1
|
Sequence, structural and functional conservation among the human and fission yeast ELL and EAF transcription elongation factors. Mol Biol Rep 2021; 49:1303-1320. [PMID: 34807377 DOI: 10.1007/s11033-021-06958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Transcription elongation is a dynamic and tightly regulated step of gene expression in eukaryotic cells. Eleven nineteen Lysine rich Leukemia (ELL) and ELL Associated Factors (EAF) family of conserved proteins are required for efficient RNA polymerase II-mediated transcription elongation. Orthologs of these proteins have been identified in different organisms, including fission yeast and humans. METHODS AND RESULTS In the present study, we have examined the sequence, structural and functional conservation between the fission yeast and human ELL and EAF orthologs. Our computational analysis revealed that these proteins share some sequence characteristics, and were predominantly disordered in both organisms. Our functional complementation assays revealed that both human ELL and EAF proteins could complement the lack of ell1+ or eaf1+ in Schizosaccharomyces pombe respectively. Furthermore, our domain mapping experiments demonstrated that both the amino and carboxyl terminal domains of human EAF proteins could functionally complement the S. pombe eaf1 deletion phenotypes. However, only the carboxyl-terminus domain of human ELL was able to partially rescue the phenotypes associated with lack of ell1+ in S. pombe. CONCLUSIONS Collectively, our work adds ELL-EAF to the increasing list of human-yeast complementation gene pairs, wherein the simpler fission yeast can be used to further enhance our understanding of the role of these proteins in transcription elongation and human disease.
Collapse
|
2
|
Dabas P, Dhingra Y, Sweta K, Chakrabarty M, Singhal R, Tyagi P, Behera PM, Dixit A, Bhattacharjee S, Sharma N. Arabidopsis thaliana possesses two novel ELL associated factor homologs. IUBMB Life 2021; 73:1115-1130. [PMID: 34089218 DOI: 10.1002/iub.2513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/06/2022]
Abstract
Transcription elongation is one of the key steps at which RNA polymerase II-directed expression of protein-coding genes is regulated in eukaryotic cells. Different proteins have been shown to control this process, including the ELL/EAF family. ELL Associated Factors (EAFs) were first discovered in a yeast two-hybrid screen as interaction partners of the human ELL (Eleven nineteen Lysine-rich Leukemia) transcription elongation factor. Subsequently, they have been identified in different organisms, including Schizosaccharomyces pombe. However, no homolog(s) of EAF has as yet been characterized from plants. In the present work, we identified EAF orthologous sequences in different plants and have characterized two novel Arabidopsis thaliana EAF homologs, AtEAF-1 (At1g71080) and AtEAF-2 (At5g38050). Sequence analysis showed that both AtEAF-1 and AtEAF-2 exhibit similarity with its S. pombe EAF counterpart. Moreover, both Arabidopsis thaliana and S. pombe EAF orthologs share conserved sequence characteristic features. Computational tools also predicted a high degree of disorder in regions towards the carboxyl terminus of these EAF proteins. We demonstrate that AtEAF-2, but not AtEAF-1 functionally complements growth deficiencies of Schizosaccharomyces pombe eaf mutant. We also show that only AtEAF-1 displays transactivation potential resembling the S. pombe EAF ortholog. Subsequent expression analysis in A. thaliana showed that both homologs were expressed at varying levels during different developmental stages and in different tissues tested in the study. Individual null-mutants of either AtEAF-1 or AtEAF-2 are developmentally normal implying their functional redundancy. Taken together, our results provide first evidence that A. thaliana also possesses functional EAF proteins, suggesting an evolutionary conservation of these proteins across organisms.
Collapse
Affiliation(s)
- Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Yukti Dhingra
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Mohima Chakrabarty
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Ritwik Singhal
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | - Prasidhi Tyagi
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| | | | | | - Saikat Bhattacharjee
- Laboratory of Signal Transduction and plant resistance, Regional Center of Biotechnology, NCR-Biotech Science Cluster, Gurgaon-Faridabad Expressway, Faridabad, Haryana, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, New Delhi, India
| |
Collapse
|
3
|
Sweta K, Dabas P, Jain K, Sharma N. The amino-terminal domain of ELL transcription elongation factor is essential for ELL function in Schizosaccharomyces pombe. MICROBIOLOGY-SGM 2017; 163:1641-1653. [PMID: 29043956 DOI: 10.1099/mic.0.000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcriptional elongation is a critical step for regulating expression of protein-coding genes. Multiple transcription elongation factors have been identified in vitro, but the physiological roles of many of them are still not clearly understood. The ELL (Eleven nineteen Lysine rich Leukemia) family of transcription elongation factors are conserved from fission yeast to humans. Schizosaccharomyces pombe contains a single ELL homolog (SpELL) that is not essential for its survival. Therefore to gain insights into the in vivo cellular functions of SpELL, we identified phenotypes associated with deletion of ell1 in S. pombe. Our results demonstrate that SpELL is required for normal growth of S. pombe cells. Furthermore, cells lacking ell1+ exhibit a decrease in survival when exposed to DNA-damaging conditions, but their growth is not affected under environmental stress conditions. ELL orthologs in different organisms contain three conserved domains, an amino-terminal domain, a middle domain and a carboxyl-terminal domain. We also carried out an in vivo functional mapping of these conserved domains within S. pombe ELL and uncovered a critical role for its amino-terminus in regulating all its cellular functions, including growth under different conditions, transcriptional elongation potential and interaction with S. pombe EAF. Taken together our results suggest that the domain organization of ELL proteins is conserved across species, but the in vivo functions as well as the relationship between the various domains and roles of ELL show species-specific differences.
Collapse
Affiliation(s)
- Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Kamal Jain
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi-110078, India
| |
Collapse
|
4
|
Dabas P, Sweta K, Ekka M, Sharma N. Structure function characterization of the ELL Associated Factor (EAF) from Schizosaccharomyces pombe. Gene 2017; 641:117-128. [PMID: 29032152 DOI: 10.1016/j.gene.2017.10.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 10/07/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023]
Abstract
EAF (ELL Associated Factor) proteins interact with the transcription elongation factor, ELL (Eleven nineteen Lysine rich Leukemia) and enhance its ability to stimulate RNA polymerase II-mediated transcriptional elongation in vitro. Schizosaccharomyces pombe contains a single homolog of EAF (SpEAF), which is not essential for survival of S. pombe in contrast to its essential higher eukaryotic homologs. The physiological role of SpEAF is not well understood. In this study, we show that S. pombe EAF is important in regulating growth of S. pombe cells during normal growth conditions. Moreover, SpEAF is also essential for survival under conditions of DNA damage, while its deletion does not affect growth under environmental stress conditions. Our in vivo structure-function studies further demonstrate that while both the amino and carboxyl terminal domains of SpEAF possess the potential to activate transcription, only the amino terminal domain of SpEAF is involved in interaction with the S. pombe ELL protein. The carboxyl-terminus of SpEAF is required for rescue of the growth defect under normal and DNA damaging conditions that is associated with the absence of SpEAF. Using bioinformatics and circular dichroism spectroscopy, we show that the carboxyl-terminus of SpEAF has a disordered conformation. Furthermore, addition of trifluoroethanol triggered its transition from a disordered to α-helical conformation. Taken together, the results presented here identify novel structural and functional features of SpEAF protein, providing insights into how EAF proteins may enforce transcriptional control of gene expression.
Collapse
Affiliation(s)
- Preeti Dabas
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India
| | - Kumari Sweta
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India
| | - Mary Ekka
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Opp. Sukhdev Vihar Bus Depot, New Delhi, Delhi 110025, India
| | - Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University, Sector16C, Dwarka, New Delhi 110078, India.
| |
Collapse
|
5
|
Abstract
In this review, Hu and Shilatifard summarize recent advances in our understanding of the role of chromatin modifiers in normal hematopoiesis and their contributions in hematopoietic transformation. Hematological malignancies comprise a diverse set of lymphoid and myeloid neoplasms in which normal hematopoiesis has gone awry and together account for ∼10% of all new cancer cases diagnosed in the United States in 2016. Recent intensive genomic sequencing of hematopoietic malignancies has identified recurrent mutations in genes that encode regulators of chromatin structure and function, highlighting the central role that aberrant epigenetic regulation plays in the pathogenesis of these neoplasms. Deciphering the molecular mechanisms for how alterations in epigenetic modifiers, specifically histone and DNA methylases and demethylases, drive hematopoietic cancer could provide new avenues for developing novel targeted epigenetic therapies for treating hematological malignancies. Just as past studies of blood cancers led to pioneering discoveries relevant to other cancers, determining the contribution of epigenetic modifiers in hematologic cancers could also have a broader impact on our understanding of the pathogenesis of solid tumors in which these factors are mutated.
Collapse
Affiliation(s)
- Deqing Hu
- Department of Biochemistry and Molecular Genetics
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
6
|
Meeks JJ, Shilatifard A. Multiple Roles for the MLL/COMPASS Family in the Epigenetic Regulation of Gene Expression and in Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2017. [DOI: 10.1146/annurev-cancerbio-050216-034333] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joshua J. Meeks
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
7
|
A Minor Subset of Super Elongation Complexes Plays a Predominant Role in Reversing HIV-1 Latency. Mol Cell Biol 2016; 36:1194-205. [PMID: 26830226 DOI: 10.1128/mcb.00994-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/21/2016] [Indexed: 11/20/2022] Open
Abstract
Promoter-proximal pausing by RNA polymerase II (Pol II) is a key rate-limiting step in HIV-1 transcription and latency reversal. The viral Tat protein recruits human super elongation complexes (SECs) to paused Pol II to overcome this restriction. Despite the recent progress in understanding the functions of different subsets of SECs in controlling cellular and Tat-activated HIV transcription, little is known about the SEC subtypes that help reverse viral latency in CD4(+) T cells. Here, we used the CRISPR-Cas9 genome-editing tool to knock out the gene encoding the SEC subunit ELL2, AFF1, or AFF4 in Jurkat/2D10 cells, a well-characterized HIV-1 latency model. Depletion of these proteins drastically reduced spontaneous and drug-induced latency reversal by suppressing HIV-1 transcriptional elongation. Surprisingly, a low-abundance subset of SECs containing ELL2 and AFF1 was found to play a predominant role in cooperating with Tat to reverse latency. By increasing the cellular level/activity of these Tat-friendly SECs, we could potently activate latent HIV-1 without using any drugs. These results implicate the ELL2/AFF1-SECs as an important target in the future design of a combinatorial therapeutic approach to purge latent HIV-1.
Collapse
|
8
|
Pereira LA, Hugo HJ, Malaterre J, Huiling X, Sonza S, Cures A, Purcell DFJ, Ramsland PA, Gerondakis S, Gonda TJ, Ramsay RG. MYB elongation is regulated by the nucleic acid binding of NFκB p50 to the intronic stem-loop region. PLoS One 2015; 10:e0122919. [PMID: 25853889 PMCID: PMC4390348 DOI: 10.1371/journal.pone.0122919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 02/23/2015] [Indexed: 11/30/2022] Open
Abstract
MYB transcriptional elongation is regulated by an attenuator sequence within intron 1 that has been proposed to encode a RNA stem loop (SLR) followed by a polyU tract. We report that NFκBp50 can bind the SLR polyU RNA and promote MYB transcriptional elongation together with NFκBp65. We identified a conserved lysine-rich motif within the Rel homology domain (RHD) of NFκBp50, mutation of which abrogated the interaction of NFκBp50 with the SLR polyU and impaired NFκBp50 mediated MYB elongation. We observed that the TAR RNA-binding region of Tat is homologous to the NFκBp50 RHD lysine-rich motif, a finding consistent with HIV Tat acting as an effector of MYB transcriptional elongation in an SLR dependent manner. Furthermore, we identify the DNA binding activity of NFκBp50 as a key component required for the SLR polyU mediated regulation of MYB. Collectively these results suggest that the MYB SLR polyU provides a platform for proteins to regulate MYB and reveals novel nucleic acid binding properties of NFκBp50 required for MYB regulation.
Collapse
Affiliation(s)
- Lloyd A. Pereira
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre, Locked Bag #1, Melbourne, Victoria, 8006, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Honor J. Hugo
- Victorian Breast Cancer Consortium, Invasion and Metastasis Unit, St Vincent’s Institute of Medical Research, Melbourne, Victoria, 3065, Australia
| | - Jordane Malaterre
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre, Locked Bag #1, Melbourne, Victoria, 8006, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Xu Huiling
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre, Locked Bag #1, Melbourne, Victoria, 8006, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Department of Pathology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Secondo Sonza
- The Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alina Cures
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre, Locked Bag #1, Melbourne, Victoria, 8006, Australia
| | - Damian F. J. Purcell
- The Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul A. Ramsland
- Centre for Immunology, Burnet Institute, Melbourne, Victoria, 3004, Australia
- Department of Surgery (Austin Health), The University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria, 3004, Australia
| | - Steven Gerondakis
- Australian Centre for Blood Diseases, Monash University, Prahran, Victoria 3004, Australia
| | - Thomas J. Gonda
- School of Pharmacy University of Queensland, Woolloongabba, Queensland, 4102, Australia
| | - Robert G. Ramsay
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre, Locked Bag #1, Melbourne, Victoria, 8006, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Department of Pathology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
9
|
Park KS, Bayles I, Szlachta-McGinn A, Paul J, Boiko J, Santos P, Liu J, Wang Z, Borghesi L, Milcarek C. Transcription elongation factor ELL2 drives Ig secretory-specific mRNA production and the unfolded protein response. THE JOURNAL OF IMMUNOLOGY 2014; 193:4663-74. [PMID: 25238757 DOI: 10.4049/jimmunol.1401608] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Differentiation of B cells into Ab-secreting cells induces changes in gene transcription, IgH RNA processing, the unfolded protein response (UPR), and cell architecture. The transcription elongation factor eleven nineteen lysine-rich leukemia gene (ELL2) stimulates the processing of the secreted form of the IgH mRNA from the H chain gene. Mice (mus musculus) with the ELL2 gene floxed in either exon 1 or exon 3 were constructed and crossed to CD19-driven cre/CD19(+). The B cell-specific ELL2 conditional knockouts (cKOs; ell2(loxp/loxp) CD19(cre/+)) exhibit curtailed humoral responses both in 4-hydroxy-3-nitrophenyl acetyl-Ficoll and in 4-hydroxy-3-nitrophenyl acetyl-keyhole limpet hemocyanin immunized animals; recall responses were also diminished. The number of immature and recirculating B cells in the bone marrow is increased in the cKOs, whereas plasma cells in spleen are reduced relative to control animals. There are fewer IgG1 Ab-producing cells in the bone marrow of cKOs. LPS ex vivo-stimulated B220(lo)CD138(+) cells from ELL2-deficient mouse spleens are 4-fold less abundant than from control splenic B cells; have a paucity of secreted IgH; and have distended, abnormal-appearing endoplasmic reticulum. IRE1α is efficiently phosphorylated, but the amounts of Ig κ, ATF6, BiP, Cyclin B2, OcaB (BOB1, Pou2af1), and XBP1 mRNAs, unspliced and spliced, are severely reduced in ELL2-deficient cells. ELL2 enhances the expression of BCMA (also known as Tnfrsf17), which is important for long-term survival. Transcription yields from the cyclin B2 and the canonical UPR promoter elements are upregulated by ELL2 cDNA. Thus, ELL2 is important for many aspects of Ab secretion, XBP1 expression, and the UPR.
Collapse
Affiliation(s)
- Kyung Soo Park
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Ian Bayles
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | | | - Joshua Paul
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Julie Boiko
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Patricia Santos
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - June Liu
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Zhou Wang
- Department of Urology, University of Pittsburgh Cancer Institute, Shadyside Medical Center, Pittsburgh, PA 15232
| | - Lisa Borghesi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| | - Christine Milcarek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261; and
| |
Collapse
|
10
|
Sumner C, d’Ydewalle C, Wooley J, Fawcett K, Hernandez D, Gardiner A, Kalmar B, Baloh R, Gonzalez M, Züchner S, Stanescu H, Kleta R, Mankodi A, Cornblath D, Boylan K, Reilly M, Greensmith L, Singleton A, Harms M, Rossor A, Houlden H. A dominant mutation in FBXO38 causes distal spinal muscular atrophy with calf predominance. Am J Hum Genet 2013; 93:976-83. [PMID: 24207122 PMCID: PMC3824115 DOI: 10.1016/j.ajhg.2013.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophies (SMAs) are a heterogeneous group of inherited disorders characterized by degeneration of anterior horn cells and progressive muscle weakness. In two unrelated families affected by a distinct form of autosomal-dominant distal SMA initially manifesting with calf weakness, we identified by genetic linkage analysis and exome sequencing a heterozygous missense mutation, c.616T>C (p.Cys206Arg), in F-box protein 38 (FBXO38). FBXO38 is a known coactivator of the transcription factor Krüppel-like factor 7 (KLF7), which regulates genes required for neuronal axon outgrowth and repair. The p.Cys206Arg substitution did not alter the subcellular localization of FBXO38 but did impair KLF7-mediated transactivation of a KLF7-responsive promoter construct and endogenous KLF7 target genes in both heterologously expressing human embryonic kidney 293T cells and fibroblasts derived from individuals with the FBXO38 missense mutation. This transcriptional dysregulation was associated with an impairment of neurite outgrowth in primary motor neurons. Together, these results suggest that a transcriptional regulatory pathway that has a well-established role in axonal development could also be critical for neuronal maintenance and highlight the importance of FBXO38 and KLF7 activity in motor neurons.
Collapse
Affiliation(s)
- Charlotte J. Sumner
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Constantin d’Ydewalle
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Laboratory for Neurobiology, Vesalius Research Center, VIB and KU Leuven, 3000 Leuven, Belgium
| | - Joe Wooley
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Katherine A. Fawcett
- Department of Molecular Neuroscience, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice R. Gardiner
- Department of Molecular Neuroscience, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Bernadett Kalmar
- The MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Robert H. Baloh
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90095, USA
| | - Michael Gonzalez
- Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Stephan Züchner
- Dr. John T. MacDonald Department of Human Genetics and Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Horia C. Stanescu
- Center for Nephrology, University College London, London WC1N 3BG, UK
| | - Robert Kleta
- Center for Nephrology, University College London, London WC1N 3BG, UK
| | - Ami Mankodi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - David R. Cornblath
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kevin B. Boylan
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mary M. Reilly
- Department of Molecular Neuroscience, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Linda Greensmith
- The MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew B. Harms
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander M. Rossor
- The MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The MRC Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery and UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
11
|
The little elongation complex functions at initiation and elongation phases of snRNA gene transcription. Mol Cell 2013; 51:493-505. [PMID: 23932780 DOI: 10.1016/j.molcel.2013.07.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/13/2013] [Accepted: 07/02/2013] [Indexed: 11/22/2022]
Abstract
The small nuclear RNA (snRNA) genes have been widely used as a model system for understanding transcriptional regulation due to the unique aspects of their promoter structure, selectivity for either RNA polymerase (Pol) II or III, and because of their unique mechanism of termination that is tightly linked with the promoter. Recently, we identified the little elongation complex (LEC) in Drosophila that is required for the expression of Pol II-transcribed snRNA genes. Here, using Drosophila and mammalian systems, we provide genetic and molecular evidence that LEC functions in at least two phases of snRNA transcription: an initiation step requiring the ICE1 subunit, and an elongation step requiring ELL.
Collapse
|
12
|
Smith E, Shilatifard A. Transcriptional elongation checkpoint control in development and disease. Genes Dev 2013; 27:1079-88. [PMID: 23699407 DOI: 10.1101/gad.215137.113] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transcriptional elongation control by RNA polymerase II and its associated factors has taken center stage as a process essential for the regulation of gene expression throughout development. In this review, we analyze recent findings on the identification of factors functioning in the regulation of the transcriptional elongation checkpoint control (TECC) stage of gene expression and how the factors' misregulation is associated with disease pathogenesis, including cancer.
Collapse
Affiliation(s)
- Edwin Smith
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
13
|
Jong JE, Cha S, Jang JH, Seo T. Alteration of Histone H3 Lysine 4 Trimethylation on Putative Lytic Gene Promoters by Human Set1 Complex during Reactivation of Kaposis Sarcoma-Associated Herpesvirus. Intervirology 2013; 56:91-103. [DOI: 10.1159/000343749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/11/2012] [Indexed: 01/06/2023] Open
|
14
|
Luo Z, Lin C, Shilatifard A. The super elongation complex (SEC) family in transcriptional control. Nat Rev Mol Cell Biol 2012; 13:543-7. [PMID: 22895430 DOI: 10.1038/nrm3417] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The super elongation complex (SEC) consists of the RNA polymerase II (Pol II) elongation factors eleven-nineteen Lys-rich leukaemia (ELL) proteins, positive transcription elongation factor b (P-TEFb) and several frequent mixed lineage leukaemia (MLL) translocation partners. It is one of the most active P-TEFb-containing complexes required for rapid transcriptional induction in the presence or absence of paused Pol II. The SEC was found to regulate the transcriptional elongation checkpoint control (TECC) stage of transcription, and misregulation of this stage is associated with cancer pathogenesis. Recent studies have shown that the SEC belongs to a larger family of SEC-like complexes, which includes SEC-L2 and SEC-L3, each with distinct gene target specificities.
Collapse
Affiliation(s)
- Zhuojuan Luo
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
15
|
Mascareno EJ, Belashov I, Siddiqui MAQ, Liu F, Dhar-Mascareno M. Hexim-1 modulates androgen receptor and the TGF-β signaling during the progression of prostate cancer. Prostate 2012; 72:1035-44. [PMID: 22095517 DOI: 10.1002/pros.21510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/13/2011] [Indexed: 01/30/2023]
Abstract
BACKGROUND Androgen and TGF-β signaling are important components during the progression of prostate cancer. However, whether common molecular events participate in the activation of these signaling pathways are less understood. METHOD Hexim 1 expression was detected by immunohistochemistry of human tissue microarrays and TRAMP mouse models. The in vivo significance of Hexim-1 was established by crossing the TRAMP mouse model of prostate cancer with Hexim-1 heterozygous mice. TRAMP C2 cell line was also modified to delete one copy of Hexim-1 gene to generate TRAMP-C2-Hexim-1+/- cell lines. RESULTS In this report, we observed that Hexim-1 protein expression is absent in normal prostate but highly expressed in adenocarcinoma of the prostate and a characteristic sub-cellular distribution among normal, benign hyperplasia, and adenocarcinoma of the prostate. Heterozygosity of the Hexim-1 gene in the prostate cancer mice model and the TRAMP-C2 cell line, leads to increased Cdk9-dependent serine phosphorylation on protein targets such as the androgen receptor (AR) and the TGF-β-dependent downstream transcription factors, such as the SMAD proteins. CONCLUSION Our results suggest that changes in the Hexim-1 protein expression and cellular distribution significantly influences the AR activation and the TGF-β signaling. Thus, Hexim-1 is likely to play a significant role in prostate cancer progression.
Collapse
Affiliation(s)
- Eduardo J Mascareno
- Department of Cell Biology, State University of New York, Downstate Medical School, Brooklyn, New York 11203, USA.
| | | | | | | | | |
Collapse
|
16
|
Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012; 81:65-95. [PMID: 22663077 PMCID: PMC4010150 DOI: 10.1146/annurev-biochem-051710-134100] [Citation(s) in RCA: 822] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Saccharomyces cerevisiae Set1/COMPASS was the first histone H3 lysine 4 (H3K4) methylase identified over 10 years ago. Since then, it has been demonstrated that Set1/COMPASS and its enzymatic product, H3K4 methylation, is highly conserved across the evolutionary tree. Although there is only one COMPASS in yeast, Drosophila possesses three and humans bear six COMPASS family members, each capable of methylating H3K4 with nonredundant functions. In yeast, the histone H2B monoubiquitinase Rad6/Bre1 is required for proper H3K4 and H3K79 trimethylations. The machineries involved in this process are also highly conserved from yeast to human. In this review, the process of histone H2B monoubiquitination-dependent and -independent histone H3K4 methylation as a mark of active transcription, enhancer signatures, and developmentally poised genes is discussed. The misregulation of histone H2B monoubiquitination and H3K4 methylation result in the pathogenesis of human diseases, including cancer. Recent findings in this regard are also examined.
Collapse
Affiliation(s)
- Ali Shilatifard
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| |
Collapse
|
17
|
Lin C, Garrett AS, De Kumar B, Smith ER, Gogol M, Seidel C, Krumlauf R, Shilatifard A. Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). Genes Dev 2011; 25:1486-98. [PMID: 21764852 DOI: 10.1101/gad.2059211] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcriptional regulation of developmentally controlled genes is at the heart of differentiation and organogenesis. In this study, we performed global genomic analyses in murine embryonic stem (ES) cells and in human cells in response to activation signals. We identified an essential role for the ELL (eleven-nineteen lysine-rich leukemia gene)/P-TEFb (positive transcription elongation factor)-containing super elongation complex (SEC) in the regulation of gene expression, including several genes bearing paused RNA polymerase II (Pol II). Paused Pol II has been proposed to be associated with loci that respond rapidly to environmental stimuli. However, our studies in ES cells also identified a requirement for SEC at genes without paused Pol II, which also respond dynamically to differentiation signals. Our findings suggest that SEC is a major class of active P-TEFb-containing complexes required for transcriptional activation in response to environmental cues such as differentiation signals.
Collapse
Affiliation(s)
- Chengqi Lin
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Peterlin BM, Brogie JE, Price DH. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:92-103. [PMID: 21853533 DOI: 10.1002/wrna.106] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human 7SK small nuclear RNA (snRNA) is an abundant noncoding RNA whose function has been conserved in evolution from invertebrates to humans. It is transcribed by RNA polymerase III (RNAPIII) and is located in the nucleus. Together with associated cellular proteins, 7SK snRNA regulates the activity of the positive transcription elongation factor b (P-TEFb). In humans, this regulation is accomplished by the recruitment of P-TEFb by the 7SK snRNA-binding proteins, hexamethylene bisacetamide (HMBA)-induced mRNA 1/2 (HEXIM1 or HEXIM2), which inhibit the kinase activity of P-TEFb. P-TEFb regulates the transition of promoter proximally paused RNA polymerase II (RNAPII) into productive elongation, thereby, allowing efficient mRNA production. The protein composition of the 7SK small nuclear ribonucleoprotein (snRNP) is regulated dynamically. While the Lupus antigen (La)-related protein 7 (LARP7) is a constitutive component, the methylphosphate capping enzyme (MePCE) associates secondarily to phosphorylate the 5' end of 7SK snRNA. The release of active P-TEFb is closely followed by release of HEXIM proteins and both are replaced by heterogeneous nuclear ribonucleoproteins (hnRNPs). The released P-TEFb activates the expression of most cellular and viral genes. Regulated release of P-TEFb determines the expression pattern of many of the genes that respond to environmental stimuli and regulate growth, proliferation, and differentiation of cells.
Collapse
Affiliation(s)
- B Matija Peterlin
- Department of Medicine, Rosalind Russel Medical Research Center, University of California, San Francisco, CA, USA.
| | | | | |
Collapse
|
19
|
Smith E, Lin C, Shilatifard A. The super elongation complex (SEC) and MLL in development and disease. Genes Dev 2011; 25:661-72. [PMID: 21460034 DOI: 10.1101/gad.2015411] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation at the level of elongation is vital for the control of gene expression and metazoan development. The mixed lineage leukemia (MLL) protein and its Drosophila homolog, Trithorax, which exist within COMPASS (complex of proteins associated with Set1)-like complexes, are master regulators of development. They are required for proper homeotic gene expression, in part through methylation of histone H3 on Lys 4. In humans, the MLL gene is involved in a large number of chromosomal translocations that create chimeric proteins, fusing the N terminus of MLL to several proteins that share little sequence similarity. Several frequent translocation partners of MLL were found recently to coexist in a super elongation complex (SEC) that includes known transcription elongation factors such as eleven-nineteen lysine-rich leukemia (ELL) and P-TEFb. Importantly, the SEC is required for HOX gene expression in leukemic cells, suggesting that chromosomal translocations involving MLL could lead to the overexpression of HOX and other genes through the involvement of the SEC. Here, we review the normal developmental roles of MLL and the SEC, and how MLL fusion proteins can mediate leukemogenesis.
Collapse
Affiliation(s)
- Edwin Smith
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
20
|
Mohan M, Lin C, Guest E, Shilatifard A. Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nat Rev Cancer 2010; 10:721-8. [PMID: 20844554 DOI: 10.1038/nrc2915] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RNA polymerase II (Pol II) elongation factor (ELL) was the first translocation partner of mixed lineage leukaemia (MLL) for which a biochemical function was determined. It was therefore proposed that the regulation of the elongation stage of transcription could be fundamental to MLL-based leukaemogenesis. Recent studies have identified ELL complexed with several of the translocation partners of MLL in a transcriptional super elongation complex (SEC). These studies provide evidence for the importance of the regulation of Pol II elongation in disease pathogenesis and suggest that MLL chimaeras function by licensing Pol II transcription elongation without the appropriate checkpoints.
Collapse
Affiliation(s)
- Man Mohan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
21
|
Fujita T, Schlegel W. Promoter-proximal pausing of RNA polymerase II: an opportunity to regulate gene transcription. J Recept Signal Transduct Res 2010; 30:31-42. [PMID: 20170405 DOI: 10.3109/10799890903517921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transcription of eukaryotic genes by RNA polymerase II (pol II) is a complex, highly regulated multiphasic process. Pol II pauses in the proximity of the promoter on a large fraction of transcribed genes. Transcription initiation and elongation of transcripts are under distinct control. Induced gene expression can thus be due to enhanced initiation and/or stimulated elongation. Pausing and resumption of the elongation of transcripts is under the control of transcription elongation factors. Three of them, P-TEFb, DSIF, and NELF have been well characterized as protein complexes with multiple general but also gene specific functions. Elongation factors execute checkpoint functions but serve also as targets for signaling processes which regulate gene expression. Due to the general importance of transcription elongation factors, it is difficult to delineate the mechanisms by which elongation of specific genes is regulated by specific intracellular signals. However, it is clear that the controlled pausing of pol II provides an opportunity to finely control timing and quantity of transcriptional output.
Collapse
|
22
|
Sobhian B, Laguette N, Yatim A, Nakamura M, Levy Y, Kiernan R, Benkirane M. HIV-1 Tat assembles a multifunctional transcription elongation complex and stably associates with the 7SK snRNP. Mol Cell 2010; 38:439-51. [PMID: 20471949 PMCID: PMC3595998 DOI: 10.1016/j.molcel.2010.04.012] [Citation(s) in RCA: 316] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/17/2010] [Accepted: 04/08/2010] [Indexed: 01/16/2023]
Abstract
HIV-1 transactivator Tat has greatly contributed to our understanding of transcription elongation by RNAPII. We purified HIV-1 Tat-associated factors from HeLa nuclear extract and show that Tat forms two distinct and stable complexes. Tatcom1 consists of the core active P-TEFb, MLL-fusion partners involved in leukemia (AF9, AFF4, AFF1, ENL, and ELL), and PAF1 complex. Importantly, Tatcom1 formation relies on P-TEFb while optimal CDK9 CTD-kinase activity is AF9 dependent. MLL-fusion partners and PAF1 are required for Tat transactivation. Tatcom2 is composed of CDK9, CycT1, and 7SK snRNP lacking HEXIM. Tat remodels 7SK snRNP by interacting directly with 7SK RNA, leading to the formation of a stress-resistant 7SK snRNP particle. Besides the identification of factors required for Tat transactivation and important for P-TEFb function, our data show a coordinated control of RNAPII elongation by different classes of transcription elongation factors associated in a single complex and acting at the same promoter.
Collapse
Affiliation(s)
- Bijan Sobhian
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| | - Nadine Laguette
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| | - Ahmad Yatim
- INSERM U955, Faculté de Médecine de Créteil, Université Paris-Est, Hôpital Henri Mondor, Créteil, France
| | - Mirai Nakamura
- Laboratoire de Régulation de L’Expression des Gènes, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| | - Yves Levy
- INSERM U955, Faculté de Médecine de Créteil, Université Paris-Est, Hôpital Henri Mondor, Créteil, France
| | - Rosemary Kiernan
- Laboratoire de Régulation de L’Expression des Gènes, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| | - Monsef Benkirane
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| |
Collapse
|
23
|
Tikoo K, Ali IY, Gupta J, Gupta C. 5-Azacytidine prevents cisplatin induced nephrotoxicity and potentiates anticancer activity of cisplatin by involving inhibition of metallothionein, pAKT and DNMT1 expression in chemical induced cancer rats. Toxicol Lett 2009; 191:158-66. [PMID: 19723570 DOI: 10.1016/j.toxlet.2009.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 08/22/2009] [Accepted: 08/24/2009] [Indexed: 11/26/2022]
Abstract
5-Azactydine inhibits cell growth by direct cytotoxic action as well as by inhibition of DNA methyl transferase enzyme. Inhibitors of DNMT have been reported to potentiate the therapeutic activity of cisplatin in vitro. Dose dependent bone marrow toxicity, neurotoxicity and nephrotoxicity are the major side effects of cisplatin, limiting its use as an effective chemotherapeutic agent. The present study was aimed to reduce the nephrotoxic potential of cisplatin without compensating its potency. To best of our knowledge, this is the first report which shows that the combination of 5-azacytidine with cisplatin leads to remarkable reduction in nephrotoxicity, by involving inhibition of cisplatin induced metallothionein expression. 5-Azacytidine treatment with cisplatin leads to maximum reduction in tumor size in DMH induced colon cancer and tumor volume in DMBA induced breast cancer bearing SD rats. This combination regimen prevents phosphorylation and acetylation of histone H3 which may be involved in inhibition of aberrant gene expression in colon tumors. Further, 5-azacytidine potentiated cisplatin induced antitumor activity by involving decreased expression of pAKT, DNMT1 and an increased expression of p38 in colon tumors. Thus, combination of 5-azactydine with cisplatin attenuates the cisplatin induced nephrotoxicity and potentiates the anti-cancer activity which can have profound clinical implications.
Collapse
Affiliation(s)
- Kulbhushan Tikoo
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160 062, India.
| | | | | | | |
Collapse
|
24
|
Wolf IM, Heitzer MD, Grubisha M, DeFranco DB. Coactivators and nuclear receptor transactivation. J Cell Biochem 2008; 104:1580-6. [DOI: 10.1002/jcb.21755] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Abstract
The transcription factor MYB has a key role as a regulator of stem and progenitor cells in the bone marrow, colonic crypts and a neurogenic region of the adult brain. It is in these compartments that a deficit in MYB activity leads to severe or lethal phenotypes. As was predicted from its leukaemogenicity in several animal species, MYB has now been identified as an oncogene that is involved in some human leukaemias. Moreover, recent evidence has strengthened the case that MYB is activated in colon and breast cancer: a block to MYB expression is overcome by mutation of the regulatory machinery in the former disease and by oestrogen receptor-alpha (ERalpha) in the latter.
Collapse
Affiliation(s)
- Robert G Ramsay
- Peter MacCallum Cancer Centre, St Andrew's Place, Melbourne, Victoria 3002, Australia
| | | |
Collapse
|
26
|
Sacktor TC. Chapter 2 PKMζ, LTP maintenance, and the dynamic molecular biology of memory storage. PROGRESS IN BRAIN RESEARCH 2008; 169:27-40. [DOI: 10.1016/s0079-6123(07)00002-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
27
|
Sharma M, George AA, Singh BN, Sahoo NC, Rao KVS. Regulation of Transcript Elongation through Cooperative and Ordered Recruitment of Cofactors. J Biol Chem 2007; 282:20887-96. [PMID: 17535807 DOI: 10.1074/jbc.m701420200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We studied the regulation of murine CD80, a gene whose basal transcriptional status was characterized by the presence of a stalled RNA polymerase II complex on the promoter-proximal region. Stimulus-induced activation of productive elongation involved a complex interplay of regulated events that included a synergy between ordered cofactor recruitment. This cascade of recruitments was initiated through the engagement of transcription factor NF-kappaB, leading to the temporal association of histone acetyltransferases and the consequent selective acetylation of a transcription start site downstream nucleosome. This in turn culminated into the nucleosomal association of Brd4-associated P-TEFb, a protein complex containing kinase specific for serine 2 of Rbp 1, the largest subunit of the carboxyl-terminal domain of RNA polymerase II. The consequent phosphorylation of serine 2 residues in CTD by CDK9 in the P-TEFb complex then facilitated escape of polymerase II into the productive elongation phase. Thus, the cooperative mechanisms that integrate between independent pathways characterize regulation of the elongation step of transcription, thereby providing another level at which specificity of gene regulation can be achieved.
Collapse
Affiliation(s)
- Manish Sharma
- Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
28
|
Hugo H, Cures A, Suraweera N, Drabsch Y, Purcell D, Mantamadiotis T, Phillips W, Dobrovic A, Zupi G, Gonda TJ, Iacopetta B, Ramsay RG. Mutations in the MYB intron I regulatory sequence increase transcription in colon cancers. Genes Chromosomes Cancer 2006; 45:1143-54. [PMID: 16977606 DOI: 10.1002/gcc.20378] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although MYB overexpression in colorectal cancer (CRC) is known to be a prognostic indicator for poor survival, the basis for this overexpression is unclear. Among multiple levels of MYB regulation, the most dynamic is the control of transcriptional elongation by sequences within intron 1. The authors have proposed that this regulatory sequence is transcribed into an RNA stem-loop and 19-residue polyuridine tract, and is subject to mutation in CRC. When this region was examined in colorectal and breast carcinoma cell lines and tissues, the authors found frequent mutations only in CRC. It was determined that these mutations allowed increased transcription compared with the wild type sequence. These data suggest that this MYB regulatory region within intron 1 is subject to mutations in CRC but not breast cancer, perhaps consistent with the mutagenic insult that occurs within the colon and not mammary tissue. In CRC, these mutations may contribute to MYB overexpression, highlighting the importance of noncoding sequences in the regulation of key cancer genes.
Collapse
Affiliation(s)
- Honor Hugo
- Peter MacCallum Cancer Center, East Melbourne and Department of Pathology, The University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lutz M, Wempe F, Bahr I, Zopf D, von Melchner H. Proteasomal degradation of the multifunctional regulator YB-1 is mediated by an F-Box protein induced during programmed cell death. FEBS Lett 2006; 580:3921-30. [PMID: 16797541 DOI: 10.1016/j.febslet.2006.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 05/30/2006] [Accepted: 06/13/2006] [Indexed: 02/04/2023]
Abstract
F-Box proteins (FBPs) are variable adaptor proteins that earmark protein substrates for ubiquination and destruction by the proteasome. Through their N-terminal F-box motif, they couple specific protein substrates to a catalytic machinery known as SCF (Skp-1/Cul1/F-Box) E3-ubiquitin ligase. Typical FBPs bind the specific substrates in a phosphorylation dependent manner via their C-termini using either leucine rich repeats (LRR) or tryptophan-aspartic acid (WD40) domains for substrate recognition. By using a gene trap strategy that selects for genes induced during programmed cell death, we have isolated the mouse homolog of the hypothetical human F-Box protein 33 (FBX33). Here we identify FBX33 as a component of an SCF E3-ubiquitin ligase that targets the multifunctional regulator Y-box binding protein 1 (YB-1)/dbpB/p50 for polyubiquitination and destruction by the proteasome. By targeting YB-1 for proteasomal degradation, FBX33 negatively interferes with YB-1 mediated functions. In contrast to typical FBPs, FBX33 has no C-terminal LRR or WD40 domains and associates with YB-1 via its N-terminus. The present study confirms the existence of a formerly hypothetical F-Box protein in living cells and describes one of its substrates.
Collapse
Affiliation(s)
- Marcus Lutz
- Department for Molecular Hematology, University of Frankfurt Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
30
|
Fernando DD. Characterization of pollen tube development inPinus strobus (Eastern white pine) through proteomic analysis of differentially expressed proteins. Proteomics 2005; 5:4917-26. [PMID: 16247732 DOI: 10.1002/pmic.200500009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The differentially expressed proteins in pollen tubes indicate their specific roles in this stage of male gametophyte development. To isolate these proteins, 2-DE was done using ungerminated pollen and 2-day-old pollen tubes of Pinus strobus. Results show that 645 and 647 protein spots were clearly resolved from pollen grains and pollen tubes, respectively. Thirty-eight protein spots were expressed only in pollen tubes, while 19 increased in intensity. MALDI-TOF MS was used to generate tryptic peptide masses that were submitted to Mascot for identification. Of the differentially expressed proteins, 12% matched with hypothetical proteins, 33% did not hit any protein, and for the 55%, a putative function was assigned based on similarity of sequences with previously characterized proteins. Therefore, pollen tube development can be characterized by the cellular activities that involve metabolism, stress/defense response, gene regulation, signal transduction, and cell wall formation. This study expands our understanding of the changes in protein expression associated with pollen tube development and provides insights into the molecular programs that separate the development of the pollen tubes from pollen grains. This is the first report that describes a global analysis of differentially expressed proteins from the pollen tube of any seed plant.
Collapse
Affiliation(s)
- Danilo D Fernando
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, 461 Illick Hall, I Forestry Drive, Syracuse, NY 13210, USA.
| |
Collapse
|
31
|
Abstract
Nucleotide-excision repair diseases exhibit cancer, complex developmental disorders and neurodegeneration. Cancer is the hallmark of xeroderma pigmentosum (XP), and neurodegeneration and developmental disorders are the hallmarks of Cockayne syndrome and trichothiodystrophy. A distinguishing feature is that the DNA-repair or DNA-replication deficiencies of XP involve most of the genome, whereas the defects in CS are confined to actively transcribed genes. Many of the proteins involved in repair are also components of dynamic multiprotein complexes, transcription factors, ubiquitylation cofactors and signal-transduction networks. Complex clinical phenotypes might therefore result from unanticipated effects on other genes and proteins.
Collapse
Affiliation(s)
- James E Cleaver
- Auerback Melanoma Laboratory, Room N431, UCSF Cancer Center, University of California, 94143-0808, USA.
| |
Collapse
|
32
|
Pascual-Le Tallec L, Simone F, Viengchareun S, Meduri G, Thirman MJ, Lombès M. The Elongation Factor ELL (Eleven-Nineteen Lysine-Rich Leukemia) Is a Selective Coregulator for Steroid Receptor Functions. Mol Endocrinol 2005; 19:1158-69. [PMID: 15650021 DOI: 10.1210/me.2004-0331] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dynamic and coordinated recruitment of coregulators by steroid receptors is critical for specific gene transcriptional activation. To identify new cofactors of the human (h) mineralocorticoid receptor (MR), its highly specific N-terminal domain was used as bait in a yeast two-hybrid approach. We isolated ELL (eleven-nineteen lysine-rich leukemia), a RNA polymerase II elongation factor which, when fused to MLL (mixed lineage leukemia) contributes to the pathogenesis of acute leukemia. Specific interaction between hMR and ELL was confirmed by glutathione-S-transferase pull-down and coimmunoprecipitation experiments. Transient transfections demonstrated that ELL increased receptor transcriptional potency and hormonal efficacy, indicating that ELL behaves as a bona fide MR coactivator. Of major interest, ELL differentially modulates steroid receptor responses, with striking opposite effects on hMR and glucocorticoid receptor-mediated transactivation, without affecting that of androgen and progesterone receptors. Furthermore, the MLL-ELL fusion protein, as well as several ELL truncated mutants and the ELL L214V mutant, lost their ability to potentiate MR transcriptional activities, suggesting that both the elongation domain and the ELL-associated factor 1 interaction domains are required for ELL to fulfill its selector activity on steroid receptors. This study is the first direct demonstration of a functional interaction between a nuclear receptor and an elongation factor. These results provide further evidence that the selectivity of the mineralo vs. glucocorticoid signaling pathways also occurs at the transcriptional complex level and may have major pathophysiological implications, most notably in leukemogenesis and corticosteroid-induced apoptosis. These findings allow us to propose the concept of "transcriptional selector" for ELL on steroid receptor transcriptional functions.
Collapse
Affiliation(s)
- Laurent Pascual-Le Tallec
- Institut National de la Santé et de la Recherche Médicale, Unité 693, Faculté de Médecine Paris-Sud, 63 rue Gabriel Peri, 94276 Le Kremlin Bicetre cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Renieri A, Pescucci C, Longo I, Ariani F, Mari F, Meloni I. Non-syndromic X-linked mental retardation: From a molecular to a clinical point of view. J Cell Physiol 2005; 204:8-20. [PMID: 15690397 DOI: 10.1002/jcp.20296] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review focuses on the 19 identified genes involved in X-linked "non-syndromic" mental retardation (MR) and defines the signaling pathways in which they are involved, focusing on emerging common mechanisms. The majority of proteins are involved in three distinct pathways: (1) Rho GTPases pathway modulating neuronal differentiation and synaptic plasticity; (2) Rab GTPases pathway regulating synaptic vesicle cycling; (3) gene expression regulation. The function of four proteins (ACSL4, AT2, SLC6A8, and SAP102) could not be reconciled to a common pathway. From a clinical point of view, the review discusses whether some common dysmorphic features can be identified even in non-syndromic MR patients and whether it is correct to maintain the distinction between "non-syndromic" and "syndromic" MR.
Collapse
Affiliation(s)
- A Renieri
- Medical Genetics, Department of Molecular Biology, University of Siena, Siena, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Malagon F, Tong AH, Shafer BK, Strathern JN. Genetic interactions of DST1 in Saccharomyces cerevisiae suggest a role of TFIIS in the initiation-elongation transition. Genetics 2004; 166:1215-27. [PMID: 15082542 PMCID: PMC1470799 DOI: 10.1534/genetics.166.3.1215] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TFIIS promotes the intrinsic ability of RNA polymerase II to cleave the 3'-end of the newly synthesized RNA. This stimulatory activity of TFIIS, which is dependent upon Rpb9, facilitates the resumption of transcription elongation when the polymerase stalls or arrests. While TFIIS has a pronounced effect on transcription elongation in vitro, the deletion of DST1 has no major effect on cell viability. In this work we used a genetic approach to increase our knowledge of the role of TFIIS in vivo. We showed that: (1) dst1 and rpb9 mutants have a synthetic growth defective phenotype when combined with fyv4, gim5, htz1, yal011w, ybr231c, soh1, vps71, and vps72 mutants that is exacerbated during germination or at high salt concentrations; (2) TFIIS and Rpb9 are essential when the cells are challenged with microtubule-destabilizing drugs; (3) among the SDO (synthetic with Dst one), SOH1 shows the strongest genetic interaction with DST1; (4) the presence of multiple copies of TAF14, SUA7, GAL11, RTS1, and TYS1 alleviate the growth phenotype of dst1 soh1 mutants; and (5) SRB5 and SIN4 genetically interact with DST1. We propose that TFIIS is required under stress conditions and that TFIIS is important for the transition between initiation and elongation in vivo.
Collapse
Affiliation(s)
- Francisco Malagon
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
35
|
Zhang Z, Wu CH, Gilmour DS. Analysis of polymerase II elongation complexes by native gel electrophoresis. Evidence for a novel carboxyl-terminal domain-mediated termination mechanism. J Biol Chem 2004; 279:23223-8. [PMID: 15056674 DOI: 10.1074/jbc.m402956200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic and proteomic approaches have identified numerous proteins that are potentially involved in regulating transcriptional elongation, but the mechanisms of action of these proteins remain largely unknown. We describe an experimental approach using native gel electrophoresis for studying interactions of elongation factors with isolated Pol II elongation complexes. The gel distinguishes Pol IIA and Pol IIB containing complexes. The interaction of DSIF (Spt4/Spt5) with the elongation complexes can be readily detected, and this association is not dependent on the carboxyl-terminal domain of the largest subunit of Pol II. We also report the surprising observation that a monoclonal antibody that binds the carboxyl-terminal domain of Pol II triggers the dissociation of the elongation complex. The action of the antibody could be mimicking the action of cellular factors involved in transcription termination.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
36
|
Shilatifard A. Transcriptional elongation control by RNA polymerase II: a new frontier. ACTA ACUST UNITED AC 2004; 1677:79-86. [PMID: 15020049 DOI: 10.1016/j.bbaexp.2003.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 11/18/2003] [Accepted: 11/18/2003] [Indexed: 01/22/2023]
Abstract
The transcription elongation complex, once thought to be composed of merely the DNA template, RNA polymerase II and the nascent RNA transcript, is now burgeoning as a unit as multifaceted and complicated as the transcription initiation complex. Studies concentrated in defining the elongation stage of transcription during the past recent years have resulted in the discovery of a diverse collection of transcription elongation factors that are either directly involved in the regulation of the rate of the elongating RNA polymerase II or can modulate messenger RNA (mRNA) processing and transport. Such studies have demonstrated that the elongation stage of transcription is highly regulated and has opened a new era of studies defining the molecular role of such transcription elongation factors in cellular development, differentiation and disease progression. Recent studies on the role of RNA polymerase II elongation factors in regulating of the overall rate of transcription both in vitro and in vivo, histone modification by methylation and organismal development will be reviewed here.
Collapse
Affiliation(s)
- Ali Shilatifard
- Department of Biochemistry and the Cancer Center, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| |
Collapse
|
37
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
38
|
Abstract
Synthesis of eukaryotic mRNA by RNA polymerase II is an elaborate biochemical process that requires the concerted action of a large set of transcription factors. RNA polymerase II transcription proceeds through multiple stages designated preinitiation, initiation, and elongation. Historically, studies of the elongation stage of eukaryotic mRNA synthesis have lagged behind studies of the preinitiation and initiation stages; however, in recent years, efforts to elucidate the mechanisms governing elongation have led to the discovery of a diverse collection of transcription factors that directly regulate the activity of elongating RNA polymerase II. Moreover, these studies have revealed unanticipated roles for the RNA polymerase II elongation complex in such processes as DNA repair and recombination and the proper processing and nucleocytoplasmic transport of mRNA. Below we describe these recent advances, which highlight the important role of the RNA polymerase II elongation complex in regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- Ali Shilatifard
- Edward A. Doisey Department of Biochemistry, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | | | |
Collapse
|
39
|
Jeong J, Adamson LK, Hatam R, Greenhalgh DG, Cho K. Alterations in the expression and modification of histonesin the liver after injury. Exp Mol Pathol 2003; 75:256-64. [PMID: 14611817 DOI: 10.1016/s0014-4800(03)00095-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chromatin remodeling plays a key role in the transcriptional activation of regulatory factors in the liver in response to a variety of stress signals. The effects of burn injury on histone expression and its modification were investigated in this study. Liver tissues collected after a flame burn injury were subjected to RT-PCR and Western blot analyses of histone regulation. There was a marked induction of histone H3-D variant mRNA at 3 and 6 h. In contrast, histone H2A.2 variant mRNA had a downregulation at 3 days. No apparent changes were noted in other histone variants examined. Western blot analysis revealed a downregulation of all 5 histone subtypes (H1, H2A, H2B, H3, and H4) at 1 day and there was a subsequent induction of H1 and H2A subtypes at 3 days after injury. There was an induction of modified forms (phospho-, acetyl-, and dimethyl-) of histone H3 subtype at day 3. Furthermore, a transient elevation in PCNA (proliferating cell nuclear antigen) levels was apparent in the liver at day 3, which parallels the induction of phospho-histone H3, which is a mitosis marker. These findings suggest that histones participate in a cascade of events associated with phenotypic alterations in the liver after injury.
Collapse
Affiliation(s)
- Jayoung Jeong
- Burn Research, Shriners Hospitals for Children Northern California and Department of Surgery, University of California at Davis, Sacramento, CA 95817, USA
| | | | | | | | | |
Collapse
|
40
|
Hernandez AI, Blace N, Crary JF, Serrano PA, Leitges M, Libien JM, Weinstein G, Tcherapanov A, Sacktor TC. Protein kinase M zeta synthesis from a brain mRNA encoding an independent protein kinase C zeta catalytic domain. Implications for the molecular mechanism of memory. J Biol Chem 2003; 278:40305-16. [PMID: 12857744 DOI: 10.1074/jbc.m307065200] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase M zeta (PKM zeta) is a newly described form of PKC that is necessary and sufficient for the maintenance of hippocampal long term potentiation (LTP) and the persistence of memory in Drosophila. PKM zeta is the independent catalytic domain of the atypical PKC zeta isoform and produces long term effects at synapses because it is persistently active, lacking autoinhibition from the regulatory domain of PKC zeta. PKM has been thought of as a proteolytic fragment of PKC. Here we report that brain PKM zeta is a new PKC isoform, synthesized from a PKM zeta mRNA encoding a PKC zeta catalytic domain without a regulatory domain. Multiple zeta-specific antisera show that PKM zeta is expressed in rat forebrain as the major form of zeta in the near absence of full-length PKC zeta. A PKC zeta knockout mouse, in which the regulatory domain was disrupted and catalytic domain spared, still expresses brain PKM zeta, indicating that this form of PKM is not a PKC zeta proteolytic fragment. Furthermore, the distribution of brain PKM zeta does not correlate with PKC zeta mRNA but instead with an alternate zeta RNA transcript thought incapable of producing protein. In vitro translation of this RNA, however, generates PKM zeta of the same molecular weight as that in brain. Metabolic labeling of hippocampal slices shows increased de novo synthesis of PKM zeta in LTP. Because PKM zeta is a kinase synthesized in an autonomously active form and is necessary and sufficient for maintaining LTP, it serves as an example of a link coupling gene expression directly to synaptic plasticity.
Collapse
Affiliation(s)
- A Ivan Hernandez
- Department of Physiology, State University of New York Downstate Medical Center, Brooklyn, 11203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pereira LA, Klejman MP, Timmers HTM. Roles for BTAF1 and Mot1p in dynamics of TATA-binding protein and regulation of RNA polymerase II transcription. Gene 2003; 315:1-13. [PMID: 14557059 DOI: 10.1016/s0378-1119(03)00714-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Regulation of RNA polymerase II (pol II) transcription is a highly dynamic process requiring the coordinated interaction of an array of regulatory proteins. Central to this process is the TATA-binding protein (TBP), the key component of the multiprotein complex TFIID. Interaction of TBP with core promoters nucleates the assembly of the preinitiation complex and subsequent recruitment of pol II. Despite recent advances in our understanding of the dynamic nature of the pol II transcription apparatus, the dynamics of TBP function on pol II promoters has remained largely unexplored. Human BTAF1 (TAF(II)170/TAF-172) and its yeast ortholog, Mot1p, are evolutionarily conserved members of the SNF2-like family of ATPase proteins. Genetic identification of Mot1p as a repressor of pol II transcription was supported by findings that Mot1p and BTAF1 could dissociate TBP from TATA DNA complexes using the energy of ATP hydrolysis. Recent data have revealed new aspects of BTAF1 and Mot1p as positive regulators of TBP function in the pol II system and have described new observations relating to their molecular mechanism of action. We review these data in the context of previous findings with particular attention paid to how human BTAF1 and Mot1p may dynamically regulate TBP function on pol II promoters in cells.
Collapse
Affiliation(s)
- Lloyd A Pereira
- Laboratory for Physiological Chemistry, Division of Biomedical Genetics, UMC-U, Universiteitsweg 100, 3584 Utrecht CG, The Netherlands
| | | | | |
Collapse
|
42
|
Wu CH, Yamaguchi Y, Benjamin LR, Horvat-Gordon M, Washinsky J, Enerly E, Larsson J, Lambertsson A, Handa H, Gilmour D. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev 2003; 17:1402-14. [PMID: 12782658 PMCID: PMC196072 DOI: 10.1101/gad.1091403] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Accepted: 04/02/2003] [Indexed: 11/24/2022]
Abstract
NELF and DSIF collaborate to inhibit elongation by RNA polymerase IIa in extracts from human cells. A multifaceted approach was taken to investigate the potential role of these factors in promoter proximal pausing on the hsp70 gene in Drosophila. Immunodepletion of DSIF from a Drosophila nuclear extract reduced the level of polymerase that paused in the promoter proximal region of hsp70. Depletion of one NELF subunit in salivary glands using RNA interference also reduced the level of paused polymerase. In vivo protein-DNA cross-linking showed that NELF and DSIF associate with the promoter region before heat shock. Immunofluorescence analysis of polytene chromosomes corroborated the cross-linking result and showed that NELF, DSIF, and RNA polymerase IIa colocalize at the hsp70 genes, small heat shock genes, and many other chromosomal locations. Finally, following heat shock induction, DSIF and polymerase but not NELF were strongly recruited to chromosomal puffs harboring the hsp70 genes. We propose that NELF and DSIF cause polymerase to pause in the promoter proximal region of hsp70. The transcriptional activator, HSF, might cause NELF to dissociate from the elongation complex. DSIF continues to associate with the elongation complex and could serve a positive role in elongation.
Collapse
Affiliation(s)
- Chwen-Huey Wu
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nedialkov YA, Gong XQ, Hovde SL, Yamaguchi Y, Handa H, Geiger JH, Yan H, Burton ZF. NTP-driven translocation by human RNA polymerase II. J Biol Chem 2003; 278:18303-12. [PMID: 12637520 DOI: 10.1074/jbc.m301103200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a "running start, two-bond" protocol to analyze elongation by human RNA polymerase II (RNAP II). In this procedure, the running start allowed us to measure rapid rates of elongation and provided detailed insight into the RNAP II mechanism. Formation of two bonds was tracked to ensure that at least one translocation event was analyzed. By using this method, RNAP II is stalled briefly at a defined template position before restoring the next NTP. Significantly, slow reaction steps are identified both before and after phosphodiester bond synthesis, and both of these steps can be highly dependent on the next templated NTP. The initial and final NTP-driven events, however, are not identical, because the slow step after chemistry, which includes translocation and pyrophosphate release, is regulated differently by elongation factors hepatitis delta antigen and transcription factor IIF. Because recovery from a stall and the processive transition from one bond to the next can be highly NTP-dependent, we conclude that translocation can be driven by the incoming substrate NTP, a model fully consistent with the RNAP II elongation complex structure.
Collapse
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim DK, Inukai N, Yamada T, Furuya A, Sato H, Yamaguchi Y, Wada T, Handa H. Structure-function analysis of human Spt4: evidence that hSpt4 and hSpt5 exert their roles in transcriptional elongation as parts of the DSIF complex. Genes Cells 2003; 8:371-8. [PMID: 12653964 DOI: 10.1046/j.1365-2443.2003.00638.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The human Spt4/Spt5 complex, termed DRB-sensitivity inducing factor (DSIF) is a dual regulator of transcription that stimulates, or, when cooperating with negative elongation factor (NELF), represses RNA polymerase II (RNAPII) elongation. Spt4 and Spt5 are also thought to be involved in mRNA capping, homologous DNA recombination, and transcription-coupled DNA repair. As a first step to understanding how these proteins regulate diverse cellular processes, we investigated the structure and function of hSpt4 in vitro. RESULTS Immunodepletion of hSpt5 from HeLa nuclear extracts resulted in the efficient co-depletion of hSpt4. Using DSIF-depleted nuclear extracts and a series of Spt4 mutants, we examined the amino acid sequence of hSpt4 which was important for hSpt5 binding and for transcriptional repression and activation by DSIF. Unexpectedly, the zinc finger of hSpt4, which is critical for the yeast counterpart to function in vivo, was dispensable for hSpt5 binding and for transcriptional regulation in vitro. CONCLUSION These and other results suggest: (i) that the central region of hSpt4 is necessary and sufficient for its function in vitro and (ii) that there is no free hSpt4 or hSpt5 in cells. We propose that hSpt4 and hSpt5 exert their roles in transcriptional regulation, and possibly in other nuclear processes, as parts of the DSIF complex.
Collapse
Affiliation(s)
- Dong-Ki Kim
- Graduate School of Bioscience and Biotechnology, and Frontier Collaborative Research Center, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Pardee TS, Ghazy MA, Ponticelli AS. Yeast and Human RNA polymerase II elongation complexes: evidence for functional differences and postinitiation recruitment of factors. EUKARYOTIC CELL 2003; 2:318-27. [PMID: 12684381 PMCID: PMC154848 DOI: 10.1128/ec.2.2.318-327.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immobilized DNA templates, glycerol gradient centrifugation, and native gel analysis were utilized to isolate and compare functional RNA polymerase II (RNAPII) elongation complexes from Saccharomyces cerevisiae and human cell nuclear extracts. Yeast elongation complexes blocked by incorporation of 3'-O-methyl-GTP into the nascent transcript exhibited a sedimentation coefficient of 35S, were less tightly associated to the template than their human counterparts, and displayed no detectable 3'-5' exonuclease activity on the associated transcript. In contrast, blocked human elongation complexes were more tightly bound to the template, and multiple forms were identified, with the largest exhibiting a sedimentation coefficient of 60S. Analysis of the associated transcripts revealed that a subset of the human elongation complexes exhibited strong 3'-5' exonuclease activity. Although isolated human preinitiation complexes were competent for efficient transcription, their ability to generate 60S elongation complexes was strikingly impaired. These findings demonstrate functional and size differences between S. cerevisiae and human RNAPII elongation complexes and support the view that the formation of mature elongation complexes involves recruitment of nuclear factors after the initiation of transcription.
Collapse
Affiliation(s)
- Timothy S Pardee
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | |
Collapse
|
46
|
Dion V, Coulombe B. Interactions of a DNA-bound transcriptional activator with the TBP-TFIIA-TFIIB-promoter quaternary complex. J Biol Chem 2003; 278:11495-501. [PMID: 12538582 PMCID: PMC4492720 DOI: 10.1074/jbc.m211938200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-specific protein-DNA photo-cross-linking was used to show that, when bound to its cognate site at various distances upstream of the TATA element, the chimeric transcriptional activator GAL4-VP16 can physically interact with a TATA box-binding protein (TBP)- transcription factor IIA (TFIIA)-TFIIB complex assembled on the TATA element. This result implies DNA bending and looping of promoter DNA as a result of the physical interaction between GAL4-VP16 and an interface of the TBP-TFIIA-TFIIB complex. This protein-protein interaction on promoter DNA minimally requires the presence of one GAL4 binding site and the formation of a quaternary complex containing TBP, TFIIB, and TFIIA on the TATA element. Notably, the topology of the TBP-TFIIA-TFIIB-promoter complex is not altered significantly by the interaction with DNA-bound activators. We also show that the ability of GAL4-VP16 to activate transcription through a single GAL4 binding site varies according to its precise location and orientation relative to the TATA element and that it can approach the efficiency obtained with multiple binding sites. Taken together, our results indicate that the spatial positioning of the DNA-bound activation domain is important for efficient activation, possibly by maximizing its interactions with the transcriptional machinery including the TBP-TFIIA-TFIIB-promoter quaternary complex.
Collapse
Affiliation(s)
- Valérie Dion
- Laboratory of Gene Transcription, Institut de Recherches Cliniques de Montréal, Montréal, Quebec H2W 1R7, Canada
| | | |
Collapse
|
47
|
Xiao H, Mao Y, Desai SD, Zhou N, Ting CY, Hwang J, Liu LF. The topoisomerase IIbeta circular clamp arrests transcription and signals a 26S proteasome pathway. Proc Natl Acad Sci U S A 2003; 100:3239-44. [PMID: 12629207 PMCID: PMC152276 DOI: 10.1073/pnas.0736401100] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Indexed: 01/28/2023] Open
Abstract
It has been proposed that the topoisomerase II (TOP2)beta-DNA covalent complex arrests transcription and triggers 26S proteasome-mediated degradation of TOP2beta. It is unclear whether the initial trigger for proteasomal degradation is due to DNA damage or transcriptional arrest. In the current study we show that the TOP2 catalytic inhibitor 4,4-(2,3-butanediyl)-bis(2,6-piperazinedione) (ICRF-193), which traps TOP2 into a circular clamp rather than the TOP2-DNA covalent complex, can also arrest transcription. Arrest of transcription, which is TOP2beta-dependent, is accompanied by proteasomal degradation of TOP2beta. Different from TOP2 poisons and other DNA-damaging agents, ICRF-193 did not induce proteasomal degradation of the large subunit of RNA polymerase II. These results suggest that proteasomal degradation of TOP2beta induced by the TOP2-DNA covalent complex or the TOP2 circular clamp is due to transcriptional arrest but not DNA damage. By contrast, degradation of the large subunit of RNA polymerase II is due to a DNA-damage signal.
Collapse
Affiliation(s)
- Hai Xiao
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Krogan NJ, Dover J, Wood A, Schneider J, Heidt J, Boateng MA, Dean K, Ryan OW, Golshani A, Johnston M, Greenblatt JF, Shilatifard A. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell 2003; 11:721-9. [PMID: 12667454 DOI: 10.1016/s1097-2765(03)00091-1] [Citation(s) in RCA: 571] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methylation of histone proteins is one of their many modifications that affect chromatin structure and regulate gene expression. Methylation of histone H3 on lysines 4 and 79, catalyzed by the Set1-containing complex COMPASS and Dot1p, respectively, is required for silencing of expression of genes located near chromosome telomeres in yeast. We report that the Paf1 protein complex, which is associated with the elongating RNA polymerase II, is required for methylation of lysines 4 and 79 of histone H3 and for silencing of expression of a telomere-associated gene. We show that the Paf1 complex is required for recruitment of the COMPASS methyltransferase to RNA polymerase II and that the subunits of these complexes interact physically and genetically. Collectively, our results suggest that the Paf1 complex is required for histone H3 methylation, therefore linking transcriptional elongation to chromatin methylation.
Collapse
Affiliation(s)
- Nevan J Krogan
- Banting and Best Department of Medical Research, Department of Molecular and Medical Genetics, University of Toronto, Toronto, M5G 1L6, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mandal SS, Cho H, Kim S, Cabane K, Reinberg D. FCP1, a phosphatase specific for the heptapeptide repeat of the largest subunit of RNA polymerase II, stimulates transcription elongation. Mol Cell Biol 2002; 22:7543-52. [PMID: 12370301 PMCID: PMC135672 DOI: 10.1128/mcb.22.21.7543-7552.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FCP1, a phosphatase specific for the carboxy-terminal domain of RNA polymerase II (RNAP II), was found to stimulate transcript elongation by RNAP II in vitro and in vivo. This activity is independent of and distinct from the elongation-stimulatory activity associated with transcription factor IIF (TFIIF), and the elongation effects of TFIIF and FCP1 were found to be additive. Genetic experiments resulted in the isolation of several distinct fcp1 alleles. One of these alleles was found to suppress the slow-growth phenotype associated with either the reduction of intracellular nucleotide concentrations or the inhibition of other transcription elongation factors. Importantly, this allele of fcp1 was found to be lethal when combined individually with two mutations in the second-largest subunit of RNAP II, which had been shown previously to affect transcription elongation.
Collapse
Affiliation(s)
- Subhrangsu S Mandal
- Division of Nucleic Acids Enzymology, Department of Biochemistry, Howard Hughes Medical Institute, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
50
|
Gnatt A. Elongation by RNA polymerase II: structure-function relationship. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:175-90. [PMID: 12213651 DOI: 10.1016/s0167-4781(02)00451-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA polymerase II is the eukaryotic enzyme that transcribes all the mRNA in the cell. Complex mechanisms of transcription and its regulation underlie basic functions including differentiation and morphogenesis. Recent evidence indicates the process of RNA chain elongation as a key step in transcription control. Elongation was therefore expected and found to be linked to human diseases. For these reasons, major efforts in determining the structures of RNA polymerases from yeast and bacteria, at rest and as active enzymes, were undertaken. These studies have revealed much information regarding the processes involved in transcription. Eukaryotic RNA polymerases and their homologous bacterial counterparts are flexible enzymes with domains that separate DNA and RNA, prevent the escape of nucleic acids during transcription, allow for extended pausing or "arrest" during elongation, allow for translocation of the DNA and more. Structural studies of RNA polymerases are described below within the context of the process of transcription elongation, its regulation and function.
Collapse
Affiliation(s)
- Averell Gnatt
- Department of Pharmacology and Experimental Therapeutics and Department of Pathology, University of Maryland Baltimore, 655 West Baltimore St., Baltimore, MD 21201, USA.
| |
Collapse
|