1
|
Fakruzzaman M, Warzych E, Pawlak P, Madeja ZE, Cieslak A, Szkudelska K, Lechtanska J, Lechniak D. Effect of IVM media supplementation with a blend of n6/n3 fatty acids on the quality of bovine oocytes and blastocysts. Theriogenology 2025; 242:117427. [PMID: 40239492 DOI: 10.1016/j.theriogenology.2025.117427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
Optimizing in vitro maturation (IVM) media can enhance blastocyst yield and quality. This study explores the effects of supplementing IVM medium with a blend of two essential polyunsaturated fatty acids (LA and ALA) at a ratio observed in the serum of experimental heifers on the quality of bovine oocytes, cumulus cells (CC), and blastocysts. The in vitro embryo production protocol was based on commercial media (Bioscience, UK). Oocyte-cumulus complexes (COCs) from slaughterhouse-derived ovaries were matured in a 100 μM LA + ALA blend at a 3:1 ratio (75 μM LA + 25 μM ALA). Following maturation, selected COCs underwent reactive oxygen species (ROS) and glutathione (GSH) measurements in oocytes and apoptosis detection in CC (TUNEL). The remaining oocytes were fertilized and cultured to the blastocyst stage, where cell counts and apoptosis levels were assessed. Our findings indicate that the LA + ALA blend positively influenced specific quality parameters in oocytes (reduced ROS level) and blastocysts (increased total cell number (TCN) and a lower apoptotic index (AI)). However, the treatment did not significantly affect other parameters, such as AI in CCs, cleavage, and blastocyst rates or ICM: TCN and ICM: TE ratios. This study demonstrates that a moderate (100 μM) fatty acid (FA) dose benefits oocytes and blastocysts. Given the opposing effects of individual FAs and the limited data on FA blends, our results suggest that ALA may counteract the adverse effects of LA. Mitigation of oxidative stress and AI and an increased TCN underscore the importance of optimized FA supplementation in IVM media.
Collapse
Affiliation(s)
- Md Fakruzzaman
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland; Department of Genetics and Animal Breeding, Patuakhali Science and Technology University, Outer Campus, Barishal, 8210, Bangladesh.
| | - Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Piotr Pawlak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Zofia E Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Joanna Lechtanska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Dorota Lechniak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| |
Collapse
|
2
|
Saini A, McPherson NO, Nottle MB. Addition of granulocyte macrophage colony stimulating factor (GM-CSF) during in vitro oocyte maturation improves embryo development in a mouse model of advanced maternal age. J Reprod Dev 2024; 70:411-417. [PMID: 39522961 DOI: 10.1262/jrd.2024-066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Oocyte developmental competence declines in women aged 35 and older resulting in many women resorting to IVF. The present study determined whether adding Granulocyte-macrophage colony-stimulating factor (GM-CSF) during in vitro oocyte maturation (IVM) could improve oocyte developmental competence in a mouse model of advanced maternal age. Oocytes from 12-14 month C57BL6 J × CBA mice were treated with 10 ng/ml of GM-CSF during IVM, and embryo development, mitochondrial activity, spindle formation and chromosomal alignment were examined. The addition of GM-CSF tended to increase fertilisation rates (76.19 vs. 82.03%; P = 0.07) but did not affect cumulus expansion compared with control. The addition of GM-CSF also increased blastocysts rates (51.10 vs. 61.52%; P < 0.01) and the number of good quality blastocysts (33.31 vs. 44.13%; P < 0.05) present at 96 h of culture as well as inner cell mass (12.64 vs. 15.62 ; P < 0.01) and total cell number (42.98 vs. 48.78 ; P < 0.05). GM-CSF treatment also increased mitochondrial membrane potential two to three fold in the outer (2.86 vs. 0.97; P < 0.001), intermediate (3.25 vs. 0.89; P < 0.001) and peri nuclear areas (3.62 vs. 1.08; P < 0.001). GM-CSF treatment did not influence spindle formation or chromosomal alignment. Together our results indicate that the addition of GM-CSF during IVM may improve oocyte quality in women of advanced maternal age.
Collapse
Affiliation(s)
- Anmol Saini
- Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, South Australia 5005, Australia
- Robinson Research Institute, The University of Adelaide, South Australia 5005, Australia
| | - Nicole O McPherson
- Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, South Australia 5005, Australia
- Robinson Research Institute, The University of Adelaide, South Australia 5005, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, South Australia 5005, Australia
- Genea, Sydney, New South Wales 2000, Australia
| | - Mark B Nottle
- Discipline of Reproduction and Development, School of Biomedicine, The University of Adelaide, South Australia 5005, Australia
- Robinson Research Institute, The University of Adelaide, South Australia 5005, Australia
| |
Collapse
|
3
|
Clark HM, Stokes AE, Edwards JL, Payton RR, Schrick FN, Campagna SR, Sarumi Q, Hessock EA, Roberts SR, Azaridolatabad N, Moorey SE. Impact of preovulatory follicle maturity on oocyte metabolism and embryo development. PNAS NEXUS 2024; 3:pgae181. [PMID: 38752021 PMCID: PMC11095542 DOI: 10.1093/pnasnexus/pgae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Improved oocyte competence for embryo development and pregnancy was observed following ovulation of preovulatory follicles with greater physiological maturity, as indicated by estradiol production, prior to the gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) surge. It was hypothesized that follicular fluid from preovulatory follicles of greater maturity better supports the maturing oocyte's metabolic requirements and improves embryo development. The objective was to determine if differences in preovulatory follicular fluid due to follicle maturity influence oocyte metabolism during in vitro maturation (IVM) and affect embryo development. Bovine preovulatory follicular fluid was collected 18 h after a GnRH-induced LH surge. Serum estradiol concentration at GnRH administration categorized follicles as greater or lesser maturity. Immature bovine oocytes were submitted to 24 h IVM in medium supplemented with 20% follicular fluid from preovulatory follicles of greater or lesser maturity. Embryo development was recorded. Oocyte maturation media and media conditioned by developing embryos were submitted for metabolomics. A randomized block design was utilized to determine differences in embryo development and media metabolites (P ≤ 0.05). Blastocysts from oocytes matured in greater vs. lesser maturity follicular fluid had a more moderate rate of development (P = 0.01). At the conclusion of 24 h IVM, abundance of 66 metabolites differed between greater and lesser follicle maturity treatments. Nine metabolites differed in media conditioned by developing embryos. Metabolome results suggest improved amino acid, purine, and glucose metabolism, followed by a more efficient rate of embryo development, in oocytes matured in greater vs lesser maturity follicular fluid.
Collapse
Affiliation(s)
- Hannah M Clark
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN 37996, USA
| | - Allyson E Stokes
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN 37996, USA
| | - J Lannett Edwards
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN 37996, USA
| | - Rebecca R Payton
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN 37996, USA
| | - F Neal Schrick
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN 37996, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, 1420 Circle Dr., Knoxville, TN 37996, USA
| | - Qudus Sarumi
- Department of Chemistry, University of Tennessee, 1420 Circle Dr., Knoxville, TN 37996, USA
| | - Emma A Hessock
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN 37996, USA
| | - Samantha R Roberts
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN 37996, USA
| | - Nima Azaridolatabad
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN 37996, USA
| | - Sarah E Moorey
- Department of Animal Science, University of Tennessee Institute of Agriculture and AgResearch, 2506 River Drive, Knoxville, TN 37996, USA
| |
Collapse
|
4
|
Gilchrist RB, Ho TM, De Vos M, Sanchez F, Romero S, Ledger WL, Anckaert E, Vuong LN, Smitz J. A fresh start for IVM: capacitating the oocyte for development using pre-IVM. Hum Reprod Update 2024; 30:3-25. [PMID: 37639630 DOI: 10.1093/humupd/dmad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND While oocyte IVM is practiced sporadically it has not achieved widespread clinical practice globally. However, recently there have been some seminal advances in our understanding of basic aspects of oocyte biology and ovulation from animal studies that have led to novel approaches to IVM. A significant recent advance in IVM technology is the use of biphasic IVM approaches. These involve the collection of immature oocytes from small antral follicles from minimally stimulated patients/animals (without hCG-priming) and an ∼24 h pre-culture of oocytes in an advanced culture system ('pre-IVM') prior to IVM, followed by routine IVF procedures. If safe and efficacious, this novel procedure may stand to make a significant impact on human ART practices. OBJECTIVE AND RATIONALE The objectives of this review are to examine the major scientific advances in ovarian biology with a unique focus on the development of pre-IVM methodologies, to provide an insight into biphasic IVM procedures, and to report on outcomes from animal and clinical human data, including safety data. The potential future impact of biphasic IVM on ART practice is discussed. SEARCH METHODS Peer review original and review articles were selected from PubMed and Web of Science searches for this narrative review. Searches were performed using the following keywords: oocyte IVM, pre-IVM, biphasic IVM, CAPA-IVM, hCG-triggered/primed IVM, natural cycle IVF/M, ex-vivo IVM, OTO-IVM, oocyte maturation, meiotic competence, oocyte developmental competence, oocyte capacitation, follicle size, cumulus cell (CC), granulosa cell, COC, gap-junction communication, trans-zonal process, cAMP and IVM, cGMP and IVM, CNP and IVM, EGF-like peptide and IVM, minimal stimulation ART, PCOS. OUTCOMES Minimizing gonadotrophin use means IVM oocytes will be collected from small antral (pre-dominant) follicles containing oocytes that are still developing. Standard IVM yields suboptimal clinical outcomes using such oocytes, whereas pre-IVM aims to continue the oocyte's development ex vivo, prior to IVM. Pre-IVM achieves this by eliciting profound cellular changes in the oocyte's CCs, which continue to meet the oocyte's developmental needs during the pre-IVM phase. The literature contains 25 years of animal research on various pre-IVM and biphasic IVM procedures, which serves as a large knowledge base for new approaches to human IVM. A pre-IVM procedure based on c-type natriuretic peptide (named 'capacitation-IVM' (CAPA-IVM)) has undergone pre-clinical human safety and efficacy trials and its adoption into clinical practice resulted in healthy live birth rates not different from conventional IVF. WIDER IMPLICATIONS Over many decades, improvements in clinical IVM have been gradual and incremental but there has likely been a turning of the tide in the past few years, with landmark discoveries in animal oocyte biology finally making their way into clinical practice leading to improved outcomes for patients. Demonstration of favorable clinical results with CAPA-IVM, as the first clinically tested biphasic IVM system, has led to renewed interest in IVM as an alternative, low-intervention, low-cost, safe, patient-friendly ART approach, and especially for patients with PCOS. The same new approach is being used as part of fertility preservation in patients with cancer and holds promise for social oocyte freezing.
Collapse
Affiliation(s)
- Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Michel De Vos
- Brussels IVF, UZ Brussel, Brussels, Belgium
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Flor Sanchez
- Centro de Estudios e Investigaciones en Biología y Medicina Reproductiva, Lima, Peru
| | - Sergio Romero
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
- Centro de Fertilidad y Reproducción Asistida, Lima, Peru
| | - William L Ledger
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
- City Fertility, Global CHA IVF Partners, Sydney, NSW, Australia
| | - Ellen Anckaert
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lan N Vuong
- Department of Obstetrics and Gynaecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Johan Smitz
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Zhao H, Dong Y, Zhang Y, Wu X, Zhang X, Liang Y, Li Y, Zeng F, Shi J, Zhou R, Hong L, Cai G, Wu Z, Li Z. Supplementation of SDF1 during Pig Oocyte In Vitro Maturation Improves Subsequent Embryo Development. Molecules 2022; 27:molecules27206830. [PMID: 36296422 PMCID: PMC9609306 DOI: 10.3390/molecules27206830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
The quality of in vitro matured oocytes is inferior to that of in vivo matured oocytes, which translates to low developmental capacity of embryos derived from in vitro matured oocytes. The developmental potential of in vitro matured oocytes is usually impaired due to oxidative stress. Stromal cell-derived factor-l (SDF1) can reduce oxidative stress and inhibit apoptosis. The aim of this study was to investigate the effects of SDF1 supplementation during pig oocyte in vitro maturation (IVM) on subsequent embryo development, and to explore the acting mechanisms of SDF1 in pig oocytes. We found that the IVM medium containing 20 ng/mL SDF1 improved the maturation rate of pig oocytes, as well as the cleavage rate and blastocyst rate of embryos generated by somatic cell nuclear transfer, in vitro fertilization, and parthenogenesis. Supplementation of 20 ng/mL SDF1 during IVM decreased the ROS level, increased the mitochondrial membrane potential, and altered the expression of apoptosis-related genes in the pig oocytes. The porcine oocyte transcriptomic data showed that SDF1 addition during IVM altered the expression of genes enriched in the purine metabolism and TNF signaling pathways. SDF1 supplementation during pig oocyte IVM also upregulated the mRNA and protein levels of YY1 and TET1, two critical factors for oocyte development. In conclusion, supplementation of SDF1 during pig oocyte IVM reduces oxidative stress, changes expression of genes involved in regulating apoptosis and oocyte growth, and enhances the ability of in vitro matured pig oocytes to support subsequent embryo development. Our findings provide a theoretical basis and a new method for improving the developmental potential of pig in vitro matured oocytes.
Collapse
Affiliation(s)
- Huaxing Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Yazheng Dong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Xiao Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Xianjun Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Fang Zeng
- College of Marine Science, South China Agricultural University, Guangzhou 510030, China
| | - Junsong Shi
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527400, China
| | - Rong Zhou
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu 527400, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510030, China
- Correspondence: (Z.W.); (Z.L.)
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510030, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guangzhou 510030, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510030, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510030, China
- Correspondence: (Z.W.); (Z.L.)
| |
Collapse
|
6
|
The Simulated Physiological Oocyte Maturation (SPOM) system in domestic animals: A systematic review. Theriogenology 2022; 188:90-99. [DOI: 10.1016/j.theriogenology.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
|
7
|
Tan TCY, Brown HM, Thompson JG, Mustafa S, Dunning KR. Optical imaging detects metabolic signatures associated with oocyte quality. Biol Reprod 2022; 107:1014-1025. [PMID: 35863764 PMCID: PMC9562116 DOI: 10.1093/biolre/ioac145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/02/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
Oocyte developmental potential is intimately linked to metabolism. Existing approaches to measure metabolism in the cumulus oocyte complex (COC) do not provide information on the separate cumulus and oocyte compartments. Development of an assay that achieves this may lead to an accurate diagnostic for oocyte quality. Optical imaging of the autofluorescent cofactors NAD(P)H and FAD provides a spatially resolved indicator of metabolism via the optical redox ratio ($\mathrm{FAD}/\left[\mathrm{NAD}\left(\mathrm{P}\right)\mathrm{H}+\mathrm{FAD}\right]$). This may provide an assessment of oocyte quality. Here, we determined whether the optical redox ratio is a robust methodology for measuring metabolism in the cumulus and oocyte compartments compared with oxygen consumption in the whole COC. We also determined whether optical imaging could detect metabolic differences associated with poor oocyte quality (etomoxir-treated). We used confocal microscopy to measure NAD(P)H and FAD, and extracellular flux to measure oxygen consumption. We found that the optical redox ratio was an accurate reflection of metabolism in the oocyte compartment when compared with oxygen consumption (whole COC). Etomoxir-treated COCs showed significantly lower levels of NAD(P)H and FAD compared to control. While confocal imaging demonstrated the premise, we validated this approach using hyperspectral imaging, which is clinically compatible due to its low energy dose. This confirmed lower NAD(P)H and FAD in etomoxir-treated COCs. When comparing imaged vs non-imaged COCs, subsequent preimplantation development and post-transfer viability were comparable. Collectively, these results demonstrate that label-free optical imaging of metabolic cofactors is a safe and sensitive assay for measuring metabolism and has potential to assess oocyte developmental competence.
Collapse
Affiliation(s)
- Tiffany C Y Tan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hannah M Brown
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Jeremy G Thompson
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia.,Fertilis Pty Ltd, Adelaide, South Australia, 5005, Australia
| | - Sanam Mustafa
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie R Dunning
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Australian Research Council Centre of Excellence for Nanoscale Biophotonics, The University of Adelaide, Adelaide, South Australia, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
8
|
Raza SHA, Abd El-Aziz AH, Abdelnour SA, Easa AA, Alagawany M, Farag MR, Al-Mutary MG, Elfadadny A, Khan R, Quan G, Cheng G, Zan L. The role of forskolin as a lipolytic stimulator during in vitro oocyte maturation and the in vitro embryo production of livestock. Reprod Domest Anim 2021; 56:1486-1496. [PMID: 34592022 DOI: 10.1111/rda.14021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
Cryopreservation is a modern technique which assists in the preservation of genetic material from oocytes and embryos for a long time. However, elevated vulnerability to cryopreservation due to the large accumulation of intracellular lipids within oocytes or embryos avoids success of this method. These lipids remain the main crucial factor limiting survival rates of oocytes and embryos after thawing. Lipid ingathering in the oocyte cytoplasm augments lipid peroxidation (LPO) and oxidative stress increases the apoptosis process, declines the viability after thawing, declines cytoskeleton actin filament injuries, lowers the blastocyst rates and reduces cryotolerance in the early stages of embryo development. There have been several attempts to reduce the ingathering of intracellular lipids in oocytes or embryos during the cryopreservation process, in that way enhancing the competence of cryopreserved oocytes or embryos and increasing their viability. One of the most applied agents for chemical delipidation is forskolin. Forskolin exhibited a possible part in improving the oocytes cryopreservation through stimulating cyclic adenosine monophosphate (cAMP) production. The main purpose of cAMP modulation is to provide energy to sustain the mammalian oocytes´ meiotic arrest. The purpose of the existing article is to assess and offer more evidence concerning the forskolin utilization as a modulator of cAMP during the cryopreservation of oocytes and its influence on meiosis completion and the reorganization of cytoplasm, which are prerequisites for the development of oocytes in addition to the contribution to fertilization and subsequently, the development of embryos.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, China
| | - Ayman H Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Daman Hour University, Damanhour, Egypt
| | - Sameh A Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed A Easa
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohsen G Al-Mutary
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed Elfadadny
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, China
| |
Collapse
|
9
|
Richani D, Gilchrist RB. Approaches to oocyte meiotic arrest in vitro and impact on oocyte developmental competence. Biol Reprod 2021; 106:243-252. [PMID: 34534265 DOI: 10.1093/biolre/ioab176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 01/07/2023] Open
Abstract
Oocytes are maintained in a state of meiotic arrest following the first meiotic division until ovulation is triggered. Within the antral follicle, meiotic arrest is actively suppressed in a process facilitated by the cyclic nucleotides cGMP and cAMP. If removed from this inhibitory follicular environment and cultured in vitro, mammalian oocytes undergo spontaneous meiotic resumption in the absence of the usual stimulatory follicular stimuli, leading to asynchronicity with oocyte cytoplasmic maturation and lower developmental competence. For more than 50 years, pharmacological agents have been used to attenuate oocyte germinal vesicle (GV) breakdown in vitro. Agents which increase intra-oocyte cAMP or prevent its degradation have been predominantly used, however agents such as kinase and protein synthesis inhibitors have also been trialled. Twenty years of research demonstrates that maintaining GV arrest for a period before in vitro maturation (IVM) improves oocyte developmental competence, and is likely attributed to maintenance of bidirectional communication with cumulus cells leading to improved oocyte metabolic function. However, outcomes are influenced by various factors including the mode of action of the modulators, dose, treatment duration, species, and the degree of hormonal priming of the oocyte donor. Cyclic GMP and/or cAMP modulation in a prematuration step (called pre-IVM) prior to IVM has shown the greatest consistency in improving oocyte developmental competence, whereas kinase and protein synthesis inhibitors have proven less effective at improving IVM outcomes. Such pre-IVM approaches have shown potential to alter current use of artificial reproductive technologies in medical and veterinary practice.
Collapse
Affiliation(s)
- Dulama Richani
- Fertility & Research Centre, School of Women's & Children's Health, University of New South Wales Sydney, NSW 2052, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, School of Women's & Children's Health, University of New South Wales Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
cAMP Modulators before In Vitro Maturation Decrease DNA Damage and Boost Developmental Potential of Sheep Oocytes. Animals (Basel) 2021; 11:ani11092512. [PMID: 34573478 PMCID: PMC8467748 DOI: 10.3390/ani11092512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Oocyte in vitro maturation has massive potential for the generation of great numbers of embryos for research and for the application of assisted reproductive technologies, such as in vitro embryo production. However, the developmental ability of in vitro matured oocytes is lower than those matured in vivo. Here, incubating the oocytes with cAMP modulating agents for two hours before in vitro maturation decreased oocyte DNA damage and increased the number of embryos generated after in vitro fertilization. The present findings could help to develop new methods to improve the quality and developmental potential of in vitro matured oocytes. Abstract To date, the underlying mechanisms by which cAMP modulators act during in vitro maturation to improve oocyte developmental competence are poorly understood. Here, we sought to fill this knowledge gap by evaluating the use of phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) and adenylyl cyclase activator forskolin during a culture period of 2 h before in vitro maturation (pre-IVM) on the nuclear and cytoplasmic maturation features in essential organelles, cumulus cells activity, and in vitro developmental potential of sheep oocytes. Results showed that pre-IVM treatment significantly decreased (p < 0.05) the DNA damage of mature oocytes (pre-IVM = 2.08% ± 3.51% vs. control = 20.58% ± 3.51%) and increased (p ≤ 0.05) expanded blastocyst rates compared to the control (from the total of oocytes: pre-IVM = 23.89% ± 1.47% vs. control = 18.22% ± 1.47%, and from the cleaved embryos: pre-IVM = 45.16% ± 1.73% vs. control = 32.88% ± 1.73%). Considering that oocytes are highly vulnerable to the accumulation of DNA damage because of exposure to in vitro culture conditions, our results suggest that the modulation of intra-oocyte cAMP levels with forskolin and IBMX before IVM might afford oocytes a more effective DNA repair mechanism to overcome damage obstacles and ultimately improve developmental competence. This previously unappreciated action of cAMP modulators could help to develop improved methods for assisted reproduction technologies in animal and clinical research.
Collapse
|
11
|
Suresh A, Shukla MK, Kumar D, Shrivastava OP, Verma N. Simulated physiological oocyte maturation (SPOM) improves developmental competence of in vitro produced goat embryos. Theriogenology 2021; 172:193-199. [PMID: 34246165 DOI: 10.1016/j.theriogenology.2021.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/01/2023]
Abstract
The effect of simulated physiological oocyte maturation on the developmental competence, reactive oxygen species production and apoptosis rate of in vitro produced goat embryos were studied in the present experiment. Oocytes and spermatozoa were recovered from ovaries and epididymis, respectively, procured from a local small animal abattoir. The oocytes aspirated from the ovaries were allocated into two groups, control (subjected to routine in vitro maturation, fertilization and culture) and simulated physiological oocyte maturation (SPOM) group (subjected to prematuration, followed by routine in vitro maturation, fertilization and culture). The SPOM group showed a significantly (p < 0.05) higher maturation and blastocyst rates (90.60 ± 0.46% and 29.09 ± 2.59%, respectively) as compared to the control group (85.29 ± 0.98% and 24.09 ± 1.08%). The intensity of reactive oxygen species of the embryos in the control group (14.98 ± 0.83 pixels/embryo) was significantly (p < 0.05) higher than the SPOM group (9.60 ± 0.76 pixels/embryo). The apoptosis rate was also significantly (p < 0.05) higher in the embryos of the control group (9.18 ± 1.07%) as compared to the SPOM group (5.71 ± 0.90%). In conclusion, the simulated physiological oocyte maturation system significantly increases the developmental competence of the oocytes and decreases the intensity of reactive oxygen species and embryonic apoptosis in abattoir derived goat embryos.
Collapse
Affiliation(s)
- Ashitha Suresh
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Jabalpur, Madhya Pradesh, India; Department of Veterinary Gynaecology and Obstetrics, Madras Veterinary College, Chennai, Tamil Nadu, India
| | - M K Shukla
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Jabalpur, Madhya Pradesh, India; Department of Veterinary Gynaecology & Obstetrics, College of Veterinary and Animal Science, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut, 250110, Uttar Pradesh, India.
| | - Dharmendra Kumar
- Animal Biotechnology Centre, Nanaji Deshmukh Veterinary Science University, Adhartaal, Jabalpur, 482004, Madhya Pradesh, India
| | - O P Shrivastava
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Jabalpur, Madhya Pradesh, India
| | - Neeraj Verma
- Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science and Animal Husbandry, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
12
|
Bezerra FTG, Dau AMP, Van Den Hurk R, Silva JRV. Molecular characteristics of oocytes and somatic cells of follicles at different sizes that influence in vitro oocyte maturation and embryo production. Domest Anim Endocrinol 2021; 74:106485. [PMID: 32858464 DOI: 10.1016/j.domaniend.2020.106485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/18/2022]
Abstract
During the last 10 to 15 yr, in vitro research to predict antral follicle growth and oocyte maturation has delivered interesting advances in the knowledge of processes regulating follicle growth and developmental competence of oocytes. This review discusses the contribution of cumulus and mural granulosa cells in the process of oocyte maturation and cumulus expansion in cumulus-oocyte complexes (COCs) from follicles of different sizes and shows that differences in gene expression in oocytes, granulosa, and theca cells of small and large follicles impact the success of in vitro blastocyst development. In addition, the molecular mechanisms by which COC metabolism and antioxidant defense provide oocyte competence are highlighted. Furthermore, new insights and perspectives on molecular and cellular regulation of in vitro oocyte maturation are emphasized.
Collapse
Affiliation(s)
- F T G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Graduation School of Biotechnology, Federal University of Ceara, Campus of Sobral, Sobral, Ceará, Brazil
| | - A M P Dau
- Federal Institute of Education, Science and Technology of Rio Grande do Sul, Rolante, Rio Grande do Sul, Brazil
| | - R Van Den Hurk
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - J R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Graduation School of Biotechnology, Federal University of Ceara, Campus of Sobral, Sobral, Ceará, Brazil.
| |
Collapse
|
13
|
Garcia BM, Machado TS, Carvalho KF, Nolasco P, Nociti RP, Del Collado M, Capo Bianco MJD, Grejo MP, Augusto Neto JD, Sugiyama FHC, Tostes K, Pandey AK, Gonçalves LM, Perecin F, Meirelles FV, Ferraz JBS, Vanzela EC, Boschero AC, Guimarães FEG, Abdulkader F, Laurindo FRM, Kowaltowski AJ, Chiaratti MR. Mice born to females with oocyte-specific deletion of mitofusin 2 have increased weight gain and impaired glucose homeostasis. Mol Hum Reprod 2020; 26:938-952. [PMID: 33118034 DOI: 10.1093/molehr/gaaa071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/27/2020] [Indexed: 12/19/2022] Open
Abstract
Offspring born to obese and diabetic mothers are prone to metabolic diseases, a phenotype that has been linked to mitochondrial dysfunction and endoplasmic reticulum (ER) stress in oocytes. In addition, metabolic diseases impact the architecture and function of mitochondria-ER contact sites (MERCs), changes which associate with mitofusin 2 (MFN2) repression in muscle, liver and hypothalamic neurons. MFN2 is a potent modulator of mitochondrial metabolism and insulin signaling, with a key role in mitochondrial dynamics and tethering with the ER. Here, we investigated whether offspring born to mice with MFN2-deficient oocytes are prone to obesity and diabetes. Deletion of Mfn2 in oocytes resulted in a profound transcriptomic change, with evidence of impaired mitochondrial and ER function. Moreover, offspring born to females with oocyte-specific deletion of Mfn2 presented increased weight gain and glucose intolerance. This abnormal phenotype was linked to decreased insulinemia and defective insulin signaling, but not mitochondrial and ER defects in offspring liver and skeletal muscle. In conclusion, this study suggests a link between disrupted mitochondrial/ER function in oocytes and increased risk of metabolic diseases in the progeny. Future studies should determine whether MERC architecture and function are altered in oocytes from obese females, which might contribute toward transgenerational transmission of metabolic diseases.
Collapse
Affiliation(s)
- Bruna M Garcia
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Thiago S Machado
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.,Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Karen F Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Patrícia Nolasco
- Translational Cardiovascular Biology Unit, Instituto do Coração, Universidade de São Paulo, São Paulo 05403-904, Brazil
| | - Ricardo P Nociti
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Maite Del Collado
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Maria J D Capo Bianco
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Mateus P Grejo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - José Djaci Augusto Neto
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Fabrícia H C Sugiyama
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Katiane Tostes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Anand K Pandey
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.,Departament of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Luciana M Gonçalves
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-865, Brazil
| | - Felipe Perecin
- Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Flávio V Meirelles
- Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - José Bento S Ferraz
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga 13635-900, Brazil
| | - Emerielle C Vanzela
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-865, Brazil
| | - Antônio C Boschero
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-865, Brazil
| | - Francisco E G Guimarães
- Departamento de Física e Ciências dos Materiais, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13563-120, Brazil
| | - Fernando Abdulkader
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Francisco R M Laurindo
- Translational Cardiovascular Biology Unit, Instituto do Coração, Universidade de São Paulo, São Paulo 05403-904, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil.,Programa de Pós-Graduação em Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
14
|
Ren Z, Huang J, Zhou C, Jia L, Li M, Liang X, Zeng H. Transferrin and antioxidants partly prevented mouse oocyte oxidative damage induced by exposure of cumulus-oocyte complexes to endometrioma fluid. J Ovarian Res 2020; 13:139. [PMID: 33243289 PMCID: PMC7690000 DOI: 10.1186/s13048-020-00738-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background Exposure of oocytes to the endometrioma fluid has an adverse effect on embryonic quality. To determine whether adding transferrin and antioxidants to culture medium could counteract detrimental effects on mouse cumulus-oocyte complexes (COCs) induced by exposure to endometrioma fluid or not, we conducted an in vitro cross-sectional study using human and mouse COCs. Methods Eighteen women who had their oocytes exposed to endometrioma fluid during oocyte retrieval were enrolled. COCs from superovulated ICR female mice were collected. They were first exposed to human endometrioma fluid and then treated by transferrin and/or antioxidants (cysteamine + cystine). Subsequently, COCs function was assessed by molecular methods. Results This study observed that human COCs inadvertently exposed to endometrioma fluid in the in vitro fertilization (IVF) group led to a lower good quality embryo rate compared to intracytoplasmic sperm injection (ICSI) group. Exposure of mouse COCs to endometrioma fluid accelerated oocyte oxidative damage, evidenced by significantly reduced CCs viability, defective mitochondrial function, decreased GSH content and increased ROS level, associated with the significantly higher pro-portion of abnormal spindles and lower blastocyst formation (p < 0.05, respectively). This damage could be recovered partly by treating COCs with transferrin and antioxidants (cysteamine + cystine). Conclusions Transferrin and antioxidants could reduce the oxidative damage caused by COCs exposure to endometrioma fluid. This finding provides a promising new possibility for intervention in the human oocyte oxidative damage process induced by endometrioma fluid during oocyte pick-up. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-020-00738-0.
Collapse
Affiliation(s)
- Zi Ren
- Center for Reproductive Medicine, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jiana Huang
- Center for Reproductive Medicine, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chuanchuan Zhou
- Center for Reproductive Medicine, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lei Jia
- Center for Reproductive Medicine, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Manchao Li
- Center for Reproductive Medicine, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xiaoyan Liang
- Center for Reproductive Medicine, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haitao Zeng
- Center for Reproductive Medicine, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Optical imaging of cleavage stage bovine embryos using hyperspectral and confocal approaches reveals metabolic differences between on-time and fast-developing embryos. Theriogenology 2020; 159:60-68. [PMID: 33113445 DOI: 10.1016/j.theriogenology.2020.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 01/15/2023]
Abstract
The assessment of embryo quality aims to enhance subsequent pregnancy and live birth outcomes. Metabolic analysis of embryos has immense potential in this regard. As a step towards this goal, here we assess the metabolism of bovine embryos using label-free optical imaging. We compared embryos defined as either on-time or fast-developing, as fast dividing embryos are more likely to develop to the blastocyst stage. Specifically, bovine embryos at 48 (Day 2) and 96 (Day 4) hours post fertilization were fixed and separated based on morphological assessment: on-time (Day 2: 2 cell; Day 4: 5-7 cell) or fast-developing (Day 2: 3-7 cell; Day 4: 8-16 cell). Embryos with different developmental rates on Day 2 and Day 4 were correlated with metabolic activity and DNA damage. Confocal microscopy was used to assess metabolic activity by quantification of cellular autofluorescence specific for the endogenous fluorophores NAD(P)H and FAD with a subsequent calculation of the optical redox ratio. Separately, hyperspectral microscopy was employed to assess a broader range of endogenous fluorophores. DNA damage was determined using γH2AX immunohistochemistry. Hyperspectral imaging showed significantly lower abundance of endogenous fluorophores in fast-developing compared to on-time embryos on Day 2, indicating a lower metabolic activity. On Day 4 of development there was no difference in the abundance of FAD between on-time and fast-developing embryos. There was, however, significantly higher levels of NAD(P)H in fast-developing embryos leading to a significantly lower optical redox ratio when compared to on-time embryos. Collectively, these results demonstrate that fast-developing embryos present a 'quiet' metabolic pattern on Day 2 and Day 4 of development, compared to on-time embryos. There was no difference in the level of DNA damage between on-time and fast-developing embryos on either day of development. To our knowledge, this is the first collective use of confocal and hyperspectral imaging in cleavage-stage bovine embryos in the absence of fluorescent tags.
Collapse
|
16
|
Richani D, Dunning KR, Thompson JG, Gilchrist RB. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum Reprod Update 2020; 27:27-47. [PMID: 33020823 DOI: 10.1093/humupd/dmaa043] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/19/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Within the antral follicle, the oocyte is reliant on metabolic support from its surrounding somatic cells. Metabolism plays a critical role in oocyte developmental competence (oocyte quality). In the last decade, there has been significant progress in understanding the metabolism of the cumulus-oocyte complex (COC) during its final stages of growth and maturation in the follicle. Certain metabolic conditions (e.g. obesity) or ART (e.g. IVM) perturb COC metabolism, providing insights into metabolic regulation of oocyte quality. OBJECTIVE AND RATIONALE This review provides an update on the progress made in our understanding of COC metabolism, and the metabolic conditions that influence both meiotic and developmental competence of the oocyte. SEARCH METHODS The PubMed database was used to search for peer-reviewed original and review articles. Searches were performed adopting the main terms 'oocyte metabolism', 'cumulus cell metabolism', 'oocyte maturation', 'oocyte mitochondria', 'oocyte metabolism', 'oocyte developmental competence' and 'oocyte IVM'. OUTCOMES Metabolism is a major determinant of oocyte quality. Glucose is an essential requirement for both meiotic and cytoplasmic maturation of the COC. Glucose is the driver of cumulus cell metabolism and is essential for energy production, extracellular matrix formation and supply of pyruvate to the oocyte for ATP production. Mitochondria are the primary source of ATP production within the oocyte. Recent advances in real-time live cell imaging reveal dynamic fluctuations in ATP demand throughout oocyte maturation. Cumulus cells have been shown to play a central role in maintaining adequate oocyte ATP levels by providing metabolic support through gap junctional communication. New insights have highlighted the importance of oocyte lipid metabolism for oocyte oxidative phosphorylation for ATP production, meiotic progression and developmental competence. Within the last decade, several new strategies for improving the developmental competence of oocytes undergoing IVM have emerged, including modulation of cyclic nucleotides, the addition of precursors for the antioxidant glutathione or endogenous maturation mediators such as epidermal growth factor-like peptides and growth differentiation factor 9/bone morphogenetic protein 15. These IVM additives positively alter COC metabolic endpoints commonly associated with oocyte competence. There remain significant challenges in the study of COC metabolism. Owing to the paucity in non-invasive or in situ techniques to assess metabolism, most work to date has used in vitro or ex vivo models. Additionally, the difficulty of measuring oocyte and cumulus cell metabolism separately while still in a complex has led to the frequent use of denuded oocytes, the results from which should be interpreted with caution since the oocyte and cumulus cell compartments are metabolically interdependent, and oocytes do not naturally exist in a naked state until after fertilization. There are emerging tools, including live fluorescence imaging and photonics probes, which may provide ways to measure the dynamic nature of metabolism in a single oocyte, potentially while in situ. WIDER IMPLICATIONS There is an association between oocyte metabolism and oocyte developmental competence. Advancing our understanding of basic cellular and biochemical mechanisms regulating oocyte metabolism may identify new avenues to augment oocyte quality and assess developmental potential in assisted reproduction.
Collapse
Affiliation(s)
- Dulama Richani
- School of Women's and Children's Health, Fertility & Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Kylie R Dunning
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, Australia
| | - Jeremy G Thompson
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.,Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia.,Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, Australia
| | - Robert B Gilchrist
- School of Women's and Children's Health, Fertility & Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
17
|
Lodde V, Colleoni S, Tessaro I, Corbani D, Lazzari G, Luciano AM, Galli C, Franciosi F. A prematuration approach to equine IVM: considering cumulus morphology, seasonality, follicle of origin, gap junction coupling and large-scale chromatin configuration in the germinal vesicle. Reprod Fertil Dev 2020; 31:1793-1804. [PMID: 31630726 DOI: 10.1071/rd19230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Several studies report that a two-step culture where mammalian oocytes are first kept under meiosis-arresting conditions (prematuration) followed by IVM is beneficial to embryo development. The most promising results were obtained by stratifying the oocyte population using morphological criteria and allocating them to different culture conditions to best meet their metabolic needs. In this study, horse oocytes were characterised to identify subpopulations that may benefit from prematuration. We investigated gap-junction (GJ) coupling, large-scale chromatin configuration and meiotic competence in compact and expanded cumulus-oocyte complexes (COCs) according to follicle size (<1, 1-2, >2cm) and season. Then we tested the effect of cilostamide-based prematuration in compact COCs collected from follicles <1 and 1-2cm in diameter on embryo development. Meiotic competence was not affected by prematuration, whereas COCs from follicles 1-2cm in diameter yielded embryos with a higher number of cells per blastocyst than oocytes that underwent direct IVM (P<0.01, unpaired Mann-Whitney test), suggesting improved developmental competence. Oocytes collected from follicles <1cm in diameter were not affected by prematuration. This study represents an extensive characterisation of the functional properties of immature horse oocytes and is the first report of the effects of cilostamide-based prematuration in horse oocyte IVM on embryo development.
Collapse
Affiliation(s)
- Valentina Lodde
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Silvia Colleoni
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Irene Tessaro
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Davide Corbani
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Giovanna Lazzari
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy; and Fondazione Avantea, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Alberto M Luciano
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Cesare Galli
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy; and Fondazione Avantea, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Federica Franciosi
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy; and Corresponding author.
| |
Collapse
|
18
|
Leal GR, Graciosa MAG, Monteiro CAS, Pasolini R, Dos Reis Camargo AJ, Oliveira CS, de Paula Vasconcelos CO, Garcia Nogueira LA, Reis Ferreira AM, Serapião RV. The SPOM-adapted IVM system improves in vitro production of bovine embryos. Theriogenology 2020; 158:277-282. [PMID: 33002771 DOI: 10.1016/j.theriogenology.2020.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to test the effects of an IVM SPOM adaptation (SPOM-adapted IVM) on the production, total number of cells (TNC), apoptosis, and cryotolerance (post-warming survival and cytoskeleton actin integrity) of bovine IVP embryos. Two experiments were conducted with two experimental groups based on IVM treatment: A control group (TCM 199 without FCS) and an SPOM-adapted group (TCM 199 with forskolin and IBMX in pre-IVM and IVM with cilostamide). The first experiment evaluated embryo in vitro production, TNC, and apoptosis rate on D9 of development. In the second experiment, embryos were vitrified/warmed at D7 (control fresh and vitrified; SPOM-adapted fresh and vitrified) and assessed regarding post-warming survival rates and cytoskeleton actin integrity. Statistical analysis was performed using GraphPad INSTAT software at a significance level of 5%. An increase (p < 0.05) in blastocyst production was observed in the SPOM-adapted group comparing to the control group. There was no difference (p > 0.05) in the TNC or apoptosis rate between the groups. Regarding cryopreservation, no differences were found (p > 0.05) in actin integrity or post-warming survival rates between the vitrified groups. In both vitrified groups, we observed a significantly lower uninjured pattern of actin integrity compared to the fresh groups (p < 0.05). We conclude that the SPOM-adapted IVM system is beneficial for blastocyst production and does not affect the quality and cryotolerance of the produced embryos.
Collapse
Affiliation(s)
- Gabriela Ramos Leal
- Universidade Federal Fluminense (UFF), Department of Veterinary Medicine, Vital Brazil Filho St., 64, 24230-340, Niteroi, Rio de Janeiro, Brazil.
| | - Maria Alice Guimarães Graciosa
- Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro (PESAGRO RIO), São Boa Ventura Av., 770, 24120-19, Fonseca, Niteroi, Rio de Janeiro, Brazil
| | - Clara Ana Santos Monteiro
- Universidade Federal Fluminense (UFF), Department of Veterinary Medicine, Vital Brazil Filho St., 64, 24230-340, Niteroi, Rio de Janeiro, Brazil
| | - Renata Pasolini
- Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro (PESAGRO RIO), São Boa Ventura Av., 770, 24120-19, Fonseca, Niteroi, Rio de Janeiro, Brazil
| | - Agostinho Jorge Dos Reis Camargo
- Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro (PESAGRO RIO), São Boa Ventura Av., 770, 24120-19, Fonseca, Niteroi, Rio de Janeiro, Brazil
| | - Clara Slade Oliveira
- Embrapa Gado de Leite, Laboratory of Animal Reproduction, Santa Monica Experimental Field (LRA-CESM) - Santa Monica Rd., 27640-000, Valença, Rio de Janeiro, Brazil
| | - Carlos Otávio de Paula Vasconcelos
- Universidade Federal Fluminense (UFF), Department of Veterinary Medicine, Vital Brazil Filho St., 64, 24230-340, Niteroi, Rio de Janeiro, Brazil
| | - Luiz Altamiro Garcia Nogueira
- Universidade Federal Fluminense (UFF), Department of Veterinary Medicine, Vital Brazil Filho St., 64, 24230-340, Niteroi, Rio de Janeiro, Brazil
| | - Ana Maria Reis Ferreira
- Universidade Federal Fluminense (UFF), Department of Veterinary Medicine, Vital Brazil Filho St., 64, 24230-340, Niteroi, Rio de Janeiro, Brazil
| | - Raquel Varella Serapião
- Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro (PESAGRO RIO), São Boa Ventura Av., 770, 24120-19, Fonseca, Niteroi, Rio de Janeiro, Brazil; Embrapa Gado de Leite, Laboratory of Animal Reproduction, Santa Monica Experimental Field (LRA-CESM) - Santa Monica Rd., 27640-000, Valença, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Tscharke M, Kind K, Kelly J, Kleemann D, Len J. The Phosphodiesterase Inhibitor, Isobutyl-1-Methylxanthine Prevents the Sudden Drop in Cyclic Adenosine Monophosphate Concentration and Modulates Glucose Metabolism of Equine Cumulus-Oocyte Complexes Matured in Vitro. J Equine Vet Sci 2020; 91:103112. [PMID: 32684257 DOI: 10.1016/j.jevs.2020.103112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/27/2020] [Indexed: 01/21/2023]
Abstract
Spontaneous nuclear maturation of mammalian oocytes can occur when physically removed from the ovarian follicle during in vitro oocyte maturation (IVM), largely because of a decrease in cyclic adenosine monophosphate (cAMP) concentration. Modulation of oocyte cAMP during IVM by using phosphodiesterase inhibitors has been shown to maintain elevated oocyte cAMP concentrations and control meiotic resumption of bovine and ovine oocytes. This study determined the effect of inclusion of isobutyl-1-methylxanthine (IBMX) during collection and the first 12 hours of incubation of equine oocytes on cAMP concentration and glucose metabolism of cumulus-oocyte complexes (COCs). Abattoir-derived COCs were collected in aspiration medium with (Asp-IBMX) or without (Asp) IBMX. Cumulus-oocyte complexes were then incubated for 12 hours in IVM medium with (Mat-IBMX) or without (Mat) IBMX, followed by additional 24 hours in Mat medium. The cAMP concentration, glucose consumption, lactate production, and metaphase II rates of the COCs were assessed. Cumulus-oocyte complexes aspirated into Asp-IBMX (62.2 ± 2.6 fmol per COC) medium had higher cAMP concentration than Asp (31.8 ± 2.8 fmol per COC) control group (P < .05). Likewise, at 12 hours of IVM, Mat-IBMX group (33.2 ± 2.1 fmol per COC) had higher cAMP concentration than the Mat group (7.68 ± 0.5 fmol per COC; P < .05). Glucose consumption and lactate production were lower during the first 12 hours of incubation in COCs cultured in Mat-IBMX (P < .05). Isobutyl-1-methylxanthine prevented the rapid drop in cAMP concentration and altered metabolism of glucose by the COC. Preventing the sudden drop in cAMP prevents the premature nuclear maturation of in vitro-matured oocytes causing poor developmental competence.
Collapse
Affiliation(s)
- Megan Tscharke
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Karen Kind
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Jennifer Kelly
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, South Australia, Australia
| | - Dave Kleemann
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale, South Australia, Australia
| | - Jose Len
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
| |
Collapse
|
20
|
Ramirez G, Palomino J, Aspee K, De los Reyes M. GDF-9 and BMP-15 mRNA Levels in Canine Cumulus Cells Related to Cumulus Expansion and the Maturation Process. Animals (Basel) 2020; 10:ani10030462. [PMID: 32164341 PMCID: PMC7143337 DOI: 10.3390/ani10030462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary The knowledge of physiological events associated with canine reproduction involving oocyte developmental potential is essential to increase the success of reproductive biotechnologies in this species. In mammals, the oocytes are closely surrounded by a group of cells known as the cumulus cells. Although it is not well-known how these cells interact with the oocyte to promote maturation, they may provide important answers concerning oocyte development. The competence to undergo expansion is a unique characteristic of cumulus cells which is critical for normal oocyte maturation, however, the complete expansion of these cells takes longer in canines, which has been associated with the lengthy maturation process of the oocyte. Growth Differentiation Factor 9 (GDF-9) and Bone Morphogenetic Protein 15 (BMP-15) are described as relevant players in the oocyte–cumulus cells’ regulatory mechanisms. Cumulus cells express many important genes from a very early stage, therefore, we proposed to study the gene expression of GDF-9 and BMP-15 in canine cumulus cells in relation to cumulus expansion and the maturation process. We demonstrate, for the first time, that these genes are differentially expressed in canine cumulus cells throughout the estrous cycle and that this expression is related to cumulus expansion and maturity status, suggesting specific regulation. Abstract The competence to undergo expansion is a characteristic of cumulus cells (CCs). The aim was to investigate the expression of GDF-9 and BMP-15 mRNA in canine cumulus cells in relation to cumulus expansion and meiotic development over the estrous cycle. CCs were recovered from nonmatured and in vitro-matured (IVM) dog cumulus oocyte complexes (COCs), which were obtained from antral follicles at different phases of the estrous cycle. Quantitative real-time polymerase chain reaction (q-PCR) was used to evaluate the relative abundance of GDF-9 and BMP-15 transcripts from the CCs with or without signs of expansion. The results were evaluated by ANOVA and logistic regression. The maturity of the oocyte and the expansion process affected the mRNA levels in CCs. There were differences (p < 0.05) in GDF-9 and BMP-15 gene expression in CCs isolated from nonmatured COCs when comparing the reproductive phases. Lower mRNA levels (p < 0.05) were observed in anestrus and proestrus in comparison to those in estrus and diestrus. In contrast, when comparing GDF-9 mRNA levels in IVM COCs, no differences were found among the phases of the estrous cycle in expanded and nonexpanded CCs (p < 0.05). However, the highest (p < 0.05) BMP-15 gene expression in CCs that did not undergo expansion was exhibited in anestrus and the lowest (p < 0.05) expression was observed in estrus in expanded CCs. Although the stage of the estrous cycle did not affect the second metaphase (MII )rates, the expanded CCs obtained at estrus coexisted with higher percentages of MII (p < 0.05). In conclusion, the differential expression patterns of GDF-9 and BMP-15 mRNA transcripts might be related to cumulus expansion and maturation processes, suggesting specific regulation and temporal changes in their expression.
Collapse
|
21
|
Zhu S, Jia YJ, Pan LZ, Gong S, Sun MJ, Wang GL, Luo MJ, Tan JH. Meiotic block with roscovitine improves competence of porcine oocytes by fine-tuning activities of different cyclin-dependent kinases. J Cell Physiol 2020; 235:7530-7540. [PMID: 32100885 DOI: 10.1002/jcp.29655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/13/2020] [Indexed: 11/07/2022]
Abstract
Successful use of oocytes from small follicles (SFs) is of great importance for animal embryo production and human in vitro fertilization with reduced hormone-related side effects. How in vitro meiotic arrest maintenance (MAM) increases the competence of oocytes is not clear. In this study, pig oocytes recovered from SF of 1-2 mm and medium-follicles (MF) of 3-6 mm in diameter from abattoir ovaries were treated by various MAM treatments to improve their competence. The results showed that 25 µM roscovitine or 1 mM db-cAMP efficiently blocked germinal vesicle breakdown in both SF and MF oocytes suggesting a similar cyclin-dependent kinase (CDK) 1 level between the two oocyte groups. MAM with 15- and 25-µM roscovitine alone or with 1-mM db-cAMP improved competence of SF and MF oocytes, respectively, with a promoted chromatin configuration transition from surrounded nucleoli (SN) to re-decondensation (RDC) pattern that supported substantial gene transcription. However, MAM with db-cAMP alone or with higher concentrations of roscovitine did not improve oocyte competence, could not support an SN-to-RDC transition, and/or evoked a premature chromatin condensation (PMC) that suppressed gene transcription. Both CDK2 and CDK5 contents were higher (p < .05) in MF than in SF oocytes. It is concluded that the competence of pig oocytes, particularly that of SF oocytes can be improved by MAM using a proper roscovitine concentration that promotes gene transcription by inhibiting CDK5 while letting CDK2 off to prevent PMC.
Collapse
Affiliation(s)
- Shuai Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
| | - Ying-Jun Jia
- College of Life Science, North Agricultural University, Harbin, China
| | - Liu-Zhu Pan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
| | - Shuai Gong
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
| | - Ming-Ju Sun
- College of Life Science, North Agricultural University, Harbin, China
| | - Guo-Liang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
| | - Ming-Jiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
| | - Jing-He Tan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Tai'an, China
- College of Life Science, North Agricultural University, Harbin, China
| |
Collapse
|
22
|
McLennan HJ, Saini A, Dunning KR, Thompson JG. Oocyte and embryo evaluation by AI and multi-spectral auto-fluorescence imaging: Livestock embryology needs to catch-up to clinical practice. Theriogenology 2020; 150:255-262. [PMID: 32088032 DOI: 10.1016/j.theriogenology.2020.01.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023]
Abstract
A highly accurate 'non-invasive quantitative embryo assessment for pregnancy' (NQEAP) technique that determines embryo quality has been an elusive goal. If developed, NQEAP would transform the selection of embryos from both Multiple Ovulation and Embryo Transfer (MOET), and even more so, in vitro produced (IVP) embryos for livestock breeding. The area where this concept is already having impact is in the field of clinical embryology, where great strides have been taken in the application of morphokinetics and artificial intelligence (AI); while both are already in practice, rigorous and robust evidence of efficacy is still required. Even the translation of advances in the qualitative scoring of human IVF embryos have yet to be translated to the livestock IVP industry, which remains dependent on the MOET-standardised 3-point scoring system. Furthermore, there are new ways to interrogate the biochemistry of individual embryonic cells by using new, light-based methodologies, such as FLIM and hyperspectral microscopy. Combinations of these technologies, in particular combining new imaging systems with AI, will lead to very accurate NQEAP predictive tools, improving embryo selection and recipient pregnancy success.
Collapse
Affiliation(s)
- H J McLennan
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics & Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - A Saini
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics & Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - K R Dunning
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics & Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - J G Thompson
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics & Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
23
|
Wu XC, Han Z, Hao X, Zhao YT, Zhou CJ, Wen X, Liang CG. Combined use of dbcAMP and IBMX minimizes the damage induced by a long-term artificial meiotic arrest in mouse germinal vesicle oocytes. Mol Reprod Dev 2020; 87:262-273. [PMID: 31943463 DOI: 10.1002/mrd.23315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/29/2019] [Indexed: 11/11/2022]
Abstract
Phosphodiesterase (PDE)-mediated reduction of cyclic adenosine monophosphate (cAMP) activity can initiate germinal vesicle (GV) breakdown in mammalian oocytes. It is crucial to maintain oocytes at the GV stage for a long period to analyze meiotic resumption in vitro. Meiotic resumption can be reversibly inhibited in isolated oocytes by cAMP modulator forskolin, cAMP analog dibutyryl cAMP (dbcAMP), or PDE inhibitors, milrinone (Mil), Cilostazol (CLZ), and 3-isobutyl-1-methylxanthine (IBMX). However, these chemicals negatively affect oocyte development and maturation when used independently. Here, we used ICR mice to develop a model that could maintain GV-stage arrest with minimal toxic effects on subsequent oocyte and embryonic development. We identified optimal concentrations of forskolin, dbcAMP, Mil, CLZ, IBMX, and their combinations for inhibiting oocyte meiotic resumption. Adverse effects were assessed according to subsequent development potential, including meiotic resumption after washout, first polar body extrusion, early apoptosis, double-strand DNA breaks, mitochondrial distribution, adenosine triphosphate levels, and embryonic development. Incubation with a combination of 50.0 μM dbcAMP and 10.0 μM IBMX efficiently inhibited meiotic resumption in GV-stage oocytes, with low toxicity on subsequent oocyte maturation and embryonic development. This work proposes a novel method with reduced toxicity to effectively arrest and maintain mouse oocytes at the GV stage.
Collapse
Affiliation(s)
- Xue-Chen Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yi-Tong Zhao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xin Wen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
24
|
Participation of the adenosine salvage pathway and cyclic AMP modulation in oocyte energy metabolism. Sci Rep 2019; 9:18395. [PMID: 31804531 PMCID: PMC6895058 DOI: 10.1038/s41598-019-54693-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022] Open
Abstract
A follicular spike in cyclic AMP (cAMP) and its subsequent degradation to AMP promotes oocyte maturation and ovulation. In vitro matured (IVM) oocytes do not receive the cAMP increase that occurs in vivo, and artificial elevation of cAMP in IVM cumulus-oocyte complexes improves oocyte developmental potential. This study examined whether mouse oocytes can use the cAMP degradation product AMP to generate ATP via the adenosine salvage pathway, and examined whether pharmacological elevation of cAMP in IVM cumulus-oocyte complexes alters ATP levels. Oocytes cultured with isotopic 13C5-AMP dose-dependently produced 13C5-ATP, however total cellular ATP remained constant. Pharmacological elevation of cAMP using forskolin and IBMX prior to IVM decreased oocyte ATP and ATP:ADP ratio, and promoted activity of the energy regulator AMPK. Conversely, cumulus cells exhibited higher ATP and no change in AMPK. Culture of oocytes without their cumulus cells or inhibition of their gap-junctional communication yielded lower oocyte 13C5-ATP, indicating that cumulus cells facilitate ATP production via the adenosine salvage pathway. In conclusion, this study demonstrates that mouse oocytes can generate ATP from AMP via the adenosine salvage pathway, and cAMP elevation alters adenine nucleotide metabolism and may provide AMP for energy production via the adenosine salvage pathway during the energetically demanding process of meiotic maturation.
Collapse
|
25
|
Razza EM, Sudano MJ, Fontes PK, Franchi FF, Belaz KRA, Santos PH, Castilho ACS, Rocha DFO, Eberlin MN, Machado MF, Nogueira MFG. Treatment with cyclic adenosine monophosphate modulators prior to in vitro maturation alters the lipid composition and transcript profile of bovine cumulus-oocyte complexes and blastocysts. Reprod Fertil Dev 2019; 30:1314-1328. [PMID: 29681258 DOI: 10.1071/rd17335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 03/15/2018] [Indexed: 02/05/2023] Open
Abstract
Mammalian oocytes resume meiosis spontaneously after removal from the ovarian follicle. We tested the effects of a 2-h prematuration treatment (Pre-IVM) with forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX) in bovine cumulus-oocyte complexes (COCs) on the lipid content of oocytes and blastocysts, on the membrane lipid composition of blastocysts and on the transcriptional profiling of cumulus cells and blastocysts in a high-throughput platform. Embryonic development rates to the morula (mean 56.1%) or blastocyst (mean 26.3%) stages were unaffected by treatment. Lipid content was not affected after Pre-IVM, but was increased after IVM in treated oocytes. Conversely, the lipid content was reduced in Pre-IVM blastocysts. Pre-IVM COCs generated blastocysts containing blastomeres with more unsaturated lipids in their membranes. Pre-IVM also altered the relative abundance of 31 gene transcripts after 2h and 16 transcripts after 24h in cumulus cells, while seven transcripts were altered in blastocysts. Our results suggest that the Pre-IVM treatment affected the lipid composition and transcriptional profiles of COCs and blastocysts. Therefore, Pre-IVM with FSK and IBMX could be used either to prevent spontaneous meiotic resumption during IVM or to modulate lipid composition in the membrane and cytoplasm of blastocysts, potentially improving bovine embryos.
Collapse
Affiliation(s)
- Eduardo M Razza
- Nove de Julho University, Rua Nicolau Assis, 15, 17011102, Bauru, São Paulo, Brazil
| | - Mateus J Sudano
- School of Veterinary Medicine, Federal University of Pampa, BR 472Km 592, Caixa Postal 118, 97508000, Uruguaiana, Rio Grande do Sul, Brazil
| | - Patricia K Fontes
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Distrito de Rubião Junior s/n, 18618970, Botucatu, São Paulo, Brazil
| | - Fernanda F Franchi
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Distrito de Rubião Junior s/n, 18618970, Botucatu, São Paulo, Brazil
| | - Katia Roberta A Belaz
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, Rua Sérgio Buarque de Holanda s/n, 13083859, Campinas, São Paulo, Brazil
| | - Priscila H Santos
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Distrito de Rubião Junior s/n, 18618970, Botucatu, São Paulo, Brazil
| | - Anthony C S Castilho
- University of Western São Paulo, Rodovia Raposo Tavares, km 572 -- Bairro Limoeiro, 19067175, Presidente Prudente, São Paulo, Brazil
| | - Daniele F O Rocha
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, Rua Sérgio Buarque de Holanda s/n, 13083859, Campinas, São Paulo, Brazil
| | - Marcos N Eberlin
- ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, Rua Sérgio Buarque de Holanda s/n, 13083859, Campinas, São Paulo, Brazil
| | - Mariana F Machado
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Distrito de Rubião Junior s/n, 18618970, Botucatu, São Paulo, Brazil
| | - Marcelo F G Nogueira
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Distrito de Rubião Junior s/n, 18618970, Botucatu, São Paulo, Brazil
| |
Collapse
|
26
|
Soto-Heras S, Menéndez-Blanco I, Catalá MG, Izquierdo D, Thompson JG, Paramio MT. Biphasic in vitro maturation with C-type natriuretic peptide enhances the developmental competence of juvenile-goat oocytes. PLoS One 2019; 14:e0221663. [PMID: 31442286 PMCID: PMC6707569 DOI: 10.1371/journal.pone.0221663] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022] Open
Abstract
In vitro embryo production success in juvenile animals is compromised due to their intrinsic lower oocyte quality. Conventional in vitro maturation (IVM) impairs oocyte competence by inducing spontaneous meiotic resumption. A series of experiments were performed to determine if maintaining meiotic arrest during a pre-maturation culture phase (pre-IVM) prior to conventional IVM improves oocyte competence of juvenile-goat (2 months old) cumulus-oocyte complexes (COCs). In experiment 1, COCs were cultured with C-type natriuretic peptide (CNP; 0, 50, 100, 200 nM) for 6 and 8 h. Nuclear stage was assessed, revealing no differences in the incidence of germinal vesicle (GV) breakdown. In experiment 2, the same CNP concentrations were assessed plus 10 nM estradiol, the known upstream agonist activating expression of NPR2, the exclusive receptor of CNP. CNP (200 nM) plus estradiol increased the rate of oocytes at GV stage at 6 h compared to control group (74.7% vs 28.3%; P<0.05) with predominantly condensed chromatin configuration. In experiment 3, relative mRNA quantification revealed NPR2 expression was down-regulated after pre-IVM (6 h). In experiment 4, analysis of transzonal projections indicated that pre-IVM maintained cumulus-oocyte communication after oocyte recovery. For experiments 5 and 6, biphasic IVM (6 h pre-IVM with CNP and estradiol, plus 24 h IVM) and control IVM (24 h) were compared. Biphasic IVM increased intra-oocyte glutathione and decreased ROS, up-regulated DNA-methyltransferase 1 and pentraxin 3 expression and led to an increase in rate of blastocyst development compared to control group (30.2% vs 17.2%; P<0.05). In conclusion, a biphasic IVM, including a pre-IVM with CNP, maintains oocyte meiotic arrest for 6 h and enhances the embryo developmental competence of oocytes from juvenile goats.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Irene Menéndez-Blanco
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria-Gracia Catalá
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Dolors Izquierdo
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jeremy G. Thompson
- Robinson Research Institute, School of Paedriatics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Davies Research Centre, The University of Adelaide, Adelaide, South Australia, Australia
| | - Maria-Teresa Paramio
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
27
|
Mitochondrial function in immature bovine oocytes is improved by an increase of cellular cyclic AMP. Sci Rep 2019; 9:5167. [PMID: 30914704 PMCID: PMC6435665 DOI: 10.1038/s41598-019-41610-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/11/2019] [Indexed: 11/08/2022] Open
Abstract
Although in vitro maturation (IVM) of oocytes is important for assisted reproduction, the rate of development of embryos from IVM oocytes is lower than from their in vivo counterparts. It has been shown that an artificial increase of intracellular cAMP before culture significantly improves oocyte developmental competence in cattle and mice. Here, we revealed that forskolin and 3-isobutyl-1-methylxanthine treatment of prophase-stage oocytes induced the expression of genes required for glycolysis, fatty acid degradation, and the mitochondrial electron transport system and improved mitochondrial functions and ATP levels in oocytes without involving nuclear maturation. We propose the existence of a comprehensive energy-supply system in oocytes under follicle-stimulating hormone stimulation as a potential explanation of how oocytes acquire developmental competence.
Collapse
|
28
|
Bertoldo MJ, Caldwell ASL, Riepsamen AH, Lin D, Gonzalez MB, Robker RL, Ledger WL, Gilchrist RB, Handelsman DJ, Walters KA. A Hyperandrogenic Environment Causes Intrinsic Defects That Are Detrimental to Follicular Dynamics in a PCOS Mouse Model. Endocrinology 2019; 160:699-715. [PMID: 30657917 DOI: 10.1210/en.2018-00966] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common cause of female infertility. Hyperandrogenism is both a major symptom and key diagnostic trait of PCOS; however, the direct impact of this androgen excess on ovarian dynamics is unclear. By combining a DHT-induced PCOS mouse model with an ex vivo follicle culture system, we investigated the impact of hyperandrogenism on ovarian function. Ovaries from PCOS mice exhibited the characteristic polycystic ovary morphology with numerous large cystic follicles and no corpora lutea present. Isolation and individual culture of preantral and antral follicles from PCOS mice resulted in slower growth rates during 5 days compared with the follicles isolated from control mice (P < 0.01). In contrast, preovulatory follicles from PCOS mice exhibited a significant increase in growth rate compared with controls (P < 0.01). Preantral follicles from PCOS ovaries maintained comparable follicular health as control follicles, but antral and preovulatory PCOS follicles exhibited reduced follicle health (P < 0.01) and survival rates (P < 0.01). Compared with controls, PCOS females also exhibited a poorer response to hyperstimulation (P < 0.01), impaired oocyte function evident by increased levels of reactive oxygen species (P < 0.01), and a reduction in on-time embryo development (P < 0.01). These results demonstrate that prolonged exposure to androgen excess leads to aberrant follicle development, which persists even after removal from the hyperandrogenic environment, causing perturbed follicular developmental trajectories. These findings indicate that an in vivo hyperandrogenic environment in patients with PCOS may intrinsically induce detrimental effects on follicles and oocytes.
Collapse
Affiliation(s)
- Michael J Bertoldo
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Aimee S L Caldwell
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Angelique H Riepsamen
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Dianliang Lin
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
- Fujian Provincial Reproductive Medicine Center, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Macarena B Gonzalez
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca L Robker
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - William L Ledger
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Kirsty A Walters
- Fertility & Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Soto-Heras S, Paramio MT, Thompson JG. Effect of pre-maturation with C-type natriuretic peptide and 3-isobutyl-1-methylxanthine on cumulus-oocyte communication and oocyte developmental competence in cattle. Anim Reprod Sci 2019; 202:49-57. [PMID: 30772104 DOI: 10.1016/j.anireprosci.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/07/2019] [Accepted: 01/24/2019] [Indexed: 01/11/2023]
Abstract
In vitro embryo production depends on oocyte competence, which is acquired during folliculogenesis, involving cytoplasmic and nuclear processes. In vitro maturation (IVM) induces spontaneous resumption of meiosis, preventing full competence acquisition. The incorporation of a pre-IVM phase with supplementation with C-type natriuretic peptide (CNP) and 3-Isobutyl-1-methylxanthine (IBMX) was used with the aim of improving developmental competence of cattle oocytes. In a preliminary experiment, COCs were cultured with increasing CNP concentrations and nuclear stage assessment was performed. Supplementation with both 100 and 200 nM CNP resulted in more germinal vesicle (GV) arrest at 6 h of culture than those in the control group (79.3%, 76.4% and 59.2%, respectively). In a second experiment, use of 100 nM CNP plus 500 μM IBMX resulted in retention of more oocytes in the GV stage (92.0%) at 6 h of culture compared to supplementation with either CNP or IBMX alone (74.8% and 86.7%, respectively). A subsequent assessment of the effect of the pre-IVM system (6-h of culture with CNP plus IBMX), followed by 20-h of IVM, with comparison to the control at 24-h of IVM was performed. Blastocyst development rate was greater after the pre-IVM phase (45.1% compared with 34.5%). The inclusion of the pre-IVM phase also resulted in an enhanced mitochondrial activity in matured oocytes and sustained integrity of transzonal projections for longer after IVM. In conclusion, CNP and IBMX function synergistically to arrest meiosis in cattle oocytes during a pre-IVM phase, which improves cumulus-oocyte communication and embryo development.
Collapse
Affiliation(s)
- Sandra Soto-Heras
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, 08193, Spain
| | - Maria-Teresa Paramio
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, 08193, Spain
| | - Jeremy G Thompson
- Robinson Research Institute, School of Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, 5005, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
30
|
Razza EM, Pedersen HS, Stroebech L, Fontes PK, Kadarmideen HN, Callesen H, Pihl M, Nogueira MFG, Hyttel P. Simulated physiological oocyte maturation has side effects on bovine oocytes and embryos. J Assist Reprod Genet 2018; 36:413-424. [PMID: 30443692 DOI: 10.1007/s10815-018-1365-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/02/2018] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Oocyte maturation is a complex process involving nuclear and cytoplasmic modulations, during which oocytes acquire their ability to become fertilized and support embryonic development. The oocyte is apparently "primed" for maturation during its development in the dominant follicle. As bovine oocytes immediately resume meiosis when cultured, it was hypothesized that delaying resumption of meiosis with cyclic nucleotide modulators before in vitro maturation (IVM) would allow the oocytes to acquire improved developmental competence. METHODS We tested the Simulated Physiological Oocyte Maturation (SPOM) system that uses forskolin and 3-isobutyl-1-methylxanthine for 2 h prior to IVM against two different systems of conventional IVM (Con-IVM). We evaluated the ultrastructure of matured oocytes and blastocysts and also assessed the expression of 96 genes related to embryo quality in the blastocysts. RESULTS In summary, the SPOM system resulted in lower blastocyst rates than both Con-IVM systems (30 ± 9.1 vs. 35 ± 8.7; 29 ± 2.6 vs. 38 ± 2.8). Mature SPOM oocytes had significantly increased volume and number of vesicles, reduced volume and surface density of large smooth endoplasmic reticulum clusters, and lower number of mitochondria than Con-IVM oocytes. SPOM blastocysts showed only subtle differences with parallel undulations of adjacent trophectoderm plasma membranes and peripherally localized ribosomes in cells of the inner cell mass compared with Con-IVM blastocysts. SPOM blastocysts, however, displayed significant downregulation of genes related to embryonic developmental potential when compared to Con-IVM blastocysts. CONCLUSIONS Our results show that the use of the current version of the SPOM system may have adverse effects on oocytes and blastocysts calling for optimized protocols for improving oocyte competence.
Collapse
Affiliation(s)
- Eduardo M Razza
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), Distrito de Rubião Junior s/n, Botucatu, São Paulo, 18618970, Brazil.
| | - Hanne S Pedersen
- Department of Animal Science, Aarhus University, DK-8830, Tjele, Denmark
| | - Lotte Stroebech
- EmbryoTrans Biotech, Frederiksberg C, DK-1851, Copenhagen, Denmark
| | - Patricia K Fontes
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), Distrito de Rubião Junior s/n, Botucatu, São Paulo, 18618970, Brazil
| | - Haja N Kadarmideen
- Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, DK-8830, Tjele, Denmark
| | - Maria Pihl
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marcelo F G Nogueira
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), Distrito de Rubião Junior s/n, Botucatu, São Paulo, 18618970, Brazil.,Department of Biological Sciences, School of Sciences and Languages, São Paulo State University (UNESP), Avenida Dom Antonio, 2100, Assis, São Paulo, 19806900, Brazil
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
31
|
Ramos Leal G, Santos Monteiro CA, Souza-Fabjan JMG, de Paula Vasconcelos CO, Garcia Nogueira LA, Reis Ferreira AM, Varella Serapião R. Role of cAMP modulator supplementations during oocyte in vitro maturation in domestic animals. Anim Reprod Sci 2018; 199:1-14. [PMID: 30449707 DOI: 10.1016/j.anireprosci.2018.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/11/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) is an important molecule in signal transduction within the cell, functioning as a second cell messenger of gonadotrophin stimulation. The concentration of cAMP in cumulus-oocyte complexes (COCs) is known to be controlled through modulation of its synthesis by adenylyl cyclase (AC) and by degradation through the cyclic nucleotide phosphodiesterase (PDE) enzymes. One of the main obstacles for in vitro embryo production is the optimization of reproduction processes that occur in oocyte maturation. The function of cAMP is important in maintaining meiotic arrest in mammalian oocytes. When the oocyte is physically removed from the antral follicle for in vitro maturation (IVM), intra-oocyte cAMP concentrations decrease and spontaneous meiotic resumption begins, due to the depletion of inhibitory factors from the follicle. In many studies, relatively greater cAMP concentrations before IVM has been reported to improve oocyte competence, leading to subsequent benefits in embryonic development in different species. There, therefore, has been an increase in oocyte cAMP concentrations with several treatments and different approaches, such as invasive AC, stimulators of AC activity, PDE inhibitors, and cAMP analogs. The aim of this review is to comprehensively evaluate and provide data related to (i) the use of cAMP modulators during IVM and the effects on completion of meiosis and cytoplasmic reorganization, which are required for development of oocytes with the capacity to contribute to fertilization and subsequent embryonic development; and (ii) the main cAMP modulators and the effects when used in oocyte IVM.
Collapse
Affiliation(s)
- Gabriela Ramos Leal
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil.
| | - Clara Ana Santos Monteiro
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Joanna Maria Gonçalves Souza-Fabjan
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil.
| | - Carlos Otávio de Paula Vasconcelos
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Luiz Altamiro Garcia Nogueira
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Ana Maria Reis Ferreira
- Universidade Federal Fluminense (UFF), Faculdade de Medicina Veterinária - Rua Vital Brazil Filho, 64, 24230-340, Niterói, Rio de Janeiro, Brazil
| | - Raquel Varella Serapião
- Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro (PESAGRO RIO) - Avenida São Boa Ventura, 770, 24120-19, Fonseca, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Yoon SY, Eum JH, Cha SK, Yoon TK, Lee DR, Lee WS. Prematuration Culture with Phosphodiesterase Inhibitors After Vitrification May Induce Recovery of Mitochondrial Activity in Vitrified Mouse Immature Oocytes. Biopreserv Biobank 2018; 16:296-303. [DOI: 10.1089/bio.2018.0010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sook Young Yoon
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Jin Hee Eum
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Soo Kyoung Cha
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Tae Ki Yoon
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si, Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, Seoul, Korea
| |
Collapse
|
33
|
Herrick JR, Lyons SM, Greene-Ermisch AF, Broeckling CD, Schoolcraft WB, Krisher RL. A carnivore embryo's perspective on essential amino acids and ammonium in culture medium: effects on the development of feline embryos†. Biol Reprod 2018; 99:1070-1081. [DOI: 10.1093/biolre/ioy122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Jason R Herrick
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado, USA
| | - Sarah M Lyons
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, USA
| | | | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, USA
| | | | | |
Collapse
|
34
|
Current perspectives on in vitro maturation and its effects on oocyte genetic and epigenetic profiles. SCIENCE CHINA-LIFE SCIENCES 2018; 61:633-643. [PMID: 29569023 DOI: 10.1007/s11427-017-9280-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
In vitro maturation (IVM), the maturation in culture of immature oocytes, has been used in clinic for more than 20 years. Although IVM has the specific advantages of low cost and minor side effects over controlled ovarian stimulation, the prevalence of IVM is less than 1% of routine in vitro fertilization and embryo transfer techniques in many reproductive centers. In this review, we searched the MEDLINE database for all full texts and/or abstract articles published in English with content related to oocyte IVM mainly between 2000 and 2016. Many different aspects of the IVM method may influence oocyte potential, including priming, gonadotrophin, growth factors, and culture times. The culture conditions of IVM result in alterations in the oocyte or cumulus cell transcriptome that are not observed under in vivo culture conditions. Additionally, epigenetic modifications, such as DNA methylation or acetylation, are also different between in vitro and in vivo cultured oocytes. In sum, current IVM technique is still not popular and requires more systematic and intensive research to improve its effects and applications. This review will help point our problems, supply evidence or clues for future improving IVM technique, thus assist patients for fertility treatment or preservation as an additional option.
Collapse
|
35
|
Sugimura S, Yamanouchi T, Palmerini MG, Hashiyada Y, Imai K, Gilchrist RB. Effect of pre-in vitro maturation with cAMP modulators on the acquisition of oocyte developmental competence in cattle. J Reprod Dev 2018; 64:233-241. [PMID: 29503399 PMCID: PMC6021610 DOI: 10.1262/jrd.2018-009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The administration of follicle-stimulating hormone (FSH) prior to oocyte retrieval improves oocyte developmental competence. During bovine embryo production in vitro,
however, oocytes are typically derived from FSH-unprimed animals. In the current study, we examined the effect of pre-in vitro maturation (IVM) with cAMP modulators, also
known as the second messengers of FSH, on the developmental competence of oocytes derived from small antral follicles (2–4 mm) of FSH-unprimed animals. Pre-IVM with
N6,2ʹ-O-dibutyryladenosine 3′,5′-cyclicmonophosphate (dbcAMP) and 3-isobutyl-1-methylxanthine (IBMX) for 2 h improved the blastocyst formation in oocytes stimulated by FSH or amphiregulin
(AREG). Furthermore, pre-IVM enhanced the expression of the FSH- or AREG-stimulated extracellular matrix-related genes HAS2, TNFAIP6, and
PTGS2, and epidermal growth factor (EGF)-like peptide-related genes AREG and EREG. Additionally, pre-IVM with dbcAMP and IBMX enhanced
the expression of EGFR, and also increased and prolonged cumulus cell-oocyte gap junctional communication. The improved oocyte development observed using the pre-IVM
protocol was ablated by an EGF receptor phosphorylation inhibitor. These results indicate that pre-IVM with cAMP modulators could contribute to the acquisition of developmental competence by
bovine oocytes from small antral follicles through the modulation of EGF receptor signaling and oocyte-cumulus/cumulus-cumulus gap junctional communication.
Collapse
Affiliation(s)
- Satoshi Sugimura
- Department of Biological Production, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | | | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | | | - Kei Imai
- Department of Sustainable Agriculture, Rakuno Gakuen University, Hokkaido 069-8501, Japan
| | - Robert B Gilchrist
- Discipline of Obstetrics & Gynaecology, School of Women's & Children's Health, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
36
|
Del Collado M, da Silveira JC, Oliveira MLF, Alves BMSM, Simas RC, Godoy AT, Coelho MB, Marques LA, Carriero MM, Nogueira MFG, Eberlin MN, Silva LA, Meirelles FV, Perecin F. In vitro maturation impacts cumulus-oocyte complex metabolism and stress in cattle. Reproduction 2017; 154:881-893. [PMID: 28971896 DOI: 10.1530/rep-17-0134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022]
Abstract
The influence of in vitro maturation (IVM) in oocytes is still not totally understood. The aim of this study was to determine the influence of IVM on the metabolism and homeostasis of bovine cumulus-oocyte complexes. In the present study, we demonstrated that IVM leads to accumulation of neutral lipids associated with differential levels of the mono-, di- and triacylglycerols in both cumulus cells and oocytes. We observed that in vitro-matured oocytes exhibited decreased glutathione and reactive oxygen species levels and a lower ATP/ADP ratio when compared to in vivo-matured oocytes, with no significant differences in metabolism and stress-related mRNA or miRNA levels. Moreover, in addition to an increase in lipids in in vitro-matured cumulus cells, fatty acid synthesis and accumulation as well as glycolysis pathway genes were upregulated, whereas those affiliated with the β-oxidation pathway were decreased. Our gene expression data in cumulus cells suggest the disruption of endoplasmic reticulum stress, apoptosis and cellular stress response pathways during IVM. Furthermore, a total of 19 miRNAs were significantly altered by the maturation process in cumulus cells. These results indicate some new negative influences of the in vitro system in cumulus-oocyte complexes, demonstrating the occurrence of functional disruption in lipid metabolism and stress pathways and showing evidences suggesting the occurrence of altered mitochondrial activity and energy metabolism during IVM, with a massive dysregulation of the corresponding transcripts in the surrounding cumulus cells.
Collapse
Affiliation(s)
- Maite Del Collado
- Veterinary Medicine DepartmentFaculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Juliano C da Silveira
- Veterinary Medicine DepartmentFaculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Marcelo L F Oliveira
- Veterinary Medicine DepartmentFaculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Bárbara M S M Alves
- Veterinary Medicine DepartmentFaculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Rosineide C Simas
- ThoMSon Mass Spectrometry LaboratoryInstitute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Adriana T Godoy
- ThoMSon Mass Spectrometry LaboratoryInstitute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Mirela B Coelho
- ThoMSon Mass Spectrometry LaboratoryInstitute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Lygia A Marques
- ThoMSon Mass Spectrometry LaboratoryInstitute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Mateus M Carriero
- Veterinary Medicine DepartmentFaculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Marcelo F G Nogueira
- Biological Sciences DepartmentSchool of Science, Humanities and Languages, Sao Paulo State University, Assis, São Paulo, Brazil
| | - Marcos N Eberlin
- ThoMSon Mass Spectrometry LaboratoryInstitute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Luciano A Silva
- Veterinary Medicine DepartmentFaculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Flávio V Meirelles
- Veterinary Medicine DepartmentFaculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo (USP), Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Veterinary Medicine DepartmentFaculty of Animal Science and Food Engineering (FZEA), University of Sao Paulo (USP), Pirassununga, São Paulo, Brazil
| |
Collapse
|
37
|
Zhang M, Zhang CX, Pan LZ, Gong S, Cui W, Yuan HJ, Zhang WL, Tan JH. Meiotic arrest with roscovitine and follicular fluid improves cytoplasmic maturation of porcine oocytes by promoting chromatin de-condensation and gene transcription. Sci Rep 2017; 7:11574. [PMID: 28912491 PMCID: PMC5599650 DOI: 10.1038/s41598-017-11970-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/01/2017] [Indexed: 01/10/2023] Open
Abstract
The developmental capacity of in vitro matured oocytes is inferior to that of the in vivo matured ones due to insufficient cytoplasmic maturation. Although great efforts were made to accomplish better cytoplasmic maturation by meiotic arrest maintenance (MAM) before in vitro maturation (IVM), limited progress has been achieved in various species. This study showed that MAM of porcine oocytes was better achieved with roscovitine than with dibutyryl cyclic adenosine monophosphate (db-cAMP) or 3-isobutyl-1-methylxanthine. Oocyte developmental competence after IVM was significantly improved following MAM in 199 + FF medium (TCM-199 containing 10% porcine follicular fluid and 25 µM roscovitine) to a level even higher than that in control oocytes matured without pre-MAM. Observations on other markers further confirmed the positive effects of MAM in 199 + FF on oocyte cytoplasmic maturation. During MAM culture in 199 + FF, re-decondensation (RDC) of condensed chromatin occurred, and transcription of genes beneficial to cytoplasmic maturation was evident in some of the oocytes with surrounded nucleoli (SN). However, MAM with db-cAMP neither induced RDC nor improved oocyte developmental potential. Together, the results suggest that MAM in the presence of FF and roscovitine improved the developmental competence of porcine oocytes by promoting a pre-GVBD chromatin de-condensation and expression of beneficial genes.
Collapse
Affiliation(s)
- Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Chuan-Xin Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Liu-Zhu Pan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Shuai Gong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Wei Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Wei-Ling Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, 271018, P.R. China.
| |
Collapse
|
38
|
Sutton-McDowall ML, Gosnell M, Anwer AG, White M, Purdey M, Abell AD, Goldys EM, Thompson JG. Hyperspectral microscopy can detect metabolic heterogeneity within bovine post-compaction embryos incubated under two oxygen concentrations (7% versus 20%). Hum Reprod 2017; 32:2016-2025. [DOI: 10.1093/humrep/dex261] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/26/2017] [Indexed: 01/22/2023] Open
Affiliation(s)
- Melanie L. Sutton-McDowall
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Martin Gosnell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics
- Quantitative Pty Ltd, Mount Victoria, New South Wales 2786, Australia
| | - Ayad G. Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics
- Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Melissa White
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Malcolm Purdey
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D. Abell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ewa M. Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics
| | - Jeremy G. Thompson
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
39
|
Transporting cumulus complexes using novel meiotic arresting conditions permits maintenance of oocyte developmental competence. J Assist Reprod Genet 2017; 34:1079-1086. [PMID: 28573527 DOI: 10.1007/s10815-017-0958-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The aim of this study is to evaluate the effect of a novel bovine cumulus oocyte complex (COC) shipping media designed to arrest meiotic resumption during transport on meiotic arrest, as well as meiotic resumption, subsequent embryonic development, and embryo quality. METHODS Bovine cumulus oocyte complexes were transported overnight from the collection facility to the laboratory. COCs were placed in control in vitro maturation (IVM) or in shipping arrest medium (SAM) containing multiple meiotic inhibitors, and then shipped to our laboratory. Upon arrival, meiotic status was assessed, control COCs were inseminated, and arrested COCs were matured and inseminated the next day. Embryonic development and quality were analyzed. RESULTS When bovine COC arrived at the laboratory after overnight shipment (21 h) in SAM, the majority of oocytes remained at the GV stage (75.6 ± 2.9% GV). Arrested oocytes successfully resumed and completed meiosis during IVM after removal from SAM (96.8 ± 0.5% metaphase II compared to control 88.3 ± 5.0%). Moreover, the development of blastocysts per COC was not different from control (22.3 ± 2.4% for control and 18.7 ± 2.1% for SAM), nor was any difference detected in blastocyst quality as determined by cell number and allocation. CONCLUSIONS Our study demonstrates that a physiological system incorporating cyclic adenosine monophosphate and cyclic guanosine monophosphate modulators can be used to maintain meiotic arrest followed by successful nuclear maturation and pre-implantation embryo development equal to control IVM-derived embryos. Our results offer promising insights for the development of pre-IVM media that may improve oocyte developmental competence in vitro.
Collapse
|
40
|
Tannus S, Turki R, Cohen Y, Son WY, Shavit T, Dahan MH. Reproductive outcomes after a single dose of gonadotropin-releasing hormone agonist compared with human chorionic gonadotropin for the induction of final oocyte maturation in hyper-responder women aged 35-40 years. Fertil Steril 2017; 107:1323-1328.e2. [PMID: 28501366 DOI: 10.1016/j.fertnstert.2017.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To investigate the reproductive outcomes after the use of GnRH agonist (GnRHa) compared with hCG for the induction of final oocyte maturation in GnRH antagonist cycles performed in hyper-responder women aged 35-40 years. DESIGN Retrospective study. SETTING Academic fertility center. PATIENT(S) Two hundred seventy-two hyper-responder women aged 35-40 years who underwent controlled ovarian stimulation under GnRH antagonist suppression were included. Final oocyte maturation was performed with GnRHa (n = 168) or hCG (n = 104). Embryos were cryopreserved at the blastocyst stage and transferred in subsequent warming cycles (n = 542). Subjects were included in the analysis until live birth was achieved, after which they were excluded from further analysis. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Cumulative live birth rate. RESULT(S) Subjects in the GnRHa group achieved a higher number of oocytes (22 vs. 21) and a higher number of mature oocytes (16 vs. 14). The number of cryopreserved blastocysts (median of five blastocysts in both groups) was similar. Women in the hCG group needed a lower number of warming cycles to achieve live birth (1.32 vs. 2.12), had higher embryo implantation rates (48% vs. 39%), and the proportion of embryos transferred until live birth was lower (33% vs. 57%). The cumulative live birth rate was similar between the groups (48.15% vs. 48%). CONCLUSION(S) Although the cumulative live birth rate is similar, a single dose of GnRHa possibly results in suboptimal oocyte and embryo competence, as manifested by decreased embryo implantation rates and increased time needed to achieve live birth.
Collapse
Affiliation(s)
- Samer Tannus
- McGill University Health Centre Reproductive Centre, Montreal, Quebec, Canada.
| | - Rola Turki
- McGill University Health Centre Reproductive Centre, Montreal, Quebec, Canada
| | - Yoni Cohen
- McGill University Health Centre Reproductive Centre, Montreal, Quebec, Canada
| | - Weon-Young Son
- McGill University Health Centre Reproductive Centre, Montreal, Quebec, Canada
| | - Tal Shavit
- McGill University Health Centre Reproductive Centre, Montreal, Quebec, Canada
| | - Michael Haim Dahan
- McGill University Health Centre Reproductive Centre, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Xu Z, Yan Y, He J, Shan X, Wu W. Pathway Cross-Talk Analysis in Detecting Significant Pathways in Barrett's Esophagus Patients. Med Sci Monit 2017; 23:1165-1172. [PMID: 28263955 PMCID: PMC5352007 DOI: 10.12659/msm.899623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The pathological mechanism of Barrett’s esophagus (BE) is still unclear. In the present study, pathway cross-talks were analyzed to identify hub pathways for BE, with the purpose of finding an efficient and cost-effective detection method to discover BE at its early stage and take steps to prevent its progression. Material/Methods We collected and preprocessed gene expression profile data, original pathway data, and protein-protein interaction (PPI) data. Then, we constructed a background pathway cross-talk network (BPCN) based on the original pathway data and PPI data, and a disease pathway cross-talk network (DPCN) based on the differential pathways between the PPI data and the BE and normal control. Finally, a comprehensive analysis was conducted on these 2 networks to identify hub pathway cross-talks for BE, so as to better understand the pathological mechanism of BE from the pathway level. Results A total of 12 411 genes, 300 pathways (6919 genes), and 787 896 PPI interactions (16 730 genes) were separately obtained from their own databases. Then, we constructed a BPCN with 300 nodes (42 293 interactions) and a DPCN with 296 nodes (15 073 interactions). We identified 4 hub pathways: AMP signaling pathway, cGMP-PKG signaling pathway, natural killer cell-mediated cytotoxicity, and osteoclast differentiation. We found that these pathways might play important roles during the occurrence and development of BE. Conclusions We predicted that these pathways (such as AMP signaling pathway and cAMP signaling pathway) could be used as potential biomarkers for early diagnosis and therapy of BE.
Collapse
Affiliation(s)
- Zhengyuan Xu
- Department of Digestive Medicine, Shuyang People's Hospital, Shuyang, Jiangsu, China (mainland)
| | - Yan Yan
- Supply Room, 1st People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| | - Jian He
- Department of Digestive Medicine, 1st People's Hospital of Jinan, Jinan, Shandong, China (mainland)
| | - Xinfang Shan
- Department of Thyroid and Breast Surgery, Binzhou City Center Hospital, Binzhou, Shandong, China (mainland)
| | - Weiguo Wu
- Department of Medicine, Affiliated Wuxi 2nd Hospital, Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
42
|
Brown HM, Dunning KR, Sutton-McDowall M, Gilchrist RB, Thompson JG, Russell DL. Failure to launch: aberrant cumulus gene expression during oocyte in vitro maturation. Reproduction 2017; 153:R109-R120. [DOI: 10.1530/rep-16-0426] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 01/13/2023]
Abstract
In vitro maturation (IVM) offers significant benefits for human infertility treatment and animal breeding, but this potential is yet to be fully realised due to reduced oocyte developmental competence in comparison with in vivo matured oocytes. Cumulus cells occupy an essential position in determining oocyte developmental competence. Here we have examined the areas of deficient gene expression, as determined within microarrays primarily from cumulus cells of mouse COCs, but also other species, between in vivo matured and in vitro matured oocytes. By retrospectively analysing the literature, directed by focussing on downregulated genes, we provide an insight as to why the in vitro cumulus cells fail to support full oocyte potential and dissect molecular pathways that have important roles in oocyte competence. We conclude that the roles of epidermal growth factor signalling, the expanded extracellular matrix, cumulus cell metabolism and the immune system are critical deficiencies in cumulus cells of IVM COCs.
Collapse
|
43
|
Botigelli RC, Razza EM, Pioltine EM, Nogueira MFG. New approaches regarding the in vitro maturation of oocytes: manipulating cyclic nucleotides and their partners in crime. JBRA Assist Reprod 2017; 21:35-44. [PMID: 28333031 PMCID: PMC5365199 DOI: 10.5935/1518-0557.20170010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Several discoveries have been described recently (5-10 years) about the biology of ovarian follicles (oocyte, cumulus cells and granulosa cells), including new aspects of cellular communication, the control of oocyte maturation and the acquisition of oocyte competence for fertilization and further embryo development. These advances are nourishing assisted reproduction techniques (ART) with new possibilities, in which novel culture systems are being developed and tested to improve embryo yield and quality. This mini-review aims to describe how the recent knowledge on the physiological aspects of mammalian oocyte is reflecting as original or revisited approaches into the context of embryo production. These new insights include recent findings on the mechanisms that control oocyte maturation, especially modulating intraoocyte levels of cyclic nucleotides during in vitro maturation using endogenous or exogenous agents. In this mini-review we also discuss the positive and negative effects of these manipulations on the outcoming embryo.
Collapse
Affiliation(s)
- Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Eduardo Montanari Razza
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Elisa Mariano Pioltine
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil.,Department of Biological Sciences, Faculty of Sciences and Letters, University of São Paulo State, Assis, São Paulo, Brazil
| |
Collapse
|
44
|
Combelles CM. In VitroMaturation of Human Oocytes: Current Practices and Future Promises. Hum Reprod 2016. [DOI: 10.1002/9781118849613.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
45
|
Gilchrist RB, Luciano AM, Richani D, Zeng HT, Wang X, Vos MD, Sugimura S, Smitz J, Richard FJ, Thompson JG. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction 2016; 152:R143-57. [PMID: 27422885 DOI: 10.1530/rep-15-0606] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
The cyclic nucleotides, cAMP and cGMP, are the key molecules controlling mammalian oocyte meiosis. Their roles in oocyte biology have been at the forefront of oocyte research for decades, and many of the long-standing controversies in relation to the regulation of oocyte meiotic maturation are now resolved. It is now clear that the follicle prevents meiotic resumption through the actions of natriuretic peptides and cGMP - inhibiting the hydrolysis of intra-oocyte cAMP - and that the pre-ovulatory gonadotrophin surge reverses these processes. The gonadotrophin surge also leads to a transient spike in cAMP in the somatic compartment of the follicle. Research over the past two decades has conclusively demonstrated that this surge in cAMP is important for the subsequent developmental capacity of the oocyte. This is important, as oocyte in vitro maturation (IVM) systems practised clinically do not recapitulate this cAMP surge in vitro, possibly accounting for the lower efficiency of IVM compared with clinical IVF. This review particularly focuses on this latter aspect - the role of cAMP/cGMP in the regulation of oocyte quality. We conclude that clinical practice of IVM should reflect this new understanding of the role of cyclic nucleotides, thereby creating a new generation of ART and fertility treatment options.
Collapse
Affiliation(s)
- R B Gilchrist
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - A M Luciano
- Reproductive and Developmental Biology LaboratoryDepartment of Health, Animal Science and Food Safety, University of Milan, Milano, Italy
| | - D Richani
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - H T Zeng
- Center for Reproductive MedicineSixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - X Wang
- Discipline of Obstetrics and GynaecologySchool of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia Department of Obstetrics and GynaecologySt George Public Hospital, Sydney, Australia
| | - M De Vos
- Follicle Biology LaboratoryUniversity Hospital UZBrussel, Medical School, Vrije Universiteit Brussel, Brussels, Belgium
| | - S Sugimura
- Institute of AgricultureDepartment of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - J Smitz
- Follicle Biology LaboratoryUniversity Hospital UZBrussel, Medical School, Vrije Universiteit Brussel, Brussels, Belgium
| | - F J Richard
- Centre de Recherche en Biologie de la ReproductionDépartement des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - J G Thompson
- School of MedicineRobinson Research Institute and ARC Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
46
|
Li HJ, Sutton-McDowall ML, Wang X, Sugimura S, Thompson JG, Gilchrist RB. Extending prematuration with cAMP modulators enhances the cumulus contribution to oocyte antioxidant defence and oocyte quality via gap junctions. Hum Reprod 2016; 31:810-21. [PMID: 26908844 DOI: 10.1093/humrep/dew020] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Can bovine oocyte antioxidant defence and oocyte quality be improved by extending the duration of pre-in vitro maturation (IVM) with cyclic adenosine mono-phosphate (cAMP) modulators? SUMMARY ANSWER Lengthening the duration of cAMP-modulated pre-IVM elevates intra-oocyte reduced glutathione (GSH) content and reduces hydrogen peroxide (H2O2) via increased cumulus cell-oocyte gap-junctional communication (GJC), associated with an improvement in subsequent embryo development and quality. WHAT IS KNOWN ALREADY Oocytes are susceptible to oxidative stress and the oocyte's most important antioxidant glutathione is supplied, at least in part, by cumulus cells. A temporary inhibition of spontaneous meiotic resumption in oocytes can be achieved by preventing a fall in cAMP, and cyclic AMP-modulated pre-IVM maintains cumulus-oocyte GJC and improves subsequent embryo development. STUDY DESIGN, SIZE, DURATION This study consisted of a series of 10 experiments using bovine oocytes in vitro, each with multiple replicates. A range of pre-IVM durations were examined as the key study treatments which were compared with a control. The study was designed to examine if one of the oocyte's major antioxidant defences can be enhanced by pre-IVM with cAMP modulators, and to examine the contribution of cumulus-oocyte GJC on these processes. PARTICIPANTS/MATERIALS, SETTING, METHODS Immature bovine cumulus-oocyte complexes were treated in vitro without (control) or with the cAMP modulators; 100 µM forskolin (FSK) and 500 µM 3-isobutyl-1-methyxanthine (IBMX), for 0, 2, 4 or 6 h (pre-IVM phase) prior to IVM. Oocyte developmental competence was assessed by embryo development and quality post-IVM/IVF. Cumulus-oocyte GJC, intra-oocyte GSH and H2O2 were quantified at various time points during pre-IVM and IVM, in the presence and the absence of functional inhibitors: carbenoxolone (CBX) to block GJC and buthionine sulfoximide (BSO) to inhibit glutathione synthesis. MAIN RESULTS AND THE ROLE OF CHANCE Pre-IVM with FSK + IBMX increased subsequent blastocyst formation rate and quality compared with standard IVM (P < 0.05), regardless of pre-IVM duration. The final blastocyst yields (proportion of blastocysts/immature oocyte) were 26.3% for the control, compared with 39.2, 35.2 and 34.2%, for the 2, 4 and 6 h pre-IVM FSK + IBMX treatments, respectively. In contrast to standard IVM (control), pre-IVM with cAMP modulators maintained open gap junctions between cumulus cells and oocytes for the duration (6 h) of pre-IVM examined, and persisted for a further 8 h in the IVM phase. Cyclic AMP-modulated pre-IVM increased intra-oocyte GSH levels at the completion of both pre-IVM and IVM, in a pre-IVM duration-dependent manner (P < 0.05), which was ablated when GJC was blocked using CBX (P < 0.05). By 4 h of pre-IVM treatment with cAMP modulators, oocyte H2O2 levels were reduced compared the control (P < 0.05), although this beneficial effect was lost when oocytes were co-treated with BSO. Inhibiting glutathione synthesis with BSO during pre-IVM ablated any positive benefits of cAMP-mediated pre-IVM on oocyte developmental competence (P < 0.01). LIMITATIONS, REASONS FOR CAUTION It is unclear if the improvement in oocyte antioxidant defence and developmental competence reported here is due to direct transfer of total and/or reduced glutathione from cumulus cells to the oocyte via gap junctions, or whether a GSH synthesis signal and/or amino acid substrates are supplied to the oocyte via gap junctions. Embryo transfer experiments are required to determine if the cAMP-mediated improvement in blastocyst rates leads to improved live birth rates. WIDER IMPLICATIONS OF THE FINDINGS IVM offers significant benefits to infertile and cancer patients and has the potential to significantly alter ART practice, if IVM efficiency in embryo production could be improved closer to that of conventional IVF (using ovarian hyperstimulation). Pre-IVM with cAMP modulators is a simple and reliable means to improve IVM outcomes. STUDY FUNDING/COMPETING INTERESTS This work was supported by grants and fellowships from the National Health and Medical Research Council of Australia (1007551, 627007, 1008137, 1023210) and by scholarships from the Chinese Scholarship Council (CSC) awarded to H.J.L. and the Japanese Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad awarded to S.S. The Fluoview FV10i confocal microscope was purchased as part of the Sensing Technologies for Advanced Reproductive Research (STARR) facility, funded by the South Australian Premier's Science and Research Fund. We acknowledge partial support from the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CE140100003). We declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.
Collapse
Affiliation(s)
- H J Li
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - M L Sutton-McDowall
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia
| | - X Wang
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia
| | - S Sugimura
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia Department of Biological Production, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - J G Thompson
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia
| | - R B Gilchrist
- Robinson Research Institute & School of Medicine, The University of Adelaide, Adelaide SA 5005, Australia Discipline of Obstetrics & Gynaecology, School of Women's & Children's Health, University of New South Wales, Sydney 2013, Australia
| |
Collapse
|
47
|
Building a better mouse embryo assay: effects of mouse strain and in vitro maturation on sensitivity to contaminants of the culture environment. J Assist Reprod Genet 2015; 33:237-45. [PMID: 26644221 DOI: 10.1007/s10815-015-0623-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/22/2015] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The aim of this study is to compare the sensitivity of the standard one-cell mouse embryo assay (MEA) to that using in vitro-matured oocytes from hybrid and outbred mice. METHODS The study was done by culturing embryos in the presence or absence of two concentrations (0.0005 or 0.001 % v/v) of Triton X-100 (TX100). Embryonic development, blastocyst cell numbers (total and allocation to the trophectoderm [TE] and inner cell mass [ICM]), and blastocyst gene expression were evaluated. RESULTS Neither concentration of TX100 affected (P > 0.05) cleavage, blastocyst development, or hatching in one-cell embryos from BDF1 mice. However, all cell number endpoints were reduced (P < 0.05) by the high concentration of TX100 and the number of ICM cells was reduced (P < 0.05) by the low concentration of TX100. Inhibitory (P < 0.05) effects of the high concentration of TX100 were observed in in vitro maturation (IVM) embryos from BDF1, CF1, and SW, but not ICR, mice. Cell number and allocation were negatively affected by the high concentration of TX100 in CF1 and SW embryos, but not in BDF1 or ICR embryos. The only developmental endpoints affected by the low concentration of TX100 were cleavage of BDF1 oocytes, blastocyst development of SW embryos, and cell numbers (total and inner cell mass (ICM)) of SW blastocysts. CONCLUSIONS The sensitivity of the MEA to TX100 is improved by using embryos from in vitro-matured oocytes, using oocytes from some outbred (SW or CF1, not ICR) strains of mice, and evaluating blastocyst cell number and allocation.
Collapse
|
48
|
Huang CJ, Wu D, Khan FA, Huo LJ. DeSUMOylation: An Important Therapeutic Target and Protein Regulatory Event. DNA Cell Biol 2015; 34:652-60. [PMID: 26309017 DOI: 10.1089/dna.2015.2933] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The discovery of the process of small ubiquitin-like modifier (SUMO)-mediated post-translational modification of targets (SUMOylation) in early 1990s proved to be a significant step ahead in understanding mechanistic regulation of proteins and their functions in diverse life processes at the cellular level. The critical step in reversing the SUMOylation pathway is its ability to be dynamically deSUMOylated by SUMO/sentrin-specific protease (SENP). This review is intended to give a brief introduction about the process of SUMOylation, different mammalian deSUMOylating enzymes with special emphasis on their regulation of ribosome biogenesis at the molecular level, and its emerging roles in mitochondrial dynamics that might reveal usefulness of SENPs for therapeutic applications.
Collapse
Affiliation(s)
- Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University , Wuhan, China
| |
Collapse
|
49
|
Effect of C-Type Natriuretic Peptide on Maturation and Developmental Competence of Goat Oocytes Matured In Vitro. PLoS One 2015; 10:e0132318. [PMID: 26151446 PMCID: PMC4511268 DOI: 10.1371/journal.pone.0132318] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/12/2015] [Indexed: 01/23/2023] Open
Abstract
The developmental competence of oocytes during in vitro maturation (IVM) is compromised due to asynchronous nuclear and cytoplasmic maturation. To improve IVM efficiency, a pre-maturation culture or two-step maturation strategy has been established, involving meiosis arrest induced by pharmacological agents to provide oocytes with sufficient time to synchronize the maturation of the nucleus and cytoplasm. C-type natriuretic peptide (CNP), which has been demonstrated to function as an oocyte maturation inhibitor (OMI) in many species, provides a new alternative to improve the developmental capacity of oocytes matured in vitro. However, the effect of CNP on meiosis arrest and the maturation of goat oocytes remains unclear. In the present study, CNP was shown to function as an OMI in goat oocytes. CNP could temporarily maintain the meiotic arrest of goat oocytes cultured in vitro for 4 hours. This transient effect was partly due to the reduction of natriuretic peptide receptor 2 (Npr2). Estradiol could delay the decrease in Npr2 expression and prolong the duration of meiosis arrest up to 6 hours. Based on the above results, a two-step method was established for goat oocyte maturation, in which the oocyte maturation rate was significantly increased. After parthenogenetic activation, the cleavage rate, blastocyst rate and total cell number of blastocysts were significantly improved. Our results suggested that CNP can be used to delay meiotic resumption and enhance the developmental competence of goat oocytes matured in vitro.
Collapse
|
50
|
Khan DR, Guillemette C, Sirard MA, Richard FJ. Transcriptomic analysis of cyclic AMP response in bovine cumulus cells. Physiol Genomics 2015; 47:432-42. [PMID: 26082143 DOI: 10.1152/physiolgenomics.00043.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/10/2015] [Indexed: 11/22/2022] Open
Abstract
Acquisition of oocyte developmental competence needs to be understood to improve clinical outcomes of assisted reproduction. The stimulation of cumulus cell concentration of cyclic adenosine 3'5'-monophosphate (cAMP) by pharmacological agents during in vitro maturation (IVM) participates in improvement of oocyte quality. However, precise coordination and downstream targets of cAMP signaling in cumulus cells are largely unknown. We have previously demonstrated better embryo development after cAMP stimulation for first 6 h during IVM. Using this model, we investigated cAMP signaling in cumulus cells through in vitro culture of cumulus-oocyte complexes (COCs) in the presence of cAMP raising agents: forskolin, IBMX, and dipyridamole (here called FID treatment). Transcriptomic analysis of cumulus cells indicated that FID-induced differentially expressed transcripts were implicated in cumulus expansion, steroidogenesis, cell metabolism, and oocyte competence. Functional genomic analysis revealed that protein kinase-A (PKA), extracellular signal regulated kinases (ERK1/2), and calcium (Ca(2+)) pathways as key regulators of FID signaling. Inhibition of PKA (H89) in FID-supplemented COCs or substitution of FID with calcium ionophore (A23187) demonstrated that FID activated primarily the PKA pathway which inhibited ERK1/2 phosphorylation and was upstream of calcium signaling. Furthermore, inhibition of ERK1/2 phosphorylation by FID supported a regulation by dual specific phosphatase (DUSP1) via PKA. Our findings imply that cAMP (FID) regulates cell metabolism, steroidogenesis, intracellular signaling and cumulus expansion through PKA which modulates these functions through optimization of ERK1/2 phosphorylation and coordination of calcium signaling. These findings have implications for development of new strategies for improving oocyte in vitro maturation leading to better developmental competence.
Collapse
Affiliation(s)
- D R Khan
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - C Guillemette
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - M A Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - F J Richard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| |
Collapse
|