1
|
Shanaida M, Lysiuk R, Mykhailenko O, Hudz N, Abdulsalam A, Gontova T, Oleshchuk O, Ivankiv Y, Shanaida V, Lytkin D, Bjørklund G. Alpha-lipoic Acid: An Antioxidant with Anti-aging Properties for Disease Therapy. Curr Med Chem 2025; 32:23-54. [PMID: 38644711 DOI: 10.2174/0109298673300496240416114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
The anti-aging effects of alpha-lipoic acid (αLA), a natural antioxidant synthesized in human tissues, have attracted a growing interest in recent years. αLA is a short- -chain sulfur-containing fatty acid occurring in the mitochondria of all kinds of eukaryotic cells. Both the oxidized disulfide of αLA and its reduced form (dihydrolipoic acid, DHLA) exhibit prominent antioxidant function. The amount of αLA inside the human body gradually decreases with age resulting in various health disorders. Its lack can be compensated by supplying from external sources such as dietary supplements or medicinal dosage forms. The primary objectives of this study were the analysis of updated information on the latest two-decade research regarding the use of αLA from an anti-aging perspective. The information was collected from PubMed, Wiley Online Library, Scopus, ScienceDirect, SpringerLink, Google Scholar, and clinicaltrials.gov. Numerous in silico, in vitro, in vivo, and clinical studies revealed that αLA shows a protective role in biological systems by direct or indirect reactive oxygen/nitrogen species quenching. αLA demonstrated beneficial properties in the prevention and treatment of many age-related disorders such as neurodegeneration, metabolic disorders, different cancers, nephropathy, infertility, and skin senescence. Its preventive effects in case of Alzheimer's and Parkinson's diseases are of particular interest. Further mechanistic and clinical studies are highly recommended to evaluate the wide spectrum of αLA therapeutic potential that could optimize its dietary intake for prevention and alleviation disorders related to aging.
Collapse
Affiliation(s)
- Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
| | - Olha Mykhailenko
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy; 29-39 Brunswick Square, WC1N 1AX, London, United Kingdom
- CONEM Ukraine Bromatology and Medicinal Chemistry Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Nataliia Hudz
- Danylo Halytsky Lviv National Medical University, Lviv, 79010, Ukraine
- Department of Pharmacy and Ecological Chemistry, University of Opole, 45-052, Opole, Poland
| | | | - Tetiana Gontova
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | | | - Yana Ivankiv
- I. Horbachevsky Ternopil National Medical University, 46001, Ternopil, Ukraine
| | - Volodymyr Shanaida
- CONEM Ukraine Natural Drugs Research Group, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
- Department of Research Ternopil Ivan Puluj National Technical University, Ternopil, 46001, Ukraine
| | - Dmytro Lytkin
- Department of Research National University of Pharmacy, Kharkiv, 61168, Ukraine
| | - Geir Bjørklund
- Department of Research Council for Nutritional and Environmental Medicine, 8610 Mo i Rana, Norway
| |
Collapse
|
2
|
Dugbartey GJ, Alornyo KK, Dapaa-Addo CO, Botchway E, Kwashie EK, Harley Y. Alpha-lipoic acid: A promising pharmacotherapy seen through the lens of kidney diseases. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100206. [PMID: 39524210 PMCID: PMC11550178 DOI: 10.1016/j.crphar.2024.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Kidney diseases have rapidly increased in prevalence over the past few decades, and have now become a major global public health concern. This has put economic burden on the public healthcare system and causing significant morbidity and mortality worldwide. Unfortunately, drugs currently in use for the management of kidney diseases have long-term major adverse effects that negatively impact the quality of life of these patients, hence making these drugs a "necessary evil". In recent times, antioxidant therapy has been explored as a potential pharmacological avenue for treatment of kidney diseases, and could offer a better therapeutic option with less adverse effect profile. One of such antioxidants is alpha-lipoic acid (ALA), a sulphur-containing multifunctional antioxidant that is endogenously produced by lipoic acid synthase in the mitochondria of many tissues, including the kidney. Burgeoning evidence indicates that ALA is showing clinical promise in the treatment and pharmacological management of many kidney diseases through its antioxidant and other therapeutic properties by activating several protective mechanisms while inhibiting deleterious signaling pathways. In this review, we present ALA as a potent naturally occurring antioxidant, its mitochondrial biosynthesis and pharmacological properties. In addition, we also discuss within the limit of present literature, ALA and its underlying molecular mechanisms implicated in experimental and clinical treatment of various kidney conditions, and thus, may offer nephrologists an additional and/or alternative avenue in the pharmacological management and treatment of kidney diseases while giving hope to these patients.
Collapse
Affiliation(s)
- George J. Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
- Department of Surgery, Division of Urology, London Health Sciences Centre, Western University, N6A 5C1, London, ON, Canada
- Matthew Mailing Centre for Translational Transplant Studies, London Health Sciences Centre, Western University, N6A 5C1, London, ON, Canada
| | - Karl K. Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | | | - Emmanuel Botchway
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| | - Emmanuel K. Kwashie
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| | - Yvonne Harley
- Department of Physiology and Pharmacology, Accra College of Medicine, East Legon, Accra, Ghana
| |
Collapse
|
3
|
Superti F, Russo R. Alpha-Lipoic Acid: Biological Mechanisms and Health Benefits. Antioxidants (Basel) 2024; 13:1228. [PMID: 39456481 PMCID: PMC11505271 DOI: 10.3390/antiox13101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a bioactive molecule with significant health effects. The biological action of ALA has been ascribed to the characteristic antioxidant properties of the oxidized form (ALA) and its reduced counterpart the dihydrolipoic acid (DHLA) system. The ALA/DHLA combination represents an ideal antioxidant since it can quench radicals, is able to chelate metals, is amphiphilic, and has no major adverse effects. This unique system is able to scavenge reactive oxygen species, exerting a major effect on tissue levels of reduced forms of other antioxidants, including glutathione. For this reason, ALA is also known as the "antioxidant of antioxidants". This review analyzes the antioxidant, anti-inflammatory, and neuroprotective effects of ALA and discusses its applications as an ameliorative tool for chronic diseases and those associated with oxidative stress. Results from in vitro and in vivo studies demonstrated that ALA modulates various oxidative stress pathways suggesting its application, alone or in combination with other functional substances, as a useful support in numerous conditions, in which the balance oxidant-antioxidant is disrupted, such as neurodegenerative disorders. Based on several successful clinical studies, it has been also established that oral ALA supplements are clinically useful in relieving the complications of diabetes and other disorders including cardiovascular diseases and nerve discomforts suggesting that ALA can be considered a useful approach to improving our health.
Collapse
Affiliation(s)
- Fabiana Superti
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, RM, Italy;
- Association for Research on Integrative Oncology Therapies, (ARTOI) Foundation, Via Ludovico Micara, 73, 00165 Rome, RM, Italy
| | - Rosario Russo
- Giellepi S.p.A., Via G. Verdi, 41/Q, 20831 Seregno, MB, Italy
| |
Collapse
|
4
|
Warren WG, Osborn M, Duffy P, Yates A, O'Sullivan SE. Potential safety implications of fatty acid-binding protein inhibition. Toxicol Appl Pharmacol 2024; 491:117079. [PMID: 39218163 DOI: 10.1016/j.taap.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Fatty acid-binding proteins (FABPs) are small intracellular proteins that regulate fatty acid metabolism, transport, and signalling. There are ten known human isoforms, many of which are upregulated and involved in clinical pathologies. As such, FABP inhibition may be beneficial in disease states such as cancer, and those involving the cardiovascular system, metabolism, immunity, and cognition. Recently, a potent, selective FABP5 inhibitor (ART26.12), with 90-fold selectivity to FABP3 and 20-fold selectivity to FABP7, was found to be remarkably benign, with a no-observed-adverse-effect level of 1000 mg/kg in rats and dogs, showing no genotoxicity, cardiovascular, central, or respiratory toxicity. To understand the potential implication of FABP inhibition more fully, this review systematically assessed literature investigating genetic knockout, knockdown, and pharmacological inhibition of FABP3, FABP4, FABP5, or FABP7. Analysis of the literature revealed that animals bred not to express FABPs showed the most biological effects, suggesting key roles of these proteins during development. FABP ablation sometimes exacerbated symptoms of disease models, particularly those linked to metabolism, inflammatory and immune responses, cardiac contractility, neurogenesis, and cognition. However, FABP inhibition (genetic silencing or pharmacological) had a positive effect in many more disease conditions. Several polymorphisms of each FABP gene have also been linked to pathological conditions, but it was unclear how several polymorphisms affected protein function. Overall, analysis of the literature to date suggests that pharmacological inhibition of FABPs in adults is of low risk.
Collapse
Affiliation(s)
- William G Warren
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom.
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Paul Duffy
- Apconix Ltd., Alderley Park, Cheshire SK10 4TG, United Kingdom
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire SK10 4TG, United Kingdom
| | | |
Collapse
|
5
|
Roy P, Tomassoni D, Martinelli I, Bellitto V, Nittari G, Amenta F, Tayebati SK. Protective effects of the R-(+)-thioctic acid treatment: possible anti-inflammatory activity on heart of hypertensive rats. BMC Complement Med Ther 2024; 24:281. [PMID: 39048980 PMCID: PMC11267948 DOI: 10.1186/s12906-024-04547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND In cardiovascular disease, high blood pressure is associated with oxidative stress, promoting endothelial dysfunction, vascular remodeling, and inflammation. Clinical trials are discordant that the most effective treatment in the management of hypertension seems to be the administration of anti-hypertensive drugs with antioxidant properties. The study aims to evaluate the effects of the eutomer of thioctic acid on oxidative stress and inflammation in the heart of spontaneously hypertensive rats compared to normotensive Wistar Kyoto rats. METHODS To study the oxidative status, the malondialdehyde and 4-hydroxynonenal concentration, protein oxidation were measured in the heart. Morphological analysis were performed. Immunohistochemistry and Western blot were done for alpha-smooth muscle actin and transforming growth factor beta to assess fibrosis; cytokines and nuclear factor kappaB to assess inflammatory processes. RESULTS Spontaneously hypertensive rats were characterized by hypertension with increased malondialdehyde levels in the heart. OxyBlot in the heart of spontaneously hypertensive rats showed an increase in proteins' oxidative status. Cardiomyocyte hypertrophy and fibrosis in the ventricles were associated with an increased expression of alpha-smooth muscle actin and pro-inflammatory cytokines, reduced by the eutomer of thioctic acid supplementation. CONCLUSIONS Based on this evidence, eutomer of thioctic acid could represent an appropriate antioxidant molecule to reduce oxidative stress and prevent inflammatory processes on the cardiomyocytes and cardiac vascular endothelium.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, Camerino, 62032, MC, Italy
| | - Ilenia Martinelli
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Vincenzo Bellitto
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Giulio Nittari
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, Via Madonna Delle Carceri, 9, Camerino, 62032, MC, Italy.
| |
Collapse
|
6
|
Molonia MS, Speciale A, Muscarà C, Salamone FL, Saija A, Cimino F. Low concentrations of α-lipoic acid reduce palmitic acid-induced alterations in murine hypertrophic adipocytes. Nat Prod Res 2024; 38:916-925. [PMID: 37129014 DOI: 10.1080/14786419.2023.2207137] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Obesity is a metabolic disorder with excessive body fat accumulation, increasing incidence of chronic metabolic diseases. Hypertrophic obesity is associated with local oxidative stress and inflammation. Herein, we evaluated the in vitro activity of micromolar concentrations of α-lipoic acid (ALA) on palmitic acid (PA)-exposed murine hypertrophic 3T3-L1 adipocytes, focussing on the main molecular pathways involved in adipogenesis, inflammation, and insulin resistance. ALA, starting from 1 µM, decreased adipocytes hypertrophy, reducing PA-triggered intracellular lipid accumulation, PPAR-γ levels, and FABP4 gene expression, and counteracted PA-induced intracellular ROS levels and NF-κB activation. ALA reverted PA-induced insulin resistance, restoring PI3K/Akt axis and inducing GLUT-1 and glucose uptake, showing insulin sensitizing properties since it increased their basal levels. In conclusion, this study supports the potential effects of low micromolar ALA against hypertrophy, inflammation, and insulin resistance in adipose tissue, suggesting its important role as pharmacological supplement in the prevention of conditions linked to obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- "Prof. Antonio Imbesi" Foundation, University of Messina,Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Kargar HMP, Noshiri H. Protective effects of alpha-lipoic acid on anxiety-like behavior, memory and prevention of hippocampal oxidative stress in methamphetamine-treated rats. Psychopharmacology (Berl) 2024; 241:315-326. [PMID: 37882813 DOI: 10.1007/s00213-023-06487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
RATIONALE Alpha-lipoic acid is an essential cofactor for aerobic metabolism and acts as a potent antioxidant in the body. It has been shown that acute exposure to methamphetamine induces oxidative stress, which is responsible for severe cognitive deficits in animals. The hippocampus plays a crucial role in the processing of memory and anxiety-like behavior. OBJECTIVES In this study, preventive effect of the alpha-lipoic acid on memory impairment in methamphetamine-induced neurotoxicity was investigated. METHODS Wistar male rats (200-220 g) were allocated to five groups (seven rats in each group): (1) saline + saline, (2) saline + vehicle (sunflower oil as alpha-lipoic acid solvent), (3) methamphetamine + vehicle, (4) methamphetamine + alpha-lipoic acid 10 mg/kg, and (5) methamphetamine + alpha-lipoic acid 40 mg/kg. Rats received intraperitoneal methamphetamine repeatedly (2 × 20 mg/kg, 2 h interval). Alpha-lipoic acid was injected 30 min, 24 h, and 48 h after the last injection of methamphetamine. The passive avoidance test and open field were used for evaluation of memory retrieval and anxiety, respectively. After behavioral test, rats were anesthetized, their brains were extracted, and after preparing hippocampal homogenates, malondialdehyde (MDA) level, catalase, and superoxide dismutase (SOD) activities were evaluated. RESULTS Statistical analysis showed that injection of saline or sunflower oil had no significant effect on anxiety, memory, or oxidative stress markers. Methamphetamine induced memory impairment, increased anxiety-like behavior and MDA level, but it reduced catalase and SOD activity. Treatment with alpha-lipoic acid decreased MDA, increased catalase and SOD activity, and also prevented memory impairment and anxiety-like behavior. Our results showed that alpha-lipoic acid protected the hippocampus from oxidative stress by elevating SOD and CAT activities and reduced memory impairment following acute methamphetamine injection. These findings suggest that alpha-lipoic acid may have a protective effect against the adverse effects of methamphetamine exposure on the hippocampus. Therefore, the current data indicated that ALA can reduce oxidative stress predominantly by its antioxidant property.
Collapse
Affiliation(s)
- Hossein Mohammad Pour Kargar
- Department of Biology, Islamic Azad University, Damghan, Iran.
- Faculty of Pharmacy, Islamic Azad University, Damghan Branch, Damghan, Iran.
| | - Hamid Noshiri
- Department of Biology, Islamic Azad University, Damghan, Iran
| |
Collapse
|
8
|
Glavan MR, Socaciu C, Socaciu AI, Gadalean F, Cretu OM, Vlad A, Muntean DM, Bob F, Milas O, Suteanu A, Jianu DC, Stefan M, Balint L, Ienciu S, Petrica L. Untargeted Metabolomics by Ultra-High-Performance Liquid Chromatography Coupled with Electrospray Ionization-Quadrupole-Time of Flight-Mass Spectrometry Analysis Identifies a Specific Metabolomic Profile in Patients with Early Chronic Kidney Disease. Biomedicines 2023; 11:biomedicines11041057. [PMID: 37189675 DOI: 10.3390/biomedicines11041057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Chronic kidney disease (CKD) has emerged as one of the most progressive diseases with increased mortality and morbidity. Metabolomics offers new insights into CKD pathogenesis and the discovery of new biomarkers for the early diagnosis of CKD. The aim of this cross-sectional study was to assess metabolomic profiling of serum and urine samples obtained from CKD patients. Untargeted metabolomics followed by multivariate and univariate analysis of blood and urine samples from 88 patients with CKD, staged by estimated glomerular filtration rate (eGFR), and 20 healthy control subjects was performed using ultra-high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry. Serum levels of Oleoyl glycine, alpha-lipoic acid, Propylthiouracil, and L-cysteine correlated directly with eGFR. Negative correlations were observed between serum 5-Hydroxyindoleacetic acid, Phenylalanine, Pyridoxamine, Cysteinyl glycine, Propenoylcarnitine, Uridine, and All-trans retinoic acid levels and eGFR. In urine samples, the majority of molecules were increased in patients with advanced CKD as compared with early CKD patients and controls. Amino acids, antioxidants, uremic toxins, acylcarnitines, and tryptophane metabolites were found in all CKD stages. Their dual variations in serum and urine may explain their impact on both glomerular and tubular structures, even in the early stages of CKD. Patients with CKD display a specific metabolomic profile. Since this paper represents a pilot study, future research is needed to confirm our findings that metabolites can serve as indicators of early CKD.
Collapse
Affiliation(s)
- Mihaela-Roxana Glavan
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Carmen Socaciu
- Research Center for Applied Biotechnology and Molecular Therapy BIODIATECH, SC Proplanta, 400478 Cluj-Napoca, Romania
| | - Andreea Iulia Socaciu
- Department of Occupational Health, University of Medicine and Pharmacy “Iuliu Haţieganu”, 400347 Cluj-Napoca, Romania
| | - Florica Gadalean
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Octavian M. Cretu
- Department of Surgery—Surgical Semiotics, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timişoara, Romania
| | - Adrian Vlad
- Department of Internal Medicine II—Diabetes and Metabolic Diseases, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Danina M. Muntean
- Department of Functional Sciences—Pathophysiology, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Flaviu Bob
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Oana Milas
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Anca Suteanu
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Dragos Catalin Jianu
- Deptartment of Neurosciences—Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Cognitive Research in Neuropsychiatric Pathology, Clinical County Emergency Hospital, Victor Babeș” University of Medicine and Pharmacy, 300723 Timișoara, Romania
| | - Maria Stefan
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Lavinia Balint
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Silvia Ienciu
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II—Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania
| |
Collapse
|
9
|
Jibril AT, Jayedi A, Shab-Bidar S. Efficacy and safety of oral alpha-lipoic acid supplementation for type 2 diabetes management: a systematic review and dose-response meta-analysis of randomized trials. Endocr Connect 2022; 11:e220322. [PMID: 36006850 PMCID: PMC9578061 DOI: 10.1530/ec-22-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To examine the dose-dependent influence of oral alpha-lipoic acid (ALA) supplementation on cardiometabolic risk factors in patients with type 2 diabetes (T2D). DESIGN We followed the instructions outlined in the Cochrane Handbook for Systematic Reviews of Interventions and the Grading of Recommendations, Assessment, Development, and Evaluation Handbook to conduct our systematic review. The protocol of the study was registered in PROSPERO (CRD42021260587). METHOD We searched PubMed, Scopus, and Web of Science to May 2021 for trials of oral ALA supplementation in adults with T2D. The primary outcomes were HbA1c, weight loss, and LDL cholesterol (LDL-C). Secondary outcomes included fasting plasma glucose (FPG), triglyceride (TG), C-reactive protein (CRP), and blood pressure. We conducted a random-effects dose-response meta-analysis to calculate the mean difference (MD) and 95% CI for each 500 mg/day oral ALA supplementation. We performed a nonlinear dose-response meta-analysis using a restricted cubic spline. RESULTS We included 16 trials with 1035 patients. Each 500 mg/day increase in oral ALA supplementation significantly reduced HbA1c, body weight, CRP, FPG, and TG. Dose-response meta-analyses indicated a linear decrement in body weight at ALA supplementation of more than 600 mg/day (MD600 mg/day: -0.30 kg, 95% CI: -0.04, -0.57). A relatively J-shaped effect was seen for HbA1c (MD: -0.32%, 95% CI: -0.45, -0.18). Levels of FPG and LDL-C decreased up to 600 mg/day ALA intake. The point estimates were below minimal clinically important difference thresholds for all outcomes. CONCLUSION Despite significant improvements, the effects of oral ALA supplementation on cardiometabolic risk factors in patients with T2D were not clinically important.
Collapse
Affiliation(s)
- Aliyu Tijani Jibril
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Alshammari GM, Abdelhalim MA, Al-Ayed MS, Al-Harbi LN, Yahya MA. The Protective Effect of α-Lipoic Acid against Gold Nanoparticles (AuNPs)-Mediated Liver Damage Is Associated with Upregulating Nrf2 and Suppressing NF-κB. Nutrients 2022; 14:nu14163327. [PMID: 36014833 PMCID: PMC9414933 DOI: 10.3390/nu14163327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/21/2022] Open
Abstract
This study examined if regulating the keap-1? Nrf2 antioxidant pathway mediated gold nanoparticles (AuNPs) induced liver damage, and examined the protective effect of co-supplement of α-lipoic acid (α-LA). Rats were separated into 4 groups (n = 8/each) as control, α-LA (200 mg/kg), AuNPs (5 µg/2.85 × 1011), and AuNPs (5 µg/2.85 × 1011) + α-LA (200 mg/kg). After 7 days, AuNPs induced severe degeneration in the livers of rats with the appearance of some fatty changes. In addition, it increased serum levels of alanine aminotransferase (ALT) and gamma-glutamyl transferase (ɣ-GTT), and aspartate aminotransferase (AST), as well as liver levels of malondialdehyde (MDA). Concomitantly, AuNPs significantly depleted hepatic levels of total glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) but increased hepatic levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). It also reduced mRNA levels of B-cell lymphoma 2 (Bcl2) and heme oxygenase-1 (HO-1) but significantly increased those of Bax and cleaved caspase-3, as well as the ratio of Bax/Bcl2. In addition, AuNPs enhanced the total and nuclear levels of NF-κB p65 but reduced the mRNA and total and nuclear protein levels of Nrf2. Of note, AuNPs did not affect the mRNA levels of keap-1. All these events were reversed by α-LA in the AuNPs-treated rats. In conclusion, α-LA attenuated AuNPs-mediated liver damage in rats by suppressing oxidative stress and inflammation, effects that are associated with upregulation/activation of Nrf2.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Ayed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
11
|
Alpha-Lipoic Acid Promotes Intestinal Epithelial Injury Repair by Regulating MAPK Signaling Pathways. Mediators Inflamm 2022; 2022:1894379. [PMID: 35712055 PMCID: PMC9197635 DOI: 10.1155/2022/1894379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Intestinal epithelial cells are an essential barrier in human gastrointestinal tract, and healing of epithelial wound is a key process in many intestinal diseases. α-Lipoic acid (ALA) was shown to have antioxidative and anti-inflammatory effects, which could be helpful in intestinal epithelial injury repair. The effects of ALA in human colonic epithelial cells NCM460 and human colorectal adenocarcinoma cells Caco-2 were studied. ALA significantly promoted NCM460 and Caco-2 migration, increased mucosal tight junction factors ZO-1 and OCLN expression, and ALA accelerated cell injury repair of both cells in wound healing assay. Western blot analysis indicated that ALA inhibited a variety of mitogen-activated protein kinase (MAPK) signaling pathways in the epithelial cells. In conclusion, ALA was beneficial to repair of intestinal epithelial injury by regulating MAPK signaling pathways.
Collapse
|
12
|
Identification of Human Brain Proteins for Bitter-Sweet Taste Perception: A Joint Proteome-Wide and Transcriptome-Wide Association Study. Nutrients 2022; 14:nu14102177. [PMID: 35631318 PMCID: PMC9143225 DOI: 10.3390/nu14102177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Objective: Bitter or sweet beverage perception is associated with alterations in brain structure and function. Our aim is to analyze the genetic association between bitter or sweet beverage perception and human brain proteins. Materials and methods: In our study, 8356 and 11,518 proteins were first collected from two reference datasets of human brain proteomes, the ROS/MAP and Banner. The bitter or sweet beverage perception-related proteome-wide association studies (PWAS) were then conducted by integrating recent genome-wide association study (GWAS) data (n = 422,300) of taste perception with human brain proteomes. The human brain gene expression profiles were collected from two reference datasets, including the brain RNA-seq (CBR) and brain RNA-seq splicing (CBRS). The taste perception-related transcriptome-wide association studies (TWAS) were finally performed by integrating the same GWAS data with human brain gene expression profiles to validate the PWAS findings. Results: In PWAS, four statistically significant proteins were identified using the ROS/MAP and then replicated using the Banner reference dataset (all permutated p < 0.05), including ABCG2 for total bitter beverages and tea, CPNE1 for total bitter beverage, ACTR1B for artificially sweetened beverages, FLOT2 for alcoholic bitter beverages and total sweet beverages. In TWAS analysis, six statistically significant genes were detected by CBR and confirmed by the CBRS reference dataset (all permutated p < 0.05), including PIGG for total bitter beverages and non-alcoholic bitter beverages, C3orf18 for total bitter beverages, ZSWIM7 for non-alcoholic bitter beverages, PEX7 for coffee, PKP4 for tea and RPLP2 for grape juice. Further comparison of the PWAS and TWAS found three common statistically significant proteins/genes identified from the Banner and CBR reference datasets, including THBS4 for total bitter beverages, CA4 for non-alcoholic bitter beverages, LIAS for non-grape juices. Conclusions: Our results support the potential effect of bitter or sweet beverage perception on brain function and identify several candidate brain proteins for bitter or sweet beverage perception.
Collapse
|
13
|
Córdova-Martínez A, Caballero-García A, Pérez-Valdecantos D, Roche E, Noriega-González DC. Peripheral Neuropathies Derived from COVID-19: New Perspectives for Treatment. Biomedicines 2022; 10:1051. [PMID: 35625788 PMCID: PMC9138404 DOI: 10.3390/biomedicines10051051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/15/2022] Open
Abstract
Peripheral neuropathies constitute a group of disorders affecting the peripheral nervous system. Neuropathies have multiple causes such as infections (i.e., COVID-19), diabetes, and nutritional (low vitamin levels), among others. Many micronutrients, such as vitamins (A, C, D, E, B6, B12, and folate), certain minerals (Fe, Mg, Zn, Se, and Cu), and ω-3 fatty acids have immunomodulatory effects. Therefore, they may play an instrumental role in the treatment of COVID-19 infection. However, many COVID-19 patients can undergo neuropathy. In this context, there is a wealth of information on a variety of first-, second-, and third-line treatment options. This review focuses on the application of nutraceutical strategies in order to improve the symptomatology of neuropathy and neuropathic pain in patients that suffered from COVID-19. Our aim is to provide an alternative vision to traditional medical-pharmacological treatment through nutraceuticals.
Collapse
Affiliation(s)
- Alfredo Córdova-Martínez
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Daniel Pérez-Valdecantos
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - David César Noriega-González
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 47005 Valladolid, Spain;
| |
Collapse
|
14
|
Khan H, Singh TG, Dahiya RS, Abdel-Daim MM. α-Lipoic Acid, an Organosulfur Biomolecule a Novel Therapeutic Agent for Neurodegenerative Disorders: An Mechanistic Perspective. Neurochem Res 2022; 47:1853-1864. [PMID: 35445914 DOI: 10.1007/s11064-022-03598-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
Lipoic acid (α-LA) (1,2-dithiolane3-pentanoic acid (C8H14O2S2) is also called thioctic acid with an oxidized (disulfide, LA) and a reduced (di-thiol: dihydro-lipoic acid, DHLA) form of LA. α-LA is a potent anti-oxidative agent that has a significant potential to treat neurodegenerative disorders. α-LA is both hydrophilic and hydrophobic in nature. It is widely distributed in plants and animals in cellular membranes and in the cytosol, which is responsible for LA's action in both the cytosol and plasma membrane. A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to understand the Nature and mechanistic interventions of the α-Lipoic acid for central nervous system diseases. Moreover, α-LA readily crosses the blood-brain barrier, which is a significant factor for CNS activities. The mechanisms of α-LA reduction are highly tissue-specific. α-LA produces its neuroprotective effect by inhibiting reactive oxygen species formation and neuronal damage, modulating protein levels, and promoting neurotransmitters and anti-oxidant levels. Hence, the execution of α-LA as a therapeutic ingredient in the therapy of neurodegenerative disorders is promising. Finally, based on evidence, it can be concluded that α-LA can prevent diseases related to the nervous system.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | | | | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522, Ismailia, Egypt
| |
Collapse
|
15
|
Effect of Alpha-Lipoic Acid on Rat Ventricles and Atria under LPS-Induced Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040734. [PMID: 35453419 PMCID: PMC9024801 DOI: 10.3390/antiox11040734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Alpha-lipoic acid (α-LA) is a disulfide compound and one of the most effective antioxidants. Many studies have indicated positive effects of α-LA in the prevention of pathologic conditions mediated by oxidative stress, such as cardiovascular diseases. However, the therapeutic potential of α-LA for the heart has not been explored with regards to the ventricles and atria. The aim of our study was to evaluate the effects of α-LA on oxidative stress parameters and inflammation in the ventricles and atria of the heart in rats under LPS-induced oxidative stress. Wistar rats were divided into 4 groups: I—control (received 2 doses of 0.2 mL of 0.9% NaCl i.v., 0.5 h apart); II—α-LA (received 0.2 mL of 0.9% NaCl and 0.5 h later received α-LA 60 mg/kg b.w. i.v.); III—lipopolysaccharide (LPS) (received 0.2 mL of 0.9% NaCl and 0.5 h later received LPS 30 mg/kg b.w. i.v.); and IV—LPS + LA (received LPS 30 mg/kg b.w. i.v. and 0.5 h later received α-LA 60 mg/kg b.w. i.v.). Five hours later, the rats were euthanized. The hearts were surgically removed and weighed to estimate heart edema. The ventricular and atrium tissue was isolated to measure levels of TNF-α, IL-6, superoxide dismutase (SOD), thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), total sulfhydryl groups (-SH), total glutathione (tGSH), reduced glutathione (GSH), glutathione disulfide (GSSG), and the GSH/GSSG ratio. LPS significantly increased TNF-α, IL-6, TBARS, and H2O2 levels and decreased SOD, -SH groups, tGSH, the GSH/GSSG ratio, and GSH levels in rat ventricles and atria while α-LA administered after the injection of LPS significantly decreased TNF-α, IL-6, TBARS, and H2O2 levels. α-LA also increased SOD and -SH group levels and ameliorated the glutathione redox status when compared to the LPS group. Our data suggest that α-LA administration 30 min after LPS infusion may effectively prevent inflammation and oxidative stress in the ventricles and atria.
Collapse
|
16
|
Quester K, Rodríguez-González S, González-Dávalos L, Lozano-Flores C, González-Gallardo A, Zapiain-Merino SJ, Shimada A, Mora O, Vazquez-Duhalt R. Chitosan Nanoparticles Containing Lipoic Acid with Antioxidant Properties as a Potential Nutritional Supplement. Animals (Basel) 2022; 12:ani12040417. [PMID: 35203125 PMCID: PMC8868310 DOI: 10.3390/ani12040417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Alfa-lipoic acid (ALA) is an important antioxidant that could be added to animal feed as a nutritional supplement. To improve its stability in the digestive system, ALA was encapsulated in chitosan nanoparticles. The nanoparticles containing ALA were stable in stomach-like conditions and were able to cross the intestinal barrier. Chitosan-based nanoparticles seem to be an attractive administration method for antioxidants, or other sensible additives, in food. Abstract The addition of the antioxidant α-lipoic acid (ALA) to a balanced diet might be crucial for the prevention of comorbidities such as cardiovascular diseases, diabetes, and obesity. Due to its low half-life and instability under stomach-like conditions, α-lipoic acid was encapsulated into chitosan nanoparticles (Ch-NPs). The resulting chitosan nanoparticles containing 20% w/w ALA (Ch-ALA-NPs) with an average diameter of 44 nm demonstrated antioxidant activity and stability under stomach-like conditions for up to 3 h. Furthermore, fluorescent Ch-ALA-NPs were effectively internalized into 3T3-L1 fibroblasts and were able to cross the intestinal barrier, as evidenced by everted intestine in vitro experiments. Thus, chitosan-based nanoparticles seem to be an attractive administration method for antioxidants, or other sensible additives, in food.
Collapse
Affiliation(s)
- Katrin Quester
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada 22860, Mexico; (K.Q.); (S.J.Z.-M.)
| | - Sarahí Rodríguez-González
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), FES-C, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico; (S.R.-G.); (L.G.-D.); (C.L.-F.); (A.S.); (O.M.)
| | - Laura González-Dávalos
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), FES-C, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico; (S.R.-G.); (L.G.-D.); (C.L.-F.); (A.S.); (O.M.)
| | - Carlos Lozano-Flores
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), FES-C, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico; (S.R.-G.); (L.G.-D.); (C.L.-F.); (A.S.); (O.M.)
| | - Adriana González-Gallardo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico;
| | - Santino J. Zapiain-Merino
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada 22860, Mexico; (K.Q.); (S.J.Z.-M.)
| | - Armando Shimada
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), FES-C, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico; (S.R.-G.); (L.G.-D.); (C.L.-F.); (A.S.); (O.M.)
| | - Ofelia Mora
- Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), FES-C, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230, Mexico; (S.R.-G.); (L.G.-D.); (C.L.-F.); (A.S.); (O.M.)
| | - Rafael Vazquez-Duhalt
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, Ensenada 22860, Mexico; (K.Q.); (S.J.Z.-M.)
- Correspondence:
| |
Collapse
|
17
|
Ziyatdinova G, Gimadutdinova L. Cerium(IV) and Iron(III) Oxides Nanoparticles Based Voltammetric Sensor for the Sensitive and Selective Determination of Lipoic Acid. SENSORS (BASEL, SWITZERLAND) 2021; 21:7639. [PMID: 34833711 PMCID: PMC8621773 DOI: 10.3390/s21227639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 01/25/2023]
Abstract
A novel voltammetric sensor based on CeO2·Fe2O3 nanoparticles (NPs) has been developed for the determination of lipoic acid, playing an essential role in aerobic metabolism in the living organism. Sensor surface modification provides a 5.6-fold increase of the lipoic acid oxidation currents and a 20 mV anodic shift of the oxidation potential. The best voltammetric parameters have been obtained for the 0.5 mg mL-1 dispersion of CeO2·Fe2O3 NPs. Scanning electron microscopy (SEM) confirms the presence of spherical NPs of 25-60 nm, and their aggregates evenly distributed on the electrode surface and formed porous coverage. This leads to the 4.4-fold increase of the effective surface area vs. bare glassy carbon electrode (GCE). The sensor shows a significantly higher electron transfer rate. Electrooxidation of lipoic acid on CeO2·Fe2O3 NPs modified GCE is an irreversible diffusion-controlled pH-independent process occurring with the participation of two electrons. The sensor gives a linear response to lipoic acid in the ranges of 0.075-7.5 and 7.5-100 μM with the detection limit of 0.053 μM. The sensor is selective towards lipoic acid in the presence of inorganic ions, ascorbic acid, saccharides, and other S-containing compounds. The sensor developed has been tested on the pharmaceutical dosage forms of lipoic acid.
Collapse
Affiliation(s)
- Guzel Ziyatdinova
- Department of Analytical Chemistry, Kazan Federal University, Kremleyevskaya 18, 420008 Kazan, Russia
| | - Liliya Gimadutdinova
- Department of Analytical Chemistry, Kazan Federal University, Kremleyevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
18
|
An Insight into Anti-Inflammatory Activities and Inflammation Related Diseases of Anthocyanins: A Review of Both In Vivo and In Vitro Investigations. Int J Mol Sci 2021; 22:ijms222011076. [PMID: 34681733 PMCID: PMC8540239 DOI: 10.3390/ijms222011076] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Anthocyanin is a type of flavonoid pigment widely present in fruits and vegetables. It can not only be used as natural pigment, but also has a variety of health functions, for instance, anti-oxidant, anti-inflammatory, anti-tumor, and neuroprotective activities. Persistent proinflammatory status is a major factor in the development, progression, and complications of chronic diseases. Not surprisingly, there are thus many food ingredients that can potentially affect inflammation related diseases and many studies have shown that anthocyanins play an important role in inflammatory pathways. In this paper, the inflammation related diseases (such as, obesity, diabetes, cardiovascular disease, and cancer) of anthocyanins are introduced, and the anti-inflammatory effect of anthocyanins is emphatically introduced. Moreover, the anti-inflammatory mechanism of anthocyanins is elaborated from the aspects of NF-κB, toll like receptor, MAPKs, NO, and ROS and the main efficacy of anthocyanins in inflammation and related diseases is determined. In conclusion, this review aims to get a clear insight into the role of anthocyanins in inflammation related diseases.
Collapse
|
19
|
α-Lipoic Acid Exerts Its Antiviral Effect against Viral Hemorrhagic Septicemia Virus (VHSV) by Promoting Upregulation of Antiviral Genes and Suppressing VHSV-Induced Oxidative Stress. Virol Sin 2021; 36:1520-1531. [PMID: 34510367 PMCID: PMC8435143 DOI: 10.1007/s12250-021-00440-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus, Rhabdoviridae family, is a causative agent of high mortality in fish and has caused significant losses to the aquaculture industry. Currently, no effective vaccines, Food and Drug Administration-approved inhibitors, or other therapeutic intervention options are available against VHSV. α-Lipoic Acid (LA), a potent antioxidant, has been proposed to have antiviral effects against different viruses. In this study, LA (CC50 = 472.6 μmol/L) was repurposed to exhibit antiviral activity against VHSV. In fathead minnow cells, LA significantly increased the cell viability post-VHSV infection (EC50 = 42.7 μmol/L), and exerted a dose-dependent inhibitory effect on VHSV induced-plaque, cytopathic effects, and VHSV glycoprotein expression. The time-of-addition assay suggested that the antiviral activity of LA occurred at viral replication stage. Survival assay revealed that LA could significantly upregulated the survival rate of VHSV-infected largemouth bass in both co-injection (38.095% vs. 1.887%, P < 0.01) and post-injection manner (38.813% vs. 8.696%, P < 0.01) compared with the control group. Additional comparative transcriptome and qRT-PCR analysis revealed LA treatment upregulated the expression of several antiviral genes, such as IRF7, Viperin, and ISG15. Moreover, LA treatment reduced VHSV-induced reactive oxygen species production in addition to Nrf2 and SOD1 expression. Taken together, these data demonstrated that LA suppressed VHSV replication by inducing antiviral genes expression and reducing VHSV-induced oxidative stress. These results suggest a new direction in the development of potential antiviral candidate drugs against VHSV infection.
Collapse
|
20
|
Reddi KK, Li H, Li W, Tetali SD. Berberine, A Phytoalkaloid, Inhibits Inflammatory Response Induced by LPS through NF-Kappaβ Pathway: Possible Involvement of the IKKα. Molecules 2021; 26:4733. [PMID: 34443321 PMCID: PMC8400273 DOI: 10.3390/molecules26164733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Berberine (BBR), a plant alkaloid, is known for its therapeutic properties of anticancer, cardioprotective, antidiabetic, hypolipidemic, neuroprotective, and hepatoprotective activities. The present study was to determine the molecular mechanism of BBR's pharmacological activity in human monocytic (THP-1) cells induced by arachidonic acid (AA) or lipopolysaccharide (LPS). The effect of BBR on AA/LPS activated proinflammatory markers including TNF-α, MCP-1, IL-8 and COX-2 was measured by ELISA or quantitative real-time PCR. Furthermore, the effect of BBR on LPS-induced NF-κB translocation was determined by immunoblotting and confocal microscopy. AA/ LPS-induced TNF-α, MCP-1, IL-6, IL-8, and COX-2 markers were markedly attenuated by BBR treatment in THP-1 cells by inhibiting NF-κB translocation into the nucleus. Molecular modeling studies suggested the direct interaction of BBR to IKKα at its ligand binding site, which led to the inhibition of the LPS-induced NF-κB translocation to the nucleus. Thus, the present study demonstrated the anti-inflammatory potential of BBR via NF-κB in activated monocytes, whose interplay is key in health and in the pathophysiology of atherosclerotic development in blood vessel walls. The present study findings suggest that BBR has the potential for treating various chronic inflammatory disorders.
Collapse
Affiliation(s)
- Kiran Kumar Reddi
- Department of Plant Sciences, University of Hyderabad, Hyderabad TS-500046, India
- Present address—Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hanxuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sarada D. Tetali
- Department of Plant Sciences, University of Hyderabad, Hyderabad TS-500046, India
| |
Collapse
|
21
|
Rochette L, Ghibu S. Mechanics Insights of Alpha-Lipoic Acid against Cardiovascular Diseases during COVID-19 Infection. Int J Mol Sci 2021; 22:7979. [PMID: 34360751 PMCID: PMC8348748 DOI: 10.3390/ijms22157979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China, in late December 2019. Since then, COVID-19 has spread rapidly worldwide and was declared a global pandemic on 20 March 2020. Cardiovascular complications are rapidly emerging as a major peril in COVID-19 in addition to respiratory disease. The mechanisms underlying the excessive effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities remain only partly understood. SARS-CoV-2 infection is caused by binding of the viral surface spike (S) protein to the human angiotensin-converting enzyme 2 (ACE2), followed by the activation of the S protein by transmembrane protease serine 2 (TMPRSS2). ACE2 is expressed in the lung (mainly in type II alveolar cells), heart, blood vessels, small intestine, etc., and appears to be the predominant portal to the cellular entry of the virus. Based on current information, most people infected with SARS-CoV-2 virus have a good prognosis, while a few patients reach critical condition, especially the elderly and those with chronic underlying diseases. The "cytokine storm" observed in patients with severe COVID-19 contributes to the destruction of the endothelium, leading to "acute respiratory distress syndrome" (ARDS), multiorgan failure, and death. At the origin of the general proinflammatory state may be the SARS-CoV-2-mediated redox status in endothelial cells via the upregulation of ACE/Ang II/AT1 receptors pathway or the increased mitochondrial reactive oxygen species (mtROS) production. Furthermore, this vicious circle between oxidative stress (OS) and inflammation induces endothelial dysfunction, endothelial senescence, high risk of thrombosis and coagulopathy. The microvascular dysfunction and the formation of microthrombi in a way differentiate the SARS-CoV-2 infection from the other respiratory diseases and bring it closer to cardiovascular diseases like myocardial infarction and stroke. Due the role played by OS in the evolution of viral infection and in the development of COVID-19 complications, the use of antioxidants as adjuvant therapy seems appropriate in this new pathology. Alpha-lipoic acid (ALA) could be a promising candidate that, through its wide tissue distribution and versatile antioxidant properties, interferes with several signaling pathways. Thus, ALA improves endothelial function by restoring the endothelial nitric oxide synthase activity and presents an anti-inflammatory effect dependent or independent of its antioxidant properties. By improving mitochondrial function, it can sustain the tissues' homeostasis in critical situation and by enhancing the reduced glutathione it could indirectly strengthen the immune system. This complex analysis could open a new therapeutic perspective for ALA in COVID-19 infection.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne-Franche Comté, 21000 Dijon, France;
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
22
|
Martinelli I, Tomassoni D, Roy P, Di Cesare Mannelli L, Amenta F, Tayebati SK. Antioxidant Properties of Alpha-Lipoic (Thioctic) Acid Treatment on Renal and Heart Parenchyma in a Rat Model of Hypertension. Antioxidants (Basel) 2021; 10:antiox10071006. [PMID: 34201726 PMCID: PMC8300705 DOI: 10.3390/antiox10071006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
Renal and cardiac impairments are frequent events in the presence of hypertension. Organ damage is mainly linked to oxidative stress due to high blood pressure and may be reduced by antioxidant supplementation. Alpha-lipoic acid (ALA) is one of most effective antioxidants. It is widely used as a nutritional supplement in a racemic mixture (+/–), even though the (+)-enantiomer is biologically active. This study was designed to investigate the effect of treatment with (+/–)-ALA and its enantiomers on renal and heart parenchyma in spontaneously hypertensive rats (SHR), using immunochemical and immunohistochemical techniques. The results confirmed that the oxidative mechanisms of organ alterations, due to hypertension, and characterized by glomerular and tubular lesions, left ventricular hypertrophy, and fibrosis but not by apoptosis were accompanied by proteins’ and nucleic acids’ oxidation. We found greater effectiveness of (+)-ALA compared to (+/−)-ALA in reducing oxidative stress, cardiac and renal damages in SHR. To conclude, these data propose (+)-ALA as one of the more appropriate antioxidant molecules to prevent renal and cardiac alterations associated with hypertension.
Collapse
Affiliation(s)
- Ilenia Martinelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (P.R.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Pharmaceutical and Child Health Area (NEUROFARBA), University of Florence, 50139 Florence, Italy;
| | - Francesco Amenta
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
| | - Seyed Khosrow Tayebati
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (I.M.); (F.A.)
- Correspondence:
| |
Collapse
|
23
|
The mechanism and prevention of mitochondrial injury after exercise. J Physiol Biochem 2021; 77:215-225. [PMID: 33650090 DOI: 10.1007/s13105-021-00802-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
With the development of society, physical activity has come to be an effective means by which people pursue good health to improve the quality of life. However, with the increase of intensity and the passage of time, exercise injury has become a hazard that can no longer be ignored. It is imperative to find effective ways to inhibit or reduce the negative effects of exercise. Mitochondria are important organelles involved in exercise and play an important role in exercise injury and prevention. Studies have found that exercise preconditioning and increased mitochondrial nutrition can effectively decrease mitochondrial damage after exercise. Against this background, some of the newest developments in this important field are reviewed here. The results discussed indicate that exercise preconditioning and supplement mitochondrial nutrition need to be increased to prevent exercise-related injuries.
Collapse
|
24
|
Zhu H, Dronamraju V, Xie W, More SS. Sulfur-containing therapeutics in the treatment of Alzheimer's disease. Med Chem Res 2021; 30:305-352. [PMID: 33613018 PMCID: PMC7889054 DOI: 10.1007/s00044-020-02687-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Sulfur is widely existent in natural products and synthetic organic compounds as organosulfur, which are often associated with a multitude of biological activities. OBenzothiazole, in which benzene ring is fused to the 4,5-positions of the thiazolerganosulfur compounds continue to garner increasing amounts of attention in the field of medicinal chemistry, especially in the development of therapeutic agents for Alzheimer's disease (AD). AD is a fatal neurodegenerative disease and the primary cause of age-related dementia posing severe societal and economic burdens. Unfortunately, there is no cure for AD. A lot of research has been conducted on sulfur-containing compounds in the context of AD due to their innate antioxidant potential and some are currently being evaluated in clinical trials. In this review, we have described emerging trends in the field, particularly the concept of multi-targeting and formulation of disease-modifying strategies. SAR, pharmacological targets, in vitro/vivo ADMET, efficacy in AD animal models, and applications in clinical trials of such sulfur compounds have also been discussed. This article provides a comprehensive review of organosulfur-based AD therapeutic agents and provides insights into their future development.
Collapse
Affiliation(s)
- Haizhou Zhu
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateshwara Dronamraju
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Barut EN, Engin S, Saygın İ, Kaya-Yasar Y, Arici S, Sezen SF. Alpha-lipoic acid: A promising adjuvant for nonsteroidal anti-inflammatory drugs therapy with improved efficacy and gastroprotection. Drug Dev Res 2021; 82:844-851. [PMID: 33491260 DOI: 10.1002/ddr.21791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used in a wide variety of diseases due to their analgesic and anti-inflammatory effects, but their usage have been limited due to significant ulcerogenic side effects. In the present study, we aimed to evaluate the effect of α-lipoic acid (ALA) treatment on the anti-inflammatory activity of indomethacin (Indo) as well as the possible therapeutic effect of ALA on high dose Indo-induced gastropathy in female mice. Mice were treated with Indo (5 or 30 mg/kg, p.o) alone or in combination with ALA (50, 100 or 200 mg/kg, i.p). in vivo anti-inflammatory effect was evaluated by formalin-induced paw edema measured as paw thickness and edema. Gastric damage was evaluated macroscopically and histologically by scoring mucosal hemorrhage, erosion, edema and inflammation. To our results, Indo was ineffective at 5 mg/kg, but co-treatment with Indo and ALA significantly reduced paw edema, implying that ALA augmented the anti-inflammatory effect of subtherapeutic dose of Indo. However, ALA was not able to induce a further increase in the anti-inflammatory effect of Indo at 30 mg/kg. Unlike the treatment with Indo at 5 mg/kg, Indo at 30 mg/kg caused severe gastric damage that prevented by co-treatment with ALA. These results suggest that combination of ALA with NSAIDs can both increase anti-inflammatory effect and prevent NSAIDs-induced gastric damage. ALA would be promising adjuvant that can reduce dose for effective NSAID therapy, which improves safety profile of NSAIDs especially in cases long-term administration of high dose needed.
Collapse
Affiliation(s)
- Elif Nur Barut
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey
| | - Seçkin Engin
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey
| | - İsmail Saygın
- Faculty of Medicine, Department of Pathology, Karadeniz Technical University, Trabzon, Turkey
| | - Yesim Kaya-Yasar
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Seyma Arici
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey
| | - Sena F Sezen
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
26
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
27
|
Natural Molecules and Neuroprotection: Kynurenic Acid, Pantethine and α-Lipoic Acid. Int J Mol Sci 2021; 22:ijms22010403. [PMID: 33401674 PMCID: PMC7795784 DOI: 10.3390/ijms22010403] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of neurodegenerative diseases has increased greatly worldwide due to the rise in life expectancy. In spite of notable development in the understanding of these disorders, there has been limited success in the development of neuroprotective agents that can slow the progression of the disease and prevent neuronal death. Some natural products and molecules are very promising neuroprotective agents because of their structural diversity and wide variety of biological activities. In addition to their neuroprotective effect, they are known for their antioxidant, anti-inflammatory and antiapoptotic effects and often serve as a starting point for drug discovery. In this review, the following natural molecules are discussed: firstly, kynurenic acid, the main neuroprotective agent formed via the kynurenine pathway of tryptophan metabolism, as it is known mainly for its role in glutamate excitotoxicity, secondly, the dietary supplement pantethine, that is many sided, well tolerated and safe, and the third molecule, α-lipoic acid is a universal antioxidant. As a conclusion, because of their beneficial properties, these molecules are potential candidates for neuroprotective therapies suitable in managing neurodegenerative diseases.
Collapse
|
28
|
Hajizadeh-Sharafabad F, Sharifi Zahabi E. Role of alpha-lipoic acid in vascular function: A systematic review of human intervention studies. Crit Rev Food Sci Nutr 2020; 62:2928-2941. [DOI: 10.1080/10408398.2020.1861425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fatemeh Hajizadeh-Sharafabad
- Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Sharifi Zahabi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Ajith TA. Alpha-lipoic acid: A possible pharmacological agent for treating dry eye disease and retinopathy in diabetes. Clin Exp Pharmacol Physiol 2020; 47:1883-1890. [PMID: 32621549 DOI: 10.1111/1440-1681.13373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring dithiol micronutrient which acts as a cofactor for mitochondrial enzyme activity. Due to its potential antioxidant activity, it is considered as "universal antioxidant". Previous studies reported the pharmacological benefits of ALA such as glycaemic control, improved insulin sensitivity and alleviation of diabetic complications such as neuropathy and cardiovascular diseases. Dry eye disease and retinopathy are prevalent in diabetic patients. Experimental studies demonstrated the beneficial effects of ALA in dry eye and diabetic retinopathy. ALA can prevent the dry eye by down regulating the expression of matrix metalloproteinase-9 in the corneal epithelial cells and activating the antioxidant status of the ocular surface. Furthermore, its direct antioxidant effect can also prevent oxidative stress-induced corneal surface erosion and lachrymal gland damage. ALA prevents diabetic retinopathy through inhibition of O-linked β-N-acetylglucosamine transferase and nuclear factor-kappa B activity and alleviation of oxidative stress. It can activate the nuclear factor erythroid-2-related factor 2 and AMP-activated protein kinase in retinal ganglion cells. Clinical trials conducted in pre-retinopathic diabetic patients showed ALA with genistein and vitamins could protect the retinal cells and decline the inflammatory effect in diabetic patients. However, studies are scant to explore its beneficial effects in dry eye disease and diabetic retinopathy. Therefore, this review article discusses an update on the role of ALA in dry eye disease and diabetic retinopathy, two ocular diseases prevalent in diabetic patients.
Collapse
|
30
|
Li H, Yan J, Meng D, Cai R, Gao X, Ji Y, Wang L, Chen C, Wu X. Gold Nanorod-Based Nanoplatform Catalyzes Constant NO Generation and Protects from Cardiovascular Injury. ACS NANO 2020; 14:12854-12865. [PMID: 32955857 DOI: 10.1021/acsnano.0c03629] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cardiovascular disease is a leading cause of death, and one of the effective therapeutic strategies for cardiovascular disease is to provide a controlled, constant supply of nitric oxide (NO) in a mild manner; however, this has proved challenging in the clinic. To address this problem, we built a nitric oxide synthase (NOS)-like nanoplatform (NanoNOS) that consists of a noble metal nanoparticle core and a mesoporous silica shell and demonstrated the ability of NanoNOS to catalyze production of NO in vitro. Mechanistic studies show that the catalysis consists of a three-step reaction: the oxidation of NADPH to produce O2-via oxidase-like activity and the subsequent dismutation of O2- to H2O2via SOD-like activity, followed by H2O2-mediated oxidation of l-arginine to produce NO via a nonenzymatic pathway. The generation of NO is precisely regulated by both the content of the NanoNOS species and the plasmon excitation. We found that NanoNOS greatly suppressed injury-driven monocyte-endothelial cell adhesion, suggesting the NanoNOS treatment could help prevent cardiovascular disease. With such a design as well as plasmon excitation that allows for controlled and constant catalytic activity, NanoNOS technology could have a variety of biomedical applications.
Collapse
Affiliation(s)
- Haiyun Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Jiao Yan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Dejing Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Rui Cai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Xinshuang Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Science, Beijing 100049, China
- CAS-HKU Joint Laboratory of Metallomics on Health & Environment, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
31
|
Zaazaa AM, Motelp BAAE, Aniss NND. Potential Protective Role of Rutin and Alpha-lipoic Acid Against Cisplatin-induced Nephrotoxicity in Rats. Pak J Biol Sci 2020; 22:361-371. [PMID: 31930824 DOI: 10.3923/pjbs.2019.361.371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Cisplatin-induced nephrotoxicity is a serious complication that restricts its utilization in cancer treatment. Rutin and alpha-lipoic acid have antioxidant effectiveness, anti-inflammatory efficacy and prevent oxidative stress. Therefore, the current study planned to investigate the potential defensive impacts of rutin and alpha-lipoic acid on cisplatin-induced renal damage in rats. MATERIALS AND METHODS Fifty-six adult male Wistar albino rats were randomly divided into seven groups. Rats of group 1: Treated with saline as the control. Group 2: Orally received rutin daily for 2 weeks. Group 3: Rats were orally administered with alpha-lipoic acid (ALA) daily for 2 weeks. Group 4: Rats were intraperitoneal (i.p.) injected with cisplatin to develop the acute renal injury. Group 5: Rats injected with cisplatin then treated orally with RT. Group 6: Rats were injected i.p., with cisplatin then treated orally with ALA. Group 7: Rats injected with cisplatin then treated orally with RT and ALA daily for 2 weeks. RESULTS The cisplatin administration to rats induced nephrotoxicity associated with a significant increase in serum urea, creatinine, albumin and significantly reduce haemoglobin and red blood cells count. The animal treated with cisplatin showed a significant increase in the level of renal malondialdehyde associated with reduction in the levels of glutathione-s-transferase, glutathione reductase and catalase compared to control group. Moreover, cisplatin treated group recorded significant increase in nuclear factor kappa B, IL-6 and p53 levels compared to control group. Additionally, histopathological examination showed that cisplatin-induced interstitial congestion, focal mononuclear cell inflammatory, cell infiltrate and acute tubular injury. In correlation with the cisplatin group, Rutin and alpha-lipoic acid ameliorated cisplatin-induction increase in serum urea, creatinine, albumin, oxidative stress and inflammation were observed. Moreover, rutin and alpha-lipoic acid showed an enhancement in haematological and histopathological structures. CONCLUSION These results indicated that rutin and alpha-lipoic acid showed a protective effect against cisplatin-induced nephrotoxicity in rats.
Collapse
|
32
|
Bobe G, Michels AJ, Zhang WJ, Purnell JQ, Woffendin C, Pereira C, Vita JA, Thomas NO, Traber MG, Frei B, Hagen TM. A Randomized Controlled Trial of Long-Term (R)-α-Lipoic Acid Supplementation Promotes Weight Loss in Overweight or Obese Adults without Altering Baseline Elevated Plasma Triglyceride Concentrations. J Nutr 2020; 150:2336-2345. [PMID: 32692358 PMCID: PMC7540064 DOI: 10.1093/jn/nxaa203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/14/2020] [Accepted: 06/22/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND α-Lipoic acid (LA) is a dietary supplement for maintaining energy balance, but well-controlled clinical trials in otherwise healthy, overweight adults using LA supplementation are lacking. OBJECTIVES The primary objective was to evaluate whether LA supplementation decreases elevated plasma triglycerides in overweight or obese adults. Secondary aims examined if LA promotes weight loss and improves oxidative stress and inflammation. METHODS Overweight adults [n = 81; 57% women; 21-60 y old; BMI (in kg/m2) ≥ 25] with elevated plasma triglycerides ≥100 mg/dL were enrolled in a 24-wk, randomized, double-blind, controlled trial, assigned to either (R)-α-lipoic acid (R-LA; 600 mg/d) or matching placebo, and advised not to change their diet or physical activity. Linear models were used to evaluate treatment effects from baseline for primary and secondary endpoints. RESULTS R-LA did not decrease triglyceride concentrations, but individuals on R-LA had a greater reduction in BMI at 24 wk than the placebo group (-0.8; P = 0.04). The effect of R-LA on BMI was correlated to changes in plasma triglycerides (r = +0.50, P = 0.004). Improvement in body weight was greater at 24 wk in R-LA subgroups than in placebo subgroups. Women and obese participants (BMI ≥ 35) showed greater weight loss (-5.0% and -4.8%, respectively; both P < 0.001) and loss of body fat (-9.4% and -8.6%, respectively; both P < 0.005). Antioxidant gene expression in mononuclear cells at 24 wk was greater in the R-LA group (Heme oxygenase 1 [HMOX1] : +22%; P = 0.02) than in placebo. Less urinary F2-isoprostanes (-25%; P = 0.005), blood leukocytes (-10.1%; P = 0.01), blood thrombocytes (-5.1%; P = 0.03), and ICAM-1 (-7.4%; P = 0.04) at 24 wk were also observed in the R-LA group than in placebo. CONCLUSIONS Long-term LA supplementation results in BMI loss, greater antioxidant enzyme synthesis, and less potential for inflammation in overweight adults. Improved cellular bioenergetics is also evident in some individuals given R-LA.This trial was registered at clinicaltrials.gov as NCT00765310.
Collapse
Affiliation(s)
- Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | | | - Wei-Jian Zhang
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Jonathan Q Purnell
- Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Clive Woffendin
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Cliff Pereira
- Department of Statistics, Oregon State University, Corvallis, OR, USA
| | - Joseph A Vita
- Evans Department of Medicine and the Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Nicholas O Thomas
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Balz Frei
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA,Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
33
|
Horowitz RI, Freeman PR, Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir Med Case Rep 2020; 30:101063. [PMID: 32322478 PMCID: PMC7172740 DOI: 10.1016/j.rmcr.2020.101063] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Infection with COVID-19 potentially can result in severe outcomes and death from "cytokine storm syndrome", resulting in novel coronavirus pneumonia (NCP) with severe dyspnea, acute respiratory distress syndrome (ARDS), fulminant myocarditis and multiorgan dysfunction with or without disseminated intravascular coagulation. No published treatment to date has been shown to adequately control the inflammation and respiratory symptoms associated with COVID-19, apart from oxygen therapy and assisted ventilation. We evaluated the effects of using high dose oral and/or IV glutathione in the treatment of 2 patients with dyspnea secondary to COVID-19 pneumonia. METHODS Two patients living in New York City (NYC) with a history of Lyme and tick-borne co-infections experienced a cough and dyspnea and demonstrated radiological findings consistent with novel coronavirus pneumonia (NCP). A trial of 2 g of PO or IV glutathione was used in both patients and improved their dyspnea within 1 h of use. Repeated use of both 2000 mg of PO and IV glutathione was effective in further relieving respiratory symptoms. CONCLUSION Oral and IV glutathione, glutathione precursors (N-acetyl-cysteine) and alpha lipoic acid may represent a novel treatment approach for blocking NF-κB and addressing "cytokine storm syndrome" and respiratory distress in patients with COVID-19 pneumonia.
Collapse
Affiliation(s)
- Richard I. Horowitz
- HHS Babesia and Tickborne Pathogen Subcommittee, Washington, D.C., 20201, USA
- Hudson Valley Healing Arts Center, 4232 Albany Post Road, Hyde Park, NY, 12538, USA
| | - Phyllis R. Freeman
- Hudson Valley Healing Arts Center, 4232 Albany Post Road, Hyde Park, NY, 12538, USA
| | - James Bruzzese
- Sophie Davis School of Biomedical Education/CUNY School of Medicine, New York, NY, 10031, USA
| |
Collapse
|
34
|
Aboonabi A, Aboonabi A. Anthocyanins reduce inflammation and improve glucose and lipid metabolism associated with inhibiting nuclear factor-kappaB activation and increasing PPAR-γ gene expression in metabolic syndrome subjects. Free Radic Biol Med 2020; 150:30-39. [PMID: 32061902 DOI: 10.1016/j.freeradbiomed.2020.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Anthocyanins exhibit antioxidant and anti-inflammatory activities via a multitude of biochemical mechanisms. However, the signaling pathways involved in the actions of anthocyanins against chronic inflammation are not fully understood. The effects of berry-rich anthocyanin supplements (320 mg/day) for four weeks were examined on features of metabolic syndrome components and the expression of PPAR-γ, Nrf2, and NF-κB dependent genes in MetS and healthy subjects. Total RNA was isolated from whole blood with the PAXgene proprietary blood collection system. Four weeks anthocyanin consumption significantly decreased fasting blood glucose (15.7% vs 3.2%), TG (18.2% vs -1.39%), cholesterol (33.5% vs 1.56%) and LDL (28.4% vs -15.6%) in the MetS compared to Control group (P-value < 0.05, 95% CI). There was a significant up regulation in the expression PPAR-γ gene associated with the lipid and glucose metabolism in MetS subjects which negatively correlated (P-value < 0.01) with the change in the FBG (r = -0.488), Cholesterol (r = -0.496), TG (r = -0.513) and LDL (r = -0.519). Moreover, anthocyanin supplementation decreases serum hs-CRP (-36.3% vs 6.25%) in MetS in compared to Control group (P-value < 0.05). Anthocyanin supplementation also down-regulated the expression of NF-κB dependent genes including TNF-α (-28% and -15%), IL-6 (-16.1% and -13.6%), IL-1A (-21.5% and -12.9%), PCAM-1 (-15% and -17.5%), and COX-2(-26% and -27%) in both MetS and Control group respectively (P-value < 0.05). The study results suggested that berry supplements improved selected features of metabolic syndrome and related cardiovascular risk factors. These benefits may be due to the inhibition of NF-κB dependent gene expression and enhancement of PPAR-γ.
Collapse
Affiliation(s)
- Anahita Aboonabi
- School of Medical Science, Gold Coast Campus, Griffith University, Parklands Drive, Southport, Queensland, 4222, Australia.
| | - Arta Aboonabi
- West Center of Tehran, Payam Noor University, Shahid Bagheri Town, Tehran, Iran.
| |
Collapse
|
35
|
Lee KJ, Ko YJ, Kang SK, Kim WS, Cho CS, Choi YJ. Additive anti-inflammation by a combination of conjugated linoleic acid and α-lipoic acid through molecular interaction between both compounds. Food Sci Biotechnol 2019; 29:419-429. [PMID: 32257526 DOI: 10.1007/s10068-019-00677-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 02/08/2023] Open
Abstract
Alpha lipoic acid (LA) and conjugated linoleic acid (CLA) have been well-documented on a variety of functional effects in health foods. The main purpose of this study was focused on the additive anti-inflammatory activity of the combination of LA and CLA in vitro. Raw 264.7 cells induced by lipopolysaccharide were treated with LA and CLA individually or in combination at a variety of concentration ranges. Co-treating 25 μM of LA and 25 μM of CLA significantly inhibited pro-inflammatory cytokines compared to the same concentration of single LA- or CLA-treated group. The molecular mechanism of anti-inflammation by a combination of these compounds was attributed to extracellular signal-regulated kinase-1 (ERK1) and peroxisome proliferator-activated receptor gamma (PPARγ). Also, the molecular interaction between both compounds was confirmed by NMR. Our findings suggested that the combination of CLA and LA showed potential additive effect on anti-inflammation through the molecular interaction of both compounds.
Collapse
Affiliation(s)
- Ki-June Lee
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yoon-Joo Ko
- 2National Center for Inter-University Research Facilities, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sang-Kee Kang
- 3Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 Republic of Korea
| | - Whee-Soo Kim
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Chong-Su Cho
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yun-Jaie Choi
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
36
|
Andrographolide Derivative AL-1 Ameliorates Dextran Sodium Sulfate-Induced Murine Colitis by Inhibiting NF- κB and MAPK Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6138723. [PMID: 31687082 PMCID: PMC6800948 DOI: 10.1155/2019/6138723] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/18/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023]
Abstract
Trinitrobenzenesulfonic acid (TNBS) and dextran sodium sulfate (DSS) are commonly used to induce experimental murine ulcerative colitis (UC). Our recent study has demonstrated that a novel andrographolide derivative, AL-1, ameliorated TNBS-induced colitis in mice. However, the effect of AL-1 on DSS-induced murine colitis and the underlying mechanisms are yet unknown. In the present study, we aimed to investigate the therapeutic potential of AL-1 against DSS-induced UC in mice and to define its mechanisms of action. Oral administration of AL-1 attenuated body weight loss, reduced colon length shortening, lowered the disease activity index score, and alleviated colon histological damage. AL-1 significantly inhibited myeloperoxidase activity and suppressed immune inflammatory responses in colonic tissues. Moreover, AL-1 reversed DSS-altered expression of inflammatory cytokines in DSS-induced colitis mice. Importantly, the efficacy of 45 mg/kg of AL-1 was higher than that of 100 mg/kg of the positive control drugs 5-aminosalicylic acid and mesalazine. AL-1 decreased lipopolysaccharide-induced generation of reactive oxygen species and nitric oxide in cultured macrophages in vitro; it also reversed the altered expression of inflammatory cytokines. In both in vivo and in vitro studies, Western blot analysis revealed that AL-1 reduced the expression of phosphorylated NF-κB p65 and IκBα, downregulated the expression of iNOS and COX-2, and attenuated the expression of phosphorylated p38 mitogen-activated protein kinase (MAPK), ERK, and JNK. In conclusion, AL-1 alleviated DSS-induced murine colitis by inhibiting activation of the NF-κB and MAPK signaling pathways. Our data suggest that AL-1 could be a potential new treatment for UC.
Collapse
|
37
|
Grayczyk JP, Alonzo F. Staphylococcus aureus Lipoic Acid Synthesis Limits Macrophage Reactive Oxygen and Nitrogen Species Production To Promote Survival during Infection. Infect Immun 2019; 87:e00344-19. [PMID: 31308080 PMCID: PMC6759302 DOI: 10.1128/iai.00344-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/05/2019] [Indexed: 01/29/2023] Open
Abstract
Macrophages are critical mediators of innate immunity and must be overcome for bacterial pathogens to cause disease. The Gram-positive bacterium Staphylococcus aureus produces virulence factors that impede macrophages and other immune cells. We previously determined that production of the metabolic cofactor lipoic acid by the lipoic acid synthetase, LipA, blunts macrophage activation. A ΔlipA mutant was attenuated during infection and was more readily cleared from the host. We hypothesized that bacterial lipoic acid synthesis perturbs macrophage antimicrobial functions and therefore hinders the clearance of S. aureus Here, we found that enhanced innate immune cell activation after infection with a ΔlipA mutant was central to attenuation in vivo, whereas a growth defect imparted by the lipA mutation made a negligible contribution to overall clearance. Macrophages recruited to the site of infection with the ΔlipA mutant produced larger amounts of bactericidal reactive oxygen species (ROS) and reactive nitrogen species (RNS) than those recruited to the site of infection with the wild-type strain or the mutant strain complemented with lipA ROS derived from the NADPH phagocyte oxidase complex and RNS derived from the inducible nitric oxide synthetase, but not mitochondrial ROS, were critical for the restriction of bacterial growth under these conditions. Despite enhanced antimicrobial immunity upon primary infection with the ΔlipA mutant, we found that the host failed to mount an improved recall response to secondary infection. Our data suggest that lipoic acid synthesis in S. aureus promotes bacterial persistence during infection through limitation of ROS and RNS generation by macrophages. Broadly, this work furthers our understanding of the intersections between bacterial metabolism and immune responses to infection.
Collapse
Affiliation(s)
- James P Grayczyk
- Department of Microbiology and Immunology, Loyola University Chicago-Stritch School of Medicine, Maywood, Illinois, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago-Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
38
|
Yousefi M, Kavianpour M, Hesami S, Rashidi Nooshabadi M, Khadem Haghighian H. Effect of alpha-lipoic acid at the combination with mefenamic acid in girls with primary dysmenorrhea: randomized, double-blind, placebo-controlled clinical trial. Gynecol Endocrinol 2019; 35:782-786. [PMID: 30957578 DOI: 10.1080/09513590.2019.1590544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Primary dysmenorrhea is a common gynecologic disorder and is one of the main causes for referral to the gynecology clinic. This study aimed to determine the effects of alpha-lipoic acid (ALA) and mefenamic acid and a combination compared with placebo on the girls with primary dysmenorrhea. This double-blind, placebo-controlled clinical trial done on population consisted of female students living in dormitories of Qazvin University of Medical Sciences who had moderate to severe dysmenorrhea using the Visual Analog Scale (VAS) questionnaire. Participants were randomly divided into four groups (n = 100): ALA, mefenamic acid, ALA + mefenamic acid and placebo groups. ALA and mefenamic acid were administrated in 600 mg and 250 mg, respectively. The severity of the pain was measured in the beginning and the end of the study. Statistical analysis was performed using SPSS software (SPSS Inc., Chicago, IL). Our final results suggested that, although mefenamic acid significantly decreased the menstrual pain, ALA supplementation, 600 mg, would be more efficient than mefenamic acid in 250 mg. Also, the combination of ALA and mefenamic acid significantly has been far. Considering the ALA supplementation effect on pain relief in patients with primary dysmenorrhea, this antioxidant can be recommended for the healing of symptoms of these patients.
Collapse
Affiliation(s)
- Mojgan Yousefi
- a Student Research Committee, School of Health, Qazvin University of Medical Sciences , Qazvin , Iran
- b Metabolic Diseases Research Center, Qazvin University of Medical Sciences , Qazvin , Iran
| | - Maria Kavianpour
- c Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Sepideh Hesami
- a Student Research Committee, School of Health, Qazvin University of Medical Sciences , Qazvin , Iran
- b Metabolic Diseases Research Center, Qazvin University of Medical Sciences , Qazvin , Iran
| | | | - Hossein Khadem Haghighian
- a Student Research Committee, School of Health, Qazvin University of Medical Sciences , Qazvin , Iran
- b Metabolic Diseases Research Center, Qazvin University of Medical Sciences , Qazvin , Iran
| |
Collapse
|
39
|
Salehi B, Berkay Yılmaz Y, Antika G, Boyunegmez Tumer T, Fawzi Mahomoodally M, Lobine D, Akram M, Riaz M, Capanoglu E, Sharopov F, Martins N, Cho WC, Sharifi-Rad J. Insights on the Use of α-Lipoic Acid for Therapeutic Purposes. Biomolecules 2019; 9:356. [PMID: 31405030 PMCID: PMC6723188 DOI: 10.3390/biom9080356] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
α-lipoic acid (ALA, thioctic acid) is an organosulfur component produced from plants, animals, and humans. It has various properties, among them great antioxidant potential and is widely used as a racemic drug for diabetic polyneuropathy-associated pain and paresthesia. Naturally, ALA is located in mitochondria, where it is used as a cofactor for pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase complexes. Despite its various potentials, ALA therapeutic efficacy is relatively low due to its pharmacokinetic profile. Data suggests that ALA has a short half-life and bioavailability (about 30%) triggered by its hepatic degradation, reduced solubility as well as instability in the stomach. However, the use of various innovative formulations has greatly improved ALA bioavailability. The R enantiomer of ALA shows better pharmacokinetic parameters, including increased bioavailability as compared to its S enantiomer. Indeed, the use of amphiphilic matrices has capability to improve ALA bioavailability and intestinal absorption. Also, ALA's liquid formulations are associated with greater plasma concentration and bioavailability as compared to its solidified dosage form. Thus, improved formulations can increase both ALA absorption and bioavailability, leading to a raise in therapeutic efficacy. Interestingly, ALA bioavailability will be dependent on age, while no difference has been found for gender. The present review aims to provide an updated on studies from preclinical to clinical trials assessing ALA's usages in diabetic patients with neuropathy, obesity, central nervous system-related diseases and abnormalities in pregnancy.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Yakup Berkay Yılmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Gizem Antika
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | | | - Devina Lobine
- Department of Health Sciences; Faculty of Science, University of Mauritius, Réduit 80837, Mauritius
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad; Faisalabad 38000, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan
| | - Esra Capanoglu
- Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Maslak 34469, Turkey
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| |
Collapse
|
40
|
Haghighatdoost F, Hariri M. The effect of alpha-lipoic acid on inflammatory mediators: a systematic review and meta-analysis on randomized clinical trials. Eur J Pharmacol 2019; 849:115-123. [DOI: 10.1016/j.ejphar.2019.01.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/13/2019] [Accepted: 01/17/2019] [Indexed: 12/21/2022]
|
41
|
Haghighatdoost F, Hariri M. Does alpha-lipoic acid affect lipid profile? A meta-analysis and systematic review on randomized controlled trials. Eur J Pharmacol 2019; 847:1-10. [DOI: 10.1016/j.ejphar.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/22/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022]
|
42
|
Moeinian M, Abdolghaffari AH, Nikfar S, Momtaz S, Abdollahi M. Effects of alpha lipoic acid and its derivative "andrographolid-lipoic acid-1" on ulcerative colitis: A systematic review with meta-analysis of animal studies. J Cell Biochem 2018; 120:4766-4782. [PMID: 30362597 DOI: 10.1002/jcb.27807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022]
Abstract
We aimed to review and meta-analyze the inflammatory and oxidative factors following alpha lipoic acid (ALA) and its derivative "andrographolid-lipoic acid-1" (AL-1) in ulcerative colitis (UC). ALA plays an important role in scavenging intracellular radicals and inflammatory elements. AL-1 is found in herbal medicines with potent anti-inflammatory properties. Data were collected from the Google Scholar, PubMed, Scopus, Evidence-based medicine/clinical trials, and Cochrane library database until 2017, which finally resulted in 22 animal studies (70 rats and 162 mice). The beneficial effects of ALA or AL-1 on the most important parameters of UC were reviewed; also, studies were considered separately in mice and rats. Administration of ALA and AL-1 significantly reduced the tumor necrosis factor-α level compared with the controls, while data were not noteworthy in the meta-analysis (mean differences = -18.57 [95% CI = -42.65 to 5.51], P = 0.13). In spite of insignificant decrease in meta-analysis outcomes (differences = 6.92 [95% CI = -39.33 to 53.16], P = 0.77), a significant reduction in myeloperoxidase activity was shown following ALA or AL-1 treatment compared with the controls. Despite significant differences in each study, we had to exclude some studies to homogenize data for meta-analyzing as they showed insignificant results. Interleukin 6, cyclooxygenase-2, glutathione, malondialdehyde, superoxide dismutase, histopathological score, macroscopic and microscopic scores, disease activity index, body weight change, and colon length were also reviewed. Most studies have emphasized on significant positive effects of ALA and AL-1. Comprehensive clinical trials are obligatory to determine the precious position of ALA or AL-1 in the management of UC.
Collapse
Affiliation(s)
- Mahsa Moeinian
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shekoufeh Nikfar
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Fatahi S, Kord Varkaneh H, Teymouri A, Azadbakht L. Beneficiary effect of a-lipoic acid supplementation on C-reactive protein level among adults. ACTA ACUST UNITED AC 2018. [DOI: 10.1108/nfs-03-2018-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Clinical evidence has suggested that alpha-lipoic acid (ALA), a potent antioxidant, seems to have some effects on inflammatory process. However, these results are equivocal. The purpose of this paper is to investigate the nature of association between ALA and serum C-reactive protein (CRP) level by pooling the results from clinical trial studies.
Design/methodology/approach
Relevant studies were identified by systematic literature search of PubMed/MEDLINE, Scopus, Web of Sciences and Cochrane library up to September 2016 for randomized controlled trials (RCTs) evaluating the impact of ALA supplementation on CRP. The pooled data were summarized as weighted mean difference (WMD) and 95 per cent confidence interval (CI). Effect sizes of eligible studies were pooled using random- or fixed-effects (the DerSimonian–Laird estimator) depending on the results of heterogeneity tests.
Findings
Of 212 papers, 15 were eligible RCTs according to inclusion criteria. The selected studies comprised 1,408 cases and 457 controls. The dose of ALA supplement ranged from 300 to 1,200 mg, and the duration of follow-up was from 1 to 48 weeks. ALA supplementation significantly reduced the levels of circulating CRP (WMD: −0.088, 95 per cent CI: −0.131, −0.045, p < 0.001) with significant heterogeneity (I2 = 73.4 per cent, p < 0.001). Populations with age younger than 50 years (PMD: −0.060 mg/dl), receiving doses less than 600 mg/day (PMD: −0.057 mg/dl), having cardiovascular disease (PMD: −0.105 mg/dl), hemodialysis (PMD: −0.209 mg/dl), diabetes (PMD: −0.021 mg/dl) and otherwise healthy subjects (PMD: −0.045 mg/dl) were sources of heterogeneity.
Originality/Value
This meta-analysis of RCTs suggests that ALA supplementation seems to significantly reduce circulating CRP level.
Collapse
|
44
|
Liu JL, Fan YG, Yang ZS, Wang ZY, Guo C. Iron and Alzheimer's Disease: From Pathogenesis to Therapeutic Implications. Front Neurosci 2018; 12:632. [PMID: 30250423 PMCID: PMC6139360 DOI: 10.3389/fnins.2018.00632] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
As people age, iron deposits in different areas of the brain may impair normal cognitive function and behavior. Abnormal iron metabolism generates hydroxyl radicals through the Fenton reaction, triggers oxidative stress reactions, damages cell lipids, protein and DNA structure and function, and ultimately leads to cell death. There is an imbalance in iron homeostasis in Alzheimer's disease (AD). Excessive iron contributes to the deposition of β-amyloid and the formation of neurofibrillary tangles, which in turn, promotes the development of AD. Therefore, iron-targeted therapeutic strategies have become a new direction. Iron chelators, such as desferoxamine, deferiprone, deferasirox, and clioquinol, have received a great deal of attention and have obtained good results in scientific experiments and some clinical trials. Given the limitations and side effects of the long-term application of traditional iron chelators, alpha-lipoic acid and lactoferrin, as self-synthesized naturally small molecules, have shown very intriguing biological activities in blocking Aβ-aggregation, tauopathy and neuronal damage. Despite a lack of evidence for any clinical benefits, the conjecture that therapeutic chelation, with a special focus on iron ions, is a valuable approach for treating AD remains widespread.
Collapse
Affiliation(s)
- Jun-Lin Liu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yong-Gang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zheng-Sheng Yang
- Department of Dermatology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China.,Key Laboratory of Medical Cell Biology of Ministry of Education, Institute of Health Sciences, China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
45
|
Kumar D, Moore RM, Sharma A, Mercer BM, Mansour JM, Moore JJ. In an in-vitro model using human fetal membranes, α-lipoic acid inhibits inflammation induced fetal membrane weakening. Placenta 2018; 68:9-14. [PMID: 30055672 DOI: 10.1016/j.placenta.2018.06.305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION We established an in-vitro model for the study of human fetal membrane (FM) weakening leading to pPROM. In this model, granulocyte-macrophage colony-stimulating factor (GM-CSF) is a critical intermediate for both tumor necrosis factor-α (TNF; modeling infection/inflammation) and thrombin (modeling decidual bleeding/abruption)-induced weakening. Thus, inhibitors of FM weakening can be categorized as targeting GM-CSF production, GM-CSF downstream action, or both. Most progestogens inhibit both, except 17-α hydroxyprogesterone caproate which inhibits FM weakening at only one point, GM-CSF production. α-lipoic acid (LA), an over-the-counter dietary supplement, has also been previously shown to inhibit TNF and thrombin induced FM weakening. OBJECTIVE To determine the point of action of LA inhibition of FM weakening. METHODS FM fragments were mounted in Transwell inserts and preincubated with/without LA/24 h, then with/without addition of TNF, thrombin or GM-CSF. After 48 h, medium was assayed for GM-CSF, and FM fragments were rupture-strength tested. RESULTS TNF and thrombin both weakened FM and increased GM-CSF levels. GM-CSF also weakened FM. LA inhibited both TNF and thrombin induced FM weakening and concomitantly inhibited the increase in GM-CSF in a concentration-dependent manner. In addition, LA inhibited GM-CSF induced FM weakening in a concentration dependent manner. CONCLUSIONS LA blocks TNF and thrombin induced FM weakening at two points, inhibiting both GM-CSF production and downstream action. Thus, we speculate that LA may be a potential standalone therapeutic agent, or supplement to current therapy for prevention of pPROM related spontaneous preterm birth, if preclinical studies to examine feasibility and safety during pregnancy are successfully accomplished.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Robert M Moore
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Anudeepa Sharma
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Brian M Mercer
- Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Joseph M Mansour
- Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - John J Moore
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
46
|
Akbari M, Ostadmohammadi V, Tabrizi R, Mobini M, Lankarani KB, Moosazadeh M, Heydari ST, Chamani M, Kolahdooz F, Asemi Z. The effects of alpha-lipoic acid supplementation on inflammatory markers among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Nutr Metab (Lond) 2018; 15:39. [PMID: 29930690 PMCID: PMC5989440 DOI: 10.1186/s12986-018-0274-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE This systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to determine the effect of alpha-lipoic acid (ALA) supplementation on the inflammatory markers among patients with metabolic syndrome (MetS) and related disorders. METHODS We searched the following databases until November 2017: PubMed, MEDLINE, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials. Three reviewers independently assessed study eligibility, extracted data, and evaluated risk of bias of included primary studies. Statistical heterogeneity was assessed using Cochran's Q test and I-square (I2) statistic. Data were pooled by using the random-effect model and standardized mean difference (SMD) was considered as the summary effect size. RESULTS Eighteen trials out of 912 potential citations were found to be eligible for our meta-analysis. The findings indicated that ALA supplementation significantly decreased C-reactive protein (CRP) (SMD = - 1.52; 95% CI, - 2.25, - 0.80; P < 0.001), interlokin-6 (IL-6) (SMD = - 1.96; 95% CI, - 2.60, - 1.32; P < 0.001), and tumor necrosis factor alpha levels (TNF-α) (SMD = - 2.62; 95% CI, - 3.70, - 1.55; P < 0.001) in patients diagnosed with metabolic diseases. CONCLUSION In summary, the current meta-analysis demonstrated the promising impact of ALA administration on decreasing inflammatory markers such as CRP, IL-6 and TNF-α among patients with MetS and related disorders.
Collapse
Affiliation(s)
- Maryam Akbari
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahidreza Ostadmohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R Iran
| | - Reza Tabrizi
- Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Mobini
- Kinesiology Department, University of Calgary, Calgary, AB Canada
| | - Kamran B. Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Moosazadeh
- Health Science Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Taghi Heydari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Chamani
- Department of Gynecology and Obstetrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Kolahdooz
- Indigenous and Global Health Research, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R Iran
| |
Collapse
|
47
|
Gravina AG, Dallio M, Masarone M, Rosato V, Aglitti A, Persico M, Loguercio C, Federico A. Vascular Endothelial Dysfunction in Inflammatory Bowel Diseases: Pharmacological and Nonpharmacological Targets. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2568569. [PMID: 29849875 PMCID: PMC5925080 DOI: 10.1155/2018/2568569] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/14/2018] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are chronic inflammatory conditions involving primarily the gastrointestinal tract. However, they may be also associated with systemic manifestations and comorbidities. The relationship between chronic inflammation and endothelial dysfunction has been extensively demonstrated. Mucosal immunity and gastrointestinal physiology are modified in inflammatory bowel diseases, and these modifications are mainly sustained by alterations of endothelial function. The key elements involved in this process are cytokines, inflammatory cells, growth factors, nitric oxide, endothelial adhesion molecules, and coagulation cascade factors. In this review, we discuss available data in literature concerning endothelial dysfunction in patients affected by inflammatory bowel disease and we focus our attention on both pharmacological and nonpharmacological therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, 80131 Naples, Italy
| | - Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, 80131 Naples, Italy
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Salerno, Italy
| | - Valerio Rosato
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Salerno, Italy
| | - Andrea Aglitti
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Salerno, Italy
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Salerno, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, 80131 Naples, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
48
|
Mohamed WR, Mehany ABM, Hussein RM. Alpha lipoic acid protects against chlorpyrifos-induced toxicity in Wistar rats via modulating the apoptotic pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 59:17-23. [PMID: 29500983 DOI: 10.1016/j.etap.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The chronic exposure to chlorpyrifos (CPF) pesticide induces several human disorders including hepatotoxicity. Alpha-lipoic acid (ALA) is a natural antioxidant compound found in plants and animals. The present study aimed to investigate the possible protective effect of ALA against CPF-induced hepatotoxicity and the possible underlying molecular mechanism. Thirty-two male Wistar rats were divided into: Normal rats received only vehicle; ALA group received ALA (10 mg/kg, i.p.); CPF group received CPF (18 mg/kg, s.c.) and CPF-ALA group received CPF (18 mg/kg, s.c.) once daily for 14 days. The present results demonstrated that administration of ALA significantly improved liver functions (p < 0.05) and limited the histopathological lesions induced by CPF in liver tissues. Furthermore, ALA decreased hepatic malondialdehyde contents while increased the glutathione peroxidase, catalase, superoxide dismutase and acetylcholinesterase activities. Interestingly, ALA showed significant antiapoptotic effects through downregulation of Bax and Caspase-3 expression levels. In conclusion, ALA possess protective effects against CPF-induced liver injury through attenuation of apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Egypt
| | - Rasha M Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt.
| |
Collapse
|
49
|
|
50
|
Protective effect of α-lipoic acid against radiation-induced fibrosis in mice. Oncotarget 2017; 7:15554-65. [PMID: 26799284 PMCID: PMC4941260 DOI: 10.18632/oncotarget.6952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/05/2015] [Indexed: 01/08/2023] Open
Abstract
Radiation-induced fibrosis (RIF) is one of the most common late complications of radiation therapy. We found that α-lipoic acid (α-LA) effectively prevents RIF. In RIF a mouse model, leg contracture assay was used to test the in vivo efficacy of α-LA. α-LA suppressed the expression of pro-fibrotic genes after irradiation, both in vivo and in vitro, and inhibited the up-regulation of TGF-β1-mediated p300/CBP activity. Thus, α-LA prevents radiation-induced fibrosis (RIF) by inhibiting the transcriptional activity of NF-κB through inhibition of histone acetyltransferase activity. α-LA is a new therapeutic methods that can be used in the prevention-treatment of RIF.
Collapse
|