] [Indexed: 11/13/2022] Open
Abstract
Establishing an ideal human follicle culture system for oncofertility patients relies mainly on animal models since donor tissue is scarce and often of suboptimal quality. The in vitro system developed in our laboratory supports the growth of prepubertal mouse secondary follicles up to mature oocytes. Given the importance of glucose in preparing the oocyte for proper maturation, a baseline characterization of follicle metabolism both in the culture system and in vivo was carried out. Markers of glucose-related pathways (glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP), polyol pathway, hexosamine biosynthesis pathway (HBP)) as well as for the antioxidant capacity were measured in the different follicle cell types by both enzymatic activities (spectrophotometric detection) and gene expression (qPCR). This study confirmed that in vivo the somatic cells, mainly granulosa, exhibit intense glycolytic activity, while oocytes perform PPP. Throughout the final maturation step, oocytes in vivo and in vitro showed steady levels for all the key enzymes and metabolites. On the other hand, ovulation triggers a boost of pyruvate and lactate uptake in cumulus cells in vivo, consumes reduced nicotinamide adenine dinucleotide phosphate (NADPH) and increases TCA cycle and small molecules antioxidant capacity (SMAC) activities, while in vitro, the metabolic upregulation in all the studied pathways is limited. This altered metabolic pattern might be a consequence of cell exhaustion because of culture conditions, impeding cumulus cells to fulfil their role in providing proper support for acquiring oocyte competence. SUMMARY SENTENCE: In vitro cultured mouse follicles exhibit altered glycolytic activity and redox metabolism in the somatic compartment during meiotic maturation.
Collapse
Affiliation(s)
- Anamaria-Cristina Herta
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Lucia Mengden
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), 90035003, Brazil
| | - Nazli Akin
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Katy Billooye
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Wim Coucke
- Freelance statistician, Brugstraat 107, 3001 Heverlee, Belgium
| | - Julia Leersum
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Berta Cava-Cami
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Laura Saucedo-Cuevas
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Fábio Klamt
- Laboratory of Cellular Biochemistry, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre (RS), 90035003, Brazil
| | - Johan Smitz
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| | - Ellen Anckaert
- Follicle Biology Laboratory (FOBI), Vrije Universiteit Brussel (VUB), Brussels, 1090, Belgium
| |
Collapse
|
11
|
Picton HM. Therapeutic Potential of In Vitro-Derived Oocytes for the Restoration and Treatment of Female Fertility. Annu Rev Anim Biosci 2022; 10:281-301. [PMID: 34843385 DOI: 10.1146/annurev-animal-020420-030319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Considerable progress has been made with the development of culture systems for the in vitro growth and maturation (IVGM) of oocytes from the earliest-staged primordial follicles and from the more advanced secondary follicles in rodents, ruminants, nonhuman primates, and humans. Successful oocyte production in vitro depends on the development of a dynamic culture strategy that replicates the follicular microenvironment required for oocyte activation and to support oocyte growth and maturation in vivo while enabling the coordinated and timely acquisition of oocyte developmental competence. Significant heterogeneity exists between the culture protocols used for different stages of follicle development and for different species. To date, the fertile potential of IVGM oocytes derived from primordial follicles has been realized only in mice. Although many technical challenges remain, significant advances have been made, and there is an increasing consensus that complete IVGM will require a dynamic, multiphase culture approach. The production of healthy offspring from in vitro-produced oocytes in a secondary large animal species is a vital next step before IVGM can be tested for therapeutic use in humans.
Collapse
Affiliation(s)
- Helen M Picton
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
12
|
Xu J, Zelinski MB. Oocyte quality following in vitro follicle development†. Biol Reprod 2021; 106:291-315. [PMID: 34962509 PMCID: PMC9004734 DOI: 10.1093/biolre/ioab242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
In vitro follicle development (IVFD) is an adequate model to obtain basic knowledge of folliculogenesis and provides a tool for ovarian toxicity screening. IVFD yielding competent oocytes may also offer an option for fertility and species preservation. To promote follicle growth and oocyte maturation in vitro, various culture systems are utilized for IVFD in rodents, domestic animals, wild animals, nonhuman primates, and humans. Follicle culture conditions have been improved by optimizing gonadotropin levels, regulatory factors, nutrient supplements, oxygen concentration, and culture matrices. This review summarizes quality assessment of oocytes generated from in vitro-developed antral follicles from the preantral stage, including oocyte epigenetic and genetic profile, cytoplasmic and nuclear maturation, preimplantation embryonic development following in vitro fertilization, as well as pregnancy and live offspring after embryo transfer. The limitations of oocyte quality evaluation following IVFD and the gaps in our knowledge of IVFD to support proper oocyte development are also discussed. The information may advance our understanding of the requirements for IVFD, with a goal of producing competent oocytes with genetic integrity to sustain embryonic development resulting in healthy offspring.
Collapse
Affiliation(s)
- Jing Xu
- Correspondence: Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. Tel: +1 5033465411; Fax: +1 5033465585; E-mail:
| | - Mary B Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA,Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
13
|
Equine Chorionic Gonadotropin as an Effective FSH Replacement for In Vitro Ovine Follicle and Oocyte Development. Int J Mol Sci 2021; 22:ijms222212422. [PMID: 34830304 PMCID: PMC8619287 DOI: 10.3390/ijms222212422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
The use of assisted reproductive technologies (ART) still requires strategies through which to maximize individual fertility chances. In vitro folliculogenesis (ivF) may represent a valid option to convey the large source of immature oocytes in ART. Several efforts have been made to set up ivF cultural protocols in medium-sized mammals, starting with the identification of the most suitable gonadotropic stimulus. In this study, Equine Chorionic Gonadotropin (eCG) is proposed as an alternative to Follicle Stimulating Hormone (FSH) based on its long superovulation use, trans-species validation, long half-life, and low costs. The use of 3D ivF on single-ovine preantral (PA) follicles allowed us to compare the hormonal effects and to validate their influence under two different cultural conditions. The use of eCG helped to stimulate the in vitro growth of ovine PA follicles by maximizing its influence under FBS-free medium. Higher performance of follicular growth, antrum formation, steroidogenic activity and gap junction marker expression were recorded. In addition, eCG, promoted a positive effect on the germinal compartment, leading to a higher incidence of meiotic competent oocytes. These findings should help to widen the use of eCG to ivF as a valid and largely available hormonal support enabling a synchronized in vitro follicle and oocyte development.
Collapse
|
14
|
Bernabò N, Di Berardino C, Capacchietti G, Peserico A, Buoncuore G, Tosi U, Crociati M, Monaci M, Barboni B. In Vitro Folliculogenesis in Mammalian Models: A Computational Biology Study. Front Mol Biosci 2021; 8:737912. [PMID: 34859047 PMCID: PMC8630647 DOI: 10.3389/fmolb.2021.737912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 11/27/2022] Open
Abstract
In vitro folliculogenesis (ivF) has been proposed as an emerging technology to support follicle growth and oocyte development. It holds a great deal of attraction from preserving human fertility to improving animal reproductive biotechnology. Despite the mice model, where live offspring have been achieved,in medium-sized mammals, ivF has not been validated yet. Thus, the employment of a network theory approach has been proposed for interpreting the large amount of ivF information collected to date in different mammalian models in order to identify the controllers of the in vitro system. The WoS-derived data generated a scale-free network, easily navigable including 641 nodes and 2089 links. A limited number of controllers (7.2%) are responsible for network robustness by preserving it against random damage. The network nodes were stratified in a coherent biological manner on three layers: the input was composed of systemic hormones and somatic-oocyte paracrine factors; the intermediate one recognized mainly key signaling molecules such as PI3K, KL, JAK-STAT, SMAD4, and cAMP; and the output layer molecules were related to functional ivF endpoints such as the FSH receptor and steroidogenesis. Notably, the phenotypes of knock-out mice previously developed for hub.BN indirectly corroborate their biological relevance in early folliculogenesis. Finally, taking advantage of the STRING analysis approach, further controllers belonging to the metabolic axis backbone were identified, such as mTOR/FOXO, FOXO3/SIRT1, and VEGF, which have been poorly considered in ivF to date. Overall, this in silico study identifies new metabolic sensor molecules controlling ivF serving as a basis for designing innovative diagnostic and treatment methods to preserve female fertility.
Collapse
Affiliation(s)
- Nicola Bernabò
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | | | | | - Alessia Peserico
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Giorgia Buoncuore
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| | - Martina Crociati
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Maurizio Monaci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
- Centre for Perinatal and Reproductive Medicine, University of Perugia, Perugia, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, University of Teramo, Teramo, Italy
| |
Collapse
|
15
|
Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021; 135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Considerable challenges in engineering the female reproductive tissue are the follicle's unique architecture, the need to recapitulate the extracellular matrix, and tissue vascularization. Over the years, various strategies have been developed for preserving fertility in women diagnosed with cancer, such as embryo, oocyte, or ovarian tissue cryopreservation. While autotransplantation of cryopreserved ovarian tissue is a viable choice to restore fertility in prepubertal girls and women who need to begin chemo- or radiotherapy soon after the cancer diagnosis, it is not suitable for all patients due to the risk of having malignant cells present in the ovarian fragments in some types of cancer. Advances in tissue engineering such as 3D printing and ovary-on-a-chip technologies have the potential to be a translational strategy for precisely recapitulating normal tissue in terms of physical structure, vascularization, and molecular and cellular spatial distribution. This review first introduces the ovarian tissue structure, describes suitable properties of biomaterials for ovarian tissue engineering, and highlights recent advances in tissue engineering for developing an artificial ovary. STATEMENT OF SIGNIFICANCE: The increase of survival rates in young cancer patients has been accompanied by a rise in infertility/sterility in cancer survivors caused by the gonadotoxic effect of some chemotherapy regimens or radiotherapy. Such side-effect has a negative impact on these patients' quality of life as one of their main concerns is generating biologically related children. To aid female cancer patients, several research groups have been resorting to tissue engineering strategies to develop an artificial ovary. In this review, we discuss the numerous biomaterials cited in the literature that have been tested to encapsulate and in vitro culture or transplant isolated preantral follicles from human and different animal models. We also summarize the recent advances in tissue engineering that can potentially be optimal strategies for developing an artificial ovary.
Collapse
|
16
|
Kehoe S, Jewgenow K, Johnston PR, Braun BC. Early preantral follicles of the domestic cat express gonadotropin and sex steroid signalling potential. Biol Reprod 2021; 106:95-107. [PMID: 34672344 DOI: 10.1093/biolre/ioab192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/29/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Key biomolecular processes which regulate primordial ovarian follicle dormancy and early folliculogenesis in mammalian ovaries are not fully understood. The domestic cat is a useful model to study ovarian folliculogenesis and is the most relevant for developing in vitro growth methods to be implemented in wild felid conservation breeding programs. Previously, RNA-sequencing of primordial, primary, and secondary follicle samples from domestic cat implicated ovarian steroidogenesis and steroid reception during follicle development. Here we aimed to identify which sex steroid biosynthesis and metabolism enzymes, gonadotropin receptors, and sex steroid receptors are present and may be potential regulators. Differential gene expression, functional annotation, and enrichment analyses were employed and protein localisation was studied too. Gene transcripts for PGR, PGRMC1, AR (steroid receptors), CYP11A1, CYP17A1, HSD17B1 and HSD17B17 (steroidogenic enzymes), and STS (steroid metabolising enzyme) were significantly differentially expressed (Q values of ≤0.05). Differential gene expression increased in all transcripts during follicle transitions apart from AR which decreased by the secondary stage. Immunohistochemistry localised FSHR and LHCGR to oocytes at each stage. PGRMC1 immunostaining was strongest in granulosa cells whereas AR was strongest in oocytes throughout each stage. Protein signals for steroidogenic enzymes were only detectable in secondary follicles. Products of these significantly differentially expressed genes may regulate domestic cat preantral folliculogenesis. In vitro growth could be optimised as all early follicles express gonadotropin and steroid receptors meaning hormone interaction and response may be possible. Protein expression analyses of early secondary follicles supported its potential for producing sex steroids.
Collapse
Affiliation(s)
- S Kehoe
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - K Jewgenow
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| | - P R Johnston
- Berlin Center for Genomics in Biodiversity Research BeGenDiv; Leibniz-Institute of Freshwater Ecology and Inland Fisheries; and Freie Universität Berlin, Institut für Biologie, Berlin, Germany
| | - B C Braun
- Department of Reproduction Biology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
17
|
Sarabadani M, Tavana S, Mirzaeian L, Fathi R. Co-culture with peritoneum mesothelial stem cells supports the in vitro growth of mouse ovarian follicles. J Biomed Mater Res A 2021; 109:2685-2694. [PMID: 34228401 DOI: 10.1002/jbm.a.37260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
The important roles played by the ovarian microenvironment and cell interactions in folliculogenesis suggest promising approaches for in vivo growth of ovarian follicles using appropriate scaffolds containing suitable cell sources. In this study, we have investigated the growth of early preantral follicles in the presence of decellularized mesenteric peritoneal membrane (MPM), peritoneum mesothelial stem cells (PMSCs), and conditioned medium (CM) of PMSCs. MPM of mouse was first decellularized; PMSCs were isolated from MPM and cultured and their conditioned medium (CM) was collected. Mouse follicles were separated into four groups: (1) culture in base medium (control), (2) culture in decellularized MPM (DMPM), (3) co-culture with PMSCs (Co-PMSCs), and (4) culture in CM of PMSCs (CM-PMSCs). Qualitative and quantitative assessments were performed to evaluate intact mesenteric peritoneal membrane (IMPM) as well as decellularized ones. After culturing the ovarian follicles, follicular and oocyte diameter, viability, eccentric oocyte percentage, and estradiol hormone amounts were evaluated. Quantitative and qualitative evaluations confirmed removal of cells and retention of the essential fibers in MPM after the decellularization process. Follicular parameters showed that Co-PMSCs better support in vitro growth and development of ovarian follicles than the other groups. The eccentric rate and estradiol production were statistically higher for the Co-PMSCs group than for the CM-PMSCs and control groups. Although the culture of early preantral follicles on DMPM and CM-PMSCs could improve in vitro follicular growth, co-culture of follicles with PMSCs showed even greater improvements in terms of follicular growth and diameter.
Collapse
Affiliation(s)
- Mahdieh Sarabadani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
18
|
Kim SW, Kim YY, Kim H, Ku SY. Recent Advancements in Engineered Biomaterials for the Regeneration of Female Reproductive Organs. Reprod Sci 2021; 28:1612-1625. [PMID: 33797052 DOI: 10.1007/s43032-021-00553-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Various gynecologic diseases and chemoradiation or surgery for the management of gynecologic malignancies may damage the uterus and ovaries, leading to clinical problems such as infertility or early menopause. Embryo or oocyte cryopreservation-the standard method for fertility preservation-is not a feasible option for patients who require urgent treatment because the procedure requires ovarian stimulation for at least several days. Hormone replacement therapy (HRT) for patients diagnosed with premature menopause is contraindicated for patients with estrogen-dependent tumors or a history of thrombosis. Furthermore, these methods cannot restore the function of the uterus and ovaries. Although autologous transplantation of cryopreserved ovarian tissue is being attempted, it may re-introduce malignant cells after cancer treatment. With the recent development in regenerative medicine, research on engineered biomaterials for the restoration of female reproductive organs is being actively conducted. The use of engineered biomaterials is a promising option in the field of reproductive medicine because it can overcome the limitations of current therapies. Here, we review the ideal properties of biomaterials for reproductive tissue engineering and the recent advancements in engineered biomaterials for the regeneration of female reproductive organs.
Collapse
Affiliation(s)
- Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, 2024 E. Monument St, Baltimore, MD, 21205, USA.
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
He Y, Meng K, Wang X, Dong Z, Zhang Y, Quan F. Comparison of Bovine Small Antral Follicle Development in Two- and Three-Dimensional Culture Systems. AN ACAD BRAS CIENC 2020; 92:e20180935. [PMID: 33146258 DOI: 10.1590/0001-3765202020180935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
To compare the effects of two-(2D, microplate) and three-dimensional (3D, alginate) culture systems on the in vitro growth of small antral follicles in cattle, individual follicles were separately cultured in the two culture systems for 8 days. Half of the culture medium was replaced by fresh medium every 2 days; the former medium was used to assess the amount of follicular hormone secretion using ELISA. Individual follicle morphology, diameter, and survival rate were recorded every alternate day. The results showed that in 4 days, there was no significant difference between the two systems, except that the growth rate of follicles in 2D system was relatively faster. After 4 days, estradiol concentration in 3D system was higher than that in 2D system. However, progesterone concentration was lower than that in the 2D system. The survival rate and oocyte quality of follicles in 2D system were significantly lower than those in 3D system on day 8. The follicle diameter slightly increased (30-60 μm) in the entire process. Taken together, for in vitro culture of follicles within 4 days, the 2D culture system is more suitable. However, when the culture duration is >4 days, the 3D culture system is more suitable.
Collapse
Affiliation(s)
- Yuanyuan He
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Kai Meng
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Xiaomei Wang
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Zhihang Dong
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Yong Zhang
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| | - Fusheng Quan
- Northwest A&F University, College of Veterinary Medicine, Department of Clinical Veterinary Medicine, Yangling 712100 Shaanxi, China
| |
Collapse
|
20
|
Culture of human ovarian tissue in xeno-free conditions using laminin components of the human ovarian extracellular matrix. J Assist Reprod Genet 2020; 37:2137-2150. [PMID: 32671735 DOI: 10.1007/s10815-020-01886-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/08/2020] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Our purpose was to identify human ovarian extracellular matrix (ECM) components that would support in vitro culture of human ovarian tissue and be compatible with possible future clinical applications. We characterized ovarian expression of laminins and selected three laminin tripeptides for culture experiments to be compared with Matrigel, an undefined and animal-based mixture of ECM components. METHODS Expression of the 12 laminin genes was determined on transcript and protein levels using cortical tissue samples (n = 6), commercial ovary RNA (n = 1), follicular fluid granulosa cells (n = 20), and single-cell RNA-sequencing data. Laminin 221 (LN221), LN521, LN511, and their mixture were chosen for a 7-day culture experiment along with Matrigel using tissue from 17 patients. At the end of the culture, follicles were evaluated by scoring and counting from serial tissue sections, apoptosis measured using in situ TUNEL assay, proliferation by Ki67 staining, and endocrine function by quantifying steroids in culture media using UPLC-MS/MS. RESULTS Approximately half of the cells in ovarian cortex expressed at least one laminin gene. The overall most expressed laminin α-chains were LAMA2 and LAMA5, β-chains LAMB1 and LAMB2, and γ-chain LAMC1. In culture experiments, LN221 enhanced follicular survival compared with Matrigel (p < 0.001), whereas tissue cultured on LN521 had higher proportion of secondary follicles (p < 0.001). LN511 and mixture of laminins did not support the cultures leading to lower follicle densities and higher apoptosis. All cultures produced steroids and contained proliferating cells. CONCLUSIONS LN221 and LN521 show promise in providing xeno-free growth substrates for human ovarian tissue cultures, which may help in further development of folliculogenesis in vitro for clinical practices. The system could also be used for identification of adverse effects of chemicals in ovaries.
Collapse
|
21
|
Woodruff TK. Lessons from bioengineering the ovarian follicle: a personal perspective. Reproduction 2020; 158:F113-F126. [PMID: 31846436 DOI: 10.1530/rep-19-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
The ovarian follicle and its maturation captivated my imagination and inspired my scientific journey - what we know now about this remarkable structure is captured in this invited review. In the past decade, our knowledge of the ovarian follicle expanded dramatically as cross-disciplinary collaborations brought new perspectives to bear, ultimately leading to the development of extragonadal follicles as model systems with significant clinical implications. Follicle maturation in vitro in an 'artificial' ovary became possible by learning what the follicle is fundamentally and autonomously capable of - which turns out to be quite a lot. Progress in understanding and harnessing follicle biology has been aided by engineers and materials scientists who created hardware that enables tissue function for extended periods of time. The EVATAR system supports extracorporeal ovarian function in an engineered environment that mimics the endocrine environment of the reproductive tract. Finally, applying the tools of inorganic chemistry, we discovered that oocytes require zinc to mature over time - a truly new aspect of follicle biology with no antecedent other than the presence of zinc in sperm. Drawing on the tools and ideas from the fields of bioengineering, materials science and chemistry unlocked follicle biology in ways that we could not have known or even predicted. Similarly, how today's basic science discoveries regarding ovarian follicle maturation are translated to improve the experience of tomorrow's patients is yet to be determined.
Collapse
Affiliation(s)
- Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
22
|
Simon LE, Kumar TR, Duncan FE. In vitro ovarian follicle growth: a comprehensive analysis of key protocol variables†. Biol Reprod 2020; 103:455-470. [PMID: 32406908 DOI: 10.1093/biolre/ioaa073] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Folliculogenesis is a complex process that requires integration of autocrine, paracrine, and endocrine factors together with tightly regulated interactions between granulosa cells and oocytes for the growth and survival of healthy follicles. Culture of ovarian follicles is a powerful approach for investigating folliculogenesis and oogenesis in a tightly controlled environment. This method has not only enabled unprecedented insight into the fundamental biology of follicle development but also has far-reaching translational applications, including in fertility preservation for women whose ovarian follicles may be damaged by disease or its treatment or in wildlife conservation. Two- and three-dimensional follicle culture systems have been developed and are rapidly evolving. It is clear from a review of the literature on isolated follicle culture methods published over the past two decades (1980-2018) that protocols vary with respect to species examined, follicle isolation methods, culture techniques, culture media and nutrient and hormone supplementation, and experimental endpoints. Here we review the heterogeneity among these major variables of follicle culture protocols.
Collapse
Affiliation(s)
- Leah E Simon
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
23
|
Castañeda OJR, de Aguiar FLN, de Sá NAR, Morais MLGDS, Cibin FWS, Torres CAA, de Figueiredo JR. Powdered coconut water (ACP 406®) as an alternative base culture medium for in vitro culture of goat preantral follicles enclosed in ovarian tissue. Anim Reprod 2019; 16:838-845. [PMID: 32368261 PMCID: PMC7189440 DOI: 10.21451/1984-3143-ar2019-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study evaluated a powdered coconut water solution (ACP 406®) as a base culture medium on the in vitro survival and development of in situ goat preantral follicles. The ovarian fragments were either immediately fixed in Carnoy solution (non-cultured control) or individually cultured for 2 or 6 days. The following culture media (all containing 100 μg/mL penicillin and 100 μg/mL streptomycin) were evaluated: α-MEM (α-MEM alone, without additional supplementation); α-MEM+ (supplemented α-MEM); ACP (ACP®406 alone); or ACP+ (supplemented ACP®406). Additional supplementation includes: 1.25 mg/mL bovine serum albumin, 10 μg/mL insulin, 5.5 μg/mL transferrin, 5 ng/mL selenium, 2 mM glutamine, and 2 mM hypoxanthine. The endpoints (i) follicular morphology; (ii) development; (iii) estradiol production; and (iv) reactive oxygen species (ROS) were recorded. Data were analyzed using chi-square, Turkey, t-test or One-Way ANOVA. Differences were considered significant when P < 0.05. At day 2 of culture, a greater (P < 0.05) percentage of morphologically normal follicles was observed between ACP+ and ACP treatments. Moreover, at day 2 of culture, no hormonal difference (P < 0.05) was observed between ACP+ and both α-MEM treatments. At day 6 of culture when ACP and α-MEM treatments were compared the percentage of healthy follicles were similar (P > 0.05) among treatments. Overall, all treatments had lower primordial follicles (P < 0.05) accompany by greater developing follicles (P < 0.05) percentages than non-cultured control treatment, indicating primordial follicle activation. However, at day 6 of culture, the percentage of primordial follicle development were similar (P > 0.05) among the treatments. Likewise, no differences (P > 0.05) were observed for ROS production and follicular and oocyte diameters among treatments. Therefore, ACP+ has the equivalent efficiency to MEM+ in maintaining the survival and development of goat preantral follicles, representing an alternative plant-based low-cost culture medium for in vitro culture.
Collapse
Affiliation(s)
- Olga Juliana Roldan Castañeda
- Universidade Estadual do Ceará, Laboratório de Manipulação de Oócitos Inclusos em Folículos Ovarianos Pré-antrais, Fortaleza, CE, Brasil.,Universidade Federal de Viçosa, Laboratório de Fisiologia Animal e Reprodução, Viçosa, MG, Brasil
| | - Francisco Léo Nascimento de Aguiar
- Universidade Estadual do Ceará, Laboratório de Manipulação de Oócitos Inclusos em Folículos Ovarianos Pré-antrais, Fortaleza, CE, Brasil
| | - Naiza Arcângela Ribeiro de Sá
- Universidade Estadual do Ceará, Laboratório de Manipulação de Oócitos Inclusos em Folículos Ovarianos Pré-antrais, Fortaleza, CE, Brasil
| | | | | | | | - José Ricardo de Figueiredo
- Universidade Estadual do Ceará, Laboratório de Manipulação de Oócitos Inclusos em Folículos Ovarianos Pré-antrais, Fortaleza, CE, Brasil
| |
Collapse
|
24
|
Sensitive and Specific Detection of Ewing Sarcoma Minimal Residual Disease in Ovarian and Testicular Tissues in an In Vitro Model. Cancers (Basel) 2019; 11:cancers11111807. [PMID: 31744224 PMCID: PMC6895895 DOI: 10.3390/cancers11111807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Ewing sarcoma (EWS) is a common pediatric solid tumor with high metastatic potential. Due to toxic effects of treatments on reproductive functions, the cryopreservation of ovarian tissue (OT) or testicular tissue (TT) is recommended to preserve fertility. However, the risk of reintroducing residual metastatic tumor cells should be evaluated before fertility restoration. Our goal was to validate a sensitive and specific approach for EWS minimal residual disease (MRD) detection in frozen germinal tissues. Thawed OT (n = 12) and TT (n = 14) were contaminated with tumor RD-ES cells (10, 100, and 1000 cells) and EWS-FLI1 tumor-specific transcript was quantified with RT-qPCR. All contaminated samples were found to be positive, with a strong correlation between RD-ES cell numbers and EWS-FLI1 levels in OT (r = 0.93) and TT (r = 0.96) (p < 0.001). No transcript was detected in uncontaminated control samples. The invasive potential of Ewing cells was evaluated using co-culture techniques. After co-culturing, tumor cells were detected in OT/TT with histology, FISH, and RT-qPCR. In addition, four OT and four TT samples from children with metastatic EWS were tested, and no MRD was found using RT-qPCR and histology. We demonstrated the high sensitivity and specificity of RT-qPCR to detect EWS MRD in OT/TT samples. Clinical trial: NCT 02400970.
Collapse
|
25
|
Thongkittidilok C, Singh RP, Comizzoli P, Wildt D, Songsasen N. Insulin promotes preantral follicle growth and antrum formation through temporal expression of genes regulating steroidogenesis and water transport in the cat. Reprod Fertil Dev 2019; 30:1369-1379. [PMID: 29720337 DOI: 10.1071/rd17454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
Abstract
The aims of the present study were to determine the effects of insulin, invitro, on: (1) the viability and growth of domestic cat ovarian follicles; (2) mRNA expression of genes regulating steroidogenesis (cytochrome P450 family 17 subfamily, A polypeptide 1 (Cyp17a1), cytochrome P450 family 19 subfamily, A polypeptide 1 (Cyp19a1) and steroidogenic acute regulatory protein (Star)) and water transport (aquaporins (AQPs) Aqp1, Aqp3, Aqp7, Aqp9); and (3) steroid production (17β-oestradiol (E2), progesterone (P4), androstenedione (A4)). Cat secondary follicles were isolated from ovarian cortices and cultured in 0 (Control), 1 or 10µgmL-1 insulin for 14 days (Day 0=culture onset). Follicle and oocyte viability (based on neutral red staining), diameter and antrum formation were assessed every 72h and at the end of incubation (Day 14). Expression of steroidogenic and water transport genes was evaluated on Days 0, 6 and 12, and E2, P4 and A4 concentrations in the culture medium were determined on Day 12. By Day 14, 1 and 10µgmL-1 insulin had significantly promoted (P<0.05) both antrum formation in a mean (±s.e.m.) 26.9±9.0% and 78.0±10.0% of follicles respectively, and follicle growth (diameter 151.4±4.5 and 169.9±10.5µm respectively) compared with Control (antrum formation in 3.3±3.3% of follicles and follicle diameter 129.1±6.6µm). High insulin (10µgmL-1) treatment increased follicle viability compared with Control (86.0±9.8% vs 38.1±10.9% respectively; P<0.05). However, insulin had no beneficial effect (P>0.05) on oocyte diameter. Cyp17a1 expression on Days 6 and 12 was higher (P<0.05) in follicles cultured in the low (1µgmL-1) compared with high (10µgmL-1) insulin treatment, with no significant difference between low or high insulin vs Control groups. Star expression was higher (P<0.01) in the low insulin compared with Control group on Day 6, but Star was undetectable in the high insulin group by Day 12. Compared with high insulin, low insulin increased (P<0.05) Aqp1 expression on Day 6, but there were no significant differences between these two groups on Day 12. In contrast, high insulin decreased (P<0.05) Aqp9 transcript levels compared with Control. Only P4 production was affected by insulin, with P4 concentrations in the medium being higher (P<0.05) in the low compared with high insulin and Control groups. In summary, the findings indicate that insulin promotes cat ovarian follicle growth and survival invitro, including enhanced antrum formation, with the likely mechanism involving temporal expression of Cyp17a1, Star and Aqp9 genes.
Collapse
Affiliation(s)
- Chommanart Thongkittidilok
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Ram Pratap Singh
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Pierre Comizzoli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue, NW, Washington, DC 20008, USA
| | - David Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA
| |
Collapse
|
26
|
Blumenfeld Z. Fertility Preservation in Women With Malignancy: Future Endeavors. CLINICAL MEDICINE INSIGHTS. REPRODUCTIVE HEALTH 2019; 13:1179558119872490. [PMID: 31548799 PMCID: PMC6743198 DOI: 10.1177/1179558119872490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
The area of fertility preservation is constantly developing. To date, the only
noninvestigational and unequivocally accepted methods for fertility preservation
are cryopreservation of embryos and unfertilized oocytes. This article is one of
several in a monogram on fertility preservation. The debate, pros and cons, and
equivocal data on the use of GnRH analogues for fertility preservation are
elaborated by 3 other manuscripts, in this monogram. A repeat of the arguments,
pros and cons of this debatable issue, would be a repetition and redundancy of
what is already included in this monogram. The subject of ovarian
cryopreservation for fertility preservation is also elaborated by several other
authors in this monogram. It is possible that, in the not too far future, the
technologies of in vitro maturation of primordial follicles to metaphase 2
oocytes, and the “artificial ovary,” will turn clinically available. These
technologies may bypass the risk of resuming malignancy by autotransplantation
of cryopreserved-thawed ovarian tissue in leukemia and diseases where malignant
cells may persist in the cryopreserved ovarian tissue. We summarize here the
suggested options for future endeavors in fertility preservation.
Collapse
Affiliation(s)
- Zeev Blumenfeld
- Reproductive Endocrinology, Ob/Gyn, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
27
|
Campos LB, Praxedes ÉC, Saraiva MV, Comizzoli P, Silva AR. Advances and Challenges of Using Ovarian Preantral Follicles to Develop Biobanks of Wild Mammals. Biopreserv Biobank 2019; 17:334-341. [DOI: 10.1089/bio.2018.0130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lívia B. Campos
- Laboratory of Animal Germplasm Conservation (LCGA), Department of Animal Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, Brazil
| | - Érica C.G. Praxedes
- Laboratory of Animal Germplasm Conservation (LCGA), Department of Animal Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, Brazil
| | - Márcia V.A. Saraiva
- Laboratory of Animal Germplasm Conservation (LCGA), Department of Animal Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, Brazil
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia
| | - Alexandre R. Silva
- Laboratory of Animal Germplasm Conservation (LCGA), Department of Animal Sciences, Universidade Federal Rural do Semi-Árido (UFERSA), Mossoró, Brazil
| |
Collapse
|
28
|
Akahori T, Woods DC, Tilly JL. Female Fertility Preservation through Stem Cell-based Ovarian Tissue Reconstitution In Vitro and Ovarian Regeneration In Vivo. CLINICAL MEDICINE INSIGHTS. REPRODUCTIVE HEALTH 2019; 13:1179558119848007. [PMID: 31191070 PMCID: PMC6540489 DOI: 10.1177/1179558119848007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
Historically, approaches designed to offer women diagnosed with cancer the prospects of having a genetically matched child after completion of their cytotoxic treatments focused on the existing oocyte population as the sole resource available for clinical management of infertility. In this regard, elective oocyte and embryo cryopreservation, as well as autologous ovarian cortical tissue grafting posttreatment, have gained widespread support as options for young girls and reproductive-age women who are faced with cancer to consider. In addition, the use of ovarian protective therapies, including gonadotropin-releasing hormone agonists and sphingosine-1-phosphate analogs, has been put forth as an alternative way to preserve fertility by shielding existing oocytes in the ovaries in vivo from the side-effect damage caused by radiotherapy and many chemotherapeutic regimens. This viewpoint changed with the publication of now numerous reports that adult ovaries of many mammalian species, including humans, contain a rare population of oocyte-producing germ cells-referred to as female germline or oogonial stem cells (OSCs). This new line of study has fueled research into the prospects of generating new oocytes, rather than working with existing oocytes, as a novel approach to sustain or restore fertility in female cancer survivors. Here, we overview the history of work from laboratories around the world focused on improving our understanding of the biology of OSCs and how these cells may be used to reconstitute "artificial" ovarian tissue in vitro or to regenerate damaged ovarian tissue in vivo as future fertility-preservation options.
Collapse
Affiliation(s)
- Taichi Akahori
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA.,On leave from the Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Dori C Woods
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA
| | - Jonathan L Tilly
- Laboratory for Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA, USA
| |
Collapse
|
29
|
Green LJ, Zhou H, Padmanabhan V, Shikanov A. Adipose-derived stem cells promote survival, growth, and maturation of early-stage murine follicles. Stem Cell Res Ther 2019; 10:102. [PMID: 30898159 PMCID: PMC6427888 DOI: 10.1186/s13287-019-1199-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency is a common complication of anticancer treatments in young women and girls. The ovary is a complex, highly regulated reproductive organ, whose proper function is contingent upon the bidirectional endocrine, paracrine, and autocrine signaling. These factors facilitate the development of the follicles, the functional units of the ovary, to progress from the gonadotropin-independent, paracrine-controlled early stage to the gonadotropin-dependent, endocrine-controlled later stage. We hypothesized that the low survival rate of individually cultured early-stage follicles could be improved with co-culture of adipose-derived stem cells (ADSCs) that secrete survival- and growth-promoting factors. MATERIALS AND METHODS Ovarian follicles ranging from 85 to 115 μm in diameter, from 10- to 12-day-old B6CBAF1 mice were mechanically isolated and co-encapsulated with ADSCs within alginate-based 3D culture system. The follicles were cultured for 14 days, imaged using light microscopy every 2 days, and matured at the end. Follicle media were changed every 2 days and collected for hormone measurements. Follicle diameter, morphology, number of transzonal projections, and survival and maturation rates were recorded. Statistical analyses using one- and two-way ANOVA were performed to compare hormone levels, survival of the follicles and ADSCs, oocyte maturation rates, and follicle growth. RESULTS The co-encapsulation of the follicles with ADSCs increased follicle survival, ranging from 42.4% for the 86-95 μm to 86.2% for the 106-115-μm follicle size group. Co-culture also improved the follicle growth, the rate of antrum formation and oocyte maturation compared to the follicles cultured alone. The levels of androstenedione, estradiol, and progesterone of co-encapsulated follicles increased progressively with time in culture. CONCLUSIONS To our knowledge, this is the first report of an in vitro system utilizing mouse adipose-derived stem cells to support the development of the mouse follicles. Our findings suggest that co-encapsulation of ADSCs with early-stage follicles supports follicular development, through secretion of cytokines that promote follicular survival, antrum formation, and meiotic competence. The unique 3D culture system that supports the survival of both cell types has translational implications, as ADSCs could be used as an autologous source for in vitro maturation of early-stage human follicles.
Collapse
Affiliation(s)
- Lisa J. Green
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI USA
- Present Address: Department of Obstetrics and Gynecology, University of South Carolina School of Medicine, Greenville, SC USA
| | - Hong Zhou
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering Building, 1101 Beal Ave., Ann Arbor, MI 48109 USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI USA
- Department of Pediatrics, University of Michigan, Ann Arbor, MI USA
- Department Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, 2126 Lurie Biomedical Engineering Building, 1101 Beal Ave., Ann Arbor, MI 48109 USA
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
30
|
Kim YY, Kang BC, Yun JW, Ahn JH, Kim YJ, Kim H, Rosenwaks Z, Ku SY. Expression of Transcripts in Marmoset Oocytes Retrieved during Follicle Isolation Without Gonadotropin Induction. Int J Mol Sci 2019; 20:1133. [PMID: 30845640 PMCID: PMC6429203 DOI: 10.3390/ijms20051133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022] Open
Abstract
The in vitro maturation of oocytes is frequently used as an assisted reproductive technique (ART), and has been successfully established in humans and rodents. To overcome the limitations of ART, novel procedures for the in vitro maturation of early follicles are emerging. During the follicle isolation procedure, the unintended rupture of each follicle leads to a release of extra oocytes. Such oocytes, which are obtained during follicle isolation from marmosets, can be used for early maturation studies. Marmoset (Callithrix jacchus), which is classified as a new-world monkey, is a novel model that has been employed in reproductive biomedical research, as its reproductive physiology is similar to that of humans in several aspects. The ovaries of female marmosets were collected, and the excess oocytes present during follicle isolation were retrieved without pre-gonadotropin induction. Each oocyte was matured in vitro for 48 h in the presence of various concentrations of human chorionic gonadotropin (hCG) and epidermal growth factor (EGF), and the maturity of oocytes and optimal maturation conditions were evaluated. Each oocyte was individually reverse-transcribed, and the expression of mRNAs and microRNAs (miRs) were analyzed. Concentrations of hCG significantly affected the maturation rate of oocytes [the number of metaphase II (MII) oocytes]. The expression of BMP15 and ZP1 was highest when the oocytes were matured using 100 IU/L of hCG without pre-treatment with gonadotropins, and that of Cja-mir-27a was highest when cultured with follicle stimulating hormone. These results suggest that these up-regulated miRs affect the maturation of oocytes. Interactions with other protein networks were analyzed, and a strong association of BMP15 and ZP1 with sperm binding receptor (ACR), anti-Müllerian hormone (AMH), and AMH receptor was demonstrated, which is related to the proliferation of granulosa cells. Collectively, on the basis of these results, the authors propose optimal maturation conditions of excess oocytes of marmoset without in vivo gonadotropin treatment, and demonstrated the roles of miRs in early oocyte maturation at the single-cell level in marmosets.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, 28 Yonkeun-dong, Chongno-gu, Seoul 110-744, Korea.
| | - Byeong-Cheol Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea.
| | - Jun Won Yun
- Department of Biotechnology, The Catholic University, Bucheon 14662, Korea.
| | - Jae Hun Ahn
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea.
| | - Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, Seoul 08308, Korea.
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, 28 Yonkeun-dong, Chongno-gu, Seoul 110-744, Korea.
| | - Zev Rosenwaks
- Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul National University College of Medicine, 28 Yonkeun-dong, Chongno-gu, Seoul 110-744, Korea.
| |
Collapse
|
31
|
Martin JJ, Woods DC, Tilly JL. Implications and Current Limitations of Oogenesis from Female Germline or Oogonial Stem Cells in Adult Mammalian Ovaries. Cells 2019; 8:E93. [PMID: 30696098 PMCID: PMC6407002 DOI: 10.3390/cells8020093] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 12/15/2022] Open
Abstract
A now large body of evidence supports the existence of mitotically active germ cells in postnatal ovaries of diverse mammalian species, including humans. This opens the possibility that adult stem cells naturally committed to a germline fate could be leveraged for the production of female gametes outside of the body. The functional properties of these cells, referred to as female germline or oogonial stem cells (OSCs), in ovaries of women have recently been tested in various ways, including a very recent investigation of the differentiation capacity of human OSCs at a single cell level. The exciting insights gained from these experiments, coupled with other data derived from intraovarian transplantation and genetic tracing analyses in animal models that have established the capacity of OSCs to generate healthy eggs, embryos and offspring, should drive constructive discussions in this relatively new field to further exploring the value of these cells to the study, and potential management, of human female fertility. Here, we provide a brief history of the discovery and characterization of OSCs in mammals, as well as of the in-vivo significance of postnatal oogenesis to adult ovarian function. We then highlight several key observations made recently on the biology of OSCs, and integrate this information into a broader discussion of the potential value and limitations of these adult stem cells to achieving a greater understanding of human female gametogenesis in vivo and in vitro.
Collapse
Affiliation(s)
- Jessica J Martin
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Three-Dimensional Hydrogel-Based Culture to Study the Effects of Toxicants on Ovarian Follicles. Methods Mol Biol 2019; 1758:55-72. [PMID: 29679322 DOI: 10.1007/978-1-4939-7741-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Various toxicants, such as drugs and their metabolites, can cause potential ovarian toxicity. As the functional units of the ovary, ovarian follicles are susceptible to this type of damage at all developmental stages. Studying the effects of toxicants on ovarian follicles is an important task. Three-dimensional (3D) hydrogels, such as fibrin alginate interpenetrating networks (FA-IPNs), can support ovarian follicle culture in vitro for extended periods of time and serve as a suitable tool for studying ovotoxicity. Growing follicles encapsulated in the FA-IPN can proteolytically degrade the fibrin component in the FA-IPN. The degradation of fibrin mirrors the follicle growth and serves as a surrogate reporter for follicle health. The speed of fibrin degradation can be further controlled by aprotinin, a small molecule that inhibits plasmin-driven proteolytic degradation, which further expands the application of the described system. In this chapter, we describe methods to (1) isolate and encapsulate mouse ovarian follicles in FA-IPN, (2) follow follicle growth and development in vitro, and (3) evaluate the effects of toxicants on folliculogenesis using fibrin degradation.
Collapse
|
33
|
Pongsuthirak P, Vutyavanich T. Developmental competence of in vitro-matured human oocytes obtained from pregnant and non-pregnant women. Clin Exp Reprod Med 2018; 45:189-194. [PMID: 30538950 PMCID: PMC6277669 DOI: 10.5653/cerm.2018.45.4.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 09/07/2018] [Indexed: 01/07/2023] Open
Abstract
Objective The aim of this study was to compare the rate of maturation, fertilization, and embryo development of in vitro-matured human oocytes derived from pregnant and non-pregnant women. Methods Immature oocytes were obtained by needle aspiration from 49 pregnant women (group 1) who underwent a cesarean section at term and 77 non-pregnant women (group 2) who underwent a gynecological operation during the same period (8 months). Healthy immature oocytes (530 in group 1 and 539 in group 2) were cultured and assessed for maturation 36 hours later. Mature oocytes were inseminated by intracytoplasmic sperm injection and cultured up to 144 hours. Results The percentage of degenerated oocytes was significantly higher (12.1% vs. 6.3%; p<0.001) in group 1 than in group 2. There was no significant difference in the maturation rate (66.8% vs. 68.1%; p=0.698), fertilization rate (66.7% vs. 67.6%; p=0.857), or the rate of formation of good-quality blastocysts (46.2% vs. 47.2%; p=0.898) in oocytes obtained from pregnant and non-pregnant women. Conclusion The developmental competence of immature oocytes did not differ between pregnant and non-pregnant women.
Collapse
Affiliation(s)
- Pallop Pongsuthirak
- Department of Obstetrics and Gynecology, Buddhachinaraj Hospital Medical School, Phitsanulok, Thailand
| | - Teraporn Vutyavanich
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
34
|
Herta AC, Lolicato F, Smitz JEJ. In vitro follicle culture in the context of IVF. Reproduction 2018; 156:F59-F73. [PMID: 29980584 DOI: 10.1530/rep-18-0173] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
The currently available assisted reproduction techniques for fertility preservation (i.e. in vitro maturation (IVM) and in vitro fertilization) are insufficient as stand-alone procedures as only few reproductive cells can be conserved with these techniques. Oocytes in primordial follicles are well suited to survive the cryopreservation procedure and of use as valuable starting material for fertilization, on the condition that these could be grown up to fully matured oocytes. Our understanding of the biological mechanisms directing primordial follicle activation has increased over the last years and this knowledge has paved the way toward clinical applications. New multistep in vitro systems are making use of purified precursor cells and extracellular matrix components and by applying bio-printing technologies, an adequate follicular niche can be built. IVM of human oocytes is clinically applied in patients with polycystic ovary/polycystic ovary syndrome; related knowhow could become useful for fertility preservation and for patients with maturation failure and follicle-stimulating hormone resistance. The expectations from the research on human ovarian tissue and immature oocytes cultures, in combination with the improved vitrification methods, are high as these technologies can offer realistic potential for fertility preservation.
Collapse
Affiliation(s)
- Anamaria C Herta
- Follicle Biology LaboratoryVrije Universiteit Brussel, Brussels, Belgium
| | - Francesca Lolicato
- Follicle Biology LaboratoryVrije Universiteit Brussel, Brussels, Belgium
| | - Johan E J Smitz
- Follicle Biology LaboratoryVrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
35
|
Artini PG, Tatone C, Sperduti S, D'Aurora M, Franchi S, Di Emidio G, Ciriminna R, Vento M, Di Pietro C, Stuppia L, Gatta V. Cumulus cells surrounding oocytes with high developmental competence exhibit down-regulation of phosphoinositol 1,3 kinase/protein kinase B (PI3K/AKT) signalling genes involved in proliferation and survival. Hum Reprod 2018; 32:2474-2484. [PMID: 29087515 PMCID: PMC5850344 DOI: 10.1093/humrep/dex320] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Is the phosphoinositol 1,3-kinase/protein kinase B (PI3K/AKT) pathway expression profile in cumulus cells (CCs) a potential marker of oocyte competence and predictive of pregnancy outcome? SUMMARY ANSWER Eleven genes (AKT1, ARHGEF7, BCL2L1, CCND1, E2F1, HRAS, KCNH2, PIK3C2A, SHC1, SOS1 and SPP1) in the PI3K/AKT pathway were significantly down-regulated in CCs from oocytes that went on to produce a pregnancy compared to CCs associated with a negative outcome. WHAT IS KNOWN ALREADY The PI3K/AKT pathway plays a pivotal role in the interdependence and continuous feedback between the oocyte and CCs. STUDY DESIGN SIZE, DURATION The expression analysis of 92 transcripts in the PI3K/AKT pathway in CCs from patients with negative or positive pregnancy outcome, after single embryo transfer, was performed. Mouse CCs target gene expression was conducted to associate the expression profile of PI3K/AKT pathway to oocyte developmental profile. PARTICIPANTS/MATERIALS, SETTING, METHODS Fifty-five good prognosis IVF patients who had been referred to IVF or intracytoplasmic sperm injection treatment for male-factor infertility or tubal disease were enroled. CCs from single cumulus-oocyte complexes (COCs) from 16 patients who underwent a single embryo transfer were analyzed. Twenty-five CD-1 mice were used to assess gene expression in CCs associated with oocytes with different competence in relation to hCG priming. A total 220 human COCs were collected. The RNA extracted from CCs of 16 selected patients was used to analyze PI3K/AKT pathway gene expression employing a 96-well custom TaqMan Array. Expression data of CCs associated to positive IVF outcome were compared to data from negative outcome samples. Mice were sacrificed after 9, 12, 15, 21 and 24 h post-hCG administration to obtain CCs from MII oocytes with different developmental competence. Akt1, Bcl2l2 and Shc1 expression were tested in the collected mouse CCs. In addition, the expression of upstream regulator ESR1, the gene encoding for the oestrogen receptor ERβ, and the downstream effectors of the pathway FOXO1, FOXO3 and FOXO4 was evaluated in human and mouse samples. MAIN RESULTS AND THE ROLE OF CHANCE Transcripts involved in the PI3K Signaling Pathway were selectively modulated according to the IVF/ICSI outcome of the oocyte. Eleven transcripts in this pathway were significantly down-regulated in all samples of CCs from oocytes with positive when compared those with a negative outcome. These outcomes were confirmed in mouse CCs associated with oocytes at different maturation stages. Expression data revealed that the down-regulation of ESR1 could be related to oocyte competence and is likely to be the driver of expression changes highlighted in the PI3K/AKT pathway. LIMITATIONS REASONS FOR CAUTION Small sample size and retrospective design. WIDER IMPLICATIONS OF THE FINDINGS The CCs expression profile of PI3K/AKT signaling genes, disclosed a specific CCs gene signature related to oocyte competence. It could be speculated that CCs associated with competent oocytes have completed their role in sustaining oocyte development and are influencing their fate in response to metabolic and hormonal changes by de-activating anti-apoptotic signals. STUDY FUNDING/COMPETING INTEREST(S) Supported by Merck Serono an affiliate of Merck KGaA, Darmstadt, Germany (research grant for the laboratory session; Merck KGaA reviewed the manuscript for medical accuracy only before journal submission. The authors are fully responsible for the content of this manuscript, and the views and opinions described in the publication reflect solely those of the authors). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- P G Artini
- Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology Oncology, University of Pisa, Via Savi 10, 56126 Pisa, Italy
| | - C Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - S Sperduti
- Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.-Met), Via Dei Vestini 31, 66100 Chieti, Italy
| | - M D'Aurora
- Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.-Met), Via Dei Vestini 31, 66100 Chieti, Italy.,Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, 'G.d'Annunzio' University, Via Dei Vestini 31, 66100 Chieti, Italy
| | - S Franchi
- Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.-Met), Via Dei Vestini 31, 66100 Chieti, Italy.,Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, 'G.d'Annunzio' University, Via Dei Vestini 31, 66100 Chieti, Italy
| | - G Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - R Ciriminna
- AMBRA-Associazione Medici e Biologi per la Riproduzione Assistita, Palermo, Italy
| | - M Vento
- IVF Unit, Cannizzaro Hospital, Catania, Italy
| | - C Di Pietro
- Department of Biomedical Sciences and Biotechnolgy, Section of Biology and Genetics G. Sichel, University of Catania, Via S.Sofia, 87, 95123 Catania, Italy
| | - L Stuppia
- Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.-Met), Via Dei Vestini 31, 66100 Chieti, Italy.,Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, 'G.d'Annunzio' University, Via Dei Vestini 31, 66100 Chieti, Italy
| | - V Gatta
- Functional Genetics Unit, Center of Excellence on Aging (Ce.S.I.-Met), Via Dei Vestini 31, 66100 Chieti, Italy.,Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, 'G.d'Annunzio' University, Via Dei Vestini 31, 66100 Chieti, Italy
| | | |
Collapse
|
36
|
Picton HM. Preservation of female fertility in humans and animal species. Anim Reprod 2018; 15:301-309. [PMID: 34178153 PMCID: PMC8202459 DOI: 10.21451/1984-3143-ar2018-0089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 12/03/2022] Open
Abstract
A detailed understanding of the cryobiology of gametes and complex tissues has led to the development of methods that facilitate the successful low temperature banking of isolated mature human oocytes, or immature oocytes in situ within fragments of human ovarian cortex. Although many outstanding research challenges remain to be addressed, the successful development of new treatments to preserve female fertility for a range of clinical indications has largely been underpinned by the conduct of extensive, fundamental research on oocytes and ovarian tissues from a number of laboratory and commercially important farm species. Indeed, the most recent evidence from large animals suggests that it is also possible to cryopreserve intact whole ovaries along with their supporting vasculature for later auto-transplantation and restoration of natural fertility. This review will explore how the methods developed to preserve human oocytes and ovarian tissues can now be used strategically to support the development of conservation strategies aimed at safeguarding the genetic diversity of commercially important domestic animals and also of preserving the female germplasm for wild animals and endangered species.
Collapse
Affiliation(s)
- Helen Mary Picton
- Reproduction and Early Development Research Group, Discovery and Translational Science Department, Leeds Institute Of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, UK
| |
Collapse
|
37
|
Martinez F. Update on fertility preservation from the Barcelona International Society for Fertility Preservation-ESHRE-ASRM 2015 expert meeting: indications, results and future perspectives. Hum Reprod 2018; 32:1802-1811. [PMID: 29117320 PMCID: PMC5850800 DOI: 10.1093/humrep/dex218] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION What progress has been made in fertility preservation (FP) over the last decade? SUMMARY ANSWER FP techniques have been widely adopted over the last decade and therefore the establishment of international registries on their short- and long-term outcomes is strongly recommended. WHAT IS KNOWN ALREADY FP is a fundamental issue for both males and females whose future fertility may be compromised. Reproductive capacity may be seriously affected by age, different medical conditions and also by treatments, especially those with gonadal toxicity. There is general consensus on the need to provide counselling about currently available FP options to all individuals wishing to preserve their fertility. STUDY DESIGN, SIZE, DURATION An international meeting with representatives from expert scientific societies involved in FP was held in Barcelona, Spain, in June 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS Twenty international FP experts belonging to the American Society of Reproductive Medicine, ESHRE and the International Society of Fertility Preservation reviewed the literature up to June 2015 to be discussed at the meeting, and approved the final manuscript. At the time this manuscript was being written, new evidence considered relevant for the debated topics was published, and was consequently included. MAIN RESULTS AND THE ROLE OF CHANCE Several oncological and non-oncological diseases may affect current or future fertility, either caused by the disease itself or the gonadotoxic treatment, and need an adequate FP approach. Women wishing to postpone maternity and transgender individuals before starting hormone therapy or undergoing surgery to remove/alter their reproductive organs should also be counselled accordingly. Embryo and oocyte cryopreservation are first-line FP methods in post-pubertal women. Metaphase II oocyte cryopreservation (vitrification) is the preferred option. Cumulative evidence of restoration of ovarian function and spontaneous pregnancies after ART following orthotopic transplantation of cryopreserved ovarian tissue supports its future consideration as an open clinical application. Semen cryopreservation is the only established method for FP in men. Testicular tissue cryopreservation should be recommended in pre-pubertal boys even though fertility restoration strategies by autotransplantation of cryopreserved testicular tissue have not yet been tested for safe clinical use in humans. The establishment of international registries on the short- and long-term outcomes of FP techniques is strongly recommended. LIMITATIONS, REASONS FOR CAUTION Given the lack of studies in large cohorts or with a randomized design, the level of evidence for most of the evidence reviewed was three or below. WIDER IMPLICATIONS OF THE FINDINGS Further high quality studies are needed to study the long-term outcomes of FP techniques. STUDY FUNDING/COMPETING INTEREST(S) None. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Francisca Martinez
- Hospital Universitario Dexeus, Gran Via Carlos III, 71-75, 08208 Barcelona, Spain
| |
Collapse
|
38
|
Creux H, Monnier P, Son WY, Buckett W. Thirteen years' experience in fertility preservation for cancer patients after in vitro fertilization and in vitro maturation treatments. J Assist Reprod Genet 2018; 35:583-592. [PMID: 29502188 DOI: 10.1007/s10815-018-1138-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
PURPOSE This study aims to describe the experience and outcomes of in vitro maturation without ovarian stimulation (IVM-FP) and conventional in vitro fertilization after ovarian stimulation (IVF-FP) in a fertility preservation (FP) program for women with cancer. METHODS Retrospective cohort study from 2003 to 2015 was conducted. The study population consisted of 353 women with cancer who underwent 394 FP cycles (187 IVF-FP cycles and 207 IVM-FP) for oocytes and/or embryos cryopreservation. RESULT(S) Comparatively with IVM-FP, IVF-FP had a higher median [25th-75th percentile] number of oocytes collected-12 [8-18] vs 7 [5-13]; oocytes cryopreserved-10 [6-15] vs 5 [2-8]; and, where applicable, embryos cryopreserved-5 [3-7] vs 3 [2-5] (p < 0.000001). Following FP treatment, 32 patients (9.0%) died, 18 patients (5.6%) conceived spontaneously, and 23 patients (6.5%) returned to attempt pregnancy with a median lapse of returning of 4.6 [3.1-6.1] years. Of these, cryopreserved oocytes or embryos were used in 33 cycles (19 after IVF-FP and 14 after IVM-FP). Overall, the cumulative pregnancy rate (CPR) was 47.6% (10/21) and the live birth rate (LBR) was 38.1% (8/21). Per cycle, CPR and LBR were 37 and 31% following IVF-FP and 14 and 7% following IVM-FP, although these differences did not reach statistical significance. We report the fourth live birth after IVM-FP in cancer, and the first one after IVM embryo warming resulting from in vivo oocyte retrieval and IVM procedure. CONCLUSION(S) Both IVF-FP and IVM-FP are possible options for FP women with cancer. Due to minimal data regarding ultimate outcomes, further follow-up is needed.
Collapse
Affiliation(s)
- Helene Creux
- Department of Obstetrics and Gynecology, McGill University Health Centre (MUHC), MUHC Reproductive centre, 888, Blvd de Maisonneuve East, Suite 200, Montreal, QC, H2L 4S8, Canada. .,Reproductive Centre, Department of Obstetrics and Gynecology, Hôpital Pellegrin, Place Amélie Raba-Léon, 33076, Bordeaux, France.
| | - Patricia Monnier
- Department of Obstetrics and Gynecology, McGill University Health Centre (MUHC), MUHC Reproductive centre, 888, Blvd de Maisonneuve East, Suite 200, Montreal, QC, H2L 4S8, Canada.,Research Institute of McGill University Health Center, 2155 Guy Street, Montreal, QC, H3H2R9, Canada
| | - Weon-Young Son
- Department of Obstetrics and Gynecology, McGill University Health Centre (MUHC), MUHC Reproductive centre, 888, Blvd de Maisonneuve East, Suite 200, Montreal, QC, H2L 4S8, Canada
| | - William Buckett
- Department of Obstetrics and Gynecology, McGill University Health Centre (MUHC), MUHC Reproductive centre, 888, Blvd de Maisonneuve East, Suite 200, Montreal, QC, H2L 4S8, Canada
| |
Collapse
|
39
|
In-vitro regulation of primordial follicle activation: challenges for fertility preservation strategies. Reprod Biomed Online 2018; 36:491-499. [PMID: 29503209 DOI: 10.1016/j.rbmo.2018.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022]
Abstract
Ovarian tissue is increasingly being collected from cancer patients and cryopreserved for fertility preservation. While the only available option to restore fertility is autologous transplantation, this treatment is not appropriate for all patients due to the risk of reintroducing cancer cells and causing disease recurrence. Harnessing the full reproductive potential of this tissue to restore fertility requires the development of culture systems that support oocyte development from the primordial follicle stage. While this has been achieved in the mouse, the goal of obtaining oocytes of sufficient quality to support embryo development has not been reached in higher mammals despite decades of effort. In vivo, primordial follicles gradually exit the resting pool, whereas when primordial follicles are placed into culture, global activation of these follicles occurs. Therefore, the addition of a factor(s) that can regulate primordial follicle activation in vitro may be beneficial to the development of culture systems for ovarian tissue from cancer patients. Several factors have been observed to inhibit follicle activation, including anti-Müllerian hormone, stromal-derived factor 1 and members of the c-Jun-N-terminal kinase pathway. This review summarizes the findings from studies of these factors and discusses their potential integration into ovarian tissue culture strategies for fertility preservation.
Collapse
|
40
|
Martinez F. Update on fertility preservation from the Barcelona International Society for Fertility Preservation-ESHRE-ASRM 2015 expert meeting: indications, results and future perspectives. Fertil Steril 2017; 108:407-415.e11. [PMID: 28739117 DOI: 10.1016/j.fertnstert.2017.05.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Abstract
STUDY QUESTION What progress has been made in fertility preservation (FP) over the last decade? SUMMARY ANSWER FP techniques have been widely adopted over the last decade and therefore the establishment of international registries on their short- and long-term outcomes is strongly recommended. WHAT IS KNOWN ALREADY FP is a fundamental issue for both males and females whose future fertility may be compromised. Reproductive capacity may be seriously affected by age, different medical conditions and also by treatments, especially those with gonadal toxicity. There is general consensus on the need to provide counselling about currently available FP options to all individuals wishing to preserve their fertility. STUDY DESIGN, SIZE, DURATION An international meeting with representatives from expert scientific societies involved in FP was held in Barcelona, Spain, in June 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS Twenty international FP experts belonging to the American Society of Reproductive Medicine, ESHRE and the International Society of Fertility Preservation reviewed the literature up to June 2015 to be discussed at the meeting, and approved the final manuscript. At the time this manuscript was being written, new evidence considered relevant for the debated topics was published, and was consequently included. MAIN RESULTS AND THE ROLE OF CHANCE Several oncological and non-oncological diseases may affect current or future fertility, either caused by the disease itself or the gonadotoxic treatment, and need an adequate FP approach. Women wishing to postpone maternity and transgender individuals before starting hormone therapy or undergoing surgery to remove/alter their reproductive organs should also be counselled accordingly. Embryo and oocyte cryopreservation are first-line FP methods in postpubertal women. Metaphase II oocyte cryopreservation (vitrification) is the preferred option. Cumulative evidence of restoration of ovarian function and spontaneous pregnancies after ART following orthotopic transplantation of cryopreserved ovarian tissue supports its future consideration as an open clinical application. Semen cryopreservation is the only established method for FP in men. Testicular tissue cryopreservation should be recommended in pre-pubertal boys even though fertility restoration strategies by autotransplantation of cryopreserved testicular tissue have not yet been tested for safe clinical use in humans. The establishment of international registries on the short- and long-term outcomes of FP techniques is strongly recommended. LIMITATIONS, REASONS FOR CAUTION Given the lack of studies in large cohorts or with a randomized design, the level of evidence for most of the evidence reviewed was 3 or below. WIDER IMPLICATIONS OF THE FINDINGS Further high quality studies are needed to study the long-term outcomes of FP techniques. STUDY FUNDING/COMPETING INTEREST(S) None. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Francisca Martinez
- Hospital Universitario Dexeus, Gran Via Carlos III, 71-75, 08208, Barcelona, Spain.
| |
Collapse
|
41
|
Suocheng W, Zhuandi G, Li S, Haoqin L, Luju L, Yingying D. Maturation rates of oocytes and levels of FSHR, LHR and GnRHR of COCs response to FSH concentrations in IVM media for sheep. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
42
|
Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, Woodruff TK, Shah RN. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 2017. [PMID: 28509899 DOI: 10.1038/ncommsl5261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
Emerging additive manufacturing techniques enable investigation of the effects of pore geometry on cell behavior and function. Here, we 3D print microporous hydrogel scaffolds to test how varying pore geometry, accomplished by manipulating the advancing angle between printed layers, affects the survival of ovarian follicles. 30° and 60° scaffolds provide corners that surround follicles on multiple sides while 90° scaffolds have an open porosity that limits follicle-scaffold interaction. As the amount of scaffold interaction increases, follicle spreading is limited and survival increases. Follicle-seeded scaffolds become highly vascularized and ovarian function is fully restored when implanted in surgically sterilized mice. Moreover, pups are born through natural mating and thrive through maternal lactation. These findings present an in vivo functional ovarian implant designed with 3D printing, and indicate that scaffold pore architecture is a critical variable in additively manufactured scaffold design for functional tissue engineering.
Collapse
Affiliation(s)
- Monica M Laronda
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Alexandra L Rutz
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Shuo Xiao
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Kelly A Whelan
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Francesca E Duncan
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, Illinois 60208, USA
| | - Teresa K Woodruff
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Ramille N Shah
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
43
|
Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, Woodruff TK, Shah RN. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun 2017; 8:15261. [PMID: 28509899 PMCID: PMC5440811 DOI: 10.1038/ncomms15261] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Emerging additive manufacturing techniques enable investigation of the effects of pore geometry on cell behavior and function. Here, we 3D print microporous hydrogel scaffolds to test how varying pore geometry, accomplished by manipulating the advancing angle between printed layers, affects the survival of ovarian follicles. 30° and 60° scaffolds provide corners that surround follicles on multiple sides while 90° scaffolds have an open porosity that limits follicle-scaffold interaction. As the amount of scaffold interaction increases, follicle spreading is limited and survival increases. Follicle-seeded scaffolds become highly vascularized and ovarian function is fully restored when implanted in surgically sterilized mice. Moreover, pups are born through natural mating and thrive through maternal lactation. These findings present an in vivo functional ovarian implant designed with 3D printing, and indicate that scaffold pore architecture is a critical variable in additively manufactured scaffold design for functional tissue engineering.
Collapse
Affiliation(s)
- Monica M. Laronda
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Alexandra L. Rutz
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Shuo Xiao
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Kelly A. Whelan
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Francesca E. Duncan
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Eric W. Roth
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Northwestern University, Evanston, Illinois 60208, USA
| | - Teresa K. Woodruff
- Division of Reproductive Biology in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
- Center for Reproductive Science, Northwestern University, Chicago, Illinois 60611, USA
- Oncofertility Consortium, Northwestern University, Chicago, Illinois 60611, USA
| | - Ramille N. Shah
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
44
|
The day after the 7th day of the Creation: Breakthrough of human embryo in vitro culture. SCIENCE CHINA-LIFE SCIENCES 2017; 60:665-667. [PMID: 28353190 DOI: 10.1007/s11427-017-9023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 02/24/2017] [Indexed: 10/19/2022]
|
45
|
Microfluidic Encapsulation of Ovarian Follicles for 3D Culture. Ann Biomed Eng 2017; 45:1676-1684. [PMID: 28321583 DOI: 10.1007/s10439-017-1823-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/16/2017] [Indexed: 12/23/2022]
Abstract
The ovarian follicle that contains one single oocyte is the fundamental functional tissue unit of mammalian ovary. Therefore, isolation and in vitro culture of ovarian follicles to obtain fertilizable oocytes are regarded as a promising strategy for women to combat infertility. In this communication, we performed a brief survey of studies on microfluidic encapsulation of ovarian follicles in core-shell hydrogel microcapsules for biomimetic 3D culture. These studies highlighted that recapitulation of the mechanical heterogeneity of the extracellular matrix in ovary is crucial for in vitro culture to develop early pre-antral follicles to the antral stage, and for the release of cumulus-oocyte complex (COC) from antral follicles in vitro. The hydrogel encapsulation-based biomimetic culture system and the microfluidic technology may be invaluable to facilitate follicle culture as a viable option for restoring women's fertility in the clinic.
Collapse
|
46
|
Fibrin in Reproductive Tissue Engineering: A Review on Its Application as a Biomaterial for Fertility Preservation. Ann Biomed Eng 2017; 45:1650-1663. [PMID: 28271306 DOI: 10.1007/s10439-017-1817-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/25/2017] [Indexed: 12/18/2022]
Abstract
In recent years, reproductive medicine has made good use of tissue engineering and regenerative medicine techniques to develop alternatives to restore fertility in cancer patients. For young female cancer patients who cannot undergo any of the currently applied strategies due to the possible presence of malignant cells in their ovaries, the challenge is creating an in vitro or in vivo artificial ovary using carefully selected biomaterials. Thanks to its numerous qualities, fibrin has been widely used as a scaffold material for fertility preservation applications. The goal of this review is to examine and discuss the applications and advantages of this biopolymer for fertility restoration in cancer patients, and consider the main results achieved so far.
Collapse
|
47
|
Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles. Ann Biomed Eng 2017; 45:1633-1649. [DOI: 10.1007/s10439-017-1816-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
|
48
|
Creux H, Monnier P, Son WY, Tulandi T, Buckett W. Immature oocyte retrieval and in vitro oocyte maturation at different phases of the menstrual cycle in women with cancer who require urgent gonadotoxic treatment. Fertil Steril 2017; 107:198-204. [DOI: 10.1016/j.fertnstert.2016.09.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/07/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
|
49
|
Songsasen N, Thongkittidilok C, Yamamizu K, Wildt DE, Comizzoli P. Short-term hypertonic exposure enhances in vitro follicle growth and meiotic competence of enclosed oocytes while modestly affecting mRNA expression of aquaporin and steroidogenic genes in the domestic cat model. Theriogenology 2016; 90:228-236. [PMID: 28166973 DOI: 10.1016/j.theriogenology.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/31/2022]
Abstract
Using the domestic cat as a non-rodent, larger animal model, the objective was to determine the impact of a brief incubation in a hypertonic microenvironment on (1) ovarian follicle and oocyte growth in vitro, (2) developmental capacity of the resident oocyte, and (3) expression of aquaporin (AQP) genes in parallel with genes involved in regulation of folliculogenesis. In Study 1: Secondary or early antral follicles encapsulated in 0.5% alginate were allocated to one of three treatment groups: 1) culture in standard medium at 290 mOsm for 15 d (Control); 2) incubation in 350 mOsm medium for 1 h followed by culture in standard medium for 15 d (Hypertonic-1h); or 3) incubation in 350 mOsm medium for 24 h followed by incubation in standard medium for additional 14 d (Hypertonic-24h). After measuring follicle and oocyte diameters on Day 15, in vitro-grown oocytes were incubated for 24 h before assessing nuclear status. In Study 2: secondary or early antral follicles were subjected to one of the three treatments: 1) culture in standard medium at 290 mOsm for 48 h; 2) incubation in 350 mOsm medium for 1 h followed by culture in standard medium for additional 47 h; or 3) incubation in 350 mOsm medium for 24 h followed by culture in standard medium for additional 24 h. At the end of the culture period, all follicles were assessed for mRNA level of Cyp17a1, Cyp19a1, Star, Aqp1, 3, 5, 7 and 8 as well as Fshr using qPCR. Freshly collected follicles also were subjected to gene expression analysis and served as the 'Non-cultured control'. Hypertonic-24h follicles grew larger (P < 0.05) than the control, whereas those in Hypertonic-1h group exhibited intermediate growth, especially when the culture started at the early antral stage. Oocytes in the Hypertonic-24h group were larger and resumed meiosis at a higher rate than in the other treatments. In vitro culture affected (P < 0.05) mRNA expression of Cyp19a1, Star, Aqp1, and Aqp7 in both the secondary and early antral stage while Fshr was only affected in the former compared to the non-cultured control. Pre-incubating follicles in 350 mOsm medium for 24 h enhanced (P < 0.05) Star and Aqp7 while decreasing (P < 0.05) Aqp1 expression compared to the control in secondary follicles, but not in the early antral stage. In summary, short-term hypertonic exposure promoted cat follicle development in vitro (including the meiotic competence of the enclosed oocyte) possibly through a mechanism that does not involve water transport genes.
Collapse
Affiliation(s)
- N Songsasen
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA.
| | - C Thongkittidilok
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - K Yamamizu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - D E Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - P Comizzoli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| |
Collapse
|
50
|
Kim SY, Kim SK, Lee JR, Woodruff TK. Toward precision medicine for preserving fertility in cancer patients: existing and emerging fertility preservation options for women. J Gynecol Oncol 2016; 27:e22. [PMID: 26768785 PMCID: PMC4717227 DOI: 10.3802/jgo.2016.27.e22] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
As the number of young cancer survivors increases, quality of life after cancer treatment is becoming an ever more important consideration. According to a report from the American Cancer Society, approximately 810,170 women were diagnosed with cancer in 2015 in the United States. Among female cancer survivors, 1 in 250 are of reproductive age. Anticancer therapies can result in infertility or sterility and can have long-term negative effects on bone health, cardiovascular health as a result of reproductive endocrine function. Fertility preservation has been identified by many young patients diagnosed with cancer as second only to survival in terms of importance. The development of fertility preservation technologies aims to help patients diagnosed with cancer to preserve or protect their fertility prior to exposure to chemo- or radiation therapy, thus improving their chances of having a family and enhancing their quality of life as a cancer survivor. Currently, sperm, egg, and embryo banking are standard of care for preserving fertility for reproductive-age cancer patients; ovarian tissue cryopreservation is still considered experimental. Adoption and surrogate may also need to be considered. All patients should receive information about the fertility risks associated with their cancer treatment and the fertility preservation options available in a timely manner, whether or not they decide to ultimately pursue fertility preservation. Because of the ever expanding number of options for treating cancer and preserving fertility, there is now an opportunity to take a precision medicine approach to informing patients about the fertility risks associated with their cancer treatment and the fertility preservation options that are available to them.
Collapse
Affiliation(s)
- So-Youn Kim
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Seul Ki Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|