1
|
Chierichetti M, Cristofani R, Crippa V, Ferrari V, Cozzi M, Casarotto E, Pramaggiore P, Cornaggia L, Patelli G, Mohamed A, Piccolella M, Galbiati M, Rusmini P, Tedesco B, Poletti A. Small heat shock protein B8: from cell functions to its involvement in diseases and potential therapeutic applications. Neural Regen Res 2025; 20:2872-2886. [PMID: 39435632 PMCID: PMC11826450 DOI: 10.4103/nrr.nrr-d-24-00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024] Open
Abstract
Heat shock protein family B (small) member 8 (HSPB8) is a 22 kDa ubiquitously expressed protein belonging to the family of small heat shock proteins. HSPB8 is involved in various cellular mechanisms mainly related to proteotoxic stress response and in other processes such as inflammation, cell division, and migration. HSPB8 binds misfolded clients to prevent their aggregation by assisting protein refolding or degradation through chaperone-assisted selective autophagy. In line with this function, the pro-degradative activity of HSPB8 has been found protective in several neurodegenerative and neuromuscular diseases characterized by protein misfolding and aggregation. In cancer, HSPB8 has a dual role being capable of exerting either a pro- or an anti-tumoral activity depending on the pathways and factors expressed by the model of cancer under investigation. Moreover, HSPB8 exerts a protective function in different diseases by modulating the inflammatory response, which characterizes not only neurodegenerative diseases, but also other chronic or acute conditions affecting the nervous system, such as multiple sclerosis and intracerebellar hemorrhage. Of note, HSPB8 modulation may represent a therapeutic approach in other neurological conditions that develop as a secondary consequence of other diseases. This is the case of cognitive impairment related to diabetes mellitus, in which HSPB8 exerts a protective activity by assuring mitochondrial homeostasis. This review aims to summarize the diverse and multiple functions of HSPB8 in different pathological conditions, focusing on the beneficial effects of its modulation. Drug-based and alternative therapeutic approaches targeting HSPB8 and its regulated pathways will be discussed, emphasizing how new strategies for cell and tissue-specific delivery represent an avenue to advance in disease treatments.
Collapse
Affiliation(s)
- Marta Chierichetti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Riccardo Cristofani
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Valeria Crippa
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Veronica Ferrari
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Marta Cozzi
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Elena Casarotto
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Paola Pramaggiore
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Laura Cornaggia
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Guglielmo Patelli
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Ali Mohamed
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Margherita Piccolella
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Mariarita Galbiati
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Paola Rusmini
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Barbara Tedesco
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| | - Angelo Poletti
- Laboratory of Experimental Biology, Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti” (DiSFeB), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
2
|
Kadam V, Wacker M, Oeckl P, Korneck M, Dannenmann B, Skokowa J, Hauser S, Otto M, Synofzik M, Mengel D. Most L1CAM Is not Associated with Extracellular Vesicles in Human Biofluids and iPSC-Derived Neurons. Mol Neurobiol 2025:10.1007/s12035-025-04909-2. [PMID: 40210837 DOI: 10.1007/s12035-025-04909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Transmembrane L1 cell adhesion molecule (L1CAM) is widely used as a marker to enrich for neuron-derived extracellular vesicles (EVs), especially in plasma. However, this approach lacks sufficient robust validation. This study aimed to assess whether human biofluids are indeed enriched for EVs, particularly neuron-derived EVs, by L1CAM immunoaffinity, utilizing multiple sources (plasma, CSF, conditioned media from iPSC-derived neurons [iNCM]) and different methods (mass spectrometry [MS], nanoparticle tracking analysis [NTA]). Following a systematic multi-step validation approach, we confirmed isolation of generic EV populations using size-exclusion chromatography (SEC) and polymer-aided precipitation (PPT)-two most commonly applied EV isolation methods-from all sources. Neurofilament light (NfL) was detected in both CSF and blood-derived EVs, indicating their neuronal origin. However, L1CAM immunoprecipitation did not yield enrichment of L1CAM in EV fractions. Instead, it was predominantly found in its free-floating form. Additionally, MS-based proteomic analysis of CSF-derived EVs also did not show L1CAM enrichment. Our study validates EV isolation from diverse biofluid sources by several isolation approaches and confirms that some EV subpopulations in human biofluids are of neuronal origin. Thorough testing across multiple sources by different orthogonal methods, however, does not support L1CAM as a marker to reliably enrich for a specific subpopulation of EVs, particularly of neuronal origin.
Collapse
Affiliation(s)
- Vaibhavi Kadam
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Madeleine Wacker
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Milena Korneck
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
| | - Benjamin Dannenmann
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany.
| | - David Mengel
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany.
| |
Collapse
|
3
|
Chen W, Wu Y, Liang Y, Su X, Ke M, Deng D, Zang J, Zhu J, Mai H, Xu A, Lu D. Small Extracellular Vesicles From Hypoxia-Neuron Maintain Blood-Brain Barrier Integrity. Stroke 2025. [PMID: 40171669 DOI: 10.1161/strokeaha.124.048446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/28/2025] [Accepted: 02/21/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND Acute ischemic stroke disrupts communication between neurons and blood vessels in penumbral areas. How neurons and blood vessels cooperate to achieve blood-brain barrier repair remains unclear. Here, we reveal crosstalk between ischemic penumbral neurons and endothelial cells (ECs) mediated by circular RNA originating from oxoglutarate dehydrogenase (CircOGDH). METHODS We analyzed clinical data from patients with acute ischemic stroke to explore the relationship between CircOGDH levels and hemorrhagic transformation events. In addition, a middle cerebral artery occlusion and reperfusion mouse model with neuronal CircOGDH suppression was used to assess endothelial permeability. ECs with increased CircOGDH expression were analyzed for changes in COL4A4 (collagen type IV alpha 4) levels, and in vitro coculture experiments were conducted to examine small extracellular vesicle-mediated CircOGDH transfer between neurons and ECs. RESULTS Clinical data indicated that reduced CircOGDH levels were correlated with increased hemorrhagic transformation in patients with acute ischemic stroke. In the middle cerebral artery occlusion and reperfusion model, neuronal CircOGDH suppression impaired the restoration of endothelial permeability. ECs with increased CircOGDH expression exhibited higher COL4A4 levels, which helped maintain vascular stability. In vitro, hypoxic neurons transferred CircOGDH to ECs via small extracellular vesicles, leading to elevated COL4A4 expression and enhanced endothelial integrity. CONCLUSIONS Our findings highlight the significance of CircOGDH in neuron-EC crosstalk via small extracellular vesicles in the ischemic penumbra, emphasizing the need for balanced intervention strategies in acute ischemic stroke management.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China (W.C.)
- China National Clinical Research Center for Neurological Diseases, Beijing (W.C.)
| | - Yousheng Wu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Ying Liang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Xuanlin Su
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Man Ke
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Die Deng
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Jiankun Zang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Department of Neurology, The First People's Hospital of Foshan, China (J. Zang)
| | - Jielin Zhu
- Department of Neurology, The Affiliated Shunde Hospital of Jinan University, Foshan, China (J. Zhu)
| | - Hongcheng Mai
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China (H.M.)
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| | - Dan Lu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, China. (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
- Key Laboratory of Guangzhou Basic and Translational Research of Pan-Vascular Diseases (W.C., Y.W., Y.L., X.S., M.K., D.D., J. Zang, A.X., D.L.)
| |
Collapse
|
4
|
Sun Q, Weng RX, Li YC, Jia SM, Ma CT, Zhang HH, Tang Y, Li R, Xu GY. Potentiation of visualized exosomal miR-1306-3p from primary sensory neurons contributes to chronic visceral pain via spinal P2X3 receptors. Pain 2025:00006396-990000000-00814. [PMID: 39907482 DOI: 10.1097/j.pain.0000000000003537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025]
Abstract
ABSTRACT Exosomes served as "communicators" to exchange information among different cells in the nervous system. Our previous study demonstrated that the enhanced spinal synaptic transmission contributed to chronic visceral pain in irritable bowel syndrome. However, the underlying mechanism of primary sensory neuron (PSN)-derived exosomes on spinal transmission remains unclear. In this study, an exosome visualization method was established to specifically track exosomes derived from PSNs in CD63-GFPf/+ (green fluorescent protein) mice. Neonatal maternal deprivation (NMD) was adopted to induce chronic visceral pain in CD63-GFPf/+ male mice. The exosome visualization technology demonstrated that NMD increased visible PSN-derived exosomes in the spinal dorsal horn, enhanced spinal synaptic transmission, and led to visceral pain in CD63-GFPf/+ male mice. The PSN-derived exosomal miR-1306-3p sorted from spinal dorsal horn activated P2X3R, enhanced spinal synaptic transmission, and led to visceral pain in NMD mice. Moreover, upregulation of Rab27a in dorsal root ganglia mediated the increased release of PSN-derived exosomes, and intrathecal injection of siR-Rab27a reduced visible PSN-derived exosomes in spinal cord, suppressed spinal synaptic transmission, and alleviated visceral pain in NMD mice. This and future studies would reveal the detailed mechanisms of PSN-derived exosomes and provide a potential target for clinical treatment of chronic visceral pain in patients with irritable bowel syndrome.
Collapse
Affiliation(s)
- Qian Sun
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Rui-Xia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| | - Shu-Man Jia
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Chun-Tao Ma
- Department of Gastroenterology, Suzhou Xiangcheng People's Hospital, Suzhou, P. R. China
| | - Hong-Hong Zhang
- Department of Endocrinology, the Second Affiliated Hospital, Soochow University, Suzhou, P. R. China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purine Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Guang-Yin Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, P. R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, P. R. China
| |
Collapse
|
5
|
Negah SS, Moradi HR, Forouzanfar F, Sahraian MA, Faraji M. The Role of Small Extracellular Vesicles Derived from Glial Cells in the Central Nervous System under both Normal and Pathological Conditions. Neurochem Res 2025; 50:89. [PMID: 39883187 DOI: 10.1007/s11064-025-04344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
In recent decades, researchers and clinicians have increasingly focused on glial cell function. One of the primary mechanisms influencing these functions is through extracellular vesicles (EVs), membrane-bound particles released by cells that are essential for intercellular communication. EVs can be broadly categorized into four main types based on their size, origin, and biogenesis: large EVs, small EVs (sEVs), autophagic EVs, and apoptotic bodies. Small EVs (sEVs) are involved in various physiological and pathological processes such as immune responses, angiogenesis, and cellular communication, primarily by transferring proteins, lipids, and nucleic acids to recipient cells. Interactions among glial cells mediated by small EVs can significantly modulate cell polarization and influence glial behavior through miRNA transfer. This communication, facilitated by small EVs in glial cells, is crucial for neuroinflammation, immune responses, and disease progression. This comprehensive review focuses on driven by glial small EVs, highlighting their roles in transporting biomolecules and modulating the functions of recipient cells. Furthermore, we provide an in-depth overview of the specific contributions of small EVs derived from three principal types of glial cells: oligodendrocytes, astrocytes, and microglia.
Collapse
Affiliation(s)
- Sajad Sahab Negah
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Faraji
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Tregub PP, Komleva YK, Kukla MV, Averchuk AS, Vetchinova AS, Rozanova NA, Illarioshkin SN, Salmina AB. Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus. Cells 2025; 14:143. [PMID: 39851571 PMCID: PMC11763428 DOI: 10.3390/cells14020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
Brain plasticity is at the basis of many cognitive functions, including learning and memory. It includes several mechanisms of synaptic and extrasynaptic changes, neurogenesis, and the formation and elimination of synapses. The plasticity of synaptic transmission involves the expression of immediate early genes (IEGs) that regulate neuronal activity, thereby supporting learning and memory. In addition, IEGs are involved in the regulation of brain cells' metabolism, proliferation, and survival, in the establishment of multicellular ensembles, and, presumably, in cell competition in the tissue. In this review, we analyze the current understanding of the role of IEGs (c-Fos, c-Myc, Arg3.1/Arc) in controlling brain plasticity in physiological and pathological conditions, including brain aging and neurodegeneration. This work might inspire new gene therapy strategies targeting IEGs to regulate synaptic plasticity, and potentially prevent or mitigate neurodegenerative diseases.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Research Center of Neurology, 125367 Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | | | | | - Anna S. Vetchinova
- I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | | | | |
Collapse
|
7
|
Herrera Lopez M, Bertone Arolfo M, Remedi M, Gastaldi L, Wilson C, Guendulain GG, Ceschin D, Cardozo Gizzi A, Cáceres A, Moyano AL. Human neural rosettes secrete bioactive extracellular vesicles enriched in neuronal and glial cellular components. Sci Rep 2025; 15:1987. [PMID: 39814837 PMCID: PMC11736123 DOI: 10.1038/s41598-025-86094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Extracellular vesicles (EVs) play a critical role in the development of neural cells in the central nervous system (CNS). Human neural rosettes (hNRs) are radial cell structures that assemble from induced pluripotent stem cells (hiPSCs) and recapitulate some stages of neural tube morphogenesis. Here we show that hiPSCs and hNRs secrete EVs (hiPSC-EVs and hNR-EVs) with distinctive protein cargoes. Remarkably, hNR-EVs carry neuronal and glial cellular components involved in human CNS development. Importantly, hNR-EVs stimulate stem cells to change their cellular morphology and promote neurite growth in human and murine neurons with a significant dysregulation of SOX2 levels. This transcription factor modulates both neural differentiation and pluripotency. Interestingly, these effects were inhibited by antibodies against an unexpected neuroglial cargo of hNR-EVs: the major proteolipid protein (PLP). These findings show that hNRs secrete bioactive EVs containing neural components and might contribute as trophic factors during human neurodevelopment.
Collapse
Affiliation(s)
- Malena Herrera Lopez
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Matías Bertone Arolfo
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Mónica Remedi
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Laura Gastaldi
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Carlos Wilson
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Gonzalo G Guendulain
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Danilo Ceschin
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Andrés Cardozo Gizzi
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina
| | - Alfredo Cáceres
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
| | - Ana Lis Moyano
- Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.
| |
Collapse
|
8
|
Iorio A, Melchionna S, Derreumaux P, Sterpone F. Fluid flow and amyloid transport and aggregation in the brain interstitial space. PNAS NEXUS 2025; 4:pgae548. [PMID: 39734639 PMCID: PMC11671586 DOI: 10.1093/pnasnexus/pgae548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/19/2024] [Indexed: 12/31/2024]
Abstract
The driving mechanisms at the base of the clearance of biological wastes in the brain interstitial space (ISS) are still poorly understood and an actively debated subject. A complete comprehension of the processes that lead to the aggregation of amyloid proteins in such environment, hallmark of the onset and progression of Alzheimer's disease, is of crucial relevance. Here we employ combined computational fluid dynamics and molecular dynamics techniques to uncover the role of fluid flow and proteins transport in the brain ISS. Our work identifies diffusion as the principal mechanism for amyloid-β proteins clearance, whereas fluid advection may lead transport for larger molecular bodies, like amyloid-β aggregates or extracellular vesicles. We also clearly quantify the impact of large nascent prefibrils on the fluid flowing and shearing. Finally, we show that, even in the irregular brain interstitial space (ISS), hydrodynamic interactions enhance amyloid-β aggregation at all stages of the aggregation pathway. Our results are key to understand the role of fluid flow and solvent-solute interplay on therapeutics like antibodies acting in the brain ISS.
Collapse
Affiliation(s)
- Antonio Iorio
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Simone Melchionna
- IAC-CNR, Via dei Taurini 19, Rome 00185, Italy
- MedLea, Via Angelo Poliziano 76, Rome 00184, Italy
| | - Philippe Derreumaux
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris 75005, France
- Institut Universitaire de France, 103 Boulevard Saint-Michel, Paris 75005, France
| | - Fabio Sterpone
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, Paris 75005, France
| |
Collapse
|
9
|
DaCunza JT, Wickman JR, Ajit SK. miRNA packaging into small extracellular vesicles and implications in pain. Pain Rep 2024; 9:e1198. [PMID: 39450410 PMCID: PMC11500789 DOI: 10.1097/pr9.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 10/26/2024] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of lipid bilayer bound particles naturally released by cells. These vesicles are classified based on their biogenesis pathway and diameter. The overlap in size of exosomes generated from the exosomal pathway and macrovesicles that are pinched off from the surface of the plasma membrane makes it challenging to isolate pure populations. Hence, isolated vesicles that are less than 200 nm are called small extracellular vesicles (sEVs). Extracellular vesicles transport a variety of cargo molecules, and multiple mechanisms govern the packaging of cargo into sEVs. Here, we discuss the current understanding of how miRNAs are targeted into sEVs, including the role of RNA binding proteins and EXOmotif sequences present in miRNAs in sEV loading. Several studies in human pain disorders and rodent models of pain have reported alterations in sEV cargo, including miRNAs. The sorting mechanisms and target regulation of miR-939, a miRNA altered in individuals with complex regional pain syndrome, is discussed in the context of inflammation. We also provide a broad overview of the therapeutic strategies being pursued to utilize sEVs in the clinic and the work needed to further our understanding of EVs to successfully deploy sEVs as a pain therapeutic.
Collapse
Affiliation(s)
- Jason T. DaCunza
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
10
|
Raineri D, De Marchi F, Vilardo B, Barbero Mazzucca C, Scotti L, Kustrimovic N, Mazzini L, Cappellano G, Chiocchetti A. Circulating GLAST + EVs are increased in amyotrophic lateral sclerosis. Front Mol Biosci 2024; 11:1507498. [PMID: 39640847 PMCID: PMC11617857 DOI: 10.3389/fmolb.2024.1507498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder, hallmarked by the gradual deterioration of motor neurons, culminating in muscle weakness and fatal paralysis. The exact etiology of ALS remains elusive, and there is a critical need for reliable biomarkers to aid in diagnosis and monitoring of disease progression. Extracellular vesicles (EVs) have emerged as promising candidates for biomarker discovery in neurodegenerative diseases such as ALS, giving access to pathologically relevant tissues otherwise typically challenging or invasive to sample. Indeed, EVs can derive by many cell types within the central nervous system, cross the blood-brain barrier and reach the blood, where they can be easily measured. One of the central mechanisms implicated in ALS pathology is glutamate excitotoxicity, which involves excessive glutamate accumulation due to impaired uptake by astrocytes and other glial cells, leading to neuronal damage. GLAST is a key glutamate transporter responsible for maintaining extracellular gluta-mate levels, and its dysregulation is thought to contribute significantly to ALS development and associated neuropathogenesis. Here, we applied a quick and validated method, to evaluate GLAST+ EVs in ALS patients' plasma and age-matched healthy controls. We found an increase in GLAST+ EVs that holds promise for uncovering novel diagnostic and therapeutic avenues in ALS research.
Collapse
Affiliation(s)
- Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- ALS Center, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
- Department of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Beatrice Vilardo
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Camilla Barbero Mazzucca
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Lorenza Scotti
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Natasa Kustrimovic
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Letizia Mazzini
- ALS Center, Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
- Department of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
11
|
Alhenaky A, Alhazmi S, Alamri SH, Alkhatabi HA, Alharthi A, Alsaleem MA, Abdelnour SA, Hassan SM. Exosomal MicroRNAs in Alzheimer's Disease: Unveiling Their Role and Pioneering Tools for Diagnosis and Treatment. J Clin Med 2024; 13:6960. [PMID: 39598105 PMCID: PMC11594708 DOI: 10.3390/jcm13226960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents a significant health concern, often leading to substantial cognitive decline among older adults. A prominent feature of AD is progressive dementia, which eventually disrupts daily functioning and the ability to live independently. A major challenge in addressing AD is its prolonged pre-symptomatic phase, which makes early detection difficult. Moreover, the disease's complexity and the inefficiency of current diagnostic methods impede the development of targeted therapies. Therefore, there is an urgent need to enhance diagnostic methodologies for detection and treating AD even before clinical symptoms appear. Exosomes are nanoscale biovesicles secreted by cells, including nerve cells, into biofluids. These exosomes play essential roles in the central nervous system (CNS) by facilitating neuronal communication and thus influencing major physiological and pathological processes. Exosomal cargo, particularly microRNAs (miRNAs), are critical mediators in this cellular communication, and their dysregulation affects various pathological pathways related to neurodegenerative diseases, including AD. This review discusses the significant roles of exosomal miRNAs in the pathological mechanisms related to AD, focusing on the promising use of exosomal miRNAs as diagnostic biomarkers and targeted therapeutic interventions for this devastating disease.
Collapse
Affiliation(s)
- Alhanof Alhenaky
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
| | - Sultan H. Alamri
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahd Medical Research Center, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Mansour A. Alsaleem
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Sabah M. Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 80200, Saudi Arabia
- Princess Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo 11517, Egypt
| |
Collapse
|
12
|
Ikezu T, Yang Y, Verderio C, Krämer-Albers EM. Extracellular Vesicle-Mediated Neuron-Glia Communications in the Central Nervous System. J Neurosci 2024; 44:e1170242024. [PMID: 39358029 PMCID: PMC11450539 DOI: 10.1523/jneurosci.1170-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 10/04/2024] Open
Abstract
Communication between neurons and glia significantly influences the development maturation, plasticity, and disease progressions of the nervous system. As a new signaling modality, extracellular vesicles display a diverse role for robust functional regulation of neurons through their protein and nucleic acid cargoes. This review highlights recent breakthroughs in the research of signaling mechanisms between glia and neurons mediated by extracellular vesicles that are important for neural development, axonal maintenance, synaptic functions, and disease progression in the mammalian nervous system. We will discuss the biological roles of extracellular vesicles released from neurons, astroglia, microglia, and oligodendroglia in the nervous system and their implications in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tsuneya Ikezu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Claudia Verderio
- Department of Biomedical Sciences, CNR Institute of Neuroscience, Università Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy
| | - Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Rhineland Palatinate, Germany
| |
Collapse
|
13
|
Tang N. Exosomes in multiple sclerosis and Alzheimer's disease - Adversary and ally. Biomed J 2024; 47:100665. [PMID: 37778696 PMCID: PMC11401191 DOI: 10.1016/j.bj.2023.100665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023] Open
Abstract
Neuroinflammation and the resulting neurodegeneration is a big challenge for the healthcare system, especially with the aging population. Neuroinflammation can result from a variety of insults to the central nervous system leading to an interplay between immune and brain cells that sustains chronic inflammation and injures neural cells. One facilitator of this toxic interplay are exosomes. Exosomes are nano-sized, bilayer lipid vesicles secreted by cells containing proteins, nucleic acids and lipids. Because exosomes can be internalized by other cells, their contents can elicit inflammatory responses and trigger toxicities in recipient cells. On the flip side, exosomes can act as therapeutic vehicles carrying protective cargo to maintain homeostasis. This review discusses exosome biogenesis, composition, and its role in neuroinflammation and neurodegeneration in the context of multiple sclerosis and Alzheimer's disease. The emerging roles of exosomes as biomarkers of neurologic diseases and as therapeutic delivery vehicles are also discussed. With all of these varying roles, interest and excitement in exosomes continue to grow exponentially and their promise as brain therapeutics is only beginning to be explored and harnessed.
Collapse
Affiliation(s)
- Norina Tang
- Department of Periodontics, University of the Pacific, San Francisco, USA; Department of Laboratory Medicine, San Francisco Veterans Affairs Health Care System, San Francisco, USA.
| |
Collapse
|
14
|
Zhang Q, Liu J, Wang W, Lin W, Ahmed W, Duan W, Huang S, Zhu Z, Chen L. The role of exosomes derived from stem cells in nerve regeneration: A contribution to neurological repair. Exp Neurol 2024; 380:114882. [PMID: 39002923 DOI: 10.1016/j.expneurol.2024.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Stem cell-derived exosomes have gained attention in regenerative medicine for their role in encouraging nerve regeneration and potential use in treating neurological diseases. These nanosized extracellular vesicles act as carriers of bioactive molecules, facilitating intercellular communication and enhancing the regenerative process in neural tissues. This comprehensive study explores the methods by which exosomes produced from various stem cells contribute to nerve healing, with a particular emphasis on their role in angiogenesis, inflammation, and cellular signaling pathways. By examining cutting-edge developments and exploring the potential of exosomes in delivering disease-specific miRNAs and proteins, we highlight their versatility in tailoring personalized therapeutic strategies. The findings presented here highlight the potential of stem cell-produced exosomes for use in neurological diseases therapy, establishing the door for future research into exosome-based neurotherapies.
Collapse
Affiliation(s)
- Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiale Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wentong Lin
- Department of Orthopaedics, Chaozhou Hospital of Traditional Chinese Medicine, Chaozhou, China
| | - Waqas Ahmed
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wenjie Duan
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Songze Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Lallai V, Lam TT, Garcia-Milian R, Chen YC, Fowler JP, Manca L, Piomelli D, Williams K, Nairn AC, Fowler CD. Proteomic Profile of Circulating Extracellular Vesicles in the Brain after Δ9-Tetrahydrocannabinol Inhalation. Biomolecules 2024; 14:1143. [PMID: 39334909 PMCID: PMC11430348 DOI: 10.3390/biom14091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Given the increasing use of cannabis in the US, there is an urgent need to better understand the drug's effects on central signaling mechanisms. Extracellular vesicles (EVs) have been identified as intercellular signaling mediators that contain a variety of cargo, including proteins. Here, we examined whether the main psychoactive component in cannabis, Δ9-tetrahydrocannabinol (THC), alters EV protein signaling dynamics in the brain. We first conducted in vitro studies, which found that THC activates signaling in choroid plexus epithelial cells, resulting in transcriptional upregulation of the cannabinoid 1 receptor and immediate early gene c-fos, in addition to the release of EVs containing RNA cargo. Next, male and female rats were examined for the effects of either acute or chronic exposure to aerosolized ('vaped') THC on circulating brain EVs. Cerebrospinal fluid was extracted from the brain, and EVs were isolated and processed with label-free quantitative proteomic analyses via high-resolution tandem mass spectrometry. Interestingly, circulating EV-localized proteins were differentially expressed based on acute or chronic THC exposure in a sex-specific manner. Taken together, these findings reveal that THC acts in the brain to modulate circulating EV signaling, thereby providing a novel understanding of how exogenous factors can regulate intercellular communication in the brain.
Collapse
Affiliation(s)
- Valeria Lallai
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
| | - TuKiet T. Lam
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Rolando Garcia-Milian
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Bioinformatics Support Hub, Harvey Cushing/John Whitney Medical Library, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
| | - James P. Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
| | - Letizia Manca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
| | - Daniele Piomelli
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA;
| | - Kenneth Williams
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Angus C. Nairn
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Christie D. Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
| |
Collapse
|
16
|
Dresselhaus EC, Harris KP, Blanchette CR, Koles K, Del Signore SJ, Pescosolido MF, Ermanoska B, Rozencwaig M, Soslowsky RC, Parisi MJ, Stewart BA, Mosca TJ, Rodal AA. ESCRT disruption provides evidence against trans-synaptic signaling via extracellular vesicles. J Cell Biol 2024; 223:e202405025. [PMID: 38842573 PMCID: PMC11157088 DOI: 10.1083/jcb.202405025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Extracellular vesicles (EVs) are released by many cell types, including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating endosomal sorting complex required for transport (ESCRT) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo evenness interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell-autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.
Collapse
Affiliation(s)
| | - Kathryn P. Harris
- Office of the Vice-Principal, Research and Innovation, University of Toronto Mississauga, Mississauga, Canada
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | | | | | | - Mark Rozencwaig
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Avital A. Rodal
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
17
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Cabrera-Pastor A. Extracellular Vesicles as Mediators of Neuroinflammation in Intercellular and Inter-Organ Crosstalk. Int J Mol Sci 2024; 25:7041. [PMID: 39000150 PMCID: PMC11241119 DOI: 10.3390/ijms25137041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neuroinflammation, crucial in neurological disorders like Alzheimer's disease, multiple sclerosis, and hepatic encephalopathy, involves complex immune responses. Extracellular vesicles (EVs) play a pivotal role in intercellular and inter-organ communication, influencing disease progression. EVs serve as key mediators in the immune system, containing molecules capable of activating molecular pathways that exacerbate neuroinflammatory processes in neurological disorders. However, EVs from mesenchymal stem cells show promise in reducing neuroinflammation and cognitive deficits. EVs can cross CNS barriers, and peripheral immune signals can influence brain function via EV-mediated communication, impacting barrier function and neuroinflammatory responses. Understanding EV interactions within the brain and other organs could unveil novel therapeutic targets for neurological disorders.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Departamento de Farmacología, Facultad de Medicina y Odontología, Universitat de València, 46010 Valencia, Spain; or
- Fundación de Investigación del Hospital Clínico Universitario de Valencia, INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
19
|
Manna I, De Benedittis S, Porro D. Extracellular Vesicles in Multiple Sclerosis: Their Significance in the Development and Possible Applications as Therapeutic Agents and Biomarkers. Genes (Basel) 2024; 15:772. [PMID: 38927708 PMCID: PMC11203165 DOI: 10.3390/genes15060772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Extracellular vesicles (EVs) are "micro-shuttles" that play a role as mediators of intercellular communication. Cells release EVs into the extracellular environment in both physiological and pathological conditions and are involved in intercellular communication, due to their ability to transfer proteins, lipids, and nucleic acids, and in the modulation of the immune system and neuroinflammation. Because EVs can penetrate the blood-brain barrier and move from the central nervous system to the peripheral circulation, and vice versa, recent studies have shown a substantial role for EVs in several neurological diseases, including multiple sclerosis (MS). MS is a demyelinating disease where the main event is caused by T and B cells triggering an autoimmune reaction against myelin constituents. Recent research has elucidate the potential involvement of extracellular vesicles (EVs) in the pathophysiology of MS, although, to date, their potential role both as agents and therapeutic targets in MS is not fully defined. We present in this review a summary and comprehensive examination of EVs' involvement in the pathophysiology of multiple sclerosis, exploring their potential applications as biomarkers and indicators of therapy response.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Catanzaro, 88100 Catanzaro, Italy
| | - Selene De Benedittis
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 87050 Cosenza, Italy
| | - Danilo Porro
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Segrate, 20054 Milan, Italy
| |
Collapse
|
20
|
Jank L, Kesharwani A, Ryu T, Joshi D, Ladakis DC, Smith MD, Singh S, Arab T, Witwer KW, Calabresi PA, Na CH, Bhargava P. Characterization of spinal cord tissue-derived extracellular vesicles in neuroinflammation. J Neuroinflammation 2024; 21:154. [PMID: 38851724 PMCID: PMC11162576 DOI: 10.1186/s12974-024-03147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024] Open
Abstract
Extracellular vesicles (EVs) are released by all cells, can cross the blood-brain barrier, and have been shown to play an important role in cellular communication, substance shuttling, and immune modulation. In recent years EVs have shifted into focus in multiple sclerosis (MS) research as potential plasma biomarkers and therapeutic vehicles. Yet little is known about the disease-associated changes in EVs in the central nervous system (CNS). To address this gap, we characterized the physical and proteomic changes of mouse spinal cord-derived EVs before and at 16 and 25 days after the induction of experimental autoimmune encephalomyelitis (EAE), a neuroinflammatory model of MS. Using various bioinformatic tools, we found changes in inflammatory, glial, and synaptic proteins and pathways, as well as a shift in the predicted contribution of immune and glial cell types over time. These results show that EVs provide snapshots of crucial disease processes such as CNS-compartmentalized inflammation, re/de-myelination, and synaptic pathology, and might also mediate these processes. Additionally, inflammatory plasma EV biomarkers previously identified in people with MS were also altered in EAE spinal cord EVs, suggesting commonalities of EV-related pathological processes during EAE and MS and overlap of EV proteomic changes between CNS and circulating EVs.
Collapse
Affiliation(s)
- Larissa Jank
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ajay Kesharwani
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taekyung Ryu
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deepika Joshi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios C Ladakis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saumitra Singh
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tanina Arab
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth W Witwer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chan-Hyun Na
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Dresselhaus EC, Harris KP, Blanchette CR, Koles K, Del Signore SJ, Pescosolido MF, Ermanoska B, Rozencwaig M, Soslowsky RC, Parisi MJ, Stewart BA, Mosca TJ, Rodal AA. ESCRT disruption provides evidence against transsynaptic signaling functions for extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.22.537920. [PMID: 38746182 PMCID: PMC11092503 DOI: 10.1101/2023.04.22.537920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Extracellular vesicles (EVs) are released by many cell types including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating ESCRT (endosomal sorting complex required for transport) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo Evenness Interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.
Collapse
Affiliation(s)
| | - Kathryn P. Harris
- Office of the Vice-Principal, Research and Innovation, University of Toronto, Mississauga, Mississauga, Canada
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | | | | | | | | | | | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA
| | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada; Department of Cell and Systems Biology University of Toronto, Toronto, Canada
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA
| | | |
Collapse
|
22
|
Martínez-García J, Villa-Vázquez A, Fernández B, González-Iglesias H, Pereiro R. Exploring capabilities of elemental mass spectrometry for determination of metal and biomolecules in extracellular vesicles. Anal Bioanal Chem 2024; 416:2595-2604. [PMID: 37999724 PMCID: PMC11009778 DOI: 10.1007/s00216-023-05056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognized as crucial components influencing various pathophysiological processes, such as cellular homeostasis, cancer progression, and neurological disease. However, the lack of standardized methods for EV isolation and classification, coupled with ambiguity in biochemical markers associated with EV subtypes, remains a major challenge. This Trends article highlights the most common approaches for EV isolation and characterization, along with recent applications of elemental mass spectrometry (MS) to analyse metals and biomolecules in EVs obtained from biofluids or in vitro cellular models. Considering the promising capabilities of elemental MS, the article also looks ahead to the potential analysis of EVs at the single-vesicle and single-cell levels using ICP-MS. These approaches may offer valuable insights into individual characteristics of EVs and their functions, contributing to a deeper understanding of their role in various biological processes.
Collapse
Affiliation(s)
- Jaime Martínez-García
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Alicia Villa-Vázquez
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain.
| | - Héctor González-Iglesias
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
23
|
Amin S, Massoumi H, Tewari D, Roy A, Chaudhuri M, Jazayerli C, Krishan A, Singh M, Soleimani M, Karaca EE, Mirzaei A, Guaiquil VH, Rosenblatt MI, Djalilian AR, Jalilian E. Cell Type-Specific Extracellular Vesicles and Their Impact on Health and Disease. Int J Mol Sci 2024; 25:2730. [PMID: 38473976 PMCID: PMC10931654 DOI: 10.3390/ijms25052730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs), a diverse group of cell-derived exocytosed particles, are pivotal in mediating intercellular communication due to their ability to selectively transfer biomolecules to specific cell types. EVs, composed of proteins, nucleic acids, and lipids, are taken up by cells to affect a variety of signaling cascades. Research in the field has primarily focused on stem cell-derived EVs, with a particular focus on mesenchymal stem cells, for their potential therapeutic benefits. Recently, tissue-specific EVs or cell type-specific extracellular vesicles (CTS-EVs), have garnered attention for their unique biogenesis and molecular composition because they enable highly targeted cell-specific communication. Various studies have outlined the roles that CTS-EVs play in the signaling for physiological function and the maintenance of homeostasis, including immune modulation, tissue regeneration, and organ development. These properties are also exploited for disease propagation, such as in cancer, neurological disorders, infectious diseases, autoimmune conditions, and more. The insights gained from analyzing CTS-EVs in different biological roles not only enhance our understanding of intercellular signaling and disease pathogenesis but also open new avenues for innovative diagnostic biomarkers and therapeutic targets for a wide spectrum of medical conditions. This review comprehensively outlines the current understanding of CTS-EV origins, function within normal physiology, and implications in diseased states.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Deepshikha Tewari
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Arnab Roy
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Madhurima Chaudhuri
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Cedra Jazayerli
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mannat Singh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Emine E. Karaca
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Department of Ophthalmology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara 06800, Turkey
| | - Arash Mirzaei
- Department of Ophthalmology, University of Medical Sciences, Farabi Eye Hospital, Tehran 13366 16351, Iran;
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.A.); (H.M.); (D.T.); (A.R.); (M.C.); (C.J.); (A.K.); (M.S.); (M.S.); (E.E.K.); (V.H.G.); (M.I.R.); (E.J.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
24
|
Abdullahi A, Wong TW, Ng SS. Understanding the mechanisms of disease modifying effects of aerobic exercise in people with Alzheimer's disease. Ageing Res Rev 2024; 94:102202. [PMID: 38272266 DOI: 10.1016/j.arr.2024.102202] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Alzheimer's disease (AD) is a very disabling disease. Pathologically, it is characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain that results in neurodegeneration. Its clinical manifestations include progressive memory impairment, language decline and difficulty in carrying out activities of daily living (ADL). The disease is managed using interventions such as pharmacological interventions and aerobic exercise. Use of aerobic exercise has shown some promises in reducing the risk of developing AD, and improving cognitive function and the ability to carry out both basic and instrumental ADL. Although, the mechanisms through which aerobic exercise improves AD are poorly understood, improvement in vascular function, brain glucose metabolism and cardiorespiratory fitness, increase in antioxidant capacity and haemoglobin level, amelioration of immune-related and inflammatory responses, modulation of concentration of circulating Neurotrophins and peptides and decrease in concentration of tau protein and cortisol level among others seem to be the possible mechanisms. Therefore, understanding these mechanisms is important to help characterize the dose and the nature of the aerobic exercise to be given. In addition, they may also help in finding ways to optimize other interventions such as the pharmacological interventions. However, more quality studies are needed to verify the mechanisms.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Thomson Wl Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shamay Sm Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
25
|
Cioanca AV, Wooff Y, Aggio‐Bruce R, Sekar R, Dietrich C, Natoli R. Multiomic integration reveals neuronal-extracellular vesicle coordination of gliotic responses in degeneration. J Extracell Vesicles 2023; 12:e12393. [PMID: 38082562 PMCID: PMC10714032 DOI: 10.1002/jev2.12393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
In the central nervous system (CNS), including in the retina, neuronal-to-glial communication is critical for maintaining tissue homeostasis including signal transmission, transfer of trophic factors, and in the modulation of inflammation. Extracellular vesicle (EV)-mediated transport of molecular messages to regulate these processes has been suggested as a mechanism by which bidirectional communication between neuronal and glial cells can occur. In this work we employed multiomics integration to investigate the role of EV communication pathways from neurons to glial cells within the CNS, using the mouse retina as a readily accessible representative CNS tissue. Further, using a well-established model of degeneration, we aimed to uncover how dysregulation of homeostatic messaging between neurons and glia via EV can result in retinal and neurodegenerative diseases. EV proteomics, glia microRNA (miRNA) Open Array and small RNA sequencing, and retinal single cell sequencing were performed, with datasets integrated and analysed computationally. Results demonstrated that exogenous transfer of neuronal miRNA to glial cells was mediated by EV and occurred as a targeted response during degeneration to modulate gliotic inflammation. Taken together, our results support a model of neuronal-to-glial communication via EV, which could be harnessed for therapeutic targeting to slow the progression of retinal-, and neuro-degenerations of the CNS.
Collapse
Affiliation(s)
- Adrian V. Cioanca
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityCanberraAustralia
| | - Yvette Wooff
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityCanberraAustralia
| | - Riemke Aggio‐Bruce
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityCanberraAustralia
| | - Rakshanya Sekar
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityCanberraAustralia
| | - Catherine Dietrich
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
| | - Riccardo Natoli
- Clear Vision Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical Research, College of Health and MedicineThe Australian National UniversityCanberraAustralia
- School of Medicine and Psychology, College of Health and MedicineThe Australian National UniversityCanberraAustralia
| |
Collapse
|
26
|
Alvarez MM, Salazar FE, Rodriguez T, D’Egidio F, Borlongan CV, Lee JY. Endogenous Extracellular Vesicles Participate in Brain Remodeling after Ischemic Stroke. Int J Mol Sci 2023; 24:16857. [PMID: 38069179 PMCID: PMC10706116 DOI: 10.3390/ijms242316857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Brain remodeling after an ischemic stroke represents a promising avenue for exploring the cellular mechanisms of endogenous brain repair. A deeper understanding of these mechanisms is crucial for optimizing the safety and efficacy of neuroprotective treatments for stroke patients. Here, we interrogated the role of extracellular vesicles, particularly exosomes, as potential mediators of endogenous repair within the neurovascular unit (NVU). We hypothesized that these extracellular vesicles may play a role in achieving transient stroke neuroprotection. Using the established ischemic stroke model of middle cerebral artery occlusion in adult rats, we detected a surged in the extracellular vesicle marker CD63 in the peri-infarct area that either juxtaposed or co-localized with GFAP-positive glial cells, MAP2-labeled young neurons, and VEGF-marked angiogenic cells. This novel observation that CD63 exosomes spatially and temporally approximated glial activation, neurogenesis, and angiogenesis suggests that extracellular vesicles, especially exosomes, contribute to the endogenous repair of the NVU, warranting exploration of extracellular vesicle-based stroke therapeutics.
Collapse
Affiliation(s)
| | | | | | | | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; (M.M.A.); (F.E.S.); (T.R.); (F.D.); (J.-Y.L.)
| | | |
Collapse
|
27
|
Huang Y, Arab T, Russell AE, Mallick ER, Nagaraj R, Gizzie E, Redding‐Ochoa J, Troncoso JC, Pletnikova O, Turchinovich A, Routenberg DA, Witwer KW. Toward a human brain extracellular vesicle atlas: Characteristics of extracellular vesicles from different brain regions, including small RNA and protein profiles. INTERDISCIPLINARY MEDICINE 2023; 1:e20230016. [PMID: 38089920 PMCID: PMC10712435 DOI: 10.1002/inmd.20230016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 12/20/2023]
Abstract
Extracellular vesicles (EVs) are released from different cell types in the central nervous system (CNS) and play roles in regulating physiological and pathological functions. Although brain-derived EVs (bdEVs) have been successfully collected from brain tissue, there is not yet a "bdEV Atlas" of EVs from different brain regions. To address this gap, we separated EVs from eight anatomical brain regions of a single individual and subsequently characterized them by count, size, morphology, and protein and RNA content. The greatest particle yield was from cerebellum, while the fewest particles were recovered from the orbitofrontal, postcentral gyrus, and thalamus regions. EV surface phenotyping indicated that CD81 and CD9 were more abundant than CD63 in all regions. Cell-enriched surface markers varied between brain regions. For example, putative neuronal markers NCAM, CD271, and NRCAM were more abundant in medulla, cerebellum, and occipital regions, respectively. These findings, while restricted to tissues from a single individual, suggest that additional studies are warranted to provide more insight into the links between EV heterogeneity and function in the CNS.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tanina Arab
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ashley E. Russell
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of BiologySchool of SciencePenn State ErieThe Behrend CollegeEriePennsylvaniaUSA
| | - Emily R. Mallick
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Evan Gizzie
- Meso Scale DiagnosticsLLCRockvilleMarylandUSA
| | - Javier Redding‐Ochoa
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Juan C. Troncoso
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Olga Pletnikova
- Department of PathologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Pathology and Anatomical SciencesJacobs School of Medicine and Biomedical SciencesUniversity at BuffaloBuffaloNew YorkUSA
| | - Andrey Turchinovich
- Division of Cancer Genome ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Biolabs GmbHHeidelbergGermany
| | | | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
28
|
Solana‐Balaguer J, Campoy‐Campos G, Martín‐Flores N, Pérez‐Sisqués L, Sitjà‐Roqueta L, Kucukerden M, Gámez‐Valero A, Coll‐Manzano A, Martí E, Pérez‐Navarro E, Alberch J, Soriano J, Masana M, Malagelada C. Neuron-derived extracellular vesicles contain synaptic proteins, promote spine formation, activate TrkB-mediated signalling and preserve neuronal complexity. J Extracell Vesicles 2023; 12:e12355. [PMID: 37743539 PMCID: PMC10518375 DOI: 10.1002/jev2.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 07/21/2023] [Indexed: 09/26/2023] Open
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication as carriers of signalling molecules such as bioactive miRNAs, proteins and lipids. EVs are key players in the functioning of the central nervous system (CNS) by influencing synaptic events and modulating recipient neurons. However, the specific role of neuron-to-neuron communication via EVs is still not well understood. Here, we provide evidence that primary neurons uptake neuron-derived EVs in the soma, dendrites, and even in the dendritic spines, and carry synaptic proteins. Neuron-derived EVs increased spine density and promoted the phosphorylation of Akt and ribosomal protein S6 (RPS6), via TrkB-signalling, without impairing the neuronal network activity. Strikingly, EVs exerted a trophic effect on challenged nutrient-deprived neurons. Altogether, our results place EVs in the spotlight for synaptic plasticity modulation as well as a possible therapeutic tool to fight neurodegeneration.
Collapse
Affiliation(s)
- Julia Solana‐Balaguer
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Genís Campoy‐Campos
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Núria Martín‐Flores
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Leticia Pérez‐Sisqués
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Laia Sitjà‐Roqueta
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Melike Kucukerden
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Ana Gámez‐Valero
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Albert Coll‐Manzano
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Eulàlia Martí
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Esther Pérez‐Navarro
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Jordi Soriano
- Departament de Física de la Matèria CondensadaUniversitat de BarcelonaBarcelonaSpain
- Universitat de Barcelona, Institute of Complex Systems (UBICS)Universitat de BarcelonaBarcelonaSpain
| | - Mercè Masana
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Cristina Malagelada
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
29
|
Stajano D, Lombino FL, Schweizer M, Glatzel M, Saftig P, Gromova KV, Kneussel M. Tetraspanin 15 depletion impairs extracellular vesicle docking at target neurons. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e113. [PMID: 38938373 PMCID: PMC11080857 DOI: 10.1002/jex2.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 06/29/2024]
Abstract
Neurons in the central nervous system release extracellular vesicles (EVs) and exosomes in response to synaptic activity to regulate physiological processes at target neurons. The intercellular transfer of proteins, mRNAs, lipids or metabolites through EVs potentially modulates the structure and function of neurons and circuits. Whereas the biogenesis of EVs, their release from donor cells, and their molecular composition have been studied extensively, the critical factors and mechanisms regulating EV interactions with target cells are incompletely understood. Here, we identified tetraspanin 15 (Tspan15) as a component of tumor susceptibility gene 101 protein (TSG101)- and CD81-positive EV fractions. Tspan15 fluorescent fusion proteins were released from donor cells and interacted with target cells together with the exosomal marker CD63. EVs collected from wildtype cortical neurons (WT-EVs) underwent similar association with target neurons derived from either wildtype (+/+) or Tspan15 knockout (-/-) mice. In contrast, target cell interactions of EVs collected from Tspan15 (-/-) cortical donor neurons (KO-EVs) were significantly impaired, as compared to WT-EVs. Our data suggest that Tspan15 is dispensable at target neuron plasma membranes, but is required at the EV surface to promote EV docking at target neurons.
Collapse
Affiliation(s)
- Daniele Stajano
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Franco L. Lombino
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Michaela Schweizer
- Core Facility Morphology, Center for Molecular Neurobiology, ZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Markus Glatzel
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Paul Saftig
- Biochemical InstituteChristian‐Albrechts‐University KielKielGermany
| | - Kira V. Gromova
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Matthias Kneussel
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
30
|
Krämer-Albers EM, Werner HB. Mechanisms of axonal support by oligodendrocyte-derived extracellular vesicles. Nat Rev Neurosci 2023:10.1038/s41583-023-00711-y. [PMID: 37258632 DOI: 10.1038/s41583-023-00711-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Extracellular vesicles (EVs) have recently emerged as versatile elements of cell communication in the nervous system, mediating tissue homeostasis. EVs influence the physiology of their target cells via horizontal transfer of molecular cargo between cells and by triggering signalling pathways. In this Review, we discuss recent work revealing that EVs mediate interactions between oligodendrocytes and neurons, which are relevant for maintaining the structural integrity of axons. In response to neuronal activity, myelinating oligodendrocytes release EVs, which are internalized by neurons and provide axons with key factors that improve axonal transport, stress resistance and energy homeostasis. Glia-to-neuron transfer of EVs is thus a crucial facet of axonal preservation. When glial support is impaired, axonal integrity is progressively lost, as observed in myelin-related disorders, other neurodegenerative diseases and with normal ageing. We highlight the mechanisms that oligodendroglial EVs use to sustain axonal integrity and function.
Collapse
Affiliation(s)
- Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
31
|
Huang Y, Arab T, Russell AE, Mallick ER, Nagaraj R, Gizzie E, Redding-Ochoa J, Troncoso JC, Pletnikova O, Turchinovich A, Routenberg DA, Witwer KW. Towards a human brain EV atlas: Characteristics of EVs from different brain regions, including small RNA and protein profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539665. [PMID: 37214955 PMCID: PMC10197569 DOI: 10.1101/2023.05.06.539665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Extracellular vesicles (EVs) are released from different cell types in the central nervous system (CNS) and play roles in regulating physiological and pathological functions. Although brain-derived EVs (bdEVs) have been successfully collected from brain tissue, there is not yet a "bdEV atlas" of EVs from different brain regions. To address this gap, we separated EVs from eight anatomical brain regions of a single individual and subsequently characterized them by count, size, morphology, and protein and RNA content. The greatest particle yield was from cerebellum, while the fewest particles were recovered from the orbitofrontal, postcentral gyrus, and thalamus regions. EV surface phenotyping indicated that CD81 and CD9 were more abundant than CD63 for all regions. Cell-enriched surface markers varied between brain regions. For example, putative neuronal markers NCAM, CD271, and NRCAM were more abundant in medulla, cerebellum, and occipital regions, respectively. These findings, while restricted to tissues from a single individual, suggest that additional studies are merited to lend more insight into the links between EV heterogeneity and function in the CNS.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tanina Arab
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley E. Russell
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA, United States
| | - Emily R. Mallick
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Evan Gizzie
- Meso Scale Diagnostics, LLC, Rockville, MD, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Andrey Turchinovich
- Division of Cancer Genome Research, German Cancer Research Center DKFZ, Heidelberg, Germany
- Heidelberg Biolabs GmbH, Mannheim, Germany
| | | | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, MD, US
| |
Collapse
|
32
|
W B Jr M, A S R, P M, F B. Cellular and Natural Viral Engineering in Cognition-Based Evolution. Commun Integr Biol 2023; 16:2196145. [PMID: 37153718 PMCID: PMC10155641 DOI: 10.1080/19420889.2023.2196145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Neo-Darwinism conceptualizes evolution as the continuous succession of predominately random genetic variations disciplined by natural selection. In that frame, the primary interaction between cells and the virome is relegated to host-parasite dynamics governed by selective influences. Cognition-Based Evolution regards biological and evolutionary development as a reciprocating cognition-based informational interactome for the protection of self-referential cells. To sustain cellular homeorhesis, cognitive cells collaborate to assess the validity of ambiguous biological information. That collective interaction involves coordinate measurement, communication, and active deployment of resources as Natural Cellular Engineering. These coordinated activities drive multicellularity, biological development, and evolutionary change. The virome participates as the vital intercessory among the cellular domains to ensure their shared permanent perpetuation. The interactions between the virome and the cellular domains represent active virocellular cross-communications for the continual exchange of resources. Modular genetic transfers between viruses and cells carry bioactive potentials. Those exchanges are deployed as nonrandom flexible tools among the domains in their continuous confrontation with environmental stresses. This alternative framework fundamentally shifts our perspective on viral-cellular interactions, strengthening established principles of viral symbiogenesis. Pathogenesis can now be properly appraised as one expression of a range of outcomes between cells and viruses within a larger conceptual framework of Natural Viral Engineering as a co-engineering participant with cells. It is proposed that Natural Viral Engineering should be viewed as a co-existent facet of Natural Cellular Engineering within Cognition-Based Evolution.
Collapse
Affiliation(s)
- Miller W B Jr
- Banner Health Systems - Medicine, Paradise Valley, Arizona, AZ, USA
| | - Reber A S
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Marshall P
- Department of Engineering, Evolution 2.0, Oak Park, IL, USA
| | - Baluška F
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
Pérez-Sala D, Pajares MA. Appraising the Role of Astrocytes as Suppliers of Neuronal Glutathione Precursors. Int J Mol Sci 2023; 24:ijms24098059. [PMID: 37175763 PMCID: PMC10179008 DOI: 10.3390/ijms24098059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The metabolism and intercellular transfer of glutathione or its precursors may play an important role in cellular defense against oxidative stress, a common hallmark of neurodegeneration. In the 1990s, several studies in the Neurobiology field led to the widely accepted notion that astrocytes produce large amounts of glutathione that serve to feed neurons with precursors for glutathione synthesis. This assumption has important implications for health and disease since a reduction in this supply from astrocytes could compromise the capacity of neurons to cope with oxidative stress. However, at first glance, this shuttling would imply a large energy expenditure to get to the same point in a nearby cell. Thus, are there additional underlying reasons for this expensive mechanism? Are neurons unable to import and/or synthesize the three non-essential amino acids that are the glutathione building blocks? The rather oxidizing extracellular environment favors the presence of cysteine (Cys) as cystine (Cis), less favorable for neuronal import. Therefore, it has also been proposed that astrocytic GSH efflux could induce a change in the redox status of the extracellular space nearby the neurons, locally lowering the Cis/Cys ratio. This astrocytic glutathione release would also increase their demand for precursors, stimulating Cis uptake, which these cells can import, further impacting the local decline of the Cis/Cys ratio, in turn, contributing to a more reduced extracellular environment and subsequently favoring neuronal Cys import. Here, we revisit the experimental evidence that led to the accepted hypothesis of astrocytes acting as suppliers of neuronal glutathione precursors, considering recent data from the Human Protein Atlas. In addition, we highlight some potential drawbacks of this hypothesis, mainly supported by heterogeneous cellular models. Finally, we outline additional and more cost-efficient possibilities by which astrocytes could support neuronal glutathione levels, including its shuttling in extracellular vesicles.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
34
|
Nguyen NM, Meyer D, Meyer L, Chand S, Jagadesan S, Miravite M, Guda C, Yelamanchili SV, Pendyala G. Identification of YWHAH as a Novel Brain-Derived Extracellular Vesicle Marker Post Long-Term Midazolam Exposure during Early Development. Cells 2023; 12:966. [PMID: 36980307 PMCID: PMC10047367 DOI: 10.3390/cells12060966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Recently, the long-term use of sedative agents in the neonatal intensive care unit (NICU) has raised concerns about neurodevelopmental outcomes in exposed neonates. Midazolam (MDZ), a common neonatal sedative in the NICU, has been suggested to increase learning disturbances and cognitive impairment in children. However, molecular mechanisms contributing to such outcomes with long-term MDZ use during the early stages of life remain unclear. In this study, we for the first time elucidate the role of brain-derived extracellular vesicles (BDEVs), including mining the BDEV proteome post long-term MDZ exposure during early development. Employing our previously established rodent model system that mimics the exposure of MDZ in the NICU using an increasing dosage regimen, we isolated BDEVs from postnatal 21-days-old control and MDZ groups using a differential sucrose density gradient. BDEVs from the control and MDZ groups were then characterized using a ZetaView nanoparticle tracking analyzer and transmission electron microscopy analysis. Next, using RT-qPCR, we examined the expression of key ESCRT-related genes involved in EV biogenesis. Lastly, using quantitative mass spectrometry-based proteomics, we mined the BDEV protein cargo that revealed key differentially expressed proteins and associated molecular pathways to be altered post long-term MDZ exposure. Our study characterized the proteome in BDEV cargo from long-term MDZ exposure at early development. Importantly, we identified and validated the expression of YWHAH as a potential target for further characterization of its downstream mechanism and a potential biomarker for the early onset of neurodevelopment and neurodegenerative diseases. Overall, the present study demonstrated long-term exposure to MDZ at early development stages could influence BDEV protein cargo, which potentially impact neural functions and behavior at later stages of development.
Collapse
Affiliation(s)
- Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Daniel Meyer
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Luke Meyer
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Sankarasubramanian Jagadesan
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Maireen Miravite
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- Child Health Research Institute, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
- National Strategic Research Institute, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| |
Collapse
|
35
|
Casadomé-Perales Á, Naya S, Fernández-Martínez E, Mille BG, Guerrero-Valero M, Peinado H, Guix FX, Dotti CG, Palomer E. Neuronal Prosurvival Role of Ceramide Synthase 2 by Olidogendrocyte-to-Neuron Extracellular Vesicle Transfer. Int J Mol Sci 2023; 24:ijms24065986. [PMID: 36983060 PMCID: PMC10052063 DOI: 10.3390/ijms24065986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Ageing is associated with notorious alterations in neurons, i.e., in gene expression, mitochondrial function, membrane degradation or intercellular communication. However, neurons live for the entire lifespan of the individual. One of the reasons why neurons remain functional in elderly people is survival mechanisms prevail over death mechanisms. While many signals are either pro-survival or pro-death, others can play both roles. Extracellular vesicles (EVs) can signal both pro-toxicity and survival. We used young and old animals, primary neuronal and oligodendrocyte cultures and neuroblastoma and oligodendrocytic lines. We analysed our samples using a combination of proteomics and artificial neural networks, biochemistry and immunofluorescence approaches. We found an age-dependent increase in ceramide synthase 2 (CerS2) in cortical EVs, expressed by oligodendrocytes. In addition, we show that CerS2 is present in neurons via the uptake of oligodendrocyte-derived EVs. Finally, we show that age-associated inflammation and metabolic stress favour CerS2 expression and that oligodendrocyte-derived EVs loaded with CerS2 lead to the expression of the antiapoptotic factor Bcl2 in inflammatory conditions. Our study shows that intercellular communication is altered in the ageing brain, which favours neuronal survival through the transfer of oligodendrocyte-derived EVs containing CerS2.
Collapse
Affiliation(s)
- Álvaro Casadomé-Perales
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Sara Naya
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Elisa Fernández-Martínez
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Bea G Mille
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Marta Guerrero-Valero
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Francesc X Guix
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
- Department of Bioengineering, Institut Químic de Sarrià (IQS), Universitat Ramón Llull (URL), 08017 Barcelona, Spain
| | - Carlos G Dotti
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| | - Ernest Palomer
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, 28049 Madrid, Spain
| |
Collapse
|
36
|
Zamboni S, D'Ambrosio A, Margutti P. Extracellular vesicles as contributors in the pathogenesis of multiple sclerosis. Mult Scler Relat Disord 2023; 71:104554. [PMID: 36842311 DOI: 10.1016/j.msard.2023.104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/22/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous family of extracellular structures bounded by a phospholipid bilayer, released by all cell types in various biological fluids, such as blood and cerebrospinal fluid (CSF), playing important roles in intercellular communication, both locally and systemically. EVs carry and deliver a variety of bioactive molecules (proteins, nucleic acids, lipids and metabolites), conferring epigenetic and phenotypic changes to the recipient cells and thus resulting as important mediators of both homeostasis and pathogenesis. In neurological diseases, such as multiple sclerosis (MS), the EV ability to cross Blood-Brain Barrier (BBB), moving from central nervous system (CNS) to the peripheral circulation and vice versa, has increased the interest in EV study in the neurological field. In the present review, we will provide an overview of the recent advances made in understanding the pathogenic role of EVs regarding the immune response, the BBB dysfunction and the CNS inflammatory processes.
Collapse
Affiliation(s)
- Silvia Zamboni
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
37
|
Stangler LA, Nicolai EN, Mivalt F, Chang SY, Kim I, Kouzani AZ, Bennet K, Berk M, Uthamaraj S, Burns TC, Worrell GA, Howe CL. Development of an integrated microperfusion-EEG electrode for unbiased multimodal sampling of brain interstitial fluid and concurrent neural activity. J Neural Eng 2023; 20:016010. [PMID: 36538815 PMCID: PMC9855636 DOI: 10.1088/1741-2552/acad29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Objective. To modify off-the-shelf components to build a device for collecting electroencephalography (EEG) from macroelectrodes surrounded by large fluid access ports sampled by an integrated microperfusion system in order to establish a method for sampling brain interstitial fluid (ISF) at the site of stimulation or seizure activity with no bias for molecular size.Approach. Twenty-four 560µm diameter holes were ablated through the sheath surrounding one platinum-iridium macroelectrode of a standard Spencer depth electrode using a femtosecond UV laser. A syringe pump was converted to push-pull configuration and connected to the fluidics catheter of a commercially available microdialysis system. The fluidics were inserted into the lumen of the modified Spencer electrode with the microdialysis membrane removed, converting the system to open flow microperfusion. Electrical performance and analyte recovery were measured and parameters were systematically altered to improve performance. An optimized device was tested in the pig brain and unbiased quantitative mass spectrometry was used to characterize the perfusate collected from the peri-electrode brain in response to stimulation.Main results. Optimized parameters resulted in >70% recovery of 70 kDa dextran from a tissue analog. The optimized device was implanted in the cortex of a pig and perfusate was collected during four 60 min epochs. Following a baseline epoch, the macroelectrode surrounded by microperfusion ports was stimulated at 2 Hz (0.7 mA, 200µs pulse width). Following a post-stimulation epoch, the cortex near the electrode was stimulated with benzylpenicillin to induce epileptiform activity. Proteomic analysis of the perfusates revealed a unique inflammatory signature induced by electrical stimulation. This signature was not detected in bulk tissue ISF.Significance. A modified dual-sensing electrode that permits coincident detection of EEG and ISF at the site of epileptiform neural activity may reveal novel pathogenic mechanisms and therapeutic targets that are otherwise undetectable at the bulk tissue level.
Collapse
Affiliation(s)
- Luke A Stangler
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia,
Division of Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Evan N Nicolai
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Filip Mivalt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America,
Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Su-Youne Chang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America,
Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Inyong Kim
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Kevin Bennet
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Michael Berk
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia
| | - Susheil Uthamaraj
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Gregory A Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America,
Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Charles L Howe
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States of America,
Division of Experimental Neurology, Mayo Clinic, Rochester, MN 55905, United States of America,Author to whom any correspondence should be addressed
| |
Collapse
|
38
|
Ikuma Y, Sakai A, Sakamoto A, Suzuki H. Increased extracellular release of microRNAs from dorsal root ganglion cells in a rat model of neuropathic pain caused by peripheral nerve injury. PLoS One 2023; 18:e0280425. [PMID: 36662897 PMCID: PMC9858844 DOI: 10.1371/journal.pone.0280425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023] Open
Abstract
microRNAs (miRNAs) are extracellularly released by cells for intercellular communication, while intracellularly, they inhibit the expression of specific genes. An increasing number of studies suggest that extracellular miRNAs have great potential as both therapeutic targets and disease-specific biomarkers in a variety of diseases, including pain disorders. However, little is known about miRNA release from dorsal root ganglion (DRG) neurons in neuropathic pain caused by peripheral nerve injury. In this study, we investigated the changes in the extracellular release of miRNAs from DRG neurons in a rat model of neuropathic pain induced by chronic constriction injury of the sciatic nerve. We found increased release of six miRNAs (let-7d, miR-21, miR-142-3p, miR-146b, miR-203-3p and miR-221) from primary cultured DRG neurons prepared from rats 7 days after nerve injury. Among these, miR-221 was also increased in serum from days 7 to 28 after nerve injury. In contrast, serum miR-221 levels and its release from DRG neurons were unchanged in an inflammatory pain model produced by intraplantar injection of complete Freund's adjuvant. These results suggest that the increased release of specific miRNAs by DRG neurons may be involved in the pathophysiology of neuropathic pain through extracellular as well as intracellular mechanisms. Furthermore, serum miR-221 may be useful as a biomarker of neuropathic pain caused by peripheral nerve injury.
Collapse
Affiliation(s)
- Yuko Ikuma
- Department of Anesthesiology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
39
|
Tian T, Qiao S, Tannous BA. Nanotechnology-Inspired Extracellular Vesicles Theranostics for Diagnosis and Therapy of Central Nervous System Diseases. ACS APPLIED MATERIALS & INTERFACES 2023; 15:182-199. [PMID: 35929960 DOI: 10.1021/acsami.2c07981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shuttling various bioactive substances across the blood-brain barrier (BBB) bidirectionally, extracellular vesicles (EVs) have been opening new frontiers for the diagnosis and therapy of central nervous system (CNS) diseases. However, clinical translation of EV-based theranostics remains challenging due to difficulties in effective EV engineering for superior imaging/therapeutic potential, ultrasensitive EV detection for small sample volume, as well as scale-up and standardized EV production. In the past decade, continuous advancement in nanotechnology provided extensive concepts and strategies for EV engineering and analysis, which inspired the application of EVs for CNS diseases. Here we will review the existing types of EV-nanomaterial hybrid systems with improved diagnostic and therapeutic efficacy for CNS diseases. A summary of recent progress in the incorporation of nanomaterials and nanostructures in EV production, separation, and analysis will also be provided. Moreover, the convergence between nanotechnology and microfluidics for integrated EV engineering and liquid biopsy of CNS diseases will be discussed.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Shuya Qiao
- Department of Neurobiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, Massachusetts 02129, United States
- Neuroscience Program, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
40
|
Extracellular Vesicles in Chronic Demyelinating Diseases: Prospects in Treatment and Diagnosis of Autoimmune Neurological Disorders. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111943. [PMID: 36431078 PMCID: PMC9693249 DOI: 10.3390/life12111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Extracellular vesicles (EVs) represent membrane-enclosed structures that are likely to be secreted by all living cell types in the animal organism, including cells of peripheral (PNS) and central nervous systems (CNS). The ability to cross the blood-brain barrier (BBB) provides the possibility not only for various EV-loaded molecules to be delivered to the brain tissues but also for the CNS-to-periphery transmission of these molecules. Since neural EVs transfer proteins and RNAs are both responsible for functional intercellular communication and involved in the pathogenesis of neurodegenerative diseases, they represent attractive diagnostic and therapeutic targets. Here, we discuss EVs' role in maintaining the living organisms' function and describe deviations in EVs' structure and malfunctioning during various neurodegenerative diseases.
Collapse
|
41
|
Progress and gaps of extracellular vesicle-mediated intercellular cargo transfer in the central nervous system. Commun Biol 2022; 5:1223. [PMID: 36369335 PMCID: PMC9652383 DOI: 10.1038/s42003-022-04050-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
A fundamentally novel function proposed for extracellular vesicles (EVs) is to transfer bioactive molecules in intercellular signaling. In this minireview, we discuss recent progress on EV-mediated cargo transfer in the central nervous system (CNS) and major gaps in previous studies. We also suggest a set of experiments necessary for bridging the gaps and establishing the physiological roles of EV-mediated cargo transfer.
Collapse
|
42
|
Theme 06 - Tissue Biomarkers. Amyotroph Lateral Scler Frontotemporal Degener 2022. [DOI: 10.1080/21678421.2022.2120682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Khan NA, Asim M, El-Menyar A, Biswas KH, Rizoli S, Al-Thani H. The evolving role of extracellular vesicles (exosomes) as biomarkers in traumatic brain injury: Clinical perspectives and therapeutic implications. Front Aging Neurosci 2022; 14:933434. [PMID: 36275010 PMCID: PMC9584168 DOI: 10.3389/fnagi.2022.933434] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Developing effective disease-modifying therapies for neurodegenerative diseases (NDs) requires reliable diagnostic, disease activity, and progression indicators. While desirable, identifying biomarkers for NDs can be difficult because of the complex cytoarchitecture of the brain and the distinct cell subsets seen in different parts of the central nervous system (CNS). Extracellular vesicles (EVs) are heterogeneous, cell-derived, membrane-bound vesicles involved in the intercellular communication and transport of cell-specific cargos, such as proteins, Ribonucleic acid (RNA), and lipids. The types of EVs include exosomes, microvesicles, and apoptotic bodies based on their size and origin of biogenesis. A growing body of evidence suggests that intercellular communication mediated through EVs is responsible for disseminating important proteins implicated in the progression of traumatic brain injury (TBI) and other NDs. Some studies showed that TBI is a risk factor for different NDs. In terms of therapeutic potential, EVs outperform the alternative synthetic drug delivery methods because they can transverse the blood–brain barrier (BBB) without inducing immunogenicity, impacting neuroinflammation, immunological responses, and prolonged bio-distribution. Furthermore, EV production varies across different cell types and represents intracellular processes. Moreover, proteomic markers, which can represent a variety of pathological processes, such as cellular damage or neuroinflammation, have been frequently studied in neurotrauma research. However, proteomic blood-based biomarkers have short half-lives as they are easily susceptible to degradation. EV-based biomarkers for TBI may represent the complex genetic and neurometabolic abnormalities that occur post-TBI. These biomarkers are not caught by proteomics, less susceptible to degradation and hence more reflective of these modifications (cellular damage and neuroinflammation). In the current narrative and comprehensive review, we sought to discuss the contemporary knowledge and better understanding the EV-based research in TBI, and thus its applications in modern medicine. These applications include the utilization of circulating EVs as biomarkers for diagnosis, developments of EV-based therapies, and managing their associated challenges and opportunities.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Mohammad Asim
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Ayman El-Menyar
- Clinical Research, Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
- Department of Clinical Medicine, Weill Cornell Medical College, Doha, Qatar
- *Correspondence: Ayman El-Menyar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sandro Rizoli
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| | - Hassan Al-Thani
- Trauma Surgery Section, Department of Surgery, Hamad General Hospital, Doha, Qatar
| |
Collapse
|
44
|
Synovial Fluid-Derived Extracellular Vesicles of Patients with Arthritides Contribute to Hippocampal Synaptic Dysfunctions and Increase with Mood Disorders Severity in Humans. Cells 2022; 11:cells11152276. [PMID: 35892573 PMCID: PMC9331474 DOI: 10.3390/cells11152276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Arthritides are a highly heterogeneous group of disorders that include two major clinical entities, localized joint disorders such as osteoarthritis (OA) and systemic autoimmune-driven diseases such as rheumatoid arthritis (RA). Arthritides are characterized by chronic debilitating musculoskeletal conditions and systemic chronic inflammation. Poor mental health is also one of the most common comorbidities of arthritides. Depressive symptoms which are most prevalent, negatively impact patient global assessment diminishing the probability of achieving the target of clinical remission. Here, we investigated new insights into mechanisms that link different joint disorders to poor mental health, and to this issue, we explored the action of the synovial fluid-derived extracellular vesicles (EVs) on neuronal function. Our data show that the exposure of neurons to different concentrations of EVs derived from both RA and OA synovial fluids (RA-EVs and OA-EVs) leads to increased excitatory synaptic transmission but acts on specific modifications on excitatory or inhibitory synapses, as evidenced by electrophysiological and confocal experiments carried out in hippocampal cultures. The treatment of neurons with EVs membrane is also responsible for generating similar effects to those found with intact EVs suggesting that changes in neuronal ability arise upon EVs membrane molecules′ interactions with neurons. In humans with arthritides, we found that nearly half of patients (37.5%) showed clinically significant psychiatric symptoms (CGIs score ≥ 3), and at least mild anxiety (HAM-A ≥ 7) or depression (MADRS and HAM-D ≥ 7); interestingly, these individuals revealed an increased concentration of synovial EVs. In conclusion, our data showing opposite changes at the excitatory and inhibitory levels in neurons treated with OA- and RA-EVs, lay the scientific basis for personalized medicine in OA and RA patients, and identify EVs as new potential actionable biomarkers in patients with OA/RA with poor mental health.
Collapse
|
45
|
Mavroeidi P, Vetsi M, Dionysopoulou D, Xilouri M. Exosomes in Alpha-Synucleinopathies: Propagators of Pathology or Potential Candidates for Nanotherapeutics? Biomolecules 2022; 12:957. [PMID: 35883513 PMCID: PMC9313025 DOI: 10.3390/biom12070957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
The pathological accumulation of alpha-synuclein governs the pathogenesis of neurodegenerative disorders, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, collectively termed alpha-synucleinopathies. Alpha-synuclein can be released in the extracellular space, partly via exosomes, and this extracellular protein pool may contribute to disease progression by facilitating the spread of pathological alpha-synuclein or activating immune cells. The content of exosomes depends on their origin and includes specific proteins, lipids, functional mRNAs and various non-coding RNAs. Given their ability to mediate intercellular communication via the transport of multilevel information, exosomes are considered to be transporters of toxic agents. Beyond neurons, glial cells also release exosomes, which may contain inflammatory molecules and this glia-to-neuron or neuron-to-glia transmission of exosomal alpha-synuclein may contribute to the propagation of pathology and neuroinflammation throughout the brain. In addition, as their content varies as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection, whereas targeted exosomes may be used as scaffolds to deliver therapeutic agents into the brain. This review summarizes the current knowledge regarding the role of exosomes in the progression of alpha-synuclein-related pathology and their potential use as biomarkers and nanotherapeutics in alpha-synucleinopathies.
Collapse
Affiliation(s)
| | | | | | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (M.V.); (D.D.)
| |
Collapse
|
46
|
Chong MC, Silva A, James PF, Wu SSX, Howitt J. Exercise increases the release of NAMPT in extracellular vesicles and alters NAD + activity in recipient cells. Aging Cell 2022; 21:e13647. [PMID: 35661560 PMCID: PMC9282849 DOI: 10.1111/acel.13647] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 11/29/2022] Open
Abstract
Aging is associated with a loss of metabolic homeostasis, with cofactors such as nicotinamide adenine dinucleotide (NAD+) declining over time. The decrease in NAD+ production has been linked to the age‐related loss of circulating extracellular nicotinamide phosphoribosyltransferase (eNAMPT), the rate‐limiting enzyme in the NAD+ biosynthetic pathway. eNAMPT is found almost exclusively in extracellular vesicles (EVs), providing a mechanism for the distribution of the enzyme in different tissues. Currently, the physiological cause for the release of eNAMPT is unknown, and how it may be affected by age and physical exercise. Here, we show that release of small EVs into the bloodstream is stimulated following moderate intensity exercise in humans. Exercise also increased the eNAMPT content in EVs, most prominently in young individuals with higher aerobic fitness. Both mature fit and young unfit individuals exhibited a limited increase in EV‐eNAMPT release following exercise, indicating that this mechanism is related to both the age and physical fitness of a person. Notably, unfit mature individuals were unable to increase the release of eNAMPT in EVs after exercise, suggesting that lower fitness levels and aging attenuate this important signalling mechanism in the body. EVs isolated from exercising humans containing eNAMPT were able to alter the abundance of NAD+ and SIRT1 activity in recipient cells compared to pre‐exercise EVs, indicating a pathway for inter‐tissue signalling promoted through exercise. Our results suggest a mechanism to limit age‐related NAD+ decline, through the systemic delivery of eNAMPT via EVs released during exercise.
Collapse
Affiliation(s)
- Mee Chee Chong
- School of Health Sciences Swinburne University of Technology Melbourne Victoria Australia
| | | | | | - Sam Shi Xuan Wu
- School of Health Sciences Swinburne University of Technology Melbourne Victoria Australia
| | - Jason Howitt
- School of Health Sciences Swinburne University of Technology Melbourne Victoria Australia
- Iverson Health Innovation Institute Swinburne University of Technology Melbourne Victoria Australia
| |
Collapse
|
47
|
Extracellular Vesicles at CNS barriers: Mode of action. Curr Opin Neurobiol 2022; 75:102569. [PMID: 35667340 DOI: 10.1016/j.conb.2022.102569] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 01/08/2023]
Abstract
The exchange of molecules between the brain and periphery is limited by cellular barriers such as the blood-brain barrier (BBB) and the blood-CSF barrier (BCB). Extracellular vesicles (EVs) secreted by brain cells or circulating in the blood stream interact with these barriers and provide a pathway for brain-periphery communication. This review briefly summarizes the main current concepts of EVs signaling over the BBB/BCB. EVs can either be released by barrier cells upon stimulation, act on barrier cells modulating barrier properties, or cross the barrier transferring cargo between the circulation and the brain. The mechanisms of EV signaling and passage over the BBB are increasingly being explored, with inflammation being a main driver. EVs acting at or through the barriers possess wide-ranging effects on brain-periphery communication in both healthy and pathological states. A deeper understanding of the mechanisms of action is important for translation into biomedical applications for brain diseases.
Collapse
|
48
|
Huntingtin Co-Isolates with Small Extracellular Vesicles from Blood Plasma of TgHD and KI-HD Pig Models of Huntington's Disease and Human Blood Plasma. Int J Mol Sci 2022; 23:ijms23105598. [PMID: 35628406 PMCID: PMC9147436 DOI: 10.3390/ijms23105598] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Huntington’s disease (HD) is rare incurable hereditary neurodegenerative disorder caused by CAG repeat expansion in the gene coding for the protein huntingtin (HTT). Mutated huntingtin (mHTT) undergoes fragmentation and accumulation, affecting cellular functions and leading to neuronal cell death. Porcine models of HD are used in preclinical testing of currently emerging disease modifying therapies. Such therapies are aimed at reducing mHTT expression, postpone the disease onset, slow down the progression, and point out the need of biomarkers to monitor disease development and therapy efficacy. Recently, extracellular vesicles (EVs), particularly exosomes, gained attention as possible carriers of disease biomarkers. We aimed to characterize HTT and mHTT forms/fragments in blood plasma derived EVs in transgenic (TgHD) and knock-in (KI-HD) porcine models, as well as in HD patients’ plasma. (2) Methods: Small EVs were isolated by ultracentrifugation and HTT forms were visualized by western blotting. (3) Results: The full length 360 kDa HTT co-isolated with EVs from both the pig model and HD patient plasma. In addition, a ~70 kDa mutant HTT fragment was specific for TgHD pigs. Elevated total huntingtin levels in EVs from plasma of HD groups compared to controls were observed in both pig models and HD patients, however only in TgHD were they significant (p = 0.02). (4) Conclusions: Our study represents a valuable initial step towards the characterization of EV content in the search for HD biomarkers.
Collapse
|
49
|
Van den Broek B, Wuyts C, Sisto A, Pintelon I, Timmermans JP, Somers V, Timmerman V, Hellings N, Irobi J. Oligodendroglia-derived extracellular vesicles activate autophagy via LC3B/BAG3 to protect against oxidative stress with an enhanced effect for HSPB8 enriched vesicles. Cell Commun Signal 2022; 20:58. [PMID: 35513867 PMCID: PMC9069805 DOI: 10.1186/s12964-022-00863-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/12/2022] [Indexed: 01/18/2023] Open
Abstract
Background The contribution of native or modified oligodendroglia-derived extracellular vesicles (OL-EVs) in controlling chronic inflammation is poorly understood. In activated microglia, OL-EVs contribute to the removal of cytotoxic proteins following a proteotoxic stress. Intracellular small heat shock protein B8 (HSPB8) sustain this function by facilitating autophagy and protecting cells against oxidative stress mediated cell death. Therefore, secretion of HSPB8 in OL-EVs could be beneficial for neurons during chronic inflammation. However, how secreted HSPB8 contribute to cellular proteostasis remains to be elucidated. Methods We produced oligodendroglia-derived EVs, either native (OL-EVs) or HSPB8 modified (OL-HSPB8-EVs), to investigate their effects in controlling chronic inflammation and cellular homeostasis. We analyzed the impact of both EV subsets on either a resting or activated microglial cell line and on primary mixed neural cell culture cells. Cells were activated by stimulating with either tumor necrosis factor-alpha and interleukin 1-beta or with phorbol-12-myristate-13-acetate. Results We show that OL-EVs and modified OL-HSPB8-EVs are internalized by C20 microglia and by primary mixed neural cells. The cellular uptake of OL-HSPB8-EVs increases the endogenous HSPB8 mRNA expression. Consistently, our results revealed that both EV subsets maintained cellular homeostasis during chronic inflammation with an increase in the formation of autophagic vesicles. Both EV subsets conveyed LC3B-II and BAG3 autophagy markers with an enhanced effect observed for OL-HSPB8-EVs. Moreover, stimulation with either native or modified OL-HSPB8-EVs showed a significant reduction in ubiquitinated protein, reactive oxygen species and mitochondrial depolarization, with OL-HSPB8-EVs exhibiting a more protective effect. Both EV subsets did not induce cell death in the C20 microglia cell line or the primary mixed neural cultures. Conclusion We demonstrate that the functions of oligodendroglia secreted EVs enriched with HSPB8 have a supportive role, comparable to the native OL-EVs. Further development of engineered oligodendroglia derived EVs could be a novel therapeutic strategy in countering chronic inflammation. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00863-x.
Collapse
Affiliation(s)
- Bram Van den Broek
- Department of Immunology and Infections, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Charlotte Wuyts
- Department of Immunology and Infections, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge and University of Antwerp, Antwerp, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology & Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology & Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| | - Veerle Somers
- Department of Immunology and Infections, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, Institute Born Bunge and University of Antwerp, Antwerp, Belgium
| | - Niels Hellings
- Department of Immunology and Infections, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Joy Irobi
- Department of Immunology and Infections, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
50
|
Sun W, Yan S, Yang C, Yang J, Wang H, Li C, Zhang L, Zhao L, Zhang J, Cheng M, Li X, Xu D. Mesenchymal Stem Cells-derived Exosomes Ameliorate Lupus by Inducing M2 Macrophage Polarization and Regulatory T Cell Expansion in MRL/lpr Mice. Immunol Invest 2022; 51:1785-1803. [PMID: 35332841 DOI: 10.1080/08820139.2022.2055478] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous studies have implicated that the transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) effectively alleviates systemic lupus erythematosus (SLE) primarily due to immunomodulatory effects. However, little is known about the role of hUC-MSC-derived exosomes in SLE. This study is carried out to investigate the modifying effects of hUC-MSC-exosomes on the differentiation and function of immune cells in SLE. hUC-MSC-derived exosomes were extracted from the cultural supernatant of hUC-MSCs by ultrahigh speed centrifugation. Quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and flow cytometry were performed to estimate the effect of hUC-MSC-derived exosomes on macrophage and regulatory T cell (Treg) polarization. In vivo, hUC-MSC-exosomes were injected intravenously into 28-week-old MRL/lpr mice. We had found that exosomes derived from hUC-MSC restrained the proliferation and inflammation of macrophages in vitro. Besides, MSC-exosomes inhibited CD68+M1 and HLA-DR+M1 but promoted CD206+M2 and CD163+M2 in vitro. Moreover, MRL/lpr mice administrated by intravenous injection of MSC-exosomes had less infiltration of CD14+CD11c+M1 cells but more CD14+CD163+M2 cells as well as Tregs in spleens compared with those in MRL/lpr mice treated by PBS. Additionally, MSC-exosomes could alleviate nephritis, liver and lung injuries of MRL/lpr mice. The survival of lupus mice could be improved after MSC-exosome treatment. This study has suggested that MSC-derived exosomes exert anti-inflammatory and immunomodulatory effects in SLE. MSC-exosomes ameliorate nephritis and other key organ injuries by inducing M2 macrophages and Tregs polarization. As natural nanocarriers, MSC-exosomes may serve as a promising cell-free therapeutic strategy for SLE.Abbreviations: SLE: Systemic lupus erythematosus; hUC-MSCs: Human umbilical cord mesenchymal stem cells; MSCs: Mesenchymal stem cells; qRT-PCR: Quantitative real-time polymerase chain reaction; ELISA: Enzyme-linked immunosorbent assay; Tregs: Regulatory cells; TNF-α: Tumor necrosis factor alfa; IL: Interleukin; COVID-19: Coronavirus disease 2019; pTHP-1: PMA-induced THP-1 macrophages; TEM: Transmission electron microscopy; LPS: Lipopolysaccharide; EVs: Extracellular vesicles; TRAF1: Tumor necrosis factor receptor-associated factor 1; IRAK1: Interferon-α-interleukin-1 receptor-associated kinase 1; NF-κB: Nuclear factor-κB; BLyS: B lymphocyte stimulator; APRIL: A proliferation-inducing ligand.
Collapse
Affiliation(s)
- Wenchang Sun
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Chunjuan Yang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Jinghan Yang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Hui Wang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Chaoran Li
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Lili Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Lu Zhao
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Jiaojiao Zhang
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, Shandong, China
| | - Xiangling Li
- Department of Nephrology of Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China.,Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|