1
|
Chilakamarthi U, Mahadik NS, Bhattacharyya T, Gangadhar PS, Giribabu L, Banerjee R. Glucocorticoid receptor mediated sensitization of colon cancer to photodynamic therapy induced cell death. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112846. [PMID: 38237432 DOI: 10.1016/j.jphotobiol.2024.112846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024]
Abstract
Photodynamic therapy (PDT) is a clinically approved, non-invasive alternate cancer therapy. A synthetic glucocorticoid (GC), dexamethasone (Dex) has previously been demonstrated to sensitize cancer cells to chemotherapy. However, to the best of our knowledge, the sensitization effect of GCs on PDT has not yet been investigated. We hypothesized that glucocorticoid receptor (GR) targeting can selectively make cancer cells more sensitive to PDT treatment, as PDT induces hypoxia wherein GR-activity gets enhanced. In addition, Dex was reported to act against the PDT-induced cell survival pathways like HIF-1α, NRF2, NF-κB, STAT3 etc. Thus, both the treatments can complement each other and may result in increasing the effectiveness of combination therapy. Hence, in this study, we developed liposomal formulations of our previously reported PDT agent P-Nap, either alone (D1P-Nap) or in combination with Dex (D1XP-Nap) to elucidate the sensitization effect. Interestingly, our RT-PCR results in hypoxic conditions showed down-regulation of HIF-1α and over expression of GR-activated genes for glucose-6-phosphatase (G6Pase) and PEPCK enzymes, indicating prominent GR-transactivation. We also observed higher phototoxicity in CT26.WT cells treated with D1XP-Nap PDT under hypoxic conditions as compared to normoxic conditions. These effects were reversed when cells were pre-treated with RU486, a competitive inhibitor of GCs. Moreover, our in vivo findings of subcutaneous tumor model of Balb/C mice for colon cancer revealed a significant decrease in tumor volume as well as considerable enhancement in the survivability of PDT treated tumor-bearing mice when Dex was present in the formulation. A high Bax/Bcl-xL ratio, high p53 expression, enhanced E-cadherin expression and down-regulation of pro-tumorigenic transcription factors NF-κB and c-Myc were found in tumor lysates from mice treated with D1XP-Nap under PDT, indicating GR-mediated sensitization of the tumor to PDT-induced cell death and enhancement of life-span for tumor bearing mice.
Collapse
Affiliation(s)
- Ushasri Chilakamarthi
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.
| | - Namita S Mahadik
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad 201002, U.P., India
| | - Tithi Bhattacharyya
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad 201002, U.P., India
| | - Palivela Siva Gangadhar
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad 201002, U.P., India; Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Lingamallu Giribabu
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad 201002, U.P., India; Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Rajkumar Banerjee
- Department of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad 201002, U.P., India.
| |
Collapse
|
2
|
Kwon H, Lee EH, Choi J, Park JY, Kim YK, Han PL. Extracellular Vesicles Released by Lactobacillus paracasei Mitigate Stress-induced Transcriptional Changes and Depression-like Behavior in Mice. Exp Neurobiol 2023; 32:328-342. [PMID: 37927131 PMCID: PMC10628865 DOI: 10.5607/en23024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
Various probiotic strains have been reported to affect emotional behavior. However, the underlying mechanisms by which specific probiotic strains change brain function are not clearly understood. Here, we report that extracellular vesicles derived from Lactobacillus paracasei (Lpc-EV) have an ability to produce genome-wide changes against glucocorticoid (GC)-induced transcriptional responses in HT22 hippocampal neuronal cells. Genome-wide analysis using microarray assay followed by Rank-Rank Hypergeometric Overlap (RRHO) method leads to identify the top 20%-ranked 1,754 genes up- or down-regulated following GC treatment and their altered expressions are reversed by Lpc-EV in HT22 cells. Serial k-means clustering combined with Gene Ontology enrichment analyses indicate that the identified genes can be grouped into multiple functional clusters that contain functional modules of "responses to stress or steroid hormones", "histone modification", and "regulating MAPK signaling pathways". While all the selected genes respond to GC and Lpc-EV at certain levels, the present study focuses on the clusters that contain Mkp-1, Fkbp5, and Mecp2, the genes characterized to respond to GC and Lpc-EV in opposite directions in HT22 cells. A translational study indicates that the expression levels of Mkp-1, Fkbp5, and Mecp2 are changed in the hippocampus of mice exposed to chronic stress in the same directions as those following GC treatment in HT22 cells, whereas Lpc-EV treatment restored stress-induced changes of those factors, and alleviated stress-induced depressive-like behavior. These results suggest that Lpc-EV cargo contains bioactive components that directly induce genome-wide transcriptional responses against GC-induced transcriptional and behavioral changes.
Collapse
Affiliation(s)
- Hyejin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Juli Choi
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| | | | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
3
|
Jeong S, Chung Y, Park S, Lee S, Choi N, Park JK. Combined treatment of ginsenoside Rg2 and piceatannol mixture reduces the apoptosis and DNA damage induced by UVB in HaCaT cells. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Cellular Senescence in Adrenocortical Biology and Its Disorders. Cells 2021; 10:cells10123474. [PMID: 34943980 PMCID: PMC8699888 DOI: 10.3390/cells10123474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is considered a physiological process along with aging and has recently been reported to be involved in the pathogenesis of many age-related disorders. Cellular senescence was first found in human fibroblasts and gradually explored in many other organs, including endocrine organs. The adrenal cortex is essential for the maintenance of blood volume, carbohydrate metabolism, reaction to stress and the development of sexual characteristics. Recently, the adrenal cortex was reported to harbor some obvious age-dependent features. For instance, the circulating levels of aldosterone and adrenal androgen gradually descend, whereas those of cortisol increase with aging. The detailed mechanisms have remained unknown, but cellular senescence was considered to play an essential role in age-related changes of the adrenal cortex. Recent studies have demonstrated that the senescent phenotype of zona glomerulosa (ZG) acts in association with reduced aldosterone production in both physiological and pathological aldosterone-producing cells, whereas senescent cortical-producing cells seemed not to have a suppressed cortisol-producing ability. In addition, accumulated lipofuscin formation, telomere shortening and cellular atrophy in zona reticularis cells during aging may account for the age-dependent decline in adrenal androgen levels. In adrenocortical disorders, including both aldosterone-producing adenoma (APA) and cortisol-producing adenoma (CPA), different cellular subtypes of tumor cells presented divergent senescent phenotypes, whereby compact cells in both APA and CPA harbored more senescent phenotypes than clear cells. Autonomous cortisol production from CPA reinforced a local cellular senescence that was more severe than that in APA. Adrenocortical carcinoma (ACC) was also reported to harbor oncogene-induced senescence, which compensatorily follows carcinogenesis and tumor progress. Adrenocortical steroids can induce not only a local senescence but also a periphery senescence in many other tissues. Therefore, herein, we systemically review the recent advances related to cellular senescence in adrenocortical biology and its associated disorders.
Collapse
|
5
|
Moisan MP, Foury A, Dexpert S, Cole SW, Beau C, Forestier D, Ledaguenel P, Magne E, Capuron L. Transcriptomic signaling pathways involved in a naturalistic model of inflammation-related depression and its remission. Transl Psychiatry 2021; 11:203. [PMID: 33824279 PMCID: PMC8024399 DOI: 10.1038/s41398-021-01323-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed at identifying molecular biomarkers of inflammation-related depression in order to improve diagnosis and treatment. For this, we performed whole-genome expression profiling from peripheral blood in a naturalistic model of inflammation-associated major depressive disorder (MDD) represented by comorbid depression in obese patients. We took advantage of the marked reduction of depressive symptoms and inflammation following bariatric surgery to test the robustness of the identified biomarkers. Depression was assessed during a clinical interview using Mini-International Neuropsychiatric Interview and the 10-item, clinician-administered, Montgomery-Asberg Depression Rating Scale. From a cohort of 100 massively obese patients, we selected 33 of them for transcriptomic analysis. Twenty-four of them were again analyzed 4-12 months after bariatric surgery. We conducted differential gene expression analyses before and after surgery in unmedicated MDD and non-depressed obese subjects. We found that TP53 (Tumor Protein 53), GR (Glucocorticoid Receptor), and NFκB (Nuclear Factor kappa B) pathways were the most discriminating pathways associated with inflammation-related MDD. These signaling pathways were processed in composite z-scores of gene expression that were used as biomarkers in regression analyses. Results showed that these transcriptomic biomarkers highly predicted depressive symptom intensity at baseline and their remission after bariatric surgery. While inflammation was present in all patients, GR signaling over-activation was found only in depressed ones where it may further increase inflammatory and apoptosis pathways. In conclusion, using an original model of inflammation-related depression and its remission without antidepressants, we provide molecular predictors of inflammation-related MDD and new insights in the molecular pathways involved.
Collapse
Affiliation(s)
- Marie-Pierre Moisan
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.
| | - Aline Foury
- grid.488493.a0000 0004 0383 684XUniv. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Sandra Dexpert
- grid.488493.a0000 0004 0383 684XUniv. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Steve W. Cole
- grid.19006.3e0000 0000 9632 6718Division of Hematology-Oncology, Department of Psychiatry & Biobehavioral Sciences and Department of Medicine, UCLA School of Medicine, Los Angeles, CA USA
| | - Cédric Beau
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Damien Forestier
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Patrick Ledaguenel
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Eric Magne
- Service de Chirurgie Digestive et Pariétale, Clinique Tivoli, Bordeaux, and Clinique Jean Villar, Bruges, France
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.
| |
Collapse
|
6
|
Cutie S, Huang GN. Vertebrate cardiac regeneration: evolutionary and developmental perspectives. CELL REGENERATION 2021; 10:6. [PMID: 33644818 PMCID: PMC7917145 DOI: 10.1186/s13619-020-00068-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Cardiac regeneration is an ancestral trait in vertebrates that is lost both as more recent vertebrate lineages evolved to adapt to new environments and selective pressures, and as members of certain species developmentally progress towards their adult forms. While higher vertebrates like humans and rodents resolve cardiac injury with permanent fibrosis and loss of cardiac output as adults, neonates of these same species can fully regenerate heart structure and function after injury - as can adult lower vertebrates like many teleost fish and urodele amphibians. Recent research has elucidated several broad factors hypothesized to contribute to this loss of cardiac regenerative potential both evolutionarily and developmentally: an oxygen-rich environment, vertebrate thermogenesis, a complex adaptive immune system, and cancer risk trade-offs. In this review, we discuss the evidence for these hypotheses as well as the cellular participators and molecular regulators by which they act to govern heart regeneration in vertebrates.
Collapse
Affiliation(s)
- Stephen Cutie
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA. .,Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
7
|
Li P, Mao W, Zhang S, Zhang L, Chen Z, Lu Z. MicroRNA-22 contributes to dexamethasone-induced osteoblast differentiation inhibition and dysfunction through targeting caveolin-3 expression in osteoblastic cells. Exp Ther Med 2021; 21:336. [PMID: 33732309 PMCID: PMC7903452 DOI: 10.3892/etm.2021.9767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a common complication of long-term use of glucocorticoids (GCs) characterized by the loss of bone mass and damage of the microarchitecture as well as osteoblast dysfunction. Previous studies have demonstrated that microRNA-22 (miR-22) is the negative modulator of osteogenesis that may target caveolin-3 (CAV3), which has been reported to enhance bone formation and inhibit the progression of osteoporosis as well as apoptosis. The present study aimed to investigate whether miR-22 may be involved in dexamethasone (DEX)-induced inhibition of osteoblast differentiation and dysfunction by regulating CAV3 expression. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure the expression of miR-22 and western blotting was performed to determine protein levels. The results demonstrated that miR-22 expression was upregulated in DEX-treated osteoblastic cells compared with the control group. In addition, miR-22 mimic aggravated, whereas miR-22 inhibitor mitigated DEX-induced damage in osteoblastic cells compared with the control groups. Additionally, CAV3 was identified as the target of miR-22 in osteoblasts using RT-qPCR, western blotting and dual-luciferase reporter gene assay analysis. The results also demonstrated that silencing of CAV3 blocked the beneficial effects of miR-22 inhibitor against DEX-induced cell damage and apoptosis in osteoblasts, as evidenced by the increased expression levels of cleaved caspase-3, Bax and alkaline phosphatase activity as well as decreased cell viability and Bcl-2 levels. Collectively, these results indicate a novel molecular mechanism by which miR-22 contributes to DEX-induced osteoblast dysfunction and apoptosis via the miR-22/CAV3 pathway.
Collapse
Affiliation(s)
- Peng Li
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Weiwei Mao
- Clinical Skill Center of Yinchuan First People's Hospital, Yinchuan, Ningxia 750001, P.R. China
| | - Shuai Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Liang Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhirong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhidong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
8
|
De Anna JS, Castro JM, Darraz LA, Elías FD, Cárcamo JG, Luquet CM. Exposure to hydrocarbons and chlorpyrifos alters the expression of nuclear receptors and antioxidant, detoxifying, and immune response proteins in the liver of the rainbow trout, Oncorhynchus mykiss. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111394. [PMID: 33031985 DOI: 10.1016/j.ecoenv.2020.111394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The development of oil and gas production together with the fruit production in nearby areas of North Patagonia, Argentina, suggests aquatic pollution scenarios which include permanent oil pollution combined with short events of pesticides application. It has been reported that oil hydrocarbons activate the aryl hydrocarbon receptor (AhR) pathway in the rainbow trout, Oncorhynchus mykiss, and that the insecticide Chlorpyrifos (CPF) interacts with these effects. Thus, it is interesting to investigate whether hydrocarbons and insecticides, applied by separate or combined, can affect fish health and reproductive signaling by acting on different nuclear receptors' regulatory pathways. To study this kind of interactions, we exposed juvenile rainbow trout to water accommodated fraction (WAF) of crude oil (62 μg L-1 TPH) for 48 h and subsequently exposed the livers ex vivo to the insecticide Chlorpyrifos (CPF) (20 µg L-1) for 1 h. We analyzed the mRNA expression of nuclear receptors and proteins involved in detoxifying, antioxidant, immune and apoptosis responses by qRT-PCR. We also performed histopathological analysis. WAF induced the expression of the androgen (AR) and the Liver X receptor (LXR) by 8- and 3-fold, respectively. AR induction was reversed by subsequent exposure to CPF. The progesterone receptor (PR) and glucocorticoid receptor (GR) were increased 2-fold and 3-fold by WAF respectively, while estrogen and mineralocorticoid receptors were not affected. GR was also induced by CPF with an additive effect in the WAF-CPF treatment. The antioxidant genes, gamma glutamyl transferase (GGT), superoxide dismutase (SOD1) were induced by WAF (2-3-fold). WAF upregulated the ATP Binding Cassette Subfamily C Member 2 (ABCC2, MRP2) (4-fold) and downregulated alkaline phosphatase. WAF also induced the inflammatory interleukins (IL) IL-8, and IL-6 and the anti-inflammatory IL-10, while CPF induced the inflammatory tumor necrosis factor (-α) and IL-6, and activated the intrinsic apoptotic pathway through the induction of caspases 3 and 9. Both, WAF and CPF downregulated the expression of the extrinsic apoptosis initiator caspase 8 and the inflammatory caspase 1. In conclusion, WAF hydrocarbons alter O. mykiss endocrine regulation by inducing AR, PR and GR. The subsequent exposure to CPF reverses AR, suggesting a complex interaction of different pollutants in contaminated environments, WAF hydrocarbons alter liver metabolism by inducing the expression of LXR, GR, antioxidant and detoxifying enzymes, and both inflammatory and anti-inflammatory cytokines, and causing mild hepatic steatosis. CPF activates inflammatory and stress responses associated with the induction of inflammatory cytokines together with apoptosis initiator and executioner caspases.
Collapse
Affiliation(s)
- Julieta S De Anna
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina
| | - Juan M Castro
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina
| | - Luis Arias Darraz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Federico D Elías
- Centro Atómico Bariloche e Instituto Balseiro, CNEA, CONICET, Universidad Nacional de Cuyo, Bariloche, Argentina
| | - Juan G Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET-Universidad Nacional del Comahue), Junín de los Andes, Neuquén, Argentina.
| |
Collapse
|
9
|
Cutie S, Payumo AY, Lunn D, Huang GN. In vitro and in vivo roles of glucocorticoid and vitamin D receptors in the control of neonatal cardiomyocyte proliferative potential. J Mol Cell Cardiol 2020; 142:126-134. [PMID: 32289320 DOI: 10.1016/j.yjmcc.2020.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
Cardiomyocyte (CM) proliferative potential varies considerably across species. While lower vertebrates and neonatal mammals retain robust capacities for CM proliferation, adult mammalian CMs lose proliferative potential due to cell-cycle withdrawal and polyploidization, failing to mount a proliferative response to regenerate lost CMs after cardiac injury. The decline of murine CM proliferative potential occurs in the neonatal period when the endocrine system undergoes drastic changes for adaptation to extrauterine life. We recently demonstrated that thyroid hormone (TH) signaling functions as a primary factor driving CM proliferative potential loss in vertebrates. Whether other hormonal pathways govern this process remains largely unexplored. Here we showed that agonists of glucocorticoid receptor (GR) and vitamin D receptor (VDR) suppressed neonatal CM proliferation. We next examined CM nucleation and proliferation in neonatal mutant mice lacking GR or VDR specifically in CMs, but we observed no difference between mutant and control littermates at postnatal day 14. Additionally, we generated compound mutant mice that lack GR or VDR and express dominant-negative TH receptor alpha in their CMs, and similarly observed no increase in CM proliferative potential compared to dominant-negative TH receptor alpha mice alone. Thus, although GR and VDR activation is sufficient to inhibit CM proliferation, they seem to be dispensable for neonatal CM cell-cycle exit and polyploidization in vivo. In addition, given the recent report that VDR activation in zebrafish promotes CM proliferation and tissue regeneration, our results suggest distinct roles of VDR in zebrafish and rodent CM cell-cycle regulation.
Collapse
Affiliation(s)
- Stephen Cutie
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alexander Y Payumo
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dominic Lunn
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Kooptiwut S, Samon K, Semprasert N, Suksri K, Yenchitsomanus PT. Prunetin Protects Against Dexamethasone-Induced Pancreatic Β-Cell Apoptosis via Modulation of p53 Signaling Pathway. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20916328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Long-term administration of dexamethasone results in insulin resistance and pancreatic β-cell apoptosis. Prunetin (an O-methylated isoflavone, a type of flavonoid) is demonstrated to protect diabetes, but the molecular mechanism of this protection is still unclear. This study thus aims to investigate how prunetin protects against dexamethasone-induced pancreatic β-cell apoptosis. Rat insulinoma (INS-1) cells were cultured in medium with or without dexamethasone in the presence or absence of prunetin or pifithrin-α, a p53 inhibitor. Cell apoptosis was measured by Annexin V/propidium iodide staining. Dexamethasone significantly induced INS-1 apoptosis but dexamethasone plus prunetin significantly reduced INS-1 apoptosis. Dexamethasone-treated INS-1 upregulated p53 protein expression; the induction of p53 was also reduced in the presence of RU486, a glucocorticoid receptor (GR) inhibitor. This suggested that dexamethasone induced P53 via GR. Dexamethasone-treated INS-1 significantly increased p53, Bax, and Rb protein expressions, whereas treatments of dexamethasone plus prunetin or pifithrin-α significantly decreased these protein expressions. In addition, dexamethasone significantly decreased B-cell lymphoma 2 (Bcl2), while dexamethasone plus prunetin or pifithrin-α significantly increased Bcl2. Dexamethasone significantly increased caspase-3 activity while co-treatment of dexamethasone plus prunetin or pifithrin-α significantly decreased caspase-3 activity to the control level. Taken together, our results revealed that prunetin protected against dexamethasone-induced pancreatic β-cells apoptosis via modulation of the p53 signaling pathway.
Collapse
Affiliation(s)
- Suwattanee Kooptiwut
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokwan Samon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Namoiy Semprasert
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanchana Suksri
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Zhang Y, Hao J, Zeng J, Li Q, Rao E, Sun Y, Liu L, Mandal A, Landers VD, Morris RJ, Cleary MP, Suttles J, Li B. Epidermal FABP Prevents Chemical-Induced Skin Tumorigenesis by Regulation of TPA-Induced IFN/p53/SOX2 Pathway in Keratinocytes. J Invest Dermatol 2018; 138:1925-1934. [PMID: 29559340 DOI: 10.1016/j.jid.2018.02.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 12/15/2022]
Abstract
Skin lipids (e.g., fatty acids) are essential for normal skin functions. Epidermal FABP (E-FABP) is the predominant FABP expressed in skin epidermis. However, the role of E-FABP in skin homeostasis and pathology remains largely unknown. Herein, we utilized the 7,12-dimethylbenz(a)anthracene and 12-O-tetradecanolyphorbol-13-acetate-induced skin tumorigenesis model to assess the role of E-FABP in chemical-induced skin tumorigenesis. Compared to their wild-type littermates, mice deficient in E-FABP, but not adipose FABP, developed more skin tumors with higher incidence. 12-O-tetradecanolyphorbol-13-acetate functioning as a tumor promoter induced E-FABP expression and initiated extensive flaring inflammation in skin. Interestingly, 12-O-tetradecanolyphorbol-13-acetate -induced production of IFN-β and IFN-λ in the skin tissue was dependent on E-FABP expression. Further protein and gene expression arrays demonstrated that E-FABP was critical in enhancing IFN-induced p53 responses and in suppressing SOX2 expression in keratinocytes. Thus, E-FABP expression in skin suppresses chemical-induced skin tumorigenesis through regulation of IFN/p53/SOX2 pathway. Collectively, our data suggest an unknown function of E-FABP in prevention of skin tumor development, and offer E-FABP as a therapeutic target for improving skin innate immunity in chemical-induced skin tumor prevention.
Collapse
Affiliation(s)
- Yuwen Zhang
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Jun Zeng
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qiang Li
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Enyu Rao
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yanwen Sun
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Lianliang Liu
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Anita Mandal
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - V Douglas Landers
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Rebecca J Morris
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Jill Suttles
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA.
| |
Collapse
|
12
|
Significance of glucocorticoid receptor expression in patients with non-small cell lung cancer treated with pemetrexed-based chemotherapy. Cancer Chemother Pharmacol 2017; 80:851-860. [PMID: 28755014 DOI: 10.1007/s00280-017-3399-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/18/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Pemetrexed is the preferred chemotherapy agent in the management of non-squamous non-small cell lung cancer (non-sq-NSCLC), but lacks biomarkers predicting its efficacy. Dexamethasone, one of the premedications of pemetrexed, may downregulate p53 through the glucocorticoid receptor (GR). The purpose of our study was to explore the effect of GR in peripheral blood mononuclear cells (PBMC) and its role in predicting pemetrexed efficacy. METHODS In all, 122 patients with stage IV non-sq-NSCLC who received first-line pemetrexed-containing chemotherapy were retrospectively reviewed. The expression of GR in PBMC was measured before treatment with pemetrexed using real-time PCR was used to detect the levels of GRα and GRβ. RESULTS The response rate for all patients was 38.5%, with a median progression-free survival (PFS) of 5.9 months and overall survival (OS) of 14.3 months. In univariate analyses, patients with a low GRα/GRβ ratio in PBMC had higher RR, better PFS, and better OS than those with a high GRα/GRβ ratio (RR: 48.2 vs. 30.3%, p = 0.043; mPFS: 6.9 vs. 4.0 months, p < 0.001; mOS: 18.7 vs. 12.2 months, p = 0.005). The baseline GRα/GRβ ratio was an independent factor for RR (odds ratio [OR] = 0.451, 95% CI 0.208-0.978; p = 0.044), PFS (HR = 1.584, 95% CI 1.094-2.295; p = 0.015), and OS (HR = 1.761, 95% CI 1.195-2.595; p = 0.004). CONCLUSIONS Baseline GRα/GRβ ratio in PBMC may play a role in predicting the efficacy of first-line pemetrexed-containing chemotherapy in stage IV non-sq NSCLC patients.
Collapse
|
13
|
Antidepressant responsiveness in adulthood is permanently impaired after neonatal destruction of the neurogenic pool. Transl Psychiatry 2017; 7:e990. [PMID: 28045461 PMCID: PMC5545723 DOI: 10.1038/tp.2016.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 09/20/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
The dynamic turnover of hippocampal neurons is implicated in the regulation of cognitive and affective behavior. Extending our previous demonstration that administration of dexamethasone (ND) to neonatal rats depletes the resident population of neural precursor cells (NPC) and restrains the size of the neurogenic regions, we now show that the adverse effects of ND persist into adulthood. Specifically, ND impairs repletion of the neurogenic pool and neurogenesis; ND also compromises cognitive performance, the ability to actively adapt to an acute stressor and, the efficacy of glucocorticoid (GC) negative feedback. Interestingly, although ND depletes the neurogenic pool, it does not permanently abolish the proliferative machinery of the residual NPC population; however, ND increases the susceptibility of hippocampal granule neurons to apoptosis. Although the antidepressant fluoxetine (FLX) reverses the latter phenomenon, it does not replenish the NPC pool. Treatment of ND-treated adult rats with FLX also improves GC negative feedback, albeit without rescuing the deleterious effects of ND on behavior. In summary, ND leads to protracted disruption of mental functions, some of which are resistant to antidepressant interventions. We conclude that manipulation of the NPC pool during early life may jeopardize the therapeutic potential of antidepressants in adulthood.
Collapse
|
14
|
Gesmundo I, Villanova T, Gargantini E, Arvat E, Ghigo E, Granata R. The Mineralocorticoid Agonist Fludrocortisone Promotes Survival and Proliferation of Adult Hippocampal Progenitors. Front Endocrinol (Lausanne) 2016; 7:66. [PMID: 27379018 PMCID: PMC4910464 DOI: 10.3389/fendo.2016.00066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoid receptor (GR) activation has been shown to reduce adult hippocampal progenitor cell proliferation and neurogenesis. By contrast, mineralocorticoid receptor (MR) signaling is associated with neuronal survival in the dentate gyrus of the hippocampus, and impairment of hippocampal MR has been linked to pathological conditions, such as depression or neurodegenerative disorders. Here, we aimed to further clarify the protective role of MR in adult hippocampal neurons by studying the survival and proliferative effects of the highly potent MR agonist fludrocortisone (Fludro) in adult rat hippocampal progenitor cells (AHPs), along with the associated signaling mechanisms. Fludro, which upregulated MR but not GR expression, increased survival and proliferation and prevented apoptosis in AHPs cultured in growth factor-deprived medium. These effects were blunted by the MR antagonist spironolactone and by high doses of the GR agonist dexamethasone. Moreover, they involved signaling through cAMP/protein kinase A (PKA)/cAMP response element-binding protein, phosphoinositide 3-kinase (PI3K)/Akt and its downstream targets glycogen synthase kinase-3β (GSK-3β) and mammalian target of rapamycin. Furthermore, Fludro attenuated the detrimental effects of amyloid-β peptide 1-42 (Aβ1-42) on cell survival, proliferation, and apoptosis in AHPs, and increased the phosphorylation of both PI3K/Akt and GSK-3β, which was reduced by Aβ1-42. Finally, Fludro blocked Aβ1-42-induced hyperphosphorylation of Tau protein, which is a main feature of Alzheimer's disease. Overall, these results are the first to show the protective and proliferative role of Fludro in AHPs, suggesting the potential therapeutic importance of targeting MR for increasing hippocampal neurogenesis and for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Iacopo Gesmundo
- Laboratory of Molecular and Cellular Endocrinology, Department of Medical Sciences, University of Torino, Torino, Italy
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, Torino, Italy
| | - Tania Villanova
- Laboratory of Molecular and Cellular Endocrinology, Department of Medical Sciences, University of Torino, Torino, Italy
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, Torino, Italy
| | - Eleonora Gargantini
- Laboratory of Molecular and Cellular Endocrinology, Department of Medical Sciences, University of Torino, Torino, Italy
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, Torino, Italy
| | - Emanuela Arvat
- Department of Medical Sciences, Division of Oncological Endocrinology, University of Torino, Torino, Italy
| | - Ezio Ghigo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, Torino, Italy
| | - Riccarda Granata
- Laboratory of Molecular and Cellular Endocrinology, Department of Medical Sciences, University of Torino, Torino, Italy
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, Torino, Italy
- *Correspondence: Riccarda Granata,
| |
Collapse
|
15
|
Gay MS, Li Y, Xiong F, Lin T, Zhang L. Dexamethasone Treatment of Newborn Rats Decreases Cardiomyocyte Endowment in the Developing Heart through Epigenetic Modifications. PLoS One 2015; 10:e0125033. [PMID: 25923220 PMCID: PMC4414482 DOI: 10.1371/journal.pone.0125033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/19/2015] [Indexed: 01/07/2023] Open
Abstract
The potential adverse effect of synthetic glucocorticoid, dexamethasone therapy on the developing heart remains unknown. The present study investigated the effects of dexamethasone on cardiomyocyte proliferation and binucleation in the developing heart of newborn rats and evaluated DNA methylation as a potential mechanism. Dexamethasone was administered intraperitoneally in a three day tapered dose on postnatal day 1 (P1), 2 and 3 to rat pups in the absence or presence of a glucocorticoid receptor antagonist Ru486, given 30 minutes prior to dexamethasone. Cardiomyocytes from P4, P7 or P14 animals were analyzed for proliferation, binucleation and cell number. Dexamethasone treatment significantly increased the percentage of binucleated cardiomyocytes in the hearts of P4 pups, decreased myocyte proliferation in P4 and P7 pups, reduced cardiomyocyte number and increased the heart to body weight ratio in P14 pups. Ru486 abrogated the effects of dexamethasone. In addition, 5-aza-2'-deoxycytidine (5-AZA) blocked the effects of dexamethasone on binucleation in P4 animals and proliferation at P7, leading to recovered cardiomyocyte number in P14 hearts. 5-AZA alone promoted cardiomyocyte proliferation at P7 and resulted in a higher number of cardiomyocytes in P14 hearts. Dexamethasone significantly decreased cyclin D2, but not p27 expression in P4 hearts. 5-AZA inhibited global DNA methylation and blocked dexamethasone-mediated down-regulation of cyclin D2 in the heart of P4 pups. The findings suggest that dexamethasone acting on glucocorticoid receptors inhibits proliferation and stimulates premature terminal differentiation of cardiomyocytes in the developing heart via increased DNA methylation in a gene specific manner.
Collapse
Affiliation(s)
- Maresha S. Gay
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda, California, 92350, United States of America
| | - Yong Li
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda, California, 92350, United States of America
| | - Fuxia Xiong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda, California, 92350, United States of America
| | - Thant Lin
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, California, 92350, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda, California, 92350, United States of America
- * E-mail:
| |
Collapse
|
16
|
Nenoi M, Wang B, Vares G. In vivo radioadaptive response: a review of studies relevant to radiation-induced cancer risk. Hum Exp Toxicol 2015; 34:272-83. [PMID: 24925363 PMCID: PMC4442823 DOI: 10.1177/0960327114537537] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Radioadaptive response (RAR) describes phenomena where small conditioning doses of ionizing radiation (IR) reduce detrimental effects of subsequent higher IR doses. Current radiation protection regulations do not include RAR because of the large variability in expression among individuals and uncertainties of the mechanism. However, RAR should be regarded as an indispensable factor for estimation and control of individual IR sensitivity. In this article, RAR studies relevant to individual cancer risk are reviewed. Using various stains of mice, carcinogenic RAR has been demonstrated. Consistently much in vivo evidence for RAR with end points of DNA and chromosome damage is reported. Most in vivo RAR studies revealed efficient induction of RAR by chronic or repeated low-dose priming irradiation. Chronic IR-induced RAR was observed also in human individuals after environmental, occupational, and nuclear accident radiation exposure. These observations may be associated with an intrinsically distinct feature of in vivo experimental systems that mainly consist of nonproliferating mature cells. Alternatively, induction of RAR by gap junction-mediated bystander effects suggests that multicellular systems comprising densely communicating cells may be capable of responding to long-lasting low-dose-rate priming irradiation. Regulation by endocrine factors is also a plausible mechanism for RAR at an individual level. Emerging evidence suggests that glucocorticoids, known as stress hormones, participate in in vivo RAR induction following long-term low-dose-rate exposure to IR.
Collapse
Affiliation(s)
- M Nenoi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - B Wang
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | - G Vares
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| |
Collapse
|
17
|
Glucocorticoid receptor status is a principal determinant of variability in the sensitivity of non-small-cell lung cancer cells to pemetrexed. J Thorac Oncol 2015; 9:519-26. [PMID: 24736075 DOI: 10.1097/jto.0000000000000111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pemetrexed is an S-phase targeted drug in front-line or maintenance therapy of advanced nonsquamous non-small-cell lung cancer (NSCLC) but methods are needed for predicting the drug response. Dexamethasone is typically administered the day before, the day of, and the day after pemetrexed. As dexamethasone strongly regulates many genes including p53 through the glucocorticoid receptor (GR), we hypothesized that dexamethasone influences tumor response to pemetrexed. METHODS Eight nonsquamous NSCLC cell line models with varied p53 and GRα/GRβ status were used for gene expression and cell-cycle analyses and for loss- or gain-of-function experiments. RESULTS In three cell lines dexamethasone profoundly, but reversibly, suppressed the fraction of S-phase cells. Dexamethasone also reversibly repressed expression of thymidylate synthase and dihydrofolate reductase, which are primary targets of pemetrexed but are also quintessential S-phase enzymes as well as the S-phase-dependent expression of thymidine kinase 1. Dexamethasone also decreased expression of the major pemetrexed transporters, the reduced folate carrier and the proton coupled folate transporter. Only cells expressing relatively high GRα showed these dexamethasone effects, regardless of p53 status. In cells expressing low GRα, the dexamethasone response was rescued by ectopic GRα. Further, depletion of p53 did not attenuate the dexamethasone effects. The presence of dexamethasone during pemetrexed treatment protected against pemetrexed cytotoxicity in only the dexamethasone responsive cells. CONCLUSIONS The results predict that in nonsquamous NSCLC tumors, reversible S-phase suppression by dexamethasone, possibly combined with a reduction in the drug transporters, attenuates responsiveness to pemetrexed and that GR status is a principal determinant of tumor variability of this response.
Collapse
|
18
|
Du X, Pang TY. Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases? Front Psychiatry 2015; 6:32. [PMID: 25806005 PMCID: PMC4353372 DOI: 10.3389/fpsyt.2015.00032] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/16/2015] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD). These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA)-axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioral deficits and/or mood disorders. Dysregulation of the HPA-axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, antidepressant drugs, such as the selective serotonin reuptake inhibitors have been shown to alter HPA-axis activity. In this review, we will summarize the current state of knowledge regarding HPA-axis pathology in Alzheimer's, PD and HD, differentiating between prodromal and later stages of disease progression when evidence is available. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the preclinical evidence to better inform prospective, intervention studies.
Collapse
Affiliation(s)
- Xin Du
- Mental Health Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC , Australia
| | - Terence Y Pang
- Behavioural Neurosciences Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
19
|
Ayroldi E, Petrillo MG, Bastianelli A, Marchetti MC, Ronchetti S, Nocentini G, Ricciotti L, Cannarile L, Riccardi C. L-GILZ binds p53 and MDM2 and suppresses tumor growth through p53 activation in human cancer cells. Cell Death Differ 2014; 22:118-30. [PMID: 25168242 DOI: 10.1038/cdd.2014.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/31/2022] Open
Abstract
The transcription factor p53 regulates the expression of genes crucial for biological processes such as cell proliferation, metabolism, cell repair, senescence and apoptosis. Activation of p53 also suppresses neoplastic transformations, thereby inhibiting the growth of mutated and/or damaged cells. p53-binding proteins, such as mouse double minute 2 homolog (MDM2), inhibit p53 activation and thus regulate p53-mediated stress responses. Here, we found that long glucocorticoid-induced leucine zipper (L-GILZ), a recently identified isoform of GILZ, activates p53 and that the overexpression of L-GILZ in p53(+/+) HCT116 human colorectal carcinoma cells suppresses the growth of xenografts in mice. In the presence of both p53 and MDM2, L-GILZ binds preferentially to MDM2 and interferes with p53/MDM2 complex formation, making p53 available for downstream gene activation. Consistent with this finding, L-GILZ induced p21 and p53 upregulated modulator of apoptosis (PUMA) expression only in p53(+/+) cells, while L-GILZ silencing reversed the anti-proliferative activity of dexamethasone as well as expression of p53, p21 and PUMA. Furthermore, L-GILZ stabilizes p53 proteins by decreasing p53 ubiquitination and increasing MDM2 ubiquitination. These findings reveal L-GILZ as a regulator of p53 and a candidate for new therapeutic anti-cancer strategies for tumors associated with p53 deregulation.
Collapse
Affiliation(s)
- E Ayroldi
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - M G Petrillo
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - A Bastianelli
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - M C Marchetti
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - S Ronchetti
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - G Nocentini
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - L Ricciotti
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - L Cannarile
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - C Riccardi
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| |
Collapse
|
20
|
Poulsen RC, Watts AC, Murphy RJ, Snelling SJ, Carr AJ, Hulley PA. Glucocorticoids induce senescence in primary human tenocytes by inhibition of sirtuin 1 and activation of the p53/p21 pathway: in vivo and in vitro evidence. Ann Rheum Dis 2014; 73:1405-13. [PMID: 23727633 PMCID: PMC4078757 DOI: 10.1136/annrheumdis-2012-203146] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2013] [Indexed: 01/26/2023]
Abstract
UNLABELLED Cellular senescence is an irreversible side effect of some pharmaceuticals which can contribute to tissue degeneration. OBJECTIVE To determine whether pharmaceutical glucocorticoids induce senescence in tenocytes. METHODS Features of senescence (β-galactosidase activity at pH 6 (SA-β-gal) and active mammalian/mechanistic target of rapamycin (mTOR) in cell cycle arrest) as well as the activity of the two main pathways leading to cell senescence were examined in glucocorticoid-treated primary human tenocytes. Evidence of senescence-inducing pathway induction in vivo was obtained using immunohistochemistry on tendon biopsy specimens taken before and 7 weeks after subacromial Depo-Medrone injection. RESULTS Dexamethasone treatment of tenocytes resulted in an increased percentage of SA-βgal-positive cells. Levels of phosphorylated p70S6K did not decrease with glucocorticoid treatment indicating mTOR remained active. Increased levels of acetylated p53 as well as increased RNA levels of its pro-senescence effector p21 were evident in dexamethasone-treated tenocytes. Levels of the p53 deacetylase sirtuin 1 were lower in dexamethasone-treated cells compared with controls. Knockdown of p53 or inhibition of p53 activity prevented dexamethasone-induced senescence. Activation of sirtuin 1 either by exogenous overexpression or by treatment with resveratrol or low glucose prevented dexamethasone-induced senescence. Immunohistochemical analysis of tendon biopsies taken before and after glucocorticoid injection revealed a significant increase in the percentage of p53-positive cells (p=0.03). The percentage of p21-positive cells also tended to be higher post-injection (p=0.06) suggesting glucocorticoids activate the p53/p21 senescence-inducing pathway in vivo as well as in vitro. CONCLUSION As cell senescence is irreversible in vivo, glucocorticoid-induced senescence may result in long-term degenerative changes in tendon tissue.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Anna C Watts
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Richard J Murphy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Sarah J Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Philippa A Hulley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Vose LR, Vinukonda G, Diamond D, Korumilli R, Hu F, Zia MTK, Hevner R, Ballabh P. Prenatal betamethasone does not affect glutamatergic or GABAergic neurogenesis in preterm newborns. Neuroscience 2014; 270:148-57. [PMID: 24735821 DOI: 10.1016/j.neuroscience.2014.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
Abstract
Prenatal glucocorticoids (GCs) are routinely used for pregnant women in preterm labor to prevent respiratory distress syndrome and intraventricular hemorrhage in premature infants. However, the effect of antenatal GCs on neurogenesis in preterm neonates remains elusive. Herein, we hypothesized that prenatal GCs might suppress both glutamatergic and GABAergic neurogenesis in preterm rabbits and that this treatment would induce distinct changes in the expression of transcription factors regulating these developmental events. To test our hypotheses, we treated pregnant rabbits with betamethasone at E27 and E28, delivered the pups at E29 (term=32d), and assessed neurogenesis at birth and postnatal day 3. We quantified radial glia (Sox2(+)) and intermediate progenitor cells (Tbr2(+)) in the dorsal cortical subventricular zone to assess glutamatergic neuronal progenitors, and counted Nkx2.1(+) and Dlx2(+) cells in the ganglionic eminence to evaluate GABAergic neurogenesis. In addition, we assayed transcription factors regulating neurogenesis. We found that prenatal GCs did not affect the densities of radial glia and intermediate progenitors of glutamatergic or GABAergic neurons. The number of GABA(+) interneurons in the ganglionic eminence was similar between the prenatal GC-treated pups compared to untreated controls. Moreover, the mRNA expression of transcription factors, including Pax6, Ngn1/2, Emx1/2, Insm1, Dlx1, Nkx2.1, and Gsh2, were comparable between the two groups. However, there was a transient elevation in Mash1 protein in betamethasone-treated pups relative to controls at birth. These data suggest that prenatal GC treatment does not significantly impact the balance of glutamatergic and GABAergic neurogenesis in premature infants.
Collapse
Affiliation(s)
- L R Vose
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - G Vinukonda
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - D Diamond
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - R Korumilli
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - F Hu
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - M T K Zia
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States
| | - R Hevner
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - P Ballabh
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, NY, United States; Department of Cell Biology and Anatomy, New York Medical College-Westchester Medical Center, Valhalla, NY, United States.
| |
Collapse
|
22
|
Leskiewicz M, Jantas D, Regulska M, Kaczanowska J, Basta-Kaim A, Budziszewska B, Kubera M, Lason W. Antidepressants attenuate the dexamethasone-induced decrease in viability and proliferation of human neuroblastoma SH-SY5Y cells: A involvement of extracellular regulated kinase (ERK1/2). Neurochem Int 2013; 63:354-62. [DOI: 10.1016/j.neuint.2013.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 07/16/2013] [Accepted: 07/23/2013] [Indexed: 01/01/2023]
|
23
|
Morris DR, Levenson CW. Zinc regulation of transcriptional activity during retinoic acid-induced neuronal differentiation. J Nutr Biochem 2013; 24:1940-4. [PMID: 24029070 DOI: 10.1016/j.jnutbio.2013.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/30/2013] [Accepted: 06/07/2013] [Indexed: 12/13/2022]
Abstract
Zinc deficiency impairs the proliferation and differentiation of stem cells in the central nervous system that participate in neurogenesis. To examine the molecular mechanisms responsible for the role of this essential nutrient in neuronal precursor cells and neuronal differentiation, we identified zinc-dependent changes in the DNA-binding activity of zinc finger proteins and other transcription factors in proliferating human Ntera-2 neuronal precursor cells undergoing retinoic acid-stimulated differentiation into a neuronal phenotype. We found that zinc deficiency altered binding activity of 28 transcription factors including retinoid X receptor (RXR) known to participate in neuronal differentiation. Alterations in zinc finger transcription factor activity were not simply the result of removal of zinc from these proteins during zinc deficiency, as the activity of other zinc-binding transcription factors such as the glucocorticoid receptor was increased by as much as twofold over zinc-adequate conditions, and nonzinc-binding transcription factors such as nuclear factor-1 and heat shock transcription factor-1 were increased by as much as fourfold over control. Western analysis did not detect significant decreases in total RXR protein abundance in neuronal precursors, suggesting that the decrease in DNA-binding activity was not simply the result of a reduction in RXR levels in neuronal precursor cells. Rather, use of a reporter gene construct containing retinoic acid response elements upstream from a luciferase coding sequence revealed that zinc deficiency results in decreased transcriptional activity of RXR and reductions in retinoic acid-mediated gene transcription during neuronal differentiation. These results show that zinc deficiency has implications for both developmental and adult neurogenesis.
Collapse
Affiliation(s)
- Deborah R Morris
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | | |
Collapse
|
24
|
Mouihate A, Al-Bader MD. Glucocorticoid-induced fetal brain growth restriction is associated with p73 gene activation. J Neurosci Res 2012; 91:95-104. [PMID: 23086675 DOI: 10.1002/jnr.23130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/13/2012] [Accepted: 07/20/2012] [Indexed: 01/22/2023]
Abstract
Fetal exposure to excessive amounts of glucocorticoids (GCs) hampers proper brain development. The molecular mechanism(s) underlying these GCs effects are not well understood. We explored the impact of fetal exposure to maternal GCs on fetal brain expression of p63 and p73 transactivation (TA) and dominant negative (ΔN) gene variants that promote neural cell death (TA) and cell survival programs (ΔN). The fetoplacental enzyme 11β-hydroxysteroid dehydrogenase 2, which shields fetuses from maternal glucocorticoids, was inhibited throughout pregnancy by daily injection of carbenoxolone to pregnant dams. The expression of p63 and p73 gene variants and proteins was monitored by real-time rtPCR and Western blot in the brains of male and female fetuses. Carbenoxolone administration led to an overall enhanced level of corticosterone in the amniotic fluid of both male and female fetuses at late pregnancy. These enhanced corticosterone levels were associated with a significant reduction in fetal brain weights and a significant increase in TAp73 mRNA and p73 protein levels. However, the expression levels of TAp63 mRNA and p63 proteins were either suppressed or unaffected. The pro-neural survival gene variant ΔNp73 was significantly reduced in female and enhanced in male fetal brains, whereas ΔNp63 was significantly reduced in the brains of both genders. These data suggest that the GCs-induced negative impact on fetal brain development likely is due, at least in part, to their action of the pro-neural cell death gene variant TAp73 and to the modulation of the pro-survival ΔNp63 and ΔNp73 gene variants in a gender-dependent fashion.
Collapse
Affiliation(s)
- Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | |
Collapse
|
25
|
Li H, Qian W, Weng X, Wu Z, Li H, Zhuang Q, Feng B, Bian Y. Glucocorticoid receptor and sequential P53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PLoS One 2012; 7:e37030. [PMID: 22719835 PMCID: PMC3375272 DOI: 10.1371/journal.pone.0037030] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 04/11/2012] [Indexed: 12/02/2022] Open
Abstract
Glucocorticoids play a pivotal role in the proliferation of osteoblasts, but the underlying mechanism has not been successfully elucidated. In this report, we have investigated the molecular mechanism which elucidates the inhibitory effects of dexamethasone on murine osteoblastic MC3T3-E1 cells. It was found that the inhibitory effects were largely attributed to apoptosis and G1 phase arrest. Both the cell cycle arrest and apoptosis were dependent on glucocorticoid receptor (GR), as they were abolished by GR blocker RU486 pre-treatment and GR interference. G1 phase arrest and apoptosis were accompanied with a p53-dependent up-regulation of p21 and pro-apoptotic genes NOXA and PUMA. We also proved that dexamethasone can’t induce apoptosis and cell cycle arrest when p53 was inhibited by p53 RNA interference. These data demonstrate that proliferation of MC3T3-E1 cell was significantly and directly inhibited by dexamethasone treatment via aberrant GR activation and subsequently P53 activation.
Collapse
Affiliation(s)
- Hui Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wenwei Qian
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- * E-mail:
| | - Zhihong Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Huihua Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qianyu Zhuang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bin Feng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yanyan Bian
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Witchel SF, Miller WL. Prenatal Treatment of Congenital Adrenal Hyperplasia—Not Standard of Care. J Genet Couns 2012; 21:615-24. [DOI: 10.1007/s10897-012-9508-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
|
27
|
Increased expression of BAG-1 in rat brain cortex after traumatic brain injury. J Mol Histol 2012; 43:335-42. [DOI: 10.1007/s10735-012-9408-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/19/2012] [Indexed: 12/14/2022]
|
28
|
Munier M, Law F, Meduri G, Le Menuet D, Lombes M. Mineralocorticoid receptor overexpression facilitates differentiation and promotes survival of embryonic stem cell-derived neurons. Endocrinology 2012; 153:1330-40. [PMID: 22234470 PMCID: PMC3639543 DOI: 10.1210/en.2011-1436] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mineralocorticoid receptor (MR), highly expressed in the hippocampus, binds corticosteroid hormones and coordinately participates, with the glucocorticoid receptor, to the control of stress responses, memorization, and behavior. To investigate the impact of MR in neuronal survival, we generated murine embryonic stem (ES) cells that overexpress human MR (hMR) (P1-hMR) and are induced to differentiate into mature neurons. We showed that recombinant MR expression increased throughout differentiation and is 2-fold higher in P1-hMR ES-derived neurons compared with wild-type controls, whereas glucocorticoid receptor expression was unaffected. Although proliferation and early neuronal differentiation were comparable in P1-hMR and wild-type ES cells, MR overexpression was associated with higher late neuronal marker expression (microtubule-associated protein 2 and β-tubulin III). This was accompanied by a shift towards neuron survival with an increased ratio of anti- vs. proapoptotic molecules and 50% decreased caspase 3 activity. Knocking down MR overexpression by small interfering RNA drastically reversed neuroprotective effects with reduced Bcl(2)/Bax ratio and decreased microtubule-associated protein 2 expression. P1-hMR neurons were protected against oxidative stress-induced apoptosis through reduced caspase 3 activation and drastically increased Bcl(2)/Bax ratio and β-tubulin III expression. We demonstrated the involvement of MR in neuronal differentiation and survival and identify MR as an important neuroprotective mediator opening potential pharmacological strategies.
Collapse
Affiliation(s)
- Mathilde Munier
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris XI - Paris SudFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR
| | - Fredéric Law
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris XI - Paris SudFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR
| | - Géri Meduri
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris XI - Paris SudFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR
- Service de génétique moléculaire, pharmacogénétique et hormonologie
Assistance publique - Hôpitaux de Paris (AP-HP)Hôpital BicêtreUniversité Paris XI - Paris Sud78, rue du Général Leclerc 94275 Le Kremlin Bicêtre,FR
| | - Damien Le Menuet
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris XI - Paris SudFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR
| | - Marc Lombes
- Récepteurs stéroïdiens : physiopathologie endocrinienne et métabolique
INSERM : U693IFR93Université Paris XI - Paris SudFaculté de médecine 63, Rue Gabriel Peri 94276 LE KREMLIN BICETRE,FR
- Service d'Endocrinologie et Maladies de la reproduction
Assistance publique - Hôpitaux de Paris (AP-HP)Hôpital Bicêtre78, rue du Général Leclerc 94275 Le Kremlin Bicêtre,FR
- * Correspondence should be addressed to: Marc Lombes
| |
Collapse
|
29
|
Learning and memory alterations are associated with hippocampal N-acetylaspartate in a rat model of depression as measured by 1H-MRS. PLoS One 2011; 6:e28686. [PMID: 22194886 PMCID: PMC3237477 DOI: 10.1371/journal.pone.0028686] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 11/13/2011] [Indexed: 11/25/2022] Open
Abstract
It is generally accepted that cognitive processes, such as learning and memory, are affected in depression. The present study used a rat model of depression, chronic unpredictable mild stress (CUMS), to determine whether hippocampal volume and neurochemical changes were involved in learning and memory alterations. A further aim was to determine whether these effects could be ameliorated by escitalopram treatment, as assessed with the non-invasive techniques of structural magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Our results demonstrated that CUMS had a dramatic influence on spatial cognitive performance in the Morris water maze task, and CUMS reduced the concentration of neuronal marker N-acetylaspartate (NAA) in the hippocampus. These effects could be significantly reversed by repeated administration of escitalopram. However, neither chronic stress nor escitalopram treatment influenced hippocampal volume. Of note, the learning and memory alterations of the rats were associated with right hippocampal NAA concentration. Our results indicate that in depression, NAA may be a more sensitive measure of cognitive function than hippocampal volume.
Collapse
|
30
|
Damsted SK, Born AP, Paulson OB, Uldall P. Exogenous glucocorticoids and adverse cerebral effects in children. Eur J Paediatr Neurol 2011; 15:465-77. [PMID: 21632268 DOI: 10.1016/j.ejpn.2011.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 04/15/2011] [Accepted: 05/06/2011] [Indexed: 10/18/2022]
Abstract
Glucocorticoids are commonly used in treatment of paediatric diseases, but evidence of associated adverse cerebral effects is accumulating. The various pharmacokinetic profiles of the exogenous glucocorticoids and the changes in pharmacodynamics during childhood, result in different exposure of nervous tissue to exogenous glucocorticoids. Glucocorticoids activate two types of intracellular receptors, the mineralocorticoid receptor and the glucocorticoid receptor. The two receptors differ in cerebral distribution, affinity and effects. Exogenous glucocorticoids favor activation of the glucocorticoid receptor, which is associated with unfavorable cellular outcomes. Prenatal treatment with glucocorticoids can compromise brain growth and is associated with periventricular leukomalacia, attentions deficits and poorer cognitive performance. In the neonatal period exposure to glucocorticoids reduces neurogenesis and cerebral volume, impairs memory and increases the incidence of cerebral palsy. Cerebral effects of glucocorticoids in later childhood have been less thoroughly studied, but apparent brain atrophy, reduced size of limbic structures and neuropsychiatric symptoms have been reported. Glucocortioids affect several cellular structures and functions, which may explain the observed adverse effects. Glucocorticoids can impair neuronal glucose uptake, decrease excitability, cause atrophy of dendrites, compromise development of myelin-producing oligodendrocytes and disturb important cellular structures involved in axonal transport, long-term potentiation and neuronal plasticity. Significant maturation of the brain continues throughout childhood and we hypothesize that exposure to exogenous glucocorticoids during preschool and school age causes adverse cerebral effects. It is our opinion that studies of associations between exposure to glucocorticoids during childhood and impaired neurodevelopment are highly relevant.
Collapse
Affiliation(s)
- Sara K Damsted
- Department of Paediatrics, Copenhagen University Hospital, Rigshospitalet, Juliane Marie Center, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
31
|
Tumor suppressor protein (p)53, is a regulator of NF-kappaB repression by the glucocorticoid receptor. Proc Natl Acad Sci U S A 2011; 108:17117-22. [PMID: 21949408 DOI: 10.1073/pnas.1114420108] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucocorticoids can inhibit inflammation by abrogating the activity of NF-κB, a family of transcription factors that regulates the production of proinflammatory cytokines. To understand the molecular mechanism of repression of NF-κB activity by glucocorticoids, we performed a high-throughput siRNA oligo screen to identify novel genes involved in this process. Here, we report that loss of p53, a tumor suppressor protein, impaired repression of NF-κB target gene transcription by glucocorticoids. Additionally, loss of p53 also impaired transcription of glucocorticoid receptor (GR) target genes, whereas upstream NF-κB and glucocorticoid receptor signaling cascades remained intact. We further demonstrate that p53 loss severely impaired glucocorticoid rescue of death in a mouse model of LPS shock. Our findings unveil a new role for p53 in the repression of NF-κB by glucocorticoids and suggest important implications for treatment of the proinflammatory microenvironments found in tumors with aberrant p53 activity.
Collapse
|
32
|
Budni J, Romero A, Molz S, Martín-de-Saavedra M, Egea J, Del Barrio L, Tasca C, Rodrigues A, López M. Neurotoxicity induced by dexamethasone in the human neuroblastoma SH-SY5Y cell line can be prevented by folic acid. Neuroscience 2011; 190:346-53. [DOI: 10.1016/j.neuroscience.2011.05.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 05/19/2011] [Accepted: 05/22/2011] [Indexed: 01/21/2023]
|
33
|
Glucocorticoid regulation of astrocytic fate and function. PLoS One 2011; 6:e22419. [PMID: 21811605 PMCID: PMC3141054 DOI: 10.1371/journal.pone.0022419] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/22/2011] [Indexed: 12/26/2022] Open
Abstract
Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC) secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS) and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus.
Collapse
|
34
|
Xi G, Zhang X, Zhang L, Sui Y, Hui J, Liu S, Wang Y, Li L, Zhang Z. Fluoxetine attenuates the inhibitory effect of glucocorticoid hormones on neurogenesis in vitro via a two-pore domain potassium channel, TREK-1. Psychopharmacology (Berl) 2011; 214:747-59. [PMID: 21069514 DOI: 10.1007/s00213-010-2077-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/27/2010] [Indexed: 01/17/2023]
Abstract
RATIONALE Sustained stress and elevated glucocorticoid reduces neurogenesis, whereas chronic treatment with antidepressants increases neurogenesis and blocks the effects of stress. Recently, TREK-1, a two-pore domain (K(2)p) potassium channel, has been shown to be involved in the mechanisms of major depression. OBJECTIVES This study aimed to investigate whether TREK-1 is involved in the alteration of neurogenesis according to glucocorticoids and antidepressants. RESULTS The present study addressed the expression of TREK-1 in neural stem cells (NSCs) and found TREK-1 was only associated with NSC proliferation. Bupivacaine and curcumin, two strong TREK-1 channel inhibitors, significantly increased embryonic NSC viability and proliferation while transfection of hTREK-1 decreased cell proliferation in embryonic NSCs. Dexamethasone, a glucocorticoid hormone receptor agonist, upregulated both protein and mRNA levels of TREK-1 leading to decreased NSC proliferation which could be reversed by bupivacaine. Fluoxetine, a serotonin reuptake inhibitor antidepressant that has been previously found to inhibit TREK-1 channels, robustly, could attenuate the upregulation of TREK-1 expression and the inhibition of NSC proliferation induced by dexamethasone. CONCLUSIONS Taken together, these data suggest that TREK-1 is associated with NSC proliferation and probably is a modulator of the effect that fluoxetine attenuates the inhibitory neurogenesis induced by glucocorticoid hormones.
Collapse
Affiliation(s)
- Guangjun Xi
- The Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yu S, Patchev AV, Wu Y, Lu J, Holsboer F, Zhang JZ, Sousa N, Almeida OFX. Depletion of the neural precursor cell pool by glucocorticoids. Ann Neurol 2010; 67:21-30. [DOI: 10.1002/ana.21812] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Rogalska J. Mineralocorticoid and glucocorticoid receptors in hippocampus: their impact on neurons survival and behavioral impairment after neonatal brain injury. VITAMINS AND HORMONES 2010; 82:391-419. [PMID: 20472149 DOI: 10.1016/s0083-6729(10)82020-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Glucocorticoids (GC) exert multiple effects within the central nervous system via mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) activation. MR expression is associated with a neuroprotective phenotype, whereas GR activation is implicated in the induction of an endangered neural phenotype and the opposite actions are most evident in hippocampus, where these receptors are predominantly present. Hippocampus has an overall inhibitory influence on the activity of the hypothalamic-pituitary-adrenal (HPA) axis and it has been suggested that efficient learning and adequate stress response depend on the appropriate functioning of the axis brought by coordinated activation of MR and GR in this region. There is a growing body of evidence that perinatal asphyxia causes irreversible damage to the brain leading to neurons loss in regions vulnerable to oxygen shortage especially in hippocampus. In the present review, some aspects of recently acquired insight in the role of GC receptors in promoting neuronal death and survival after hippocampal injury are discussed. Since the unbalance of MR and GR in hippocampus creates a condition of disturbed neuroendocrine regulation their potential impact on behavioral impairment will also be reviewed.
Collapse
Affiliation(s)
- Justyna Rogalska
- Department of Animal Physiology, Institute of General and Molecular Biology, N. Copernicus University, Torun, Poland
| |
Collapse
|
37
|
Scrable H, Burns-Cusato M, Medrano S. Anxiety and the aging brain: stressed out over p53? Biochim Biophys Acta Gen Subj 2009; 1790:1587-91. [PMID: 19800395 DOI: 10.1016/j.bbagen.2009.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 08/18/2009] [Accepted: 09/22/2009] [Indexed: 11/25/2022]
Abstract
We propose a model in which cell loss in the aging brain is seen as a root cause of behavioral changes that compromise quality of life, including the onset of generalized anxiety disorder, in elderly individuals. According to this model, as stem cells in neurogenic regions of the adult brain lose regenerative capacity, worn-out, dead, or damaged neurons fail to be replaced, leaving gaps in function. As most replacement involves inhibitory interneurons, either directly or indirectly, the net result is the acquisition over time of a hyper-excitable state. The stress axis is subserved by all three neurogenic regions in the adult brain, making it particularly susceptible to these age-dependent changes. We outline a molecular mechanism by which hyper-excitation of the stress axis in turn activates the tumor suppressor p53. This reinforces the loss of stem cell proliferative capacity and interferes with the feedback mechanism by which the glucocorticoid receptor turns off neuroendocrine pathways and resets the axis.
Collapse
Affiliation(s)
- Heidi Scrable
- Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
38
|
Lu J. The anti-proliferation mechanism of glucocorticoid mediated by glucocorticoid receptor-regulating gene expression. ACTA ACUST UNITED AC 2009; 16:267-72. [PMID: 19278840 DOI: 10.1016/j.pathophys.2009.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Glucocorticoid (GC) hormones exert an antiproliferative effect on various cells. The effect is mainly mediated by glucocorticoid receptor (GR) which acts as a transcription factor. Ligand-bound GR translocates from the cytoplasm into the nucleus to modulate gene expression in a variety of ways. Although the framework of transcriptional regulation by the GC/GR has been described, the molecular mechanism of antiproliferative effect of GC is still largely unclear. In this article, we reviewed GC-induced changes in gene expression that are involved in GC-antiproliferative effect, and mainly focused on our recently identified glucocorticoid-responsive genes, TGF-beta receptor type II (TbetaRII) and small GTP binding protein RhoB. We found that expressions of TbetaRII and RhoB were up-regulated by ligand-bound GR at mRNA and protein levels. Blocking the effect of TbetaRII by TbetaRII neutralizing antibody or reduction of RhoB mRNA expression by RNAi diminished dexamethasone-inhibitory effect on cell proliferation, thus confirming that these genes are involved in GC anti-proliferation effect. Collectively, GC up-regulating the expressions of RhoB and TbetaRII play an important role in GC anti-proliferation effect.
Collapse
Affiliation(s)
- Jian Lu
- Department of Pathophysiology, the Second Military Medical University, Shanghai, 200433, PR China
| |
Collapse
|
39
|
Katz A, Mirzatoni A, Zhen Y, Schlinger BA. Sex differences in cell proliferation and glucocorticoid responsiveness in the zebra finch brain. Eur J Neurosci 2008; 28:99-106. [PMID: 18662338 DOI: 10.1111/j.1460-9568.2008.06303.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neural proliferation is a conserved property of the adult vertebrate brain. In mammals, stress reduces hippocampal neuronal proliferation and the effect is stronger in males than in females. We tested the effects of glucocorticoids on ventricular zone cell proliferation in adult zebra finches where neurons are produced that migrate to and incorporate within the neural circuits controlling song learning and performance. Adult male zebra finches sing and have an enlarged song circuitry; females do not sing and the song circuit is poorly developed. Freshly prepared slices from adult males and females containing the lateral ventricles were incubated with the mitotic marker BrdU with or without steroid treatments. BrdU-labeled cells were revealed immunocytochemically and all labeled cells within the ventricular zone were counted. We identified significantly higher rates of proliferation along the ventricular zone of males than in females. Moreover, acute administration of corticosterone significantly reduced proliferation in males with no effects in females. This effect in males was replicated by RU-486, which appears to act as an agonist of the glucocorticoid receptor in the songbird brain. The corticosterone effect was reversed by Thiram, which disrupts corticosterone action on the glucocorticoid receptor. Sex differences in proliferation and responses to stress hormones may contribute to the sexually dimorphic and seasonal growth of the neural song system of songbirds.
Collapse
Affiliation(s)
- Amnon Katz
- Department of Physiological Science and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
40
|
Mandyam CD, Crawford EF, Eisch AJ, Rivier CL, Richardson HN. Stress experienced in utero reduces sexual dichotomies in neurogenesis, microenvironment, and cell death in the adult rat hippocampus. Dev Neurobiol 2008; 68:575-89. [PMID: 18264994 DOI: 10.1002/dneu.20600] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hippocampal function and plasticity differ with gender, but the regulatory mechanisms underlying sex differences remain elusive and may be established early in life. The present study sought to elucidate sex differences in hippocampal plasticity under normal developmental conditions and in response to repetitive, predictable versus varied, unpredictable prenatal stress (PS). Adult male and diestrous female offspring of pregnant rats exposed to no stress (control), repetitive stress (PS-restraint), or a randomized sequence of varied stressors (PS-random) during the last week of pregnancy were examined for hippocampal proliferation, neurogenesis, cell death, and local microenvironment using endogenous markers. Regional volume was also estimated by stereology. Control animals had comparable proliferation and regional volume regardless of sex, but females had lower neurogenesis compared to males. Increased cell death and differential hippocampal precursor kinetics both appear to contribute to reduced neurogenesis in females. Reduced local interleukin-1beta (IL-1beta) immunoreactivity (IR) in females argues for a mechanistic role for the anti-apoptotic cytokine in driving sex differences in cell death. Prenatal stress significantly impacted the hippocampus, with both stress paradigms causing robust decreases in actively proliferating cells in males and females. Several other hippocampal measures were feminized in males such as precursor kinetics, IL-1beta-IR density, and cell death, reducing or abolishing some sex differences. The findings expand our understanding of the mechanisms underlying sex differences and highlight the critical role early stress can play on the balance between proliferation, neurogenesis, cell death, and hippocampal microenvironment in adulthood.
Collapse
Affiliation(s)
- Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA.
| | | | | | | | | |
Collapse
|
41
|
Quiros I, Mayo JC, Garcia-Suarez O, Hevia D, Martin V, Rodríguez C, Sainz RM. Melatonin prevents glucocorticoid inhibition of cell proliferation and toxicity in hippocampal cells by reducing glucocorticoid receptor nuclear translocation. J Steroid Biochem Mol Biol 2008; 110:116-24. [PMID: 18395440 DOI: 10.1016/j.jsbmb.2008.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/17/2007] [Accepted: 02/22/2008] [Indexed: 11/19/2022]
Abstract
Glucocorticoids are the main product of the adrenal cortex and participate in multiple cell functions as immunosupressors and modulators of neural function. Within the brain, glucocorticoid activity is mediated by high-affinity mineralocorticoid and low-affinity glucocorticoid receptors. Among brain cells, hippocampal cells are rich in glucocorticoid receptors where they regulate excitability and morphology. Also, elevated glucocorticoid levels suppress hippocampal neurogenesis in adults. The pineal neuroindole, melatonin, reduces the affinity of glucocorticoid receptors in rat brain and prevents glucocorticoid-induced apoptosis. Here, the ability of melatonin to prevent glucocorticoid-induced cell death in hippocampal HT22 cells was investigated in the presence of neurotoxins. Results showed that glucocorticoids reduce cellular growth and also enhance sensitivity to neurotoxins. We found a G(1) cell cycle arrest mediated by an increase of cyclin/cyclin-dependent kinase inhibitor p21(WAF1/CIP1) protein after dexamethasone treatment and incremental change in amyloid beta protein and glutamate toxicity. Melatonin prevents glucocorticoids inhibition of cell proliferation and reduces the toxicity caused by glucocorticoids when cells were treated with dexamethasone in combination with neurotoxins. Although, melatonin does not reduce glucocorticoid receptor mRNA or protein levels, it decreases receptor translocation to nuclei in these cells.
Collapse
Affiliation(s)
- Isabel Quiros
- Departamento de Morfología y Biología Celular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Facultad de Medicina, Julian Claveria 6, 330006 Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Sousa N, Cerqueira JJ, Almeida OFX. Corticosteroid receptors and neuroplasticity. ACTA ACUST UNITED AC 2008; 57:561-70. [PMID: 17692926 DOI: 10.1016/j.brainresrev.2007.06.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 11/19/2022]
Abstract
The balance in actions mediated by mineralocorticoid (MR) and glucocorticoid (GR) receptors in certain regions of the brain, predominantly in the limbic system, appears critical for neuronal activity, stress responsiveness, and behavioral programming and adaptation. Alterations in the MR/GR balance appear to make nervous tissue vulnerable to damage; such damage can have adverse effects on the regulation of the stress response and may increase the risk for psychopathology. Besides the hippocampal formation, other subpopulations of neurons in extra-hippocampal brain areas have been also shown recently to be sensitive to changes in the corticosteroid milieu. From a critical analysis of the available data, the picture that emerges is that the balance (or imbalance) between MR/GR activation influences not only cell birth and death, but also other forms of neuroplasticity. MR occupation appears to promote pro-survival actions, while exclusive GR activation favors neurodegeneration. Interestingly, the sustained co-activation of both receptors, for example in chronic stress conditions, usually results in less drastic effects, restricted to dendritic atrophy and impaired synaptic plasticity. As our knowledge of the plastic changes underpinning the wide spectrum of behavior effects triggered by corticosteroids/stress growths, researchers should be able to better define new targets for therapeutic intervention in stress-related disorders.
Collapse
Affiliation(s)
- Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
| | | | | |
Collapse
|
43
|
Abstract
Stress, acting through glucocorticoids (GC), has profound effects on brain physiology and pathology and is causally implicated in depressive illness. Here, we consider the information derived from genetic models generated to probe the role of the hypothalamo-pituitary-adrenal axis in depression. This essay also briefly reviews the status of knowledge regarding GC actions on neuronal birth, survival and death from the perspective of the importance of these phenomena in depression.
Collapse
Affiliation(s)
- Shuang Yu
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | | | | |
Collapse
|
44
|
Leandro CG, Castro RMD, Nascimento E, Pithon-Curi TC, Curi R. Mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico. REV BRAS MED ESPORTE 2007. [DOI: 10.1590/s1517-86922007000500012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O treinamento físico, de intensidade moderada, melhora os sistemas de defesa, enquanto que o treinamento intenso causa imunossupressão. Os mecanismos subjacentes estão associados à comunicação entre os sistemas nervoso, endócrino e imunológico, sugerindo vias autonômicas e modulação da resposta imune. Células do sistema imune, quando expostas a pequenas cargas de estresse, desenvolvem mecanismo de tolerância. Em muitos tecidos tem-se demonstrado que a resposta a situações agressivas parece ser atenuada pelo treinamento físico aplicado previamente, isto é, o treinamento induz tolerância para situações agressivas/estressantes. Nesta revisão são relatados estudos sugerindo os mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico.
Collapse
|
45
|
Yao YY, Liu DM, Xu DF, Li WP. Memory and learning impairment induced by dexamethasone in senescent but not young mice. Eur J Pharmacol 2007; 574:20-8. [PMID: 17884039 DOI: 10.1016/j.ejphar.2007.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 07/04/2007] [Accepted: 07/04/2007] [Indexed: 11/30/2022]
Abstract
In this study, the memory and learning impairment induced by dexamethasone in young mice and senescent mice were evaluated by step-down inhibitory avoidance task and passive avoidance test. Colorimetric MTT(tetrazole 3-(4,5-dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide) assay and TUNEL staining were used to investigate the influence of dexamethasone on hippocampal neuronal cell death with amyloid beta-protein. It was determined the effect of dexamethasone on intracellular calcium ([Ca(2+)](i)) with amyloid beta-protein 25-35 by fluorescence imaging with a confocal laser microscope using fluo-3 acetoxymethylester (AM) as a fluorescent dye. The effect of dexamethasone on amyloid beta-protein 25-35-induced nuclear factor kappaB (NF-kappaB) was analyzed by western blot. The results showed that twenty one days dexamethasone exposure resulted in an impairment of memory and learning in senescent but not young mice. Pretreatment of isolated hippocampal neurons with dexamethasone increased the vulnerability of the hippocampal neurons to amyloid beta-protein 25-35, enhanced [Ca(2+)](i) and down-regulated the increased level of nuclear NF-kappaB p65 proteins induced by amyloid beta-protein 25-35. These results demonstrated that glucocorticoids could potentiate the neurotoxic action of amyloid beta-protein by further increasing the level of [Ca(2+)](i) and down-regulating the level of nuclear NF-kappaB protein. Since amyloid beta-protein increases in the brain with aging, glucocorticoids potentiation of the neurotoxic action of amyloid beta-protein maybe one of the mechanisms responsible for glucocorticoids-induced memory and learning impairment in senescent but not young mice, which maybe relevance to the etiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Yu-You Yao
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Amaral JD, Solá S, Steer CJ, Rodrigues CP. Function of nuclear steroid receptors in apoptosis: role of ursodeoxycholic acid. Expert Rev Endocrinol Metab 2007; 2:487-501. [PMID: 30290423 DOI: 10.1586/17446651.2.4.487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nuclear steroid receptors such as the glucocorticoid and the mineralocorticoid receptors modulate apoptosis in different cell types through transactivation-dependent and -independent mechanisms. They are involved in both the induction and prevention of apoptosis depending on cell type. However, it is unclear how nuclear steroid receptors can affect expression of the same gene in opposing ways for different cells. In addition to their function as modulators of gene expression, nuclear steroid receptors often act as nuclear transporters of other regulatory molecules, thus indirectly regulating several apoptosis-related genes. Curiously, nuclear steroid receptors are thought to cooperate with the antiapoptotic endogenous bile acid, ursodeoxycholic acid, to prevent programmed cell death. The next decade will almost certainly unveil the remarkable role of nuclear steroid receptors in modulating the life and death struggle of cells and organ systems in human development and function.
Collapse
Affiliation(s)
- Joana D Amaral
- a Research Institute for Medicines & Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Susana Solá
- b Research Institute for Medicines & Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Clifford J Steer
- c Departments of Medicine, & Genetics, Cell Biology, & Development, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Cecília P Rodrigues
- d Research Institute for Medicines & Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
47
|
Abstract
Initial studies on neural stem cell biology were performed mainly with embryonic stem cells, but exciting discoveries and advances in knowledge about tissue-specific stem cells have emerged in the last few years. This review focuses on stem and/or progenitor cells in the brain that drive adult neurogenesis in mammals. Neuronal precursor cells are found in two regions of the adult brain: the subventricular zone and the hippocampus. Adult neurogenesis in the subventricular zone has implications for behavior and olfactory function and, in the hippocampus, is involved in mood, learning and memory. Several neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease) are increasing in frequency as the population is aging. Understanding the hormonal aspects of how adult neurogenesis is regulated could lead to advances in understanding, managing and eventually, treating neurodegenerative disorders. In this review, we summarize what is currently known about the influence of hormones on adult neurogenesis. Many hormones that act through nuclear receptors are implicated in regulating neural progenitor cell biology. Given that nuclear receptors are well defined, drugable targets, further research on their mechanisms of action in adult neurogenesis are likely to engender new replacement, repair and therapeutic approaches.
Collapse
Affiliation(s)
- Samantha J Richardson
- a Muséum National d'Histoire Naturelle, UMR CNRS 5166, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, 7 rue Cuvier, 75231 Paris Cedex 05, France.
| | - Osborne Fx Almeida
- b Max Planck Institute of Psychiatry, Neuroadaptations Group, Kraepelinstrasse 2-10, D80804 Munich, Germany.
| | - Barbara A Demeneix
- c Muséum National d'Histoire Naturelle, UMR CNRS 5166, Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, 7 rue Cuvier, 75231 Paris Cedex 05, France.
| |
Collapse
|
48
|
Sandau US, Handa RJ. Glucocorticoids exacerbate hypoxia-induced expression of the pro-apoptotic gene Bnip3 in the developing cortex. Neuroscience 2006; 144:482-94. [PMID: 17110051 PMCID: PMC1832146 DOI: 10.1016/j.neuroscience.2006.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/28/2006] [Accepted: 10/07/2006] [Indexed: 12/17/2022]
Abstract
Neonatal administration of the synthetic glucocorticoid, dexamethasone (DEX) retards brain growth, alters adult behaviors and induces cell death in the rat brain, thereby implicating glucocorticoids as developmentally neuroendangering compounds. Glucocorticoids also increase expression of pro-apoptotic Bcl-2 family members and exacerbate expression of hypoxic responsive genes. Bnip3 is a pro-apoptotic Bcl-2 family member that is upregulated in response to hypoxia. In these studies, we investigated the interactions of glucocorticoid receptor and hypoxia in the regulation of Bnip3 mRNA in cortical neurons. Using quantitative real time reverse transcription-polymerase chain reaction, we found that DEX treatment of postnatal days 4-6 rat pups caused a significant increase in Bnip3 mRNA expression compared with vehicle controls. A significant increase in Bnip3 mRNA was also measured in primary cortical neurons 72 h after treatment with RU28362, a glucocorticoid receptor selective agonist. In primary cortical neurons, hypoxia increased Bnip3 mRNA expression and this was exacerbated with RU28362 treatment. To elucidate the mechanism of glucocorticoid- and hypoxia-mediated regulation of Bnip3 transcription, a Bnip3 promoter-luciferase reporter construct was utilized in primary cortical neurons. Upregulation of the Bnip3 promoter was mediated by a single glucocorticoid response element and a hypoxic response element. Bnip3 overexpression in primary cortical neurons significantly increased cell death, which is dependent on the Bnip3 transmembrane domain. However, despite the increased expression of Bnip3 following glucocorticoid and hypoxia treatment, corresponding decreases in cell survival were minimal. These studies identify a novel pathway in the developing cortex through which glucocorticoids may enhance a metabolic insult, such as hypoxia.
Collapse
Affiliation(s)
- U S Sandau
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1617, USA
| | | |
Collapse
|
49
|
Solá S, Amaral JD, Borralho PM, Ramalho RM, Castro RE, Aranha MM, Steer CJ, Rodrigues CMP. Functional Modulation of Nuclear Steroid Receptors by Tauroursodeoxycholic Acid Reduces Amyloid β-Peptide-Induced Apoptosis. Mol Endocrinol 2006; 20:2292-303. [PMID: 16728529 DOI: 10.1210/me.2006-0063] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tauroursodeoxycholic acid (TUDCA) prevents amyloid beta-peptide (Abeta)-induced neuronal apoptosis, by modulating both classical mitochondrial pathways and specific upstream targets. In addition, activation of nuclear steroid receptors (NSRs), such as the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) differentially regulates apoptosis in the brain. In this study we investigated whether TUDCA, a cholesterol-derived endogenous molecule, requires NSRs for inhibiting Abeta-induced apoptosis in primary neurons. Our results confirmed that TUDCA significantly reduced Abeta-induced apoptosis; in addition, the fluorescently labeled bile acid molecule was detected diffusely in both cytoplasm and nucleus of rat cortical neurons. Interestingly, experiments using small interfering RNAs (siRNAs) revealed that, in contrast to GR siRNA, MR siRNA abolished the antiapoptotic effect of TUDCA. Abeta incubation reduced MR nuclear translocation while increasing nuclear GR levels. Notably, pretreatment with TUDCA markedly altered Abeta-induced changes in NSRs, including MR dissociation from its cytosolic chaperone, heat shock protein 90, and subsequent translocation to the nucleus. Furthermore, when a carboxy terminus-deleted form of MR was used, nuclear trafficking of both MR and the bile acid was abrogated, suggesting that they translocate to the nucleus as a steroid-receptor complex. Transfection experiments with wild-type or mutant MR confirmed that this interaction was required for TUDCA protection against Abeta-induced apoptosis. Finally, in cotransfection experiments with NSR response element reporter and overexpression constructs, pretreatment with TUDCA significantly modulated Abeta-induced changes in MR and GR transactivation. In conclusion, these results provide novel insights into the specific cellular mechanism of TUDCA antiapoptotic function against Abeta-induced apoptosis and suggest targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Susana Solá
- Centro de Patogénese Molecular, Faculty of Pharmacy, University of Lisbon, Lisbon 1600-083, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Osman W, Laine S, Zilliacus J. Functional interaction between the glucocorticoid receptor and GANP/MCM3AP. Biochem Biophys Res Commun 2006; 348:1239-44. [PMID: 16914116 DOI: 10.1016/j.bbrc.2006.07.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/18/2006] [Indexed: 11/20/2022]
Abstract
Glucocorticoids are widely used to treat inflammatory diseases but have a number of side effects that partly are connected to inhibition of cell proliferation. Glucocorticoids mediated their action by binding to the glucocorticoid receptor. In the present study, we have identified by two-hybrid screens the germinal center-associated protein (GANP) and MCM3-associated protein (MCM3AP), a splicing variant of GANP, as glucocorticoid receptor interacting proteins. GANP and MCM3AP can bind to the MCM3 protein involved in initiation of DNA replication. Glutathione-S-transferase-pull-down and co-immunoprecipitation assays showed that the C-terminal domain of GANP, encompassing MCM3AP, interacts with the ligand-binding domain of the glucocorticoid receptor. Characterization of the intracellular localization of GANP revealed that GANP is shuttling between the nucleus and the cytoplasm. Furthermore, we show that glucocorticoids are unable to inhibit DNA replication in HeLa cells overexpressing MCM3AP suggesting a role for both glucocorticoid receptor and GANP/MCM3AP in regulating cell proliferation.
Collapse
Affiliation(s)
- Waffa Osman
- Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 86 Huddinge, Sweden
| | | | | |
Collapse
|