1
|
Pearson AC, Miller JS, Jensen HJ, Shrestha K, Curry TE, Duffy DM. Neurotensin Regulates Primate Ovulation Via Multiple Neurotensin Receptors. Endocrinology 2025; 166:bqaf041. [PMID: 40037635 PMCID: PMC11979100 DOI: 10.1210/endocr/bqaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/31/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
Neurotensin (NTS), a small neuropeptide, was recently established as a key paracrine mediator of ovulation. NTS mRNA is highly expressed by granulosa cells in response to the luteinizing hormone surge, and multiple NTS receptors are expressed by cells of the ovulatory follicle. To identify the role of NTS receptors NTSR1 and SORT1 in ovulation in vivo, the dominant follicle of cynomolgus macaques (Macaca fascicularis) was injected with either vehicle control, the general NTS receptor antagonist SR142948, the NTSR1-selective antagonist SR48692, or the SORT1-selective antagonist AF38469. hCG was then administered to initiate ovulatory events. Ovulation was successful in all control-injected follicles. Rupture sites were smaller or absent after injection with NTS receptor antagonists. Histological analysis of follicles injected with SR142948, SR48692, or AF38469 revealed increased red blood cell extravasation and pooling in the follicle antrum when compared to controls. NTS receptor antagonist-injected follicles also showed dysregulated capillary formation and reduced luteinization of the granulosa cell layer. Prior in vitro studies showed that NTS significantly increased monkey ovarian microvascular endothelial cell (mOMEC) migration, while decreasing monolayer permeability. The NSTR1 antagonist SR48692 or siRNA knockdown of NTSR1 abrogated the ability of NTS to stimulate mOMEC migration and to decrease monolayer permeability. Similar experiments performed with the SORT1 antagonist AF38469 or siRNA knockdown of SORT1 also resulted in ablation of NTS-mediated changes in migration and permeability after SORT1 signaling was impaired. Together, these data implicate both NTSR1 and SORT1 to be critical mediators of NTS-stimulated ovulation, luteinization, and angiogenesis of the ovulatory follicle.
Collapse
Affiliation(s)
- Andrew C Pearson
- Department of Basic and Translational Sciences, Eastern Virginia Medical School, Old Dominion University, Norfolk, VA 23501, USA
| | - Jessica S Miller
- Department of Basic and Translational Sciences, Eastern Virginia Medical School, Old Dominion University, Norfolk, VA 23501, USA
| | - Hannah J Jensen
- Department of Basic and Translational Sciences, Eastern Virginia Medical School, Old Dominion University, Norfolk, VA 23501, USA
| | - Ketan Shrestha
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40506, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40506, USA
| | - Diane M Duffy
- Department of Basic and Translational Sciences, Eastern Virginia Medical School, Old Dominion University, Norfolk, VA 23501, USA
| |
Collapse
|
2
|
Jo M, Brännström M, Akins JW, Curry TE. New insights into the ovulatory process in the human ovary. Hum Reprod Update 2025; 31:21-47. [PMID: 39331957 PMCID: PMC11696709 DOI: 10.1093/humupd/dmae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Successful ovulation is essential for natural conception and fertility. Defects in the ovulatory process are associated with various conditions of infertility or subfertility in women. However, our understanding of the intra-ovarian biochemical mechanisms underlying this process in women has lagged compared to our understanding of animal models. This has been largely due to the limited availability of human ovarian samples that can be used to examine changes across the ovulatory period and delineate the underlying cellular/molecular mechanisms in women. Despite this challenge, steady progress has been made to improve our knowledge of the ovulatory process in women by: (i) collecting granulosa cells across the IVF interval, (ii) creating a novel approach to collecting follicular cells and tissues across the periovulatory period from normally cycling women, and (iii) developing unique in vitro models to examine the LH surge or hCG administration-induced ovulatory changes in gene expression, the regulatory mechanisms underlying the ovulatory changes, and the specific functions of the ovulatory factors. OBJECTIVE AND RATIONALE The objective of this review is to summarize findings generated using in vivo and in vitro models of human ovulation, with the goal of providing new insights into the mechanisms underlying the ovulatory process in women. SEARCH METHODS This review is based on the authors' own studies and a search of the relevant literature on human ovulation to date using PubMed search terms such as 'human ovulation EGF-signaling', 'human ovulation steroidogenesis', 'human ovulation transcription factor', 'human ovulation prostaglandin', 'human ovulation proteinase', 'human ovulation angiogenesis' 'human ovulation chemokine', 'human ovulatory disorder', 'human granulosa cell culture'. Our approach includes comparing the data from the authors' studies with the existing microarray or RNA-seq datasets generated using ovarian cells obtained throughout the ovulatory period from humans, monkeys, and mice. OUTCOMES Current findings from studies using in vivo and in vitro models demonstrate that the LH surge or hCG administration increases the expression of ovulatory mediators, including EGF-like factors, steroids, transcription factors, prostaglandins, proteolytic systems, and other autocrine and paracrine factors, similar to those observed in other animal models such as rodents, ruminants, and monkeys. However, the specific ovulatory factors induced, their expression pattern, and their regulatory mechanisms vary among different species. These species-specific differences stress the necessity of utilizing human samples to delineate the mechanisms underlying the ovulatory process in women. WIDER IMPLICATIONS The data from human ovulation in vivo and in vitro models have begun to fill the gaps in our understanding of the ovulatory process in women. Further efforts are needed to discover novel ovulatory factors. One approach to address these gaps is to improve existing in vitro models to more closely mimic in vivo ovulatory conditions in humans. This is critically important as the knowledge obtained from these human studies can be translated directly to aid in the diagnosis of ovulation-associated pathological conditions, for the development of more effective treatment to help women with anovulatory infertility or, conversely, to better manage ovulation for contraceptive purposes. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
3
|
Sadek S, Jacot TA, Duffy DM, Archer DF. Prostaglandin E 2 regulates the plasminogen activator pathway in human endometrial endothelial cells: a new in vitro model to investigate heavy menstrual bleeding. F&S SCIENCE 2024; 5:379-385. [PMID: 39038609 DOI: 10.1016/j.xfss.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE To study the role of PGE2 in regulating plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (tPA) in human primary endometrial endothelial cells (HEECs) from women with normal menstrual bleeding (NMB) and heavy menstrual bleeding (HMB). DESIGN In vitro study using endometrial endothelial cells. SETTING Research laboratory setting. PATIENTS Women with NMB and HMB provided endometrial biopsy samples. INTERVENTIONS Prostaglandin E2 and PGE2 receptor-selective agonists were administered to cultured HEECs. MAIN OUTCOME MEASURES Levels of PAI-1 and tPA in NMB-HEECs and HMB-HEECs after treatment with PGE2 and receptor-selective agonists. RESULTS Prostaglandin E2 increased total PAI-1 levels in NMB-HEECs, but not in HMB-HEECs, which had higher baseline PAI-1 levels. PGE2 receptors (PTGER)1 and PTGER2 agonists increased PAI-1 in NMB-HEECs, whereas PTGER3 and PTGER4 did not. Prostaglandin E2 had no effect on tPA levels in either NMB-HEECs or HMB-HEECs. CONCLUSIONS Prostaglandin E2, through PTGER1 and PTGER2, regulates the plasminogen activator system in NMB-HEECs, suggesting a role in reducing fibrinolytic activity during normal menstrual cycles. The lack of PGE2 effect and elevated baseline PAI-1 in HMB-HEECs support using this in vitro model to further understand prostaglandin pathways in NMB and HMB.
Collapse
Affiliation(s)
- Seifeldin Sadek
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, Virginia.
| | - Terry A Jacot
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, Virginia
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - David F Archer
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
4
|
Zaniker EJ, Zhang J, Russo D, Huang R, Suritis K, Drake RS, Barlow-Smith E, Shalek AK, Woodruff TK, Xiao S, Goods BA, Duncan FE. Follicle-intrinsic and spatially distinct molecular programs drive follicle rupture and luteinization during ex vivo mammalian ovulation. Commun Biol 2024; 7:1374. [PMID: 39443665 PMCID: PMC11500180 DOI: 10.1038/s42003-024-07074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
During ovulation, the apical wall of the preovulatory follicle breaks down to facilitate gamete release. In parallel, the residual follicle wall differentiates into a progesterone-producing corpus luteum. Disruption of ovulation, whether through contraceptive intervention or infertility, has implications for women's health. In this study, we harness the power of an ex vivo ovulation model and machine-learning guided microdissection to identify differences between the ruptured and unruptured sides of the follicle wall. We demonstrate that the unruptured side exhibits clear markers of luteinization after ovulation while the ruptured side exhibits cell death signals. RNA-sequencing of individual follicle sides reveals 2099 differentially expressed genes (DEGs) between follicle sides without ovulation induction, and 1673 DEGs 12 h after induction of ovulation. Our model validates molecular patterns consistent with known ovulation biology even though this process occurs in the absence of the ovarian stroma, vasculature, and immune cells. We further identify previously unappreciated pathways including amino acid transport and Jag-Notch signaling on the ruptured side and glycolysis, metal ion processing, and IL-11 signaling on the unruptured side of the follicle. This study yields key insights into follicle-inherent, spatially-defined pathways that underlie follicle rupture, which may further understanding of ovulation physiology and advance women's health.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Daniela Russo
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Ruixu Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Kristine Suritis
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Riley S Drake
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Alex K Shalek
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Harvard University & Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Brittany A Goods
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Sage MAG, Duffy DM. Novel Plasma Membrane Androgen Receptor SLC39A9 Mediates Ovulatory Changes in Cells of the Monkey Ovarian Follicle. Endocrinology 2024; 165:bqae071. [PMID: 38889246 PMCID: PMC11212825 DOI: 10.1210/endocr/bqae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Follicular androgens are important for successful ovulation and fertilization. The classical nuclear androgen receptor (AR) is a transcription factor expressed in the cells of the ovarian follicle. Androgen actions can also occur via membrane androgen receptor SLC39A9. Studies in fish ovary demonstrated that androgens bind to SLC39A9 and increase intracellular zinc to regulate ovarian cell function. To determine if SLC39A9 is expressed and functional in the key cell types of the mammalian ovulatory follicle, adult female cynomolgus macaques underwent ovarian stimulation. Ovaries or ovarian follicular aspirates were harvested at 0, 12, 24, and 36 hours after human chorionic gonadotropin (hCG). SLC39A9 and AR mRNA and protein were present in granulosa, theca, and vascular endothelial cells across the entire 40-hour ovulatory window. Testosterone, bovine serum albumin-conjugated testosterone (BSA-T), and androstenedione stimulated zinc influx in granulosa, theca, and vascular endothelial cells. The SLC39A9-selective agonist (-)-epicatechin also stimulated zinc influx in vascular endothelial cells. Taken together, these data support the conclusion that SLC39A9 activation via androgen induces zinc influx in key ovarian cells. Testosterone, BSA-T, and androstenedione each increased proliferation in vascular endothelial cells, indicating the potential involvement of SLC39A9 in ovulatory angiogenesis. Vascular endothelial cell migration also increased after treatment with testosterone, but not after treatment with BSA-T or androstenedione, suggesting that androgens stimulate vascular endothelial cell migration through nuclear AR but not SLC39A9. The presence of SLC39A9 receptors and SLC39A9 activation by follicular androstenedione concentrations suggests that androgen activation of ovarian SLC39A9 may regulate ovulatory changes in the mammalian follicle.
Collapse
Affiliation(s)
- Megan A G Sage
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
6
|
Pearson AC, Shrestha K, Curry TE, Duffy DM. Neurotensin modulates ovarian vascular permeability via adherens junctions. FASEB J 2024; 38:e23602. [PMID: 38581236 PMCID: PMC11034770 DOI: 10.1096/fj.202302652rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.
Collapse
Affiliation(s)
- Andrew C. Pearson
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA, 23507
| | - Ketan Shrestha
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA, 40536
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA, 40536
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA, 23507
| |
Collapse
|
7
|
Zhou X, He Y, Quan H, Pan X, Zhou Y, Zhang Z, Yuan X, Li J. HDAC1-Mediated lncRNA Stimulatory Factor of Follicular Development to Inhibit the Apoptosis of Granulosa Cells and Regulate Sexual Maturity through miR-202-3p- COX1 Axis. Cells 2023; 12:2734. [PMID: 38067162 PMCID: PMC10706290 DOI: 10.3390/cells12232734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Abnormal sexual maturity exhibits significant detrimental effects on adult health outcomes, and previous studies have indicated that targeting histone acetylation might serve as a potential therapeutic approach to regulate sexual maturity. However, the mechanisms that account for it remain to be further elucidated. Using the mouse model, we showed that Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, downregulated the protein level of Hdac1 in ovaries to promote the apoptosis of granulosa cells (GCs), and thus arrested follicular development and delayed sexual maturity. Using porcine GCs as a cell model, a novel sexual maturity-associated lncRNA, which was named as the stimulatory factor of follicular development (SFFD), transcribed from mitochondrion and mediated by HDAC1, was identified using RNA sequencing. Mechanistically, HDAC1 knockdown significantly reduced the H3K27ac level at the -953/-661 region of SFFD to epigenetically inhibit its transcription. SFFD knockdown released miR-202-3p to reduce the expression of cyclooxygenase 1 (COX1), an essential rate-limited enzyme involved in prostaglandin synthesis. This reduction inhibited the proliferation and secretion of 17β-estradiol (E2) while promoting the apoptosis of GCs. Consequently, follicular development was arrested and sexual maturity was delayed. Taken together, HDAC1 knockdown-mediated SFFD downregulation promoted the apoptosis of GCs through the miR-202-3p-COX1 axis and lead to delayed sexual maturity. Our findings reveal a novel regulatory network modulated by HDAC1, and HDAC1-mediated SFFD may be a promising new therapeutic target to treat delayed sexual maturity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.H.); (H.Q.); (X.P.); (Y.Z.); (Z.Z.)
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (Y.H.); (H.Q.); (X.P.); (Y.Z.); (Z.Z.)
| |
Collapse
|
8
|
Zhang T, Hu X, Yu S, Wei C. Construction of ceRNA network based on RNA-seq for identifying prognostic lncRNA biomarkers in Perthes disease. Front Genet 2023; 14:1105893. [PMID: 37303951 PMCID: PMC10252144 DOI: 10.3389/fgene.2023.1105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: Legg-Calvé-Perthes disease or Perthes disease is a condition that occurs in children aged 2 to 15 years, and is characterized by osteonecrosis of the femoral head, which results in physical limitations. Despite ongoing research, the pathogenesis and molecular mechanisms underlying the development of Perthes disease remain unclear. In order to obtain further insights, the expression patterns of long non-coding RNAs (lncRNAs), miRNAs, and mRNAs in a rabbit model of Perthes disease were analyzed in this study by transcriptome sequencing. Methods and results: The results of RNA-seq analyses revealed that 77 lncRNAs, 239 miRNAs, and 1027 mRNAs were differentially expressed in the rabbit model. This finding suggested that multiple genetic pathways are involved in the development of Perthes disease. A weighted gene co-expression network analysis (WGCNA) network was subsequently constructed using the differentially expressed mRNAs (DEmRNAs), and network analysis revealed that the genes associated with angiogenesis and platelet activation were downregulated, which was consistent with the findings of Perthes disease. A competing endogenous RNA (ceRNA) network was additionally constructed using 29 differentially expressed lncRNAs (including HIF3A and LOC103350994), 28 differentially expressed miRNAs (including ocu-miR-574-5p and ocu-miR-324-3p), and 76 DEmRNAs (including ALOX12 and PTGER2). Disscusion: The results obtained herein provide novel perspectives regarding the pathogenesis and molecular mechanisms underlying the development of Perthes disease. The findings of this study can pave the way for the development of effective therapeutic strategies for Perthes disease in future.
Collapse
Affiliation(s)
- Tianjiu Zhang
- Guizhou Children’s Hospital, Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaolin Hu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Yu
- Guizhou Children’s Hospital, Department of Pediatric Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chunyan Wei
- Department of Gynecoloay, Obstetrics and Gynecoloay Hospital of Fudan University, Shanchai, China
| |
Collapse
|
9
|
Guzmán A, Hernández-Coronado CG, Gutiérrez CG, Rosales-Torres AM. The vascular endothelial growth factor (VEGF) system as a key regulator of ovarian follicle angiogenesis and growth. Mol Reprod Dev 2023; 90:201-217. [PMID: 36966489 DOI: 10.1002/mrd.23683] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The vascular endothelial growth factor-A (VEGFA) system is a complex set of proteins, with multiple isoforms and receptors, including both angiogenic (VEGFxxx, VEGFR2) and antiangiogenic members (VEGFxxxb, VEGFR1 and soluble forms of VEGFR). The members of the VEGF system affect the proliferation, survival, and migration of endothelial and nonendothelial cells and are involved in the regulation of follicular angiogenesis and development. The production of VEGF by secondary follicles stimulates preantral follicular development by directly affecting follicular cells and promoting the acquisition of the follicular vasculature and downstream antrum formation. Additionally, the pattern of expression of the components of the VEGF system may provide a proangiogenic milieu capable of triggering angiogenesis and stimulating follicular cells to promote antral follicle growth, whereas, during atresia, this milieu becomes antiangiogenic and blocks follicular development.
Collapse
Affiliation(s)
- Adrian Guzmán
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Cyndi G Hernández-Coronado
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| | - Carlos G Gutiérrez
- Departamento de Reproducción, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana M Rosales-Torres
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Distrito Federal, México
| |
Collapse
|
10
|
Villa PA, Lainez NM, Jonak CR, Berlin SC, Ethell IM, Coss D. Altered GnRH neuron and ovarian innervation characterize reproductive dysfunction linked to the Fragile X messenger ribonucleoprotein ( Fmr1) gene mutation. Front Endocrinol (Lausanne) 2023; 14:1129534. [PMID: 36909303 PMCID: PMC9992745 DOI: 10.3389/fendo.2023.1129534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene cause Fragile X Syndrome, the most common monogenic cause of intellectual disability. Mutations of FMR1 are also associated with reproductive disorders, such as early cessation of reproductive function in females. While progress has been made in understanding the mechanisms of mental impairment, the causes of reproductive disorders are not clear. FMR1-associated reproductive disorders were studied exclusively from the endocrine perspective, while the FMR1 role in neurons that control reproduction was not addressed. Results Here, we demonstrate that similar to women with FMR1 mutations, female Fmr1 null mice stop reproducing early. However, young null females display larger litters, more corpora lutea in the ovaries, increased inhibin, progesterone, testosterone, and gonadotropin hormones in the circulation. Ovariectomy reveals both hypothalamic and ovarian contribution to elevated gonadotropins. Altered mRNA and protein levels of several synaptic molecules in the hypothalamus are identified, indicating reasons for hypothalamic dysregulation. Increased vascularization of corpora lutea, higher sympathetic innervation of growing follicles in the ovaries of Fmr1 nulls, and higher numbers of synaptic GABAA receptors in GnRH neurons, which are excitatory for GnRH neurons, contribute to increased FSH and LH, respectively. Unmodified and ovariectomized Fmr1 nulls have increased LH pulse frequency, suggesting that Fmr1 nulls exhibit hyperactive GnRH neurons, regardless of the ovarian feedback. Conclusion These results reveal Fmr1 function in the regulation of GnRH neuron secretion, and point to the role of GnRH neurons, in addition to the ovarian innervation, in the etiology of Fmr1-mediated reproductive disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| |
Collapse
|
11
|
Lund M, Pearson AC, Sage MAG, Duffy DM. Luteinizing hormone receptor promotes angiogenesis in ovarian endothelial cells of Macaca fascicularis and Homo sapiens†. Biol Reprod 2023; 108:258-268. [PMID: 36214501 PMCID: PMC9930396 DOI: 10.1093/biolre/ioac189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/14/2022] Open
Abstract
Angiogenesis within the ovarian follicle is an important component of ovulation. New capillary growth is initiated by the ovulatory surge of luteinizing hormone (LH), and angiogenesis is well underway at the time of follicle rupture. LH-stimulated follicular production of vascular growth factors has been shown to promote new capillary formation in the ovulatory follicle. The possibility that LH acts directly on ovarian endothelial cells to promote ovulatory angiogenesis has not been addressed. For these studies, ovaries containing ovulatory follicles were obtained from cynomolgus macaques and used for histological examination of ovarian vascular endothelial cells, and monkey ovarian microvascular endothelial cells (mOMECs) were enriched from ovulatory follicles for in vitro studies. mOMECs expressed LHCGR mRNA and protein, and immunostaining confirmed LHCGR protein in endothelial cells of ovulatory follicles in vivo. Human chorionic gonadotropin (hCG), a ligand for LHCGR, increased mOMEC proliferation, migration and capillary-like sprout formation in vitro. Treatment of mOMECs with hCG increased cAMP, a common intracellular signal generated by LHCGR activation. The cAMP analog dibutyryl cAMP increased mOMEC proliferation in the absence of hCG. Both the protein kinase A (PKA) inhibitor H89 and the phospholipase C (PLC) inhibitor U73122 blocked hCG-stimulated mOMEC proliferation, suggesting that multiple G-proteins may mediate LHCGR action. Human ovarian microvascular endothelial cells (hOMECs) enriched from ovarian aspirates obtained from healthy oocyte donors also expressed LHCGR. hOMECs also migrated and proliferated in response to hCG. Overall, these findings indicate that the LH surge may directly activate ovarian endothelial cells to stimulate angiogenesis of the ovulatory follicle.
Collapse
Affiliation(s)
- Merete Lund
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Andrew C Pearson
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Megan A G Sage
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
12
|
Ping Z, Chen X, Fang L, Wu K, Liu C, Chen H, Jiang X, Ma J, Yu W. Effect of Angelica Sinensis extract on the angiogenesis of preovulatory follicles (F1-F3) in late-phase laying hens. Poult Sci 2022; 102:102415. [PMID: 36566660 PMCID: PMC9801221 DOI: 10.1016/j.psj.2022.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
In order to form follicles and ovulate normally, there must be abundant blood vessels. Angelica sinensis (Oliv.) Diels (AS), as a traditional Chinese medicinal herb, has the effects of tonifying the blood and activating the blood circulation. However, the effect of AS on angiogenesis in hen-follicles remains to be discovered. In this study, we identified vascular richness, granulosa layer thickness, expression of platelet endothelial cell adhesion molecule-1 (CD31) and the content of vascular endothelial growth factor A (VEGFA) in granulosa layers to elucidate the effect of AS extract on angiogenesis in preovulatory follicles (F1-F3) of late-phase laying hens (75 wk). Based on network pharmacology, we predicted beta-sitosterol, ferulic acid, and caffeic acid as the main active components of AS, and hypoxia-inducible factor-1α (HIF1α), vascular endothelial growth factor receptor 2 (VEGFR2) as hub targets of AS in angiogenesis. The intersection targets were enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the hub targets were verified by immunofluorescence and western blot. Molecular docking of active components with hub targets was performed and verified in vitro. The results showed that AS extract promoted angiogenesis in preovulatory follicles and increased granulosa cell layer thickness, CD31 expression and content of VEGFA. Experiments in vitro and in vivo demonstrated that AS extract promoted the expression of HIF1α and VEGFA, up-regulated the phosphorylation levels of VEGFR2. These results further demonstrated the reliability of molecular docking and network pharmacology findings. In summary, AS extract can promote angiogenesis in the preovulatory follicles in late-phase laying hens.
Collapse
Affiliation(s)
- Zhenlei Ping
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Lixue Fang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaowen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wenhui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China,Institution of Traditional Chinese Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China,Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, PR China,Corresponding author:
| |
Collapse
|
13
|
Delta-9-tetrahydrocannabinol increases vascular endothelial growth factor (VEGF) secretion through a cyclooxygenase-dependent mechanism in rat granulosa cells. Reprod Toxicol 2022; 111:59-67. [PMID: 35588954 DOI: 10.1016/j.reprotox.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022]
Abstract
While the effects of delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, have been studied extensively in the central nervous system, there is limited knowledge about its effects on the female reproductive system. The aim of this study was to assess the effect of THC on the expression and secretion of the angiogenic factor vascular endothelial growth factor (VEGF) in the ovary, and to determine if these effects were mediated by prostaglandins. Spontaneously immortalized rat granulosa cells (SIGCs) were exposed to THC for 24hours. Gene expression, proliferation and TNFα-induced apoptosis were evaluated in the cells and concentrations of VEGF and prostaglandin E2 (PGE2), a known regulator of VEGF production, were determined in the media. To evaluate the role of the prostanoid pathway, cells were pre-treated with cyclooxygenase (COX) inhibitors prior to THC exposure. THC-exposed SIGCs had a significant increase in VEGF and PGE2 secretion, along with an increase in proliferation and cell survival when challenged with an apoptosis-inducing factor. Pre-treatment with COX inhibitors reversed the THC-induced increase in both PGE2 and VEGF secretion. Alterations in granulosa cell function, such as the ones observed after THC exposure, may impact essential ovarian processes including folliculogenesis and ovulation, which could in turn affect female reproductive health and fertility. With the ongoing increase in cannabis use and potency, further study on the impact of cannabis and its constituents on female reproductive health is required.
Collapse
|
14
|
VERNUNFT A, LAPP R, VIERGUTZ T, WEITZEL JM. Effects of different cyclooxygenase inhibitors on prostaglandin E<sub>2</sub> production, steroidogenesis and ovulation of bovine preovulatory follicles. J Reprod Dev 2022; 68:246-253. [PMID: 35527004 PMCID: PMC9334316 DOI: 10.1262/jrd.2021-148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ovulation is an inflammation-like process, and cyclooxygenase-2 (COX-2)-dependent production of prostaglandin E2 (PGE2) is its key mediator. Balanced regulation of
inflammatory processes in high-yielding dairy cows may be essential for physiological ovulation and fertility. This study aimed to elucidate the mechanisms underlying ovulation failure and
cyst development after disturbing intrafollicular inflammatory cascades. Therefore, nonselective (indomethacin and flunixin-meglumine), COX-2 selective (meloxicam), and highly COX-2
selective (NS-398) inhibitors were injected into preovulatory follicles 16 h after administration of GnRH, and ovulation was monitored via ultrasound examination. Additionally, follicular
fluid was collected after injection of indomethacin, meloxicam, and NS-398. Moreover, primary granulosa cell cultures from preovulatory follicles were prepared and treated with indomethacin,
meloxicam, and NS-398. The concentrations of 17β-estradiol, progesterone, and prostaglandin E2 (PGE2) in the follicular fluid and cell supernatant were estimated.
Indomethacin and flunixin-meglumine blocked ovulation, even at low doses, and led to ovarian cyst development. The selective and highly selective COX-2 inhibitors meloxicam and NS-398 were
not effective in blocking ovulation. However, indomethacin, meloxicam, and NS-398 significantly and comparably reduced PGE2 concentration in vivo and in
vitro (P < 0.05) but had no effect on estradiol or progesterone production. This may contradict the generally accepted hypothesis that PGE2 is a key mediator of
ovulation and progesterone production. Our results suggest a connection between ovarian disorders and inflammatory actions in early postpartum cows.
Collapse
Affiliation(s)
- Andreas VERNUNFT
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Rebecca LAPP
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Torsten VIERGUTZ
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Joachim M. WEITZEL
- Institute of Reproductive Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
15
|
Choi Y, Jeon H, Brännström M, Akin JW, Curry TE, Jo M. Ovulatory upregulation of angiotensin-converting enzyme 2, a receptor for SARS-CoV-2, in dominant follicles of the human ovary. Fertil Steril 2021; 116:1631-1640. [PMID: 34538460 PMCID: PMC8354803 DOI: 10.1016/j.fertnstert.2021.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine the temporal expression of angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2, in dominant follicles throughout the periovulatory period in women and the regulatory mechanisms underlying ACE2 expression in human granulosa/lutein cells (hGLC). DESIGN Experimental prospective clinical study and laboratory-based investigation. SETTING University Medical Center and private in vitro fertilization center. PATIENT(S) Thirty premenopausal women undergoing surgery for tubal ligation and 16 premenopausal women undergoing in vitro fertilization. INTERVENTION(S) Administration of human chorionic gonadotropin (hCG) and harvesting of preovulatory/ovulatory follicles by timed laparoscopy, and collection of granulosa/lutein cells and cumulus cells at the time of oocyte retrieval. MAIN OUTCOME MEASURE(S) Expression and localization of ACE2 in granulosa cells and dominant follicles collected throughout the periovulatory period of the menstrual cycle and in hGLC using quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. RESULT(S) ACE2 expression (mRNA and protein) is up-regulated in human ovulatory follicles after administration of hCG. ACE2 expression was higher in cumulus cells than in granulosa cells. hCG increased the expression of ACE2 in primary hGLC cultures; the increase was inhibited by RU486 (an antagonist for progesterone receptor and glucocorticoid receptor) and CORT125281 (a selective glucocorticoid receptor antagonist), but not by AG1478 (an EGF receptor tyrosine kinase inhibitor) or by dexamethasone. CONCLUSION(S) The hormone-regulated expression of ACE2 in granulosa cells suggests a potential role of ACE2 in the ovulatory process. These data also imply the possible impact of COVID-19 on a vital cyclic event of ovarian function and thus on women's overall reproductive health. However, SAR-CoV-2 infection in ovarian cells in vivo or in vitro has yet to be determined.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hayce Jeon
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden, and Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky.
| |
Collapse
|
16
|
Wong A, Chen SQ, Halvorson BD, Frisbee JC. Microvessel Density: Integrating Sex-Based Differences and Elevated Cardiovascular Risks in Metabolic Syndrome. J Vasc Res 2021; 59:1-15. [PMID: 34535606 DOI: 10.1159/000518787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic syndrome (MetS) is a complex pathological state consisting of metabolic risk factors such as hypertension, insulin resistance, and obesity. The interconnectivity of cellular pathways within various biological systems suggests that each individual component of MetS may share common pathological sources. Additionally, MetS is closely associated with vasculopathy, including a reduction in microvessel density (MVD) (rarefaction) and elevated risk for various cardiovascular diseases. Microvascular impairments may contribute to perfusion-demand mismatch, where local metabolic needs are insufficiently met due to the lack of nutrient and oxygen supply, thus creating pathological positive-feedback loops and furthering the progression of disease. Sexual dimorphism is evident in these underlying cellular mechanisms, which places males and females at different levels of risk for cardiovascular disease and acute ischemic events. Estrogen exhibits protective effects on the endothelium of pre-menopausal women, while androgens may be antagonistic to cardiovascular health. This review examines MetS and its influences on MVD, as well as sex differences relating to the components of MetS and cardiovascular risk profiles. Finally, translational relevance and interventions are discussed in the context of these sex-based differences.
Collapse
Affiliation(s)
- Angelina Wong
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Shu Qing Chen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brayden D Halvorson
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jefferson C Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
17
|
Campbell GE, Bender HR, Parker GA, Curry TE, Duffy DM. Neurotensin: A novel mediator of ovulation? FASEB J 2021; 35:e21481. [PMID: 33710668 PMCID: PMC8314182 DOI: 10.1096/fj.202002547rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
The midcycle luteinizing hormone (LH) surge initiates a cascade of events within the ovarian follicle which culminates in ovulation. Only mural granulosa cells and theca cells express large numbers of LH receptors, and LH-stimulated paracrine mediators communicate the ovulatory signal within the follicle. Recent reports identified the neuropeptide neurotensin (NTS) as a product of granulosa cells. Here, we demonstrate that granulosa cells were the primary site of NTS expression in macaque ovulatory follicles. Granulosa cell NTS mRNA and protein increased after human chorionic gonadotropin (hCG) administration, which substitutes for the LH surge. To identify ovulatory actions of NTS, a NTS-neutralizing antibody was injected into preovulatory macaque follicles. hCG administration immediately followed, and ovaries were removed 48 hours later to evaluate ovulatory events. Follicles injected with control IgG ovulated normally. In contrast, 75% of NTS antibody-injected follicles failed to ovulate, containing oocytes trapped within unruptured, hemorrhagic follicles. Serum progesterone was unchanged. Of the three NTS receptors, SORT1 was highly expressed in follicular granulosa, theca, and endothelial cells; NTSR1 and NTSR2 were expressed at lower levels. Excessive blood cells in NTS antibody-injected follicles indicated vascular anomalies, so the response of monkey ovarian endothelial cells to NTS was evaluated in vitro. NTS stimulated endothelial cell migration and capillary sprout formation, consistent with a role for NTS in vascular remodeling associated with ovulation. In summary, we identified NTS as a possible paracrine mediator of ovulation. Further investigation of the NTS synthesis/response pathway may lead to improved treatments for infertility and novel targets for contraception.
Collapse
Affiliation(s)
- Genevieve E. Campbell
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Hannah R. Bender
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Grace A. Parker
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
18
|
Sun Q, Jing Y, Zhang B, Gu T, Meng R, Sun J, Zhu D, Wang Y. The Risk Factors for Diabetic Retinopathy in a Chinese Population: A Cross-Sectional Study. J Diabetes Res 2021; 2021:5340453. [PMID: 33575359 PMCID: PMC7861953 DOI: 10.1155/2021/5340453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/21/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS Epidemiological data on diabetic retinopathy (DR) in Chinese population is still rather scarce, and risk factors for diabetic retinopathy are inconsistent because of study designs, grading standards, and population samples. MATERIALS AND METHODS This hospital-based retrospective study included 1052 type 2 diabetes patients. Diabetic retinopathy was diagnosed by nonmydriatic fundus photography and/or fundus examination apparatus. Logistic regression analysis was performed to evaluate the risk of diabetic retinopathy. RESULTS A total of 352 (33.5% prevalence) subjects were diagnosed with diabetic retinopathy based on our population. The patients in the DR group not only had significantly higher hemoglobin A1c (HbA1c), fasting plasma glucose (FPG), urinary microalbumin-creatinine ratio (ACR), and systolic blood pressure but also had higher follicle-stimulating hormone (FSH), luteinizing hormone (LH), and sex hormone-binding globulin (SHBG) levels compared to those in the non-DR group. Moreover, we confirmed that diabetes duration and HbA1c are strongly associated with DR risk. We also found that serum LH was an independent risk factor in male diabetic retinopathy patients (OR = 1.086, 95% CI 1.024-1.152), and the levels of LH were significantly associated with diabetic retinopathy prevalence (P = 0.018). CONCLUSIONS Our study strengthens the argument that diabetes duration and HbA1c are risk factors for patients with DR. Additionally; we firstly confirmed that serum LH was an independent risk factor in male diabetic retinopathy patients.
Collapse
Affiliation(s)
- Qingmin Sun
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing 210093, China
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yali Jing
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing 210008, China
| | - Bingjie Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing 210008, China
| | - Tianwei Gu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing 210008, China
| | - Ran Meng
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing 210008, China
| | - Jie Sun
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing 210008, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No321 Zhongshan Road, Nanjing 210008, China
| | - Yaping Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| |
Collapse
|
19
|
Pereira M, Matuszewska K, Jamieson C, Petrik J. Characterizing Endocrine Status, Tumor Hypoxia and Immunogenicity for Therapy Success in Epithelial Ovarian Cancer. Front Endocrinol (Lausanne) 2021; 12:772349. [PMID: 34867818 PMCID: PMC8635771 DOI: 10.3389/fendo.2021.772349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer is predominantly diagnosed at advanced stages which creates significant therapeutic challenges. As a result, the 5-year survival rate is low. Within ovarian cancer, significant tumor heterogeneity exists, and the tumor microenvironment is diverse. Tumor heterogeneity leads to diversity in therapy response within the tumor, which can lead to resistance or recurrence. Advancements in therapy development and tumor profiling have initiated a shift from a "one-size-fits-all" approach towards precision patient-based therapies. Here, we review aspects of ovarian tumor heterogeneity that facilitate tumorigenesis and contribute to treatment failure. These tumor characteristics should be considered when designing novel therapies or characterizing mechanisms of treatment resistance. Individual patients vary considerably in terms of age, fertility and contraceptive use which innately affects the endocrine milieu in the ovary. Similarly, individual tumors differ significantly in their immune profile, which can impact the efficacy of immunotherapies. Tumor size, presence of malignant ascites and vascular density further alters the tumor microenvironment, creating areas of significant hypoxia that is notorious for increasing tumorigenesis, resistance to standard of care therapies and promoting stemness and metastases. We further expand on strategies aimed at improving oxygenation status in tumors to dampen downstream effects of hypoxia and set the stage for better response to therapy.
Collapse
|
20
|
Zheng X, Chen J, Yang Y, Pei X, Ma W, Ma H, Hei C, Cai Y, Zhao C, Wang Y, Chang Q. Exogenous luteinizing hormone promotes ovarian survival and function during cryopreservation and transplantation. Biochem Biophys Res Commun 2020; 526:424-430. [PMID: 32228888 DOI: 10.1016/j.bbrc.2020.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 11/25/2022]
Abstract
Cryopreservation and transplantation of the ovarian tissue is an alternative method by which malignant tumor survivors can recover fertility. Previously, it was reported that follicle stimulating hormone (FSH) promoted the survival and functioning of the ovarian tissue after in vitro cultivation. In this study, the expression of the luteinizing hormone receptor (LHR) was observed on the granule cell membrane after luteinizing hormone (LH) (0.3 IU/mL) was supplied as an exogenous hormone into the cultivation medium during ovarian vitrification in the postnatal period (PND) (1, 7, 14, 21, 28, 42, and 56 days PND). The expression of vascular endothelial growth factor (VEGF) and Connexins (Cx), and the recovery of ovarian functions were then assessed in mice models. The results showed that LH increased the production of normal follicles, and upregulated the expression of VEGF, Cx37, and Cx43 in vitrified ovaries. LH administration also shortened the recovery time of the estrus cycle in mice models. Additionally, no difference was observed in the rate of pregnancy and size of the first litter between the experimental and control groups. In conclusion, LH could promote the survival and functioning of the ovaries by upregulating the expression of VEGF, Cx43, and Cx37 during ovarian cryopreservation and transplantation.
Collapse
Affiliation(s)
- Xiaomin Zheng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China; Research Institute for Reproductive Medicine and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China.
| | - Jie Chen
- Department of Human Anatomy, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Wenzhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Changchun Hei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Yufang Cai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Chengjun Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China
| | - Yanrong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China.
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Department II of Surgical Oncology, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
21
|
Lundberg PS, Moskowitz GJ, Bellacose C, Demirel E, Trau HA, Duffy DM. Granulosa cell proliferation is inhibited by PGE2 in the primate ovulatory follicle. Anim Cells Syst (Seoul) 2020; 24:125-135. [PMID: 33209192 PMCID: PMC7651849 DOI: 10.1080/19768354.2020.1764385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a key paracrine mediator of ovulation. Few specific PGE2-regulated gene products have been identified, so we hypothesized that PGE2 may regulate the expression and/or activity of a network of proteins to promote ovulation. To test this concept, Ingenuity Pathway Analysis (IPA) was used to predict PGE2-regulated functionalities in the primate ovulatory follicle. Cynomolgus macaques underwent ovarian stimulation. Follicular granulosa cells were obtained before (0 h) or 36 h after an ovulatory dose of human chorionic gonadotropin (hCG), with ovulation anticipated 37–40 h after hCG. Granulosa cells were obtained from additional monkeys 36 h after treatment with hCG and the PTGS2 inhibitor celecoxib, which significantly reduced hCG-stimulated follicular prostaglandin synthesis. Granulosa cell RNA expression was determined by microarray and analyzed using IPA. No granulosa cell mRNAs were identified as being significantly up-regulated or down-regulated by hCG + celecoxib compared with hCG only. However, IPA predicted that prostaglandin depletion significantly regulated several functional pathways. Cell cycle/cell proliferation was selected for further study because decreased granulosa cell proliferation is known to be necessary for ovulation and formation of a fully-functional corpus luteum. Prospective in vivo and in vitro experiments confirmed the prediction that hCG-stimulated cessation of granulosa cell proliferation is mediated via PGE2. Our studies indicate that PGE2 provides critical regulation of granulosa cell proliferation through mechanisms that do not involve significant regulation of mRNA levels of key cell cycle regulators. Pathway analysis correctly predicted that PGE2 serves as a paracrine mediator of this important transition in ovarian structure and function.
Collapse
Affiliation(s)
- Patric S Lundberg
- Department of Microbiology and Medical Molecular Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Gil J Moskowitz
- Department of Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Carmel Bellacose
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Esra Demirel
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Heidi A Trau
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
22
|
Abstract
Among prostaglandins, Prostaglandin E2 (PGE2) (PGE2) is considered especially important for decidualization, ovulation, implantation and pregnancy. Four major PGE2 receptor subtypes, EP1, EP2, EP3, EP4, as well as peroxisome proliferator-activated receptors (PPARs), mediate various PGE2 effects via their coupling to distinct signaling pathways. This review summarizes up-to-date literatures on the role of prostaglandin E2 receptors in female reproduction, which could provide a broad perspective to guide further research in this field. PGE2 plays an indispensable role in decidualization, ovulation, implantation and pregnancy. However, the precise mechanism of Prostaglandin E2 (EP) receptors in the female reproductive system is still limited. More investigations should be performed on the mechanism of EP receptors in the pathological states, and the possibility of EP agonists or antagonists clinically used in improving reproductive disorders.
Collapse
|
23
|
Movsas TZ, Paneth N, Gewolb IH, Lu Q, Cavey G, Muthusamy A. The postnatal presence of human chorionic gonadotropin in preterm infants and its potential inverse association with retinopathy of prematurity. Pediatr Res 2020; 87:558-563. [PMID: 31537012 PMCID: PMC7035966 DOI: 10.1038/s41390-019-0580-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/31/2019] [Accepted: 08/29/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human chorionic gonadotropin (hCG) and luteinizing hormone (LH) are pro-angiogenic gonadotropic hormones, which classically target the reproductive organs. However, hCG, LH, and their shared CG/LH receptor are also present in the human eye. The possibility that a deficiency of these hormones may be involved in the pathogenesis of retinopathy of prematurity (ROP) during its early non-proliferative phase has not been explored. METHODS We conducted a cross-sectional study of Michigan-born preterm infants utilizing dried blood spots. We analyzed hCG and LH blood levels at 1 week and 4 weeks of age from 113 study participants (60 without ROP; 53 with non-proliferative ROP). We utilized electrochemiluminescence assays on the Mesoscale Discovery platform. RESULTS Similar levels of hCG are found in preterm infants at both 1 week and 4 weeks after birth. Preterm infants with non-proliferative ROP, after adjusting for sex and gestational age, have 2.42 [95% CI: 1.08-5.40] times the odds of having low hCG at fourth week of age. CONCLUSIONS We found that hCG is present postnatally in preterm infants and that a deficiency of hCG at 4 weeks of age is potentially associated with non-proliferative ROP. This provides novel evidence to suggest that hCG may participate in human retinal angiogenesis.
Collapse
Affiliation(s)
- Tammy Z Movsas
- Zietchick Research Institute, Plymouth, MI, USA.
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| | - Nigel Paneth
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Epidemiology & Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Ira H Gewolb
- Department of Pediatrics & Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Qing Lu
- Department of Epidemiology & Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Gregory Cavey
- Biomedical Sciences, Western Michigan University-Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | | |
Collapse
|
24
|
Zhang YX, Wang L, Lu WZ, Yuan P, Wu WH, Zhou YP, Zhao QH, Zhang SJ, Li Y, Wu T, Jiang X, Jing ZC. Association Between High FSH, Low Progesterone, and Idiopathic Pulmonary Arterial Hypertension in Women of Reproductive Age. Am J Hypertens 2020; 33:99-105. [PMID: 31504137 DOI: 10.1093/ajh/hpz143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND While sex differences characterize susceptibility and severity of idiopathic pulmonary arterial hypertension (IPAH), our understanding of the relationship between levels of gonadotropins and sex hormones in fertile women and the disease is limited. We aimed to investigate whether gonadotropin and sex hormone levels in women of reproductive age were associated with risk and mortality of IPAH. METHODS We did a matched case-control study. Cases were reproductive female patients with idiopathic pulmonary arterial hypertension admitted in Shanghai Pulmonary Hospital (Tongji University School of Medicine, Shanghai, China) during 2008-2014. Healthy controls were matched on age and body mass index. We also did a prospective cohort study to assess the effects of hormone levels on mortality in IPAH fertile female patients. RESULTS One hundred sixty-four cases and 133 controls were included. After adjustment for age and body mass index, the odds ratios of having IPAH for follicle-stimulating hormone, testosterone, and progesterone as expressed on natural log scale were 1.51 (95% confidence interval: 1.06, 2.16), 0.42 (0.31-0.57), and 0.52 (0.43-0.63), respectively. In the cohort study with a median follow-up of 77 months, the hazard ratios for dying after adjustment for baseline characteristics and treatments among IPAH patients were 2.01 (95% confidence interval: 1.22-3.30) and 0.78 (95% confidence interval: 0.62-0.98) for follicle-stimulating hormone and progesterone in natural log scale, respectively. CONCLUSIONS In reproductive women with IPAH, high follicle-stimulating hormone and low progesterone tended to be associated with high risk of IPAH and mortality among patients.
Collapse
Affiliation(s)
- Yi-Xin Zhang
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Zhao Lu
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Hui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Ping Zhou
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin-Hua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Si-Jin Zhang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan Li
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Wu
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Jiang
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Cheng Jing
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Wang T, Zhu W, Zhang H, Wen X, Yin S, Jia Y. Integrated analysis of proteomics and metabolomics reveals the potential sex determination mechanism in Odontobutis potamophila. J Proteomics 2019; 208:103482. [PMID: 31401171 DOI: 10.1016/j.jprot.2019.103482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/28/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
Odontobutis potamophila is a valuable species for aquaculture in China, which shows asexually dimorphic growth pattern. In this study, the integrated proteomics and metabolomics were used to analyze the sex determination mechanism. A total of 2781 significantly different regulated proteins were identified by proteomics and 2693 significantly different expressed metabolites were identified by metabolomics. Among them, 2560 proteins and 1701 metabolites were significantly up-regulated in testes, whereas 221 proteins and 992 metabolites were significantly up-regulated in ovaries. Venn diagram analysis showed 513 proteins were differentially regulated at both protein and metabolite levels. Correlation analysis of differentially-regulated proteins and metabolites were identified by Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The results showed lipid metabolism plays an important role in sex determination. The metabolites decanoyl-CoA, leukotriene, 3-dehydrosphinganine, and arachidonate were the biomarkers in testes, whereas estrone and taurocholate were the biomarkers in ovaries. Interaction networks of the significant differentially co-regulated proteins and metabolites in the process of lipid metabolism showed arachidonic acid metabolism and steroid hormone biosynthesis were the most important pathways in sex determination. The findings of this study provide valuable information for selective breeding of O. potamophila. SIGNIFICANCE OF THE STUDY: The male O. potamophila grows substantially larger and at a quicker rate than the female. Thus, males have greater economic value than females. However, limited research was done to analyze the sex determination mechanism of O. potamophila, which seriously hindered the development of whole-male O. potamophila breeding. In this study, four key proteins (Ctnnb1, Piwil1, Hsd17b1, and Dnali1), six most important biomarkers (decanoyl-CoA, leukotriene, 3-dehydrosphinganine, arachidonate, estrone, and taurocholate) and two key pathways (arachidonic acid metabolism and steroid hormone biosynthesis) in sex determination of O. potamophila were found by integrated application of iTRAQ and LC-MS techniques. The results give valuable information for molecular breeding of O. potamophila in aquaculture.
Collapse
Affiliation(s)
- Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Wenxu Zhu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Hongyan Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Xin Wen
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| | - Yongyi Jia
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| |
Collapse
|
26
|
Sagvekar P, Kumar P, Mangoli V, Desai S, Mukherjee S. DNA methylome profiling of granulosa cells reveals altered methylation in genes regulating vital ovarian functions in polycystic ovary syndrome. Clin Epigenetics 2019; 11:61. [PMID: 30975191 PMCID: PMC6458760 DOI: 10.1186/s13148-019-0657-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background Women with polycystic ovary syndrome (PCOS) manifest a host of ovarian defects like impaired folliculogenesis, anovulation, and poor oocyte quality, which grossly affect their reproductive health. Addressing the putative epigenetic anomalies that tightly regulate these events is of foremost importance in this disorder. We therefore aimed to carry out DNA methylome profiling of cumulus granulosa cells and assess the methylation and transcript expression profiles of a few differentially methylated genes contributing to ovarian defects in PCOS. A total of 20 controls and 20 women with PCOS were selected from a larger cohort of women undergoing IVF, after carefully screening their sera and follicular fluids for hormonal and biochemical parameters. DNA extracted from cumulus granulosa cells of three women each, from control and PCOS groups was subjected to high-throughput, next generation bisulfite sequencing, using the Illumina HiSeq 2500® platform. Remaining samples were used for the validation of methylation status of some identified genes by pyrosequencing, and the transcript expression profiles of these genes were assessed by quantitative real-time PCR. Results In all, 6486 CpG sites representing 3840 genes associated with Wnt signaling, G protein receptor, endothelin/integrin signaling, angiogenesis, chemokine/cytokine-mediated inflammation, etc., showed differential methylation in PCOS. Hypomethylation was noted in 2977 CpGs representing 2063 genes while 2509 CpGs within 1777 genes showed hypermethylation. Methylation differences were also noted in noncoding RNAs regulating several ovarian functions that are dysregulated in PCOS. Few differentially methylated genes such as aldo-keto reductase family 1 member C3, calcium-sensing receptor, resistin, mastermind-like domain 1, growth hormone-releasing hormone receptor and tumor necrosis factor, which predominantly contribute to hyperandrogenism, premature luteolysis, and oocyte development defects, were explored as novel epigenetic candidates in mediating ovarian dysfunction. Methylation profiles of these genes matched with our NGS findings, and their transcript expression patterns correlated with the gene hypo- or hypermethylation status. Conclusion Our findings suggest that the epigenetic dysregulation of genes involved in important processes associated with follicular development may contribute to ovarian defects observed in women with PCOS. Electronic supplementary material The online version of this article (10.1186/s13148-019-0657-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pooja Sagvekar
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400012, India
| | - Pankaj Kumar
- Colin Jamura Lab, Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), GKVK, Bellary Road, Bangalore, 560065, India
| | - Vijay Mangoli
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai, Maharashtra, 400007, India
| | - Sadhana Desai
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai, Maharashtra, 400007, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, ICMR-National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
27
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
28
|
Kandemir YB, Konuk E, Katırcı E, Xxx F, Behram M. Is the effect of melatonin on vascular endothelial growth factor receptor-2 associated with angiogenesis in the rat ovary? Clinics (Sao Paulo) 2019; 74:e658. [PMID: 30864638 PMCID: PMC6438131 DOI: 10.6061/clinics/2019/e658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Vascular endothelial growth factor (VEGF) and its receptors play important roles in angiogenesis. Melatonin plays an important role in gonadal development; thus, its effect on the reproductive system is evident. We investigated the influence of melatonin on the expression of VEGF, vascular endothelial growth factor receptor-1 (VEGFR1) and vascular endothelial growth factor receptor-2 (VEGFR2), as well as on changes in oxidative stress markers and follicle numbers in rat ovaries. METHODS For this purpose, 45 Wistar rats were separated into the following groups: Group 1, control; Group 2, vehicle; and Group 3, melatonin. Rats in Group 3 were treated with melatonin at 50 mg/kg/day for 30 days. The effects of melatonin on the expression of VEGF, VEGFR1 and VEGFR2 were established by immunohistochemistry analysis. The effects of melatonin on antioxidant enzyme activities were demonstrated by spectrophotometric analysis. RESULTS Based on immunohistochemistry analysis, VEGFR2 was predominantly localized to theca cells in the ovary. Our data indicate that melatonin treatment can significantly increase VEGF and VEGFR1 expression in the ovary ( p <0.05). Additionally, the number of degenerated follicles significantly decreased with melatonin treatment ( p <0.05). Melatonin administration also led to significant increases in antioxidant enzyme levels in the ovary. CONCLUSION Melatonin treatment exerts protective effects on follicles against increased lipid peroxidation through modulating tissue antioxidant enzyme levels. These effects may be related to angiogenesis and antioxidant activities.
Collapse
Affiliation(s)
- Yasemin Behram Kandemir
- Harran University, Faculty of Medicine, Department of Anatomy, Şanlıurfa, Turkey
- Corresponding author. E-mail:
| | - Esma Konuk
- Akdeniz University, Faculty of Medicine, Department of Histology, Antalya, Turkey
| | - Ertan Katırcı
- Akdeniz University, Faculty of Medicine, Department of Histology, Antalya, Turkey
| | - Feride Xxx
- Akdeniz University, Faculty of Medicine, Department of Histology, Antalya, Turkey
| | - Mustafa Behram
- Kanuni Sultan Süleyman Hospital, Department of Perinatology, Istanbul, Turkey
| |
Collapse
|
29
|
Berisha B, Rodler D, Schams D, Sinowatz F, Pfaffl MW. Prostaglandins in Superovulation Induced Bovine Follicles During the Preovulatory Period and Early Corpus Luteum. Front Endocrinol (Lausanne) 2019; 10:467. [PMID: 31354631 PMCID: PMC6635559 DOI: 10.3389/fendo.2019.00467] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to characterize the regulation pattern of prostaglandin family members namely prostaglandin F2alpha (PTGF), prostaglandin E2 (PTGE), their receptors (PTGFR, PTGER2, PTGER4), cyclooxygenase 2 (COX-2), PTGF synthase (PTGFS), and PTGE synthase (PTGES) in the bovine follicles during preovulatory period and early corpus luteum (CL). Ovaries containing preovulatory follicles or CL were collected by transvaginal ovariectomy (n = 5 cows/group), and the follicles were classified: (I) before GnRH treatment; (II) 4 h after GnRH; (III) 10 h after GnRH; (IV) 20 h after GnRH; (V) 25 h after GnRH, and (VI) 60 h after GnRH (early CL). In these samples, the concentrations of progesterone (P4), estradiol (E2), PTGF and PTGE were investigated in the follicular fluid (FF) by validated EIA. Relative mRNA abundance of genes encoding for prostaglandin receptors (PTGFR, PTGER2, PTGER4), COX-2, PTGFS and PTGES were quantified by RT-qPCR. The localization of COX-2 and PTGES were investigated by established immunohistochemistry in fixed follicular and CL tissue samples. The high E2 concentration in the FF of the follicle group before GnRH treatment (495.8 ng/ml) and during luteinizing hormone (LH) surge (4 h after GnRH, 574.36 ng/ml), is followed by a significant (P<0.05) downregulation afterwards with the lowest level during ovulation (25 h after GnRH, 53.11 ng/ml). In contrast the concentration of P4 was very low before LH surge (50.64 mg/ml) followed by a significant upregulation (P < 0.05) during ovulation (537.18 ng/ml). The mRNA expression of COX-2 increased significantely (P < 0.05) 4 h after GnRH and again 20 h after GnRH, followed by a significant decrease (P < 0.05) after ovulation (early CL). The mRNA of PTGFS in follicles before GnRH was high followed by a continuous and significant downregulation (P < 0.05) afterwards. In contrast, PTGES mRNA abundance increased significantely (P < 0.05) in follicles 20 h after GnRH treatment and remained high afterwards. The mRNA abundance of PTGFR, PTGER2, and PTGER4 in follicles before GnRH was high, followed by a continuous and significant down regulation afterwards and significant increase (P < 0.05) only after ovulation (early CL). The low concentration of PTGF (0.04 ng/ml) and PTGE (0.15 ng/ml) in FF before GnRH, increased continuously in follicle groups before ovulation and displayed a further significant and dramatic increase (P < 0.05) around ovulation (101.01 ng/ml, respectively, 484.21 ng/ml). Immunohistochemically, the granulosa cells showed an intensive signal for COX-2 and PTGES in follicles during preovulation and in granulosa-luteal cells of the early CL. In conclusion, our results indicate that the examined bovine prostaglandin family members are involved in the local mechanisms regulating final follicle maturation and ovulation during the folliculo-luteal transition and CL formation.
Collapse
Affiliation(s)
- Bajram Berisha
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Pristina, Kosovo
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
- *Correspondence: Bajram Berisha
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Fred Sinowatz
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Michael W. Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| |
Collapse
|
30
|
Bender HR, Campbell GE, Aytoda P, Mathiesen AH, Duffy DM. Thrombospondin 1 (THBS1) Promotes Follicular Angiogenesis, Luteinization, and Ovulation in Primates. Front Endocrinol (Lausanne) 2019; 10:727. [PMID: 31787928 PMCID: PMC6855263 DOI: 10.3389/fendo.2019.00727] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is essential to both ovulation and the formation of the corpus luteum. The thrombospondin (THBS) family of glycoproteins plays diverse roles in regulation of angiogenesis, but the role of these vascular regulators in ovulation and luteinization remain to be elucidated. Using the cynomolgus macaque as a model for human ovulation, we demonstrated that levels of THBS1 mRNA and protein in preovulatory follicle granulosa cells increased after the ovulatory gonadotropin surge, with peak levels just before the expected time of ovulation. THBS1 treatment of monkey ovarian microvascular endothelial cells in vitro stimulated migration, proliferation, and capillary sprout formation, consistent with a pro-angiogenic action of THBS1. Injection of an anti-THBS1 antibody into monkey preovulatory follicles reduced rates of follicle rupture and oocyte release in response to an ovulatory gonadotropin stimulus when compared with control IgG-injected follicles. Interestingly, two of three oocytes from anti-THBS1 antibody injected follicles were germinal vesicle intact, indicating that meiosis failed to resume as anticipated. Follicles injected with anti-THBS1 antibody also showed reduced granulosa cell layer expansion, endothelial cell invasion, and capillary formation when compared to control IgG-injected follicles. Overall, these findings support a critical role for THBS1 in follicular angiogenesis, with implications for both successful ovulation and corpus luteum formation.
Collapse
|
31
|
Movsas TZ, Sigler R, Muthusamy A. Elimination of Signaling by the Luteinizing Hormone Receptor Reduces Ocular VEGF and Retinal Vascularization during Mouse Eye Development. Curr Eye Res 2018; 43:1286-1289. [PMID: 29966451 PMCID: PMC6262229 DOI: 10.1080/02713683.2018.1495740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022]
Abstract
Purpose/Aim: Vascular endothelial growth factor (VEGF) dysregulation is implicated in the pathogenesis of retinopathy of prematurity (ROP). Identifying the factors that contribute to VEGF regulation during normal retinal vascularization is the key to ROP prevention. Currently, physiologic hypoxia is thought to be responsible for retinal VEGF regulation in utero. However, a potential hormonal contribution to VEGF regulation during eye development has not been fully investigated. The placental hormone, human chorionic gonadotropin and the pituitary hormone, and luteinizing hormone (LH) induce VEGF expression in several tissue types. Both of these gonadotropins activate the same LH receptor (LHR) in the human body; LHRs are expressed in the retina. In this study, we aimed to show that LHR signaling participates in VEGF regulation in the developing eye. METHODS When offspring from breeding pairs of LHR knockout mice (lhrkos) reached 21 days old, eyes and serum were extracted from homozygote lhrkos and wildtype (WT) siblings. VEGF levels were measured using Mouse VEGF Quantikine immunoassay kit. Retinas were incubated with isolectin for endothelial cell staining, flat mounted and imaged by confocal microscopy. Retinal vascular density was quantified using Imaris software. Some eyes were sectioned and stained for histopathologic review. RESULTS Ocular VEGF and retinal vascular volumes were significantly reduced by ~ 15% in lhrko eyes. Serum VEGF was not changed. The lhrko retinas did not display any anomalies. CONCLUSIONS We provide evidence that LHR signaling plays a role in VEGF regulation and vascularization in the developing eye. Given that human preterm infants may have altered LHR-activity, the effect of gonadotropins on eye development should be further studied to identify novel strategies for ROP prevention.
Collapse
Affiliation(s)
- Tammy Z Movsas
- Zietchick Research Institute (ZRI), 46701 Commerce Center Drive, Plymouth, MI
- College of Human Medicine, Michigan State University, 965 Fee Road, East Lansing, MI
| | - Robert Sigler
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, Michigan
| | | |
Collapse
|
32
|
Shrestha K, Meidan R. The cAMP-EPAC Pathway Mediates PGE2-Induced FGF2 in Bovine Granulosa Cells. Endocrinology 2018; 159:3482-3491. [PMID: 30085093 DOI: 10.1210/en.2018-00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
Abstract
During the periovulatory period, the profile of fibroblast growth factor 2 (FGF2) coincides with elevated prostaglandin E2 (PGE2) levels. We investigated whether PGE2 can directly stimulate FGF2 production in bovine granulosa cells and, if so, which prostaglandin E2 receptor (PTGER) type and signaling cascades are involved. PGE2 temporally stimulated FGF2. Accordingly, endoperoxide-synthase2-silenced cells, exhibiting low endogenous PGE2 levels, had reduced FGF2. Furthermore, elevation of viable granulosa cell numbers by PGE2 was abolished with FGF2 receptor 1 inhibitor, suggesting that FGF2 mediates this action of PGE2. Epiregulin (EREG), a known PGE2-inducible gene, was studied alongside FGF2. PTGER2 agonist elevated cAMP as well as FGF2 and EREG levels. However, a marked difference between cAMP-induced downstream signaling was observed for FGF2 and EREG. Whereas FGF2 upregulated by PGE2, PTGER2 agonist, or forskolin was unaffected by the protein kinase A (PKA) inhibitor H89, EREG was significantly inhibited. FGF2 was dose-dependently stimulated by the exchange protein directly activated by cAMP (EPAC) activator; a similar induction was observed for EREG. However, forskolin-stimulated FGF2, but not EREG, was inhibited in EPAC1-silenced cells. These findings ascribe a novel autocrine role for PGE2, namely, elevating FGF2 production in granulosa cells. This study also reveals that cAMP-activated EPAC1, rather than PKA, mediates the effect of PGE2/PTGER2 on the expression of FGF2. Stimulation of EREG by PGE2 is also mediated by PTGER2 but, in contrast to FGF2, EREG was found to be PKA sensitive. PGE2-stimulated FGF2 can act to maintain granulosa cell survival; it can also act on ovarian endothelial cells to promote angiogenesis.
Collapse
Affiliation(s)
- Ketan Shrestha
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
33
|
Kim SO, Trau HA, Duffy DM. Vascular endothelial growth factors C and D may promote angiogenesis in the primate ovulatory follicle. Biol Reprod 2018; 96:389-400. [PMID: 28203718 DOI: 10.1095/biolreprod.116.144733] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis in the ovary occurs rapidly as the ovarian follicle transforms into a mature corpus luteum. Granulosa cells produce vascular endothelial growth factor A (VEGFA) in response to the ovulatory gonadotropin surge. VEGFA is established as a key mediator of angiogenesis in the primate ovulatory follicle. To determine if additional VEGF family members may be involved in angiogenesis within the ovulatory follicle, cynomolgus monkeys (Macaca fascicularis) received gonadotropins to stimulate multiple follicular development, and human chorionic gonadotropin (hCG) substituted for the luteinizing hormone surge to initiate ovulatory events. Granulosa cells of monkey ovulatory follicles contained mRNA and protein for VEGFC and VEGFD before and after hCG administration. VEGFC and VEGFD were detected in monkey follicular fluid and granulosa cell-conditioned culture media, suggesting that granulosa cells of ovulatory follicles secrete both VEGFC and VEGFD. To determine if these VEGF family members can stimulate angiogenic events, monkey ovarian microvascular endothelial cells (mOMECs) were obtained from monkey ovulatory follicles and treated in vitro with VEGFC and VEGFD. Angiogenic events are mediated via three VEGF receptors; mOMECs express all three VEGF receptors in vivo and in vitro. Exposure of mOMECs to VEGFC increased phosphorylation of AKT, while VEGFD treatment increased phosphorylation of both AKT and CREB. VEGFC and VEGFD increased mOMEC migration and the formation of endothelial cell sprouts in vitro. However, only VEGFD increased mOMEC proliferation. These findings suggest that VEGFC and VEGFD may work in conjunction with VEGFA to stimulate early events in angiogenesis of the primate ovulatory follicle.
Collapse
Affiliation(s)
- Soon Ok Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Heidi A Trau
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, 500 DW Brooks Drive, Athens, GA, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School; PO Box 1980, Norfolk, Virginia, USA
| |
Collapse
|
34
|
Confirmation of Luteinizing Hormone (LH) in Living Human Vitreous and the Effect of LH Receptor Reduction on Murine Electroretinogram. Neuroscience 2018; 385:1-10. [PMID: 29890291 DOI: 10.1016/j.neuroscience.2018.05.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/24/2022]
Abstract
Luteinizing hormone (LH), produced in the anterior pituitary, has been detected in cadaver eyes and LH receptors (LHRs) have been identified in the retina, with the highest density in cone photoreceptors. Our aim was to confirm the presence of LH in the living, human eye as well as to examine the potential impact of a reduction in LHR signaling on visual processing. Vitreous samples were collected from 40 patients (23 diabetics, 17 non-diabetics) who were undergoing vitrectomies for various indications. LH concentration was quantified in each sample via an electro-chemiluminescence immunoassay and Meso Scale Discovery platform and normalized to total protein. In addition, full-field electroretinography (ERG) was performed on 11 adult LHR knockout heterozygous mice (B6;129X1-Lhcgrtm1Zmlei/J) and 11 wild types using the Celeris-Diagnosys system. The median LH values (pg/mg total protein) for non-diabetics, diabetics without proliferative diabetic retinopathy (PDR) and diabetics with PDR were 40.7, 41.9 and 167.8 respectively. LH levels were significantly higher in diabetics with PDR. In our ERG investigation, heterozygous LHRKOs were found to have significantly reduced amplitudes of a-wave and b-waves at high stimulus intensities with no significant change in a-wave or b-wave amplitudes at lower intensities; this is consistent with a selective impairment of cone-mediated responses. Our findings confirm LH is present in the adult human eye. Our findings also suggest that a reduction in LH receptor signaling negatively impacts visual processing of the cone photoreceptors. Overall, our study results support the theory that LH likely plays a physiologic role in the eye.
Collapse
|
35
|
Cai JY, Hou YN, Li J, Ma K, Yao GD, Liu WW, Hayashi T, Itoh K, Tashiro SI, Onodera S, Ikejima T. Prostaglandin E2 attenuates synergistic bactericidal effects between COX inhibitors and antibiotics on Staphylococcus aureus. Prostaglandins Leukot Essent Fatty Acids 2018; 133:16-22. [PMID: 29789128 DOI: 10.1016/j.plefa.2018.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/30/2018] [Accepted: 04/25/2018] [Indexed: 12/27/2022]
Abstract
PGE2 is found to attenuate the bactericidal effects of kanamycin or ampicillin in Staphylococcus aureus, as well as the methicillin-resistant S. aureus (MRSA). Co-treatment with cyclooxygenase (COX) inhibitors (celecoxib, aspirin or naproxen) synergistically enhances kanamycin or ampicillin-induced cell death of S. aureus and MRSA. COX inhibitors repressed bacterial multidrug resistance through down-regulating efflux pump activity in antibiotics-treated S. aureus and MRSA. However, this synergistic bactericidal effects are reduced by the treatment with PGE2. PGE2 restores the efflux pump activity as well as increases biofilm formation in S. aureus and MRSA. Collectively, the enhancement of efflux pump activity and biofilm formation with PGE2 might partially explain the resistance to synergistic bactericidal effects between COX inhibitors and antibiotics in PGE2-treated S. aureus.
Collapse
Affiliation(s)
- Jia-Yi Cai
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yong-Na Hou
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jian Li
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kai Ma
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Guo-Dong Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Wei-Wei Liu
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kikuji Itoh
- Biotechnical Center, Japan SLC, Inc., Shizuoka 431-1103, Japan.
| | - Shin-Ichi Tashiro
- Department of Medical Education & Primary Care, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Satoshi Onodera
- Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543, Japan.
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
36
|
Hannon PR, Duffy DM, Rosewell KL, Brännström M, Akin JW, Curry TE. Ovulatory Induction of SCG2 in Human, Nonhuman Primate, and Rodent Granulosa Cells Stimulates Ovarian Angiogenesis. Endocrinology 2018; 159:2447-2458. [PMID: 29648638 PMCID: PMC6287591 DOI: 10.1210/en.2018-00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
The luteinizing hormone (LH) surge is essential for ovulation, but the intrafollicular factors induced by LH that mediate ovulatory processes (e.g., angiogenesis) are poorly understood, especially in women. The role of secretogranin II (SCG2) and its cleaved bioactive peptide, secretoneurin (SN), were investigated as potential mediators of ovulation by testing the hypothesis that SCG2/SN is induced in granulosa cells by human chorionic gonadotropin (hCG), via a downstream LH receptor signaling mechanism, and stimulates ovarian angiogenesis. Humans, nonhuman primates, and rodents were treated with hCG in vivo resulting in a significant increase in the messenger RNA and protein levels of SCG2 in granulosa cells collected early during the periovulatory period and just prior to ovulation (humans: 12 to 34 hours; monkeys: 12 to 36 hours; rodents: 4 to 12 hours post-hCG). This induction by hCG was recapitulated in an in vitro culture system utilizing granulosa-lutein cells from in vitro fertilization patients. Using this system, inhibition of downstream LH receptor signaling pathways revealed that the initial induction of SCG2 is regulated, in part, by epidermal growth factor receptor signaling. Further, human ovarian microvascular endothelial cells were treated with SN (1 to 100 ng/mL) and subjected to angiogenesis assays. SN significantly increased endothelial cell migration and new sprout formation, suggesting induction of ovarian angiogenesis. These results establish that SCG2 is increased in granulosa cells across species during the periovulatory period and that SN may mediate ovulatory angiogenesis in the human ovary. These findings provide insight into the regulation of human ovulation and fertility.
Collapse
Affiliation(s)
- Patrick R Hannon
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk,
Virginia
| | - Katherine L Rosewell
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of
Gothenburg, Gothenburg, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
- Correspondence: Thomas E. Curry, Jr., PhD, Department of Obstetrics and Gynecology, University of
Kentucky, 800 Rose Street, Room C351, Lexington, Kentucky 40536. E-mail:
| |
Collapse
|
37
|
Movsas TZ, Sigler R, Muthusamy A. Vitreous Levels of Luteinizing Hormone and VEGF are Strongly Correlated in Healthy Mammalian Eyes. Curr Eye Res 2018; 43:1041-1044. [PMID: 29677452 DOI: 10.1080/02713683.2018.1467932] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose/Aim: Luteinizing hormone (LH) is known to function as a key regulator of vascular endothelial growth factor (VEGF) expression in reproductive organs. In recent years, LH has also been detected in human vitreous and LH receptors have been identified in human retina. This study was aimed to investigate a potential correlation between LH and VEGF levels in healthy mammalian eyes to provide supporting evidence of LH's potential involvement in intraocular VEGF regulation. METHODS 18 bovine and 30 porcine eyes were procured from an abattoir and VEGF and LH levels were measured in the vitreous extracted from these eyes by commercially available bovine & porcine ELISA assay kits. Total protein of the vitreous was measured by using Micro BSA protein assay kit. RESULTS After total protein normalization, the Pearson Correlation Coefficients (PCC) showed a strong and significant correlation between LH and VEGF levels. (Bovine LH/VEGF PCC: 0.89, p < 0.001; Porcine LH/VEGF PCC: 0.80, p < 0.001). Linear regression analyses, adjusted for gender, showed significant linear relationships between LH and VEGF levels in both bovine and porcine vitreous. (Bovine: t-value = 7.69, p < 0.0001, adjusted r2 = .79; Porcine: t-value = 6.71, p < 0.001, adjusted r2 = .62) Conclusions: We show that VEGF and LH are strongly correlated in healthy, adult mammalian eyes. The robustness of the correlation is shown both by its strength of association and reproducibility in two species. Given that LH is well known to regulate VEGF levels in several tissue types, the LH/VEGF linear relationship in vitreous potentially implicates LH in homeostatic VEGF regulation of the eye. Because we also found that the correlation between LH and VEGF only became manifest when our targeted analytes were normalized by total amount of protein, preclinical and clinical investigators should consider normalizing analytes in vitreous by total protein when assessing potential correlations among them.
Collapse
Affiliation(s)
- Tammy Z Movsas
- a Zietchick Research Institute , Plymouth , MI , USA.,b College of Human Medicine , Michigan State University , East Lansing , MI , USA
| | - Robert Sigler
- c Unit for Laboratory Animal Medicine , University of Michigan Medical School , Ann Arbor , MI , USA
| | | |
Collapse
|
38
|
Bender, HR, Trau, HA, Duffy DM. Placental Growth Factor Is Required for Ovulation, Luteinization, and Angiogenesis in Primate Ovulatory Follicles. Endocrinology 2018; 159:710-722. [PMID: 29095972 PMCID: PMC5774250 DOI: 10.1210/en.2017-00739] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022]
Abstract
Placental growth factor (PGF) is member of the vascular endothelial growth factor (VEGF) family of angiogenesis regulators. VEGFA is an established regulator of ovulation and formation of the corpus luteum. To determine whether PGF also mediates aspects of ovulation and luteinization, macaques received gonadotropins to stimulate multiple follicular development. Ovarian biopsies and whole ovaries were collected before (0 hours) and up to 36 hours after human chorionic gonadotropin (hCG) administration to span the ovulatory interval. PGF and VEGFA were expressed by both granulosa cells and theca cells. In follicular fluid, PGF and VEGFA levels were lowest before hCG. PGF levels remained low until 36 hours after hCG administration, when PGF increased sevenfold to reach peak levels. Follicular fluid VEGFA increased threefold to reach peak levels at 12 hours after hCG, then dropped to intermediate levels. To explore the roles of PGF and VEGFA in ovulation, luteinization, and follicular angiogenesis in vivo, antibodies were injected into the follicular fluid of naturally developed monkey follicles; ovariectomy was performed 48 hours after hCG, with ovulation expected about 40 hours after hCG. Intrafollicular injection of control immunoglobulin G resulted in no retained oocytes, follicle rupture, and structural luteinization, including granulosa cell hypertrophy and capillary formation in the granulosa cell layer. PGF antibody injection resulted in oocyte retention, abnormal rupture, and incomplete luteinization, with limited and disorganized angiogenesis. Injection of a VEGFA antibody resulted in oocyte retention and very limited follicle rupture or structural luteinization. These studies demonstrate that PGF, in addition to VEGFA, is required for ovulation, luteinization, and follicular angiogenesis in primates.
Collapse
Affiliation(s)
- Hannah R. Bender,
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Heidi A. Trau,
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501
| |
Collapse
|
39
|
Spicer LJ, Schütz LF, Williams JA, Schreiber NB, Evans JR, Totty ML, Gilliam JN. G protein-coupled receptor 34 in ovarian granulosa cells of cattle: changes during follicular development and potential functional implications. Domest Anim Endocrinol 2017; 59:90-99. [PMID: 28040605 PMCID: PMC5357439 DOI: 10.1016/j.domaniend.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/08/2023]
Abstract
Abundance of G protein-coupled receptor 34 (GPR34) mRNA is greater in granulosa cells (GCs) of cystic vs normal follicles of cattle. The present experiments were designed to determine if GPR34 mRNA in granulosa cell [GC] changes during selection and growth of dominant follicles in cattle as well as to investigate the hormonal regulation of GPR34 mRNA in bovine GC in vitro. In Exp. 1, estrous cycles of nonlactating cows were synchronized and then ovariectomized on either day 3-4 or 5-6 after ovulation. GPR34 mRNA abundance in GC was 2.8- to 3.8-fold greater (P < 0.05) in small (1-5 mm) and large (≥8 mm) estrogen-inactive dominant follicles than in large estrogen-active follicles. Also, GPR34 mRNA tended to be greater (P < 0.10) in F2 than F1 follicles on day 3-4 postovulation. In Exp. 2-7, ovaries were collected at an abattoir and GC were isolated and treated in vitro. Expression of GPR34 was increased (P < 0.05) 2.2-fold by IGF1. Tumor necrosis factor (TNF)-α decreased (P < 0.05) the IGF1-induced GPR34 mRNA abundance in small-follicle GC, whereas IGF1 decreased (P < 0.05) GPR34 expression by 45% in large-follicle GC. Treatment of small-follicle GC with either IL-2, prostaglandin E2 or angiogenin decreased (P < 0.05) GPR34 expression, whereas FSH, cortisol, wingless 3A, or hedgehog proteins did not affect (P > 0.10) GPR34 expression. In Exp. 6 and 7, 2 presumed ligands of GPR34, L-a-lysophosphatidylserine (LPPS) and LPP-ethanolamine, increased (P < 0.05) GC numbers and estradiol production by 2-fold or more in small-follicle GC, and this response was only observed in IGF1-treated GC. In conclusion, GPR34 is a developmentally and hormonally regulated gene in GC, and its presumed ligands enhance IGF1-induced proliferation and steroidogenesis of bovine GC.
Collapse
Affiliation(s)
- L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
| | - L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J A Williams
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J R Evans
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - M L Totty
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J N Gilliam
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
40
|
Walusimbi SS, Wetzel LM, Townson DH, Pate JL. Isolation of luteal endothelial cells and functional interactions with T lymphocytes. Reproduction 2017; 153:519-533. [PMID: 28174320 DOI: 10.1530/rep-16-0578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/13/2017] [Accepted: 02/07/2017] [Indexed: 12/23/2022]
Abstract
The objectives of this study were to optimize the isolation of luteal endothelial cells (LEC) and examine their functional interactions with autologous T lymphocytes. Analysis by flow cytometry showed that the purity of LEC isolated by filtration was nearly 90% as indicated by Bandeiraea simplicifolia (BS)-1 lectin binding. LEC expressed mRNA for progesterone receptor (PGR), prostaglandin receptors (PTGFR, PTGER2 and 4, and PTGIR), tumor necrosis factor receptors (TNFRSF1A&B) and interleukin (IL) 1B receptors (IL1R1&2). LEC were pretreated with either vehicle, progesterone (P4; 0-20 µM), prostaglandin (PG) E2 or PGF2α (0-0.2 µM), and further treated with or without TNF and IL1B (50 ng/mL each). LEC were then incubated with autologous T lymphocytes in an adhesion assay. Fewer lymphocytes adhered to LEC after exposure to high compared to low P4 concentrations (cubic response; P < 0.05). In contrast, 0.2 µM PGE2 and PGF2α each increased T lymphocyte adhesion in the absence of cytokines (P < 0.05). LEC induced IL2 receptor alpha (CD25) expression and proliferation of T lymphocytes. In conclusion, filtration is an effective way of isolating large numbers of viable LEC. It is proposed that PGs and P4 modulate the ability of endothelial cells to bind T lymphocytes, potentially regulating extravasation, and that LEC activate T lymphocytes migrating into or resident in the CL.
Collapse
Affiliation(s)
- S S Walusimbi
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - L M Wetzel
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - D H Townson
- Department of Animal and Veterinary SciencesUniversity of Vermont, Burlington, Vermont, USA
| | - J L Pate
- Department of Animal ScienceCenter for Reproductive Biology and Health, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
41
|
Integrated application of transcriptomics and metabolomics yields insights into population-asynchronous ovary development in Coilia nasus. Sci Rep 2016; 6:31835. [PMID: 27545088 PMCID: PMC4992829 DOI: 10.1038/srep31835] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/27/2016] [Indexed: 11/11/2022] Open
Abstract
Populations of Coilia nasus demonstrate asynchronous ovarian development, which severely restricts artificial breeding and large-scale cultivation. In this study, we used a combination of transcriptomic and metabolomic methods to identify the key signaling pathways and genes regulation affecting ovarian development. We identified 565 compounds and generated 47,049 unigenes from ovary tissue. Fifteen metabolites and 830 genes were significantly up-regulated, while 27 metabolites and 642 genes were significantly down-regulated from stage III to stage IV of ovary development. Meanwhile, 31 metabolites and 1,932 genes were significantly up-regulated, and four metabolites and 764 genes were down-regulated from stage IV to stage V. These differentially expressed genes and metabolites were enriched by MetScape. Forty-three and 50 signaling pathways had important functions from stage III–IV and from stage IV–V in the ovary, respectively. Among the above signaling pathways, 39 played important roles from ovarian stage III–V, including “squalene and cholesterol biosynthesis”, “steroid hormone biosynthesis”, and “arachidonate metabolism and prostaglandin formation” pathways which may thus have key roles in regulating asynchronous development. These results shed new light on our understanding of the mechanisms responsible for population-asynchronous development in fish.
Collapse
|
42
|
Kim SO, Duffy DM. Mapping PTGERs to the Ovulatory Follicle: Regional Responses to the Ovulatory PGE2 Signal. Biol Reprod 2016; 95:33. [PMID: 27307073 PMCID: PMC5029471 DOI: 10.1095/biolreprod.116.140574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/27/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a key intrafollicular mediator of ovulation in many, if not all, mammalian species. PGE2 acts at follicular cells via four distinct PGE2 receptors (PTGERs). Within the ovulatory follicle, each cell type (e.g., oocyte, cumulus granulosa cell, mural granulosa cell, theca cell, endothelial cell) expresses a different subset of the four PTGERs. Expression of a subset of PTGERs has consequences for the generation of intracellular signals and ultimately the unique functions of follicular cells that respond to PGE2. Just as the ovulatory LH surge regulates PGE2 synthesis, the LH surge also regulates expression of the four PTGERs. The pattern of expression of the four PTGERs among follicular cells before and after the LH surge forms a spatial and temporal map of PGE2 responses. Differential PTGER expression, coupled with activation of cell-specific intracellular signals, may explain how a single paracrine mediator can have pleotropic actions within the ovulatory follicle. Understanding the role of each PTGER in ovulation may point to previously unappreciated opportunities to both promote and prevent fertility.
Collapse
Affiliation(s)
- Soon Ok Kim
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
43
|
Trau HA, Brännström M, Curry TE, Duffy DM. Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Hum Reprod 2016; 31:436-44. [PMID: 26740577 DOI: 10.1093/humrep/dev320] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/26/2015] [Indexed: 01/12/2023] Open
Abstract
STUDY QUESTION Which receptors for prostaglandin E2 (PGE2) and vascular endothelial growth factor A (VEGFA) mediate angiogenesis in the human follicle around the time of ovulation? SUMMARY ANSWER PGE2 and VEGFA act via multiple PGE2 receptors (PTGERs) and VEGF receptors (VEGFRs) to play complementary roles in follicular angiogenesis. WHAT IS KNOWN ALREADY Production of PGE2 and VEGFA by the follicle are prerequisites for ovulation. PGE2 is an emerging regulator of angiogenesis and has not been examined in the context of the human ovulatory follicle. VEGFA is an established regulator of follicular angiogenesis. STUDY DESIGN, SIZE, DURATION Ovarian biopsies containing the ovulatory follicle were obtained from 11 women of reproductive age (30-45 years) undergoing surgery for laparoscopic sterilization. In some cases, women received hCG to substitute for the ovulatory LH surge before ovarian biopsy. In addition, aspirates from four women of reproductive age (18-31 years) undergoing gonadotrophin stimulation for oocyte donation were obtained for isolation of human ovarian microvascular endothelial cells (hOMECs). PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian biopsies were utilized for immunocytochemical detection of von Willebrand factor to identify endothelial cells. hOMECs were cultured with PGE2, PTGER receptor selective agonists, VEGFA, or VEGFR selective agonists. hOMECs were assessed for proliferation by Ki67 immunocytochemistry. hOMEC migration was determined by counting cells which migrated through a porous membrane in vitro. Sprout formation was quantified by determining sprout number and length from photographs take after culture of hOMECs in a 3-dimensional matrix. MAIN RESULTS AND THE ROLE OF CHANCE Endothelial cells were not observed within the granulosa cell layer of human ovulatory follicles prior to an ovulatory dose of hCG and were first seen amongst granulosa cells 18-34 h after hCG. In vitro, PGE2 enhanced migration and sprout formation but did not alter hOMEC proliferation. Agonists selective for each PTGER increased migration with no change in proliferation. PTGER1 and PTGER2 agonists increased the number of sprouts, while only PTGER1 affected sprout length. VEGFA increased hOMEC proliferation, migration, and formation of structures resembling capillary sprouts. Signaling through VEGFR1 promoted hOMEC migration, proliferation, and the formation of few, long endothelial cell sprouts, while VEGFR2 stimulation promoted hOMEC migration and the formation of many, short sprouts. All effects of treatments in vitro were considered significant at P < 0.05. LIMITATIONS, REASONS FOR CAUTION While primary cultures of hOMECs respond to PGE2 and VEGFA differently than other cultured endothelial cells, hOMECs may not respond to PGE2 and VEGFA in vivo as they do in vitro. WIDER IMPLICATIONS OF THE FINDINGS Agonists and antagonists selective for PTGER1, PTGER2, VEGFR1, or VEGFR2 may have therapeutic value to promote or prevent ovulation in women. STUDY FUNDING/COMPETING INTERESTS This research was supported by grant funding from the Eunice Kennedy Shriver National Institutes of Child Health and Human Development (HD071875 to D.M.D., T.E.C., M.B.). The authors have no conflicts of interest to disclose.
Collapse
Affiliation(s)
- Heidi A Trau
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
44
|
Sharp JA, Hair PS, Pallera HK, Kumar PS, Mauriello CT, Nyalwidhe JO, Phelps CA, Park D, Thielens NM, Pascal SM, Chen W, Duffy DM, Lattanzio FA, Cunnion KM, Krishna NK. Peptide Inhibitor of Complement C1 (PIC1) Rapidly Inhibits Complement Activation after Intravascular Injection in Rats. PLoS One 2015; 10:e0132446. [PMID: 26196285 PMCID: PMC4511006 DOI: 10.1371/journal.pone.0132446] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/15/2015] [Indexed: 12/20/2022] Open
Abstract
The complement system has been increasingly recognized to play a pivotal role in a variety of inflammatory and autoimmune diseases. Consequently, therapeutic modulators of the classical, lectin and alternative pathways of the complement system are currently in pre-clinical and clinical development. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement and is referred to as Peptide Inhibitor of Complement C1 (PIC1). In this study, we determined that the lead PIC1 variant demonstrates a salt-dependent binding to C1q, the initiator molecule of the classical pathway. Additionally, this peptide bound to the lectin pathway initiator molecule MBL as well as the ficolins H, M and L, suggesting a common mechanism of PIC1 inhibitory activity occurs via binding to the collagen-like tails of these collectin molecules. We further analyzed the effect of arginine and glutamic acid residue substitution on the complement inhibitory activity of our lead derivative in a hemolytic assay and found that the original sequence demonstrated superior inhibitory activity. To improve upon the solubility of the lead derivative, a pegylated, water soluble variant was developed, structurally characterized and demonstrated to inhibit complement activation in mouse plasma, as well as rat, non-human primate and human serum in vitro. After intravenous injection in rats, the pegylated derivative inhibited complement activation in the blood by 90% after 30 seconds, demonstrating extremely rapid function. Additionally, no adverse toxicological effects were observed in limited testing. Together these results show that PIC1 rapidly inhibits classical complement activation in vitro and in vivo and is functional for a variety of animal species, suggesting its utility in animal models of classical complement-mediated diseases.
Collapse
Affiliation(s)
- Julia A. Sharp
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Pamela S. Hair
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Haree K. Pallera
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Parvathi S. Kumar
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Clifford T. Mauriello
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Julius O. Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- The Leroy T. Canoles Jr. Cancer Research Center, Norfolk, Virginia, United States of America
| | - Cody A. Phelps
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Dalnam Park
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Nicole M. Thielens
- Univ. Grenoble Alpes, IBS, F-38044, Grenoble, France
- CNRS, IBS, F-38044, Grenoble, France
- CEA, IBS, F-38044, Grenoble, France
| | - Stephen M. Pascal
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, United States of America
| | - Waldon Chen
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, United States of America
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Frank A. Lattanzio
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Kenji M. Cunnion
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Children’s Specialty Group, Norfolk, Virginia, United States of America
| | - Neel K. Krishna
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| |
Collapse
|
45
|
Duffy DM. Novel contraceptive targets to inhibit ovulation: the prostaglandin E2 pathway. Hum Reprod Update 2015; 21:652-70. [PMID: 26025453 DOI: 10.1093/humupd/dmv026] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Prostaglandin E2 (PGE2) is an essential intrafollicular regulator of ovulation. In contrast with the one-gene, one-protein concept for synthesis of peptide signaling molecules, production and metabolism of bioactive PGE2 requires controlled expression of many proteins, correct subcellular localization of enzymes, coordinated PGE2 synthesis and metabolism, and prostaglandin transport in and out of cells to facilitate PGE2 action and degradation. Elevated intrafollicular PGE2 is required for successful ovulation, so disruption of PGE2 synthesis, metabolism or transport may yield effective contraceptive strategies. METHODS This review summarizes case reports and studies on ovulation inhibition in women and macaques treated with cyclooxygenase inhibitors published from 1987 to 2014. These findings are discussed in the context of studies describing levels of mRNA, protein, and activity of prostaglandin synthesis and metabolic enzymes as well as prostaglandin transporters in ovarian cells. RESULTS The ovulatory surge of LH regulates the expression of each component of the PGE2 synthesis-metabolism-transport pathway within the ovulatory follicle. Data from primary ovarian cells and cancer cell lines suggest that enzymes and transporters can cooperate to optimize bioactive PGE2 levels. Elevated intrafollicular PGE2 mediates key ovulatory events including cumulus expansion, follicle rupture and oocyte release. Inhibitors of the prostaglandin-endoperoxide synthase 2 (PTGS2) enzyme (also known as cyclooxygenase-2 or COX2) reduce ovulation rates in women. Studies in macaques show that PTGS2 inhibitors can reduce the rates of cumulus expansion, oocyte release, follicle rupture, oocyte nuclear maturation and fertilization. A PTGS2 inhibitor reduced pregnancy rates in breeding macaques when administered to simulate emergency contraception. However, PTGS2 inhibition did not prevent pregnancy in monkeys when administered to simulate monthly contraceptive use. CONCLUSION PTGS2 inhibitors alone may be suitable for use as emergency contraceptives. However, drugs of this class are unlikely to be effective as monthly contraceptives. Inhibitors of additional PGE2 synthesis enzymes or modulation of PGE2 metabolism or transport also hold potential for reducing follicular PGE2 and preventing ovulation. Approaches which target multiple components of the PGE2 synthesis-metabolism-transport pathway may be required to effectively block ovulation and lead to the development of novel contraceptive options for women. Therapies which target PGE2 may also impact disorders of the uterus and could also have benefits for women's health in addition to contraception.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 Olney Road, Lewis Hall, Norfolk, VA 23507, USA
| |
Collapse
|