1
|
Dubchak E, Obasanmi G, Zeglinski MR, Granville DJ, Yeung SN, Matsubara JA. Potential role of extracellular granzyme B in wet age-related macular degeneration and fuchs endothelial corneal dystrophy. Front Pharmacol 2022; 13:980742. [PMID: 36204224 PMCID: PMC9531149 DOI: 10.3389/fphar.2022.980742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.
Collapse
Affiliation(s)
- Eden Dubchak
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Matthew R. Zeglinski
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - David J. Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
- *Correspondence: Joanne A. Matsubara,
| |
Collapse
|
2
|
Buratini J, Dellaqua TT, Dal Canto M, La Marca A, Carone D, Mignini Renzini M, Webb R. The putative roles of FSH and AMH in the regulation of oocyte developmental competence: from fertility prognosis to mechanisms underlying age-related subfertility. Hum Reprod Update 2021; 28:232-254. [PMID: 34969065 DOI: 10.1093/humupd/dmab044] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fertility loss during female ageing is associated with increasing basal FSH and decreasing anti-Müllerian hormone (AMH) concentrations, together with compromised oocyte quality, presumably due to increased oxidative stress (OS) and DNA damage, as well as reduced metabolic and meiotic competences. Basal FSH and AMH circulatory concentrations have been broadly utilized as IVF success predictors, regardless of fluctuations in prognostic accuracy; basal FSH and AMH perform better in pre-advanced maternal age (AMA: >35 years) and AMA patients, respectively. The relationships between FSH and AMH intrafollicular levels and IVF outcomes suggest, nevertheless, that both hormones regulate oocyte competence, supporting the hypothesis that changes in FSH/AMH levels cause, at least in part, oocyte quality degradation during ageing. To understand the reasons behind the fluctuations in FSH and AMH prognostic accuracies and to clarify their participation in mechanisms determining oocyte competence and age-related subfertility, a deeper knowledge of the regulation of FSH and AMH intrafollicular signalling during the female reproductive lifespan, and of their effects on the cumulus-oocyte complex, is required. OBJECTIVE AND RATIONALE An extensive body of information on the regulation of FSH and AMH intrafollicular availability and signalling, as well as on the control of folliculogenesis and oocyte metabolism, has been accumulated. However, these datasets have been explored within the relatively narrow boundaries of their specific subjects. Given the aforementioned gaps in knowledge and their clinical relevance, herein we integrate clinical and basic data, within a wide biological perspective, aiming to shed light on (i) the reasons for the variability in the accuracy of serum FSH and AMH as fertility markers, and on (ii) the potential roles of these hormones in mechanisms regulating oocyte quality, particularly those associated with ageing. SEARCH METHODS The PubMed database encompassing the period between 1960 and 2021 was searched. Principal search terms were FSH, FSH receptor, AMH, oocyte, maternal age, cumulus, transzonal projections (TZPs), actin, OS, redox, reactive oxygen species, mitochondria, DNA damage, DNA repair, aneuploidy, spindle, meiosis, gene expression, transcription, translation, oocyte secreted factors (OSFs), cAMP, cyclic guanosine monophosphate, natriuretic peptide C, growth differentiation factor 9, bone morphogenetic protein 15 and fibroblast growth factor. OUTCOMES Our analysis suggests that variations in the accuracy of fertility prognosis reflect a modest association between circulatory AMH levels and oocyte quality as well as increasing basal FSH inter-cycle variability with age. In addition, the basic and clinical data articulated herein support the hypothesis that increased intrafollicular FSH levels, as maternal age advances, may override the physiological protective influences of AMH and OSFs against excessive FSH signalling in cumulus cells. This would result in the disruption of oocyte homeostasis via reduced TZP-mediated transfer of cumulus-derived molecules essential for meiotic competence, gene expression, redox activity and DNA repair. WIDER IMPLICATIONS In-depth data analysis, encompassing a wide biological perspective has revealed potential causative mechanisms of age-related subfertility triggered by alterations in FSH/AMH signalling during the female reproductive life. Insights from new mechanistic models arising from this analysis should contribute to advancing our comprehension of oocyte biology in humans and serve as a valuable reference for novel AMA subfertility treatments aimed at improving oocyte quality through the modulation of AMH/FSH action.
Collapse
Affiliation(s)
- Jose Buratini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy.,Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Thaisy Tino Dellaqua
- Department of Structural and Functional Biology, Sao Paulo State University, Botucatu, Brazil
| | - Mariabeatrice Dal Canto
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Antonio La Marca
- Clinica Eugin Modena, Modena, Italy.,Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Mario Mignini Renzini
- Biogenesi Reproductive Medicine Centre-Eugin Group, Istituti Clinici Zucchi, Monza, Italy.,Clinica Eugin Modena, Modena, Italy
| | - Robert Webb
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Nottinghamshire, UK
| |
Collapse
|
3
|
Tao J, Zhang L, Zhang X, Chen Y, Chen Q, Shen M, Liu H, Deng S. Effect of Exogenous Melatonin on the Development of Mice Ovarian Follicles and Follicular Angiogenesis. Int J Mol Sci 2021; 22:ijms222011262. [PMID: 34681919 PMCID: PMC8540648 DOI: 10.3390/ijms222011262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/21/2022] Open
Abstract
In mammalian, the periodic growth and development of ovarian follicles constitutes the physiological basis of female estrus and ovulation. Concomitantly, follicular angiogenesis exerts a pivotal role in the growth of ovarian follicles. Melatonin (N-acetyl-5-methoxytryptamine, Mel), exists in follicle fluid, was suggested to affect the development of follicles and angiogenesis. This research was conducted to investigate the effects and mechanisms of Mel on the development of ovarian follicles and its angiogenesis. In total, 40 ICR mice at age of 3 weeks were allocated into four groups at liberty: control, Mel, FSH and FSH + Mel for a 12-day trial. Ovaries were collected at 8:00 a.m. on Day 13 for detecting the development of ovarian follicles and angiogenesis. Results indicated that Mel promoted the development of ovarian follicles of 50–250 μm (secondary follicles) and periphery angiogenesis, while FSH remarkably increased the number of antral follicles and periphery angiogenesis. Mechanically, Mel and FSH may regulate the expression of VEGF and antioxidant enzymes in different follicular stages. In conclusion, Mel primarily acted on the secondary follicles, while FSH mainly promoted the development of antral follicles. They both conduced to related periphery angiogenesis by increasing the expression of VEGF. These findings may provide new targets for the regulating of follicular development.
Collapse
Affiliation(s)
- Jingli Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Liangliang Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Xuan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Yuanyuan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Qianqian Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (J.T.); (L.Z.); (X.Z.); (Y.C.); (Q.C.); (M.S.)
- Correspondence: (H.L.); (S.D.); Tel.: +86-138-1398-3156 (H.L.); +86-188-0102-7688 (S.D.)
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
- Correspondence: (H.L.); (S.D.); Tel.: +86-138-1398-3156 (H.L.); +86-188-0102-7688 (S.D.)
| |
Collapse
|
4
|
Monge-Ochoa B, Montoro L, Gil-Arribas E, Montoya J, Ruiz-Pesini E, López-Pérez MJ, de Castro F, Díez-Sánchez C. Variants Ala307Ala and Ser680Ser of 307 and 680 FSHr polymorphisms negatively influence on assisted reproductive techniques outcome and determine high probability of non-pregnancy in Caucasian patients. J Assist Reprod Genet 2021; 38:2769-2779. [PMID: 34346002 PMCID: PMC8581085 DOI: 10.1007/s10815-021-02276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To determine the influence of different genotypes of Ala307Thr and Asn680Ser FSHr polymorphisms on controlled ovarian stimulation (COS) outcome and pregnancy. METHODS This study collected blood and physiological and clinical parameters of 517 Caucasian patients (Statistical power ≥ 80%) that underwent COS treatment. Genotypes of Ala307Thr and Asn680Ser polymorphisms were determined using PCR amplification followed by Bsu36I and BsrI digestion, respectively. RESULTS Ala307Ala and Ser680Ser genotypes associated to worse parameters of COS outcome (preovulatory follicles P = 0.05, in both), justifying their lower pregnancy rate than Non-Ala307Ala, P = 0.01 and Non-Ser680Ser, P = 0.004, respectively or together, (P = 0.003). Within the Non-Ala307Ala group, Thr307Thr genotype showed higher number of fertilized oocytes (P = 0.04) and embryos (P = 0.01) than Non-Thr307Thr, but no influence on pregnancy rate. Ala307Ala and Ser680Ser patients doubled probability of non-pregnancy than Non-Ala307Ala (odds ratio = 2.0) and Non-Ser680Ser (odds ratio = 2.11), respectively. Ala307Ala and Ser680Ser genotypes tend to appear together (P < 0.0001), which increases the probability of non-pregnancy. CONCLUSIONS Ala307Ala and Ser680Ser genotypes of 307 and 680 FSHr polymorphisms associate to worse COS outcome than its respective Non-Ala307Ala and Non-Ser680Ser. Within the Non-Ala307Ala genotypes, Thr307Thr, although shows higher Fertilized Oocytes and Embryos, do not influence on pregnancy rate. Ala307Ala and Ser680Ser genotypes double the probability of Non-Pregnancy than their respective Non-Ala307Ala and Non-Ser680Ser genotypes. Furthermore, the strong tendency of these genotypes to appear together worsens the probability of pregnancy in these patients.
Collapse
Affiliation(s)
- Belén Monge-Ochoa
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
| | - Luis Montoro
- Unidad de Reproducción Asistida, Hospital Universitario Príncipe de Asturias, Universidad Complutense de Madrid, Alcalá de Henares, Madrid, Spain
| | | | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red (CIBER) de Enfermedades Raras, Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
- Centro de Investigaciones Biomédicas en Red (CIBER) de Enfermedades Raras, Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain
| | - Manuel J López-Pérez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain
| | - Francisco de Castro
- Unidad de Reproducción Asistida, Hospital Universitario Príncipe de Asturias, Universidad Complutense de Madrid, Alcalá de Henares, Madrid, Spain
| | - Carmen Díez-Sánchez
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, Spain.
| |
Collapse
|
5
|
Recchia K, Jorge AS, Pessôa LVDF, Botigelli RC, Zugaib VC, de Souza AF, Martins DDS, Ambrósio CE, Bressan FF, Pieri NCG. Actions and Roles of FSH in Germinative Cells. Int J Mol Sci 2021; 22:10110. [PMID: 34576272 PMCID: PMC8470522 DOI: 10.3390/ijms221810110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic-pituitary-gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
| | - Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Ramon Cesar Botigelli
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Vanessa Cristiane Zugaib
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontary Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Daniele dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| |
Collapse
|
6
|
Dey A, Perveen H, Khandare AL, Banerjee A, Maiti S, Jana S, Chakraborty AK, Chattopadhyay S. Arsenic-induced uterine apoptotic damage is protected by ethyl acetate fraction of Camellia sinensis (green tea) via Bcl-2-BAX through NF-κB regulations in Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41095-41108. [PMID: 33774797 DOI: 10.1007/s11356-021-13457-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
The non-invasive treatment strategy is indispensable to overcome the side effects of conventional treatment with chelating agents against arsenic. Presence of catechins and flavonoids in Camellia sinensis have potential antioxidant properties and other beneficial effects. The aim of the study was to explore the curative potential role of Camellia sinensis against uterine damages produced by sodium arsenite in mature albino rats. A dose of 10 mg of Camellia sinensis ethyl acetate (CS-EA) fraction/100 gm body weight was provided to the sodium arsenite-treated rats (10 mg/Kg body weight). LC-MS analysis was used for the detection of active component in CS-EA fraction. Enzymatic antioxidants analysis carried out by reproducible native gel technique. Hormones and some pro and anti-inflammatory markers were detected by ELISA, PCR, and western blot techniques respectively. Immunostaining was performed for the detection of estradiol receptor alpha. LC-MS analysis of CS-EA fraction ensured the presence of active tea polyphenol and tea catechin of which highest peak of epigallocatechin-3 gallate (EGCG) was obtained in this study. Significant elevations of lipid peroxidation end products followed by the diminution of antioxidant enzymes activities were noted in arsenicated rats which were capably retrieved by the treatment of CS-EA fraction. Post-treatment with CS-EA fraction meaningfully improved gonadotrophins and estradiol signalling in association with a highly expressing estradiol receptor-α (ERα) in the ovary and uterus followed by the maintenance of normal utero-ovarian histoarchitecture in arsenic fed rats. CS-EA fractioned treated group overturned the sodium arsenite driven higher expression of pro-inflammatory cytokines and proapoptotic markers along with a low level of anti apoptotic Bcl-2 expression and comparatively lower NF-κB signalling in the uterus via regulating IKK β kinase mostly by EGCG of CS-EA fraction. However, ethyl acetate fraction of Camellia sinensis played a critical role in minimizing arsenic-mediated uterine hypo-function.
Collapse
Affiliation(s)
- Arindam Dey
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Arjun L Khandare
- Food Safety, ICMR National Institute of Nutrition, Hyderabad, India
| | - Amrita Banerjee
- Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, India
| | - Smarajit Maiti
- Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, India
| | - Suryashis Jana
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Asit Kumar Chakraborty
- Department of Biochemistry and Biotechnology, Oriental Institute of Science and Technology, Midnapore, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management and Clinical Nutrition and Dietetics Division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|
7
|
Karabulut S, Korkmaz O, Erdem Altun C, Keskin I. A Histopathological Evaluation of Ovarian Hyperstimulation Syndrome on Reproductive and Vital Organs and the Role of the VEGF-PKA Pathway in a Mouse Model. Cells Tissues Organs 2021; 210:218-238. [PMID: 34320509 DOI: 10.1159/000517424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/14/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is one of the most common and iatrogenic complications of in vitro fertilization therapy, which is an exaggerated response to excess hormones resulting in the development of a large number of maturing follicles. Although the complications of and reasons for the condition are well known, the overall histopathological effects on systemic organs and the extent of the damage have not been fully elucidated. Besides, the mechanism that underlies the situation is not very well known. The aim of the present work was to analyse the histopathological effects of OHSS on reproductive (uterus and ovary) and vital organs (liver and kidney) and the possible role of the VEGF-PKA pathway in triggering the condition. Balb/c mice were used to establish an OHSS model. The OHSS group were injected with overdose PMSG while the normal responder group were injected with an optimal dose. Histopathological evaluation was utilised in the liver, kidney, ovary, and uterus stained with hematoxylin and eosin, Masson's trichrome, and periodic acid-Schiff stain. The expression profiles of VEGF (vascular endothelial growth factor), PKA (protein kinase A), and p-PKA (an activated form of PKA) were detected with immunohistochemistry and Western blotting. OHSS was demonstrated to have a negative histopathological effect on all of the organs analysed. These effects were associated with an overall increase in the expression levels of VEGF, PKA, and p-PKA. OHSS has a serious histopathological negative effect on the systemic and reproductive organs and is proven to affect overall health, and thus should be considered a dangerous complication during ART techniques. The activation of the VEGF-PKA pathway, which is indicated by the expression levels of VEGF, PKA, and p-PKA, is demonstrated to accompany this complication, which should be further elucidated to understand the mechanisms underlying the condition.
Collapse
Affiliation(s)
- Seda Karabulut
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul, Turkey
| | - Oya Korkmaz
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul, Turkey
| | - Ceren Erdem Altun
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ilknur Keskin
- Department of Histology and Embryology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Health Science and Technologies Research Institute (SABITA), Istanbul, Turkey
| |
Collapse
|
8
|
Quantification of hormone membrane receptor FSHR, GPER and LHCGR transcripts in human primary granulosa lutein cells by real-time quantitative PCR and digital droplet PCR. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Celastrol Prevents Oxidative Stress Effects on FSHR, PAPP, and CYP19A1 Gene Expression in Cultured Human Granulosa-Lutein Cells. Int J Mol Sci 2021; 22:ijms22073596. [PMID: 33808393 PMCID: PMC8037896 DOI: 10.3390/ijms22073596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/31/2022] Open
Abstract
Regulation of oxidative stress (OS) is important to prevent damage to female reproductive physiology. While normal OS levels may have a regulatory role, high OS levels may negatively affect vital processes such as folliculogenesis or embryogenesis. The aim of this work was to study OS induced by glucose, a reactive oxygen species generator, or peroxynitrite, a reactive nitrogen species generator, in cultured human granulosa-lutein (hGL) cells from oocyte donors, analyzing expression of genes involved in oocyte maturation (FSHR, PAPP, and CYP19A1) and OS damage response (ALDH3A2). We also evaluated the effect of celastrol as an antioxidant. Our results showed that although both glucose and peroxynitrite produce OS increments in hGL cells, only peroxynitrite treatment increases ALDH3A2 and PAPP gene expression levels and decreases FSHR gene expression levels. Celastrol pre-treatment prevents this effect of peroxynitrite. Interestingly, when celastrol alone was added, we observed a reduction of the expression of all genes studied, which was independent of both OS inductors. In conclusion, regulation of OS imbalance by antioxidant substances such as celastrol may prevent negative effects of OS in female fertility. In addition to the antioxidant activity, celastrol may well have an independent role on regulation of gene expression in hGL cells.
Collapse
|
10
|
Casarini L, Lazzaretti C, Paradiso E, Limoncella S, Riccetti L, Sperduti S, Melli B, Marcozzi S, Anzivino C, Sayers NS, Czapinski J, Brigante G, Potì F, La Marca A, De Pascali F, Reiter E, Falbo A, Daolio J, Villani MT, Lispi M, Orlando G, Klinger FG, Fanelli F, Rivero-Müller A, Hanyaloglu AC, Simoni M. Membrane Estrogen Receptor (GPER) and Follicle-Stimulating Hormone Receptor (FSHR) Heteromeric Complexes Promote Human Ovarian Follicle Survival. iScience 2020; 23:101812. [PMID: 33299978 PMCID: PMC7702187 DOI: 10.1016/j.isci.2020.101812] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/25/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Classically, follicle-stimulating hormone receptor (FSHR)-driven cAMP-mediated signaling boosts human ovarian follicle growth and oocyte maturation. However, contradicting in vitro data suggest a different view on physiological significance of FSHR-mediated cAMP signaling. We found that the G-protein-coupled estrogen receptor (GPER) heteromerizes with FSHR, reprogramming cAMP/death signals into proliferative stimuli fundamental for sustaining oocyte survival. In human granulosa cells, survival signals are missing at high FSHR:GPER ratio, which negatively impacts follicle maturation and strongly correlates with preferential Gαs protein/cAMP-pathway coupling and FSH responsiveness of patients undergoing controlled ovarian stimulation. In contrast, FSHR/GPER heteromers triggered anti-apoptotic/proliferative FSH signaling delivered via the Gβγ dimer, whereas impairment of heteromer formation or GPER knockdown enhanced the FSH-dependent cell death and steroidogenesis. Therefore, our findings indicate how oocyte maturation depends on the capability of GPER to shape FSHR selective signals, indicating hormone receptor heteromers may be a marker of cell proliferation. G-protein-coupled estrogen receptor (GPER) interacts with FSH receptor (FSHR) FSHR/GPER heteromers reprogram FSH-induced death signals to proliferative stimuli Anti-apoptotic signaling of heteromers is via a GPER-Gαs inhibitory complex and Gβγ Heteromer formation impacts follicle maturation and FSH responses of IVF patients
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Limoncella
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Melli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Serena Marcozzi
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Anzivino
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy
| | - Niamh S Sayers
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Jakub Czapinski
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Francesco Potì
- Department of Medicine and Surgery, Unit of Neurosciences, University of Parma, Parma, Italy
| | - Antonio La Marca
- Mother-Infant Department, University of Modena and Reggio Emilia, Modena, Italy.,Clinica EUGIN, Modena, Italy
| | | | - Eric Reiter
- PRC, INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Angela Falbo
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Jessica Daolio
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Maria Teresa Villani
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN. Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Modena, Italy
| | - Monica Lispi
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy.,Global Medical Affair, Merck KGaA, Darmstadt, Germany
| | | | - Francesca G Klinger
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Ospedale Civile Sant'Agostino-Estense, Via P. Giardini 1355, 41126 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy.,PRC, INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
11
|
Li C, Liu Z, Li W, Zhang L, Zhou J, Sun M, Zhou J, Yao W, Zhang X, Wang H, Tao J, Shen M, Liu H. The FSH-HIF-1α-VEGF Pathway Is Critical for Ovulation and Oocyte Health but Not Necessary for Follicular Growth in Mice. Endocrinology 2020; 161:5788414. [PMID: 32141513 DOI: 10.1210/endocr/bqaa038] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/29/2020] [Indexed: 12/23/2022]
Abstract
Follicle-stimulating hormone (FSH)-induced growth of ovarian follicles is independent of follicular vascularization. Recent evidence has indicated that follicular vascularization is critical to ovarian follicle development and survival. FSH, a gonadotropin that induces follicular growth and development, also acts as the major survival factor for antral follicles. FSH has been reported to stimulate angiogenesis in the theca layers mediated in part by the vascular endothelial growth factor A (VEGFA) and the transcription factor hypoxia inducible factor 1α (HIF-1α). However, it remains largely undetermined whether FSH-dependent growth and survival of antral follicles relies on FSH-induced vascularization. Here, we first demonstrated that induction of angiogenesis through the FSH-HIF-1α-VEGFA axis is not required for FSH-stimulated follicular growth in mouse ovary. FSH increased the total number of blood vessels in mouse ovarian follicles, which was correlated with elevated expression of VEGFA and HIF-1α in granulosa cells. In contrast, blocking of follicular angiogenesis using inhibitors against the HIF-1α-VEGFA pathway repressed vasculature formation in follicles despite FSH administration. Interestingly, by measuring follicular size and ovarian weight, we found that the suppression of angiogenesis via HIF-1α-VEGFA pathway did not influence FSH-mediated follicular growth. However, inhibition of FSH-induced follicular vascularization by PX-478, a small-molecule inhibitor that suppresses HIF-1α activity, blocked ovulation and triggered atresia in large follicles. On the other hand, PX-478 injection reduced oocyte quality via impairing the meiotic apparatus, showing a prominently defective spindle assembly and actin dynamics. Collectively, our findings unveiled a vascularization-independent effect of FSH on follicular growth, whereas follicular survival, ovulation, and oocyte development relies on FSH-mediated angiogenesis in the follicles.
Collapse
Affiliation(s)
- Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weijian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Liangliang Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jilong Zhou
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Minghong Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xuan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honghui Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jingli Tao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Tu J, Cheung AHH, Chan CLK, Chan WY. The Role of microRNAs in Ovarian Granulosa Cells in Health and Disease. Front Endocrinol (Lausanne) 2019; 10:174. [PMID: 30949134 PMCID: PMC6437095 DOI: 10.3389/fendo.2019.00174] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/01/2019] [Indexed: 02/02/2023] Open
Abstract
The granulosa cell (GC) is a critical somatic component of the ovary. It is essential for follicle development by supporting the developing oocyte, proliferating and producing sex steroids and disparate growth factors. Knowledge of the GC's function in normal ovarian development and function, and reproductive disorders, such as polycystic ovary syndrome (PCOS) and premature ovarian failure (POF), is largely acquired through clinical studies and preclinical animal models. Recently, microRNAs have been recognized to play important regulatory roles in GC pathophysiology. Here, we examine the recent findings on the role of miRNAs in the GC, including four related signaling pathways (Transforming growth factor-β pathway, Follicle-stimulating hormones pathway, hormone-related miRNAs, Apoptosis-related pathways) and relevant diseases. Therefore, miRNAs appear to be important regulators of GC function in both physiological and pathological conditions. We suggest that targeting specific microRNAs is a potential therapeutic option for treating ovary-related diseases, such as PCOS, POF, and GCT.
Collapse
Affiliation(s)
- Jiajie Tu
- Institute of Clinical Pharmacology, Anhui Medical University, Anhui, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Albert Hoi-Hung Cheung
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | | | - Wai-Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- *Correspondence: Wai-Yee Chan
| |
Collapse
|
13
|
Abstract
The glycoprotein follicle-stimulating hormone (FSH) acts on gonadal target cells, hence regulating gametogenesis. The transduction of the hormone-induced signal is mediated by the FSH-specific G protein-coupled receptor (FSHR), of which the action relies on the interaction with a number of intracellular effectors. The stimulatory Gαs protein is a long-time known transducer of FSH signaling, mainly leading to intracellular cAMP increase and protein kinase A (PKA) activation, the latter acting as a master regulator of cell metabolism and sex steroid production. While in vivo data clearly demonstrate the relevance of PKA activation in mediating gametogenesis by triggering proliferative signals, some in vitro data suggest that pro-apoptotic pathways may be awakened as a "dark side" of cAMP/PKA-dependent steroidogenesis, in certain conditions. P38 mitogen-activated protein kinases (MAPK) are players of death signals in steroidogenic cells, involving downstream p53 and caspases. Although it could be hypothesized that pro-apoptotic signals, if relevant, may be required for regulating atresia of non-dominant ovarian follicles, they should be transient and counterbalanced by mitogenic signals upon FSHR interaction with opposing transducers, such as Gαi proteins and β-arrestins. These molecules modulate the steroidogenic pathway via extracellular-regulated kinases (ERK1/2), phosphatidylinositol-4,5-bisphosphate 3-kinases (PI3K)/protein kinase B (AKT), calcium signaling and other intracellular signaling effectors, resulting in a complex and dynamic signaling network characterizing sex- and stage-specific gamete maturation. Even if the FSH-mediated signaling network is not yet entirely deciphered, its full comprehension is of high physiological and clinical relevance due to the crucial role covered by the hormone in regulating human development and reproduction.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Livio Casarini
| | - Pascale Crépieux
- PRC, UMR INRA0085, CNRS 7247, Centre INRA Val de Loire, Nouzilly, France
| |
Collapse
|
14
|
Gram A, Redmer DA, Kowalewski MP, Dorsam ST, Valkov V, Warang P, Reyaz A, Bass CS, Kaminski SL, Grazul-Bilska AT. Angiopoietin expression in ovine corpora lutea during the luteal phase: Effects of nutrition, arginine and follicle stimulating hormone. Gen Comp Endocrinol 2018; 269:131-140. [PMID: 30195024 DOI: 10.1016/j.ygcen.2018.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate angiopoietin (ANGPT) 1 and 2, and tyrosine-protein kinase receptor 2 (TIE2) expression in the corpora lutea (CL) of FSH-treated, or non-treated sheep administered arginine (Arg) or vehicle (saline, Sal), and fed a control (C), excess (O) or restricted (U) diet. Ewes from each dietary group were treated with Arg or Sal (experiment 1), and with FSH (experiment 2). Luteal tissues were collected at the early-, mid- and/or late-luteal phases of the estrous cycle. Protein and mRNA expression was determined using immunohistochemistry followed by image analysis, and quantitative RT-PCR, respectively. The results demonstrated that ANGPT1 and TIE2 proteins were localized to luteal capillaries and endothelial cells of larger blood vessels, and ANGPT2 was localized to tunica media of larger blood vessels. TIE2 protein was also present in luteal cells. In experiment 1, ANGPT1 protein expression was greater in O than C during early- and mid-luteal phases, and was greatest during late-luteal phase, less at the mid- and least at the early-luteal phase; 2) TIE2 protein expression was greatest at the mid-, less at the early- and least at the late-luteal phase; 3) ANGPT1 and 2 mRNA expression was greater at the mid- and late- than the early-luteal phase, and TIE2 mRNA expression was greatest at the late-, less at the mid- and least at the early-luteal phase. The ANGPT1/2 ratio was less at the early- than mid- or late-luteal phases. In experiment 2, ANGPT1 protein expression was greater in O during the mid-luteal phase than in other groups, and was greater at the mid- than early-luteal phase. TIE2 protein expression was highest at the mid-, less at the early- and least during the late-luteal phase. ANGPT1 and 2, and TIE2 mRNA expression was higher at the mid- than the early-luteal phase. During mid-luteal phase, ANGPT1 mRNA expression was greater in C than O and U, ANGPT2 was greatest in C, less in O and least in U, and TIE2 mRNA expression was greater in C than O and U. The ANGPT1/2 ratio was higher in U than in any other group. Comparison of FSH vs. Sal treatment effects (experiment 2 vs. experiment 1) demonstrated that FSH affected ANGPT1 and/or -2, and TIE2 protein and mRNA expression depending on luteal phase and/or diet. Thus, expression of ANGPTs and TIE2 in the CL changes during the luteal lifespan, indicating their involvement in luteal vascular formation, stabilization and degradation. Moreover, this study has demonstrated that plane of nutrition and/or FSH treatment affect the ANGPT system, and may alter luteal vascularity and luteal function in sheep.
Collapse
Affiliation(s)
- Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Dale A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sheri T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Veselina Valkov
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Prajakta Warang
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Arshi Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Casie S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Samantha L Kaminski
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
15
|
Ulloa-Aguirre A, Reiter E, Crépieux P. FSH Receptor Signaling: Complexity of Interactions and Signal Diversity. Endocrinology 2018; 159:3020-3035. [PMID: 29982321 DOI: 10.1210/en.2018-00452] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
FSH is synthesized in the pituitary by gonadotrope cells. By binding to and interacting with its cognate receptor [FSH receptor (FSHR)] in the gonads, this gonadotropin plays a key role in the control of gonadal function and reproduction. Upon activation, the FSHR undergoes conformational changes leading to transduction of intracellular signals, including dissociation of G protein complexes into components and activation of several associated interacting partners, which concertedly regulate downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of several mechanisms employed by this receptor to transduce intracellular signals in response to the FSH stimulus. This complex network of signaling pathways allows for a fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its multiple components vary depending on the cell context, cell developmental stage, and concentration of associated receptors and corresponding ligands. Activation of these multiple signaling modules eventually converge to the hormone-integrated biological response, including survival, proliferation and differentiation of target cells, synthesis and secretion of paracrine/autocrine regulators, and, at the molecular level, functional selectivity and differential gene expression. In this mini-review, we discuss the complexity of FSHR-mediated intracellular signals activated in response to ligand stimulation. A better understanding of the signaling pathways involved in FSH action might potentially influence the development of new therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| | - Pascale Crépieux
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| |
Collapse
|
16
|
Ma Y, Xu P, Mi Y, Wang W, Pan X, Wu X, He Q, Liu H, Tang W, An H. Plasma MiRNA alterations between NSCLC patients harboring Del19 and L858R EGFR mutations. Oncotarget 2018; 7:54965-54972. [PMID: 27463019 PMCID: PMC5342394 DOI: 10.18632/oncotarget.10829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/10/2016] [Indexed: 01/06/2023] Open
Abstract
Based on recognition of driver mutations, treatment paradigm for non-small-cell lung cancer (NSCLC) patients has been shifted. However, recently exon 19 deletion mutation (del19) of epidermal growth factor receptor (EGFR) clearly shows better clinical benefit over single-point substitution mutation L858R in exon 21 (L858R). The aim of this study was to investigate the difference by analyzing the expression of plasma microRNAs (miRNAs) of NSCLC patients with EGFR mutation del19 or L858R. MiRNA microarray of plasma from patients' blood identified 79 mapped, network-eligible miRNAs (fold > 5), of which 76 were up regulated and 3 were down regulated. Genetic network was performed with Ingenuity Pathway Analysis (IPA). Among analysis, MYC, Argonaute2 (AGO2), Y-box binding protein 1 (YBX1), cyclin E1 (CCNE1) were involved in organismal abnormalities and cancer. Our findings provide information on the epigenetic signature of the two major sensitive mutations among NSCLC and add to the understanding of mechanisms underlying the different outcomes.
Collapse
Affiliation(s)
- Yihan Ma
- Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 361003, Fujian, China
| | - Peiqi Xu
- Reproduction Center, The Second Affiliated Hospital of Kunming Medical University 650101, Yunnan, China
| | - Yanjun Mi
- Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 361003, Fujian, China
| | - Wenyi Wang
- Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 361003, Fujian, China
| | - Xiaoyan Pan
- Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 361003, Fujian, China
| | - Xiaoting Wu
- Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 361003, Fujian, China
| | - Qi He
- Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 361003, Fujian, China
| | - Hongming Liu
- Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 361003, Fujian, China
| | - Weiwei Tang
- Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 361003, Fujian, China
| | - Hanxiang An
- Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, 361003, Fujian, China
| |
Collapse
|
17
|
Shen M, Jiang Y, Guan Z, Cao Y, Li L, Liu H, Sun SC. Protective mechanism of FSH against oxidative damage in mouse ovarian granulosa cells by repressing autophagy. Autophagy 2017; 13:1364-1385. [PMID: 28598230 DOI: 10.1080/15548627.2017.1327941] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress-induced granulosa cell (GCs) death represents a common reason for follicular atresia. Follicle-stimulating hormone (FSH) has been shown to prevent GCs from oxidative injury, although the underlying mechanism remains to be elucidated. Here we first report that the suppression of autophagic cell death via some novel signaling effectors is engaged in FSH-mediated GCs protection against oxidative damage. The decline in GCs viability caused by oxidant injury was remarkably reduced following FSH treatment, along with impaired macroautophagic/autophagic flux under conditions of oxidative stress both in vivo and in vitro. Blocking of autophagy displayed similar levels of suppression in oxidant-induced cell death compared with FSH treatment, but FSH did not further improve survival of GCs pretreated with autophagy inhibitors. Further investigations revealed that activation of the phosphoinositide 3-kinase (PI3K)-AKT-MTOR (mechanistic target of rapamycin [serine/threonine kinase]) signaling pathway was required for FSH-mediated GCs survival from oxidative stress-induced autophagy. Additionally, the FSH-PI3K-AKT axis also downregulated the autophagic response by targeting FOXO1, whereas constitutive activation of FOXO1 in GCs not only abolished the protection from FSH, but also emancipated the autophagic process, from the protein level of MAP1LC3B-II to autophagic gene expression. Furthermore, FSH inhibited the production of acetylated FOXO1 and its interaction with Atg proteins, followed by a decreased level of autophagic cell death upon oxidative stress. Taken together, our findings suggest a new mechanism involving FSH-FOXO1 signaling in defense against oxidative damage to GCs by restraining autophagy, which may be a potential avenue for the clinical treatment of anovulatory disorders.
Collapse
Affiliation(s)
- Ming Shen
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Yi Jiang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Zhiqiang Guan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Yan Cao
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Liechuan Li
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Honglin Liu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Shao-Chen Sun
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
18
|
Use of FSH in two different regimens for ovarian superstimulation prior to ovum pick up and in vitro embryo production in Holstein cows. Theriogenology 2017; 90:65-73. [DOI: 10.1016/j.theriogenology.2016.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 11/21/2022]
|
19
|
Ma WZ, Zheng XM, Hei CC, Zhao CJ, Xie SS, Chang Q, Cai YF, Jia H, Pei XY, Wang YR. Optimal FSH usage in revascularization of allotransplanted ovarian tissue in mice. J Ovarian Res 2017; 10:5. [PMID: 28095884 PMCID: PMC5240196 DOI: 10.1186/s13048-016-0299-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
Backgroud Ovarian transplantation is a useful method for preserving the fertility of young women with cancer who undergo radiotherapy and chemotherapy. Follicle-stimulating hormone (FSH) is use to protect transplanted ovarian tissues from ischemia injury through promoting revascularization after transplantation, but the side effect of high level FSH is ovarian overstimulation leading to substantial follicular loss. In this study, we investigated the optimal usage of FSH on revascularization in the in vitro cultured ovarian tissues before and after transplantation. Results FSH mainly exhibited an additive response in the gene and protein expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and follicle stimulating hormone receptor (FSHR) with its raised concentrations (0.15 IU/ml, 0.30 IU/ml and 0.60 IU/ml) and prolonged treatment (3 h, 6 h, 12 h, 24 h). The concentrations with 0.60 IU/ml FSH could obviously promoted the expression of VEGF, bFGF and FSHR, but under this concentration FSH could also overstimulated the ovarian tissue leading to follicular loss. With the increase of culture time, the gene and protein expression of VEGF and bFGF both were up-regulated in all of the FSH added groups, but FSHR expression decreased when culture time exceeded 12 h. So we chose 0.30 IU/ml FSH added concentration and 6 h culture time as the FSH usage condition in functional revascularization verification experiment, and found that under this condition FSH promoted 2.5 times increase of vascular density in treated group than in control group after ovarian tissues transplantation. Conclusion Ovarian intervention with 0.30 IU/ml FSH for 6 h is an optimal FSH usage condition which could accelerate the revascularization in the allotransplanted ovarian tissue and can not produce ovarian overstimulation.
Collapse
Affiliation(s)
- Wen-Zhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Xiao-Min Zheng
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Chang-Chun Hei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Cheng-Jun Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Sha-Sha Xie
- The No, 1 People's Hospital of xingtai, Hongxing street No.16, No, Xingtai, 054000, China
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Yu-Fang Cai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Hua Jia
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China
| | - Xiu-Ying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China.
| | - Yan-Rong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, Ningxia Medical University, Shengli street No.1160, Yinchuan, 750004, China.
| |
Collapse
|
20
|
Lira-Albarrán S, Larrea-Schiavon MF, González L, Durand M, Rangel C, Larrea F. The effects of levonorgestrel on FSH-stimulated primary rat granulosa cell cultures through gene expression profiling are associated to hormone and folliculogenesis processes. Mol Cell Endocrinol 2017; 439:337-345. [PMID: 27663078 DOI: 10.1016/j.mce.2016.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
Abstract
Levonorgestrel (LNG), a synthetic progestin, is used in emergency contraception (EC). The mechanism is preventing or delaying ovulation at the level of the hypothalamic pituitary unit; however, little knowledge exists on LNG effects at the ovary. The aim of this study was to identify the effects of LNG on FSH-induced 17β-estradiol (E2) production, including LNG-mediated changes on global gene expression in rat granulosa cells (GC). Isolated GC from female Wistar rats were incubated in vitro in the presence or absence of human FSH and progestins. At the end of incubations, culture media and cells were collected for E2 and mRNA quantitation. The results showed the ability of LNG to inhibit both hFSH-induced E2 production and aromatase gene expression. Microarray analysis revealed that LNG treatment affects GC functionality particularly that related to folliculogenesis and steroid metabolism. These results may offer additional evidence for the mechanisms of action of LNG as EC.
Collapse
Affiliation(s)
- Saúl Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México.
| | - Marco F Larrea-Schiavon
- Department of Computational Genomics, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Ciudad de México 14610, México.
| | - Leticia González
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México.
| | - Marta Durand
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México.
| | - Claudia Rangel
- Department of Computational Genomics, Instituto Nacional de Medicina Genómica, Periférico Sur No. 4809, Ciudad de México 14610, México.
| | - Fernando Larrea
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Ciudad de México 14080, México.
| |
Collapse
|
21
|
Wang L, Li C, Li R, Deng Y, Tan Y, Tong C, Qi H. MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim 2015; 52:365-373. [PMID: 26676955 DOI: 10.1007/s11626-015-9977-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/05/2015] [Indexed: 12/18/2022]
Abstract
Previous studies have reported that microRNA-764-3p (miR-764-3p) is one of the most up-regulated microRNAs (miRNAs) in TGF-β1-stimulated mouse ovarian granulosa cells. However, little is known about the roles and mechanisms of miR-764-3p in granulosa cell function during follicular development. In this study, we found that overexpression of miR-764-3p inhibited 17β-estradiol (E2) synthesis of granulosa cells through directly targeting steroidogenic factor-1 (SF-1). MiR-764-3p inhibited SF-1 by affecting its messenger RNA (mRNA) stability, which subsequently suppressed the expression levels of Cyp19a1 gene (aromatase, a downstream target of SF-1). In addition, SF-1 was involved in regulation of miR-764-3p-mediated Cyp19a1 expression in granulosa cells which contributed, at least partially, to the effects of miR-764-3p on granulosa cell E2 release. These results suggest that miR-764-3p functions to decrease steroidogenesis by targeting SF-1, at least in part, through inactivation of Cyp19a1. Taken together, our data provide mechanistic insights into the roles of miR-764-3p on E2 synthesis. Understanding of potential miRNAs affecting estrogen synthesis will help to diagnose and treat steroid-related diseases.
Collapse
Affiliation(s)
- Lianlian Wang
- Department of Reproduction Health and Infertility, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Cong Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Rong Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Youlin Deng
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yixin Tan
- Department of Medical Records, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
22
|
Gharwan H, Bunch KP, Annunziata CM. The role of reproductive hormones in epithelial ovarian carcinogenesis. Endocr Relat Cancer 2015; 22:R339-63. [PMID: 26373571 DOI: 10.1530/erc-14-0550] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 12/12/2022]
Abstract
Epithelial ovarian cancer comprises ∼85% of all ovarian cancer cases. Despite acceptance regarding the influence of reproductive hormones on ovarian cancer risk and considerable advances in the understanding of epithelial ovarian carcinogenesis on a molecular level, complete understanding of the biologic processes underlying malignant transformation of ovarian surface epithelium is lacking. Various hypotheses have been proposed over the past several decades to explain the etiology of the disease. The role of reproductive hormones in epithelial ovarian carcinogenesis remains a key topic of research. Primary questions in the field of ovarian cancer biology center on its developmental cell of origin, the positive and negative effects of each class of hormones on ovarian cancer initiation and progression, and the role of the immune system in the ovarian cancer microenvironment. The development of the female reproductive tract is dictated by the hormonal milieu during embryogenesis. Intensive research efforts have revealed that ovarian cancer is a heterogenous disease that may develop from multiple extra-ovarian tissues, including both Müllerian (fallopian tubes, endometrium) and non-Müllerian structures (gastrointestinal tissue), contributing to its heterogeneity and distinct histologic subtypes. The mechanism underlying ovarian localization, however, remains unclear. Here, we discuss the role of reproductive hormones in influencing the immune system and tipping the balance against or in favor of developing ovarian cancer. We comment on animal models that are critical for experimentally validating existing hypotheses in key areas of endocrine research and useful for preclinical drug development. Finally, we address emerging therapeutic trends directed against ovarian cancer.
Collapse
Affiliation(s)
- Helen Gharwan
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Kristen P Bunch
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christina M Annunziata
- National Cancer InstituteNational Institutes of Health, 10 Center Drive, Building 10, 12N226, Bethesda, Maryland 20892-1906, USAWomen's Malignancies BranchNational Cancer Institute, National Institutes of Health, Center for Cancer Research, Bethesda, Maryland, USADepartment of Gynecologic OncologyWalter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Choi M, Chaudhari HN, Ji YR, Ryoo ZY, Kim SW, Yun JW. Effect of estrogen on expression of prohibitin in white adipose tissue and liver of diet-induced obese rats. Mol Cell Biochem 2015; 407:181-96. [DOI: 10.1007/s11010-015-2468-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
|
24
|
Hunzicker-Dunn M, Mayo K. Gonadotropin Signaling in the Ovary. KNOBIL AND NEILL'S PHYSIOLOGY OF REPRODUCTION 2015:895-945. [DOI: 10.1016/b978-0-12-397175-3.00020-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
Baumgarten SC, Convissar SM, Fierro MA, Winston NJ, Scoccia B, Stocco C. IGF1R signaling is necessary for FSH-induced activation of AKT and differentiation of human Cumulus granulosa cells. J Clin Endocrinol Metab 2014; 99:2995-3004. [PMID: 24848710 PMCID: PMC4121023 DOI: 10.1210/jc.2014-1139] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT FSH is routinely administered to in vitro fertilization patients to induce follicle maturation. During this process, granulosa cells differentiate and acquire specific functional characteristics that are required to coordinate ovulation and oocyte maturation. OBJECTIVE The objective of the study was to gain insight into the molecular mechanisms regulating human granulosa cell differentiation. Design, Setting, Patients, and Interventions: Cumulus and mural granulosa cells were isolated from the follicular aspirates of in vitro fertilization patients and analyzed immediately or cultured in serum-free media in the presence of FSH, IGFs, or an inhibitor of type I IGF receptor (IGF1R) activity. MAIN OUTCOME We quantified the mRNA and protein levels of steroidogenic enzymes, components of the IGF system, and gonadotropin receptors; measured 17β-estradiol levels; and examined the activation of intracellular signaling pathways to assess the granulosa cell differentiation as well as the FSH and IGF actions in both cumulus and mural cells. RESULTS In freshly isolated cells, LH receptor (Lhr) and steroidogenic acute regulator (Star) were expressed at lower levels in cumulus than mural cells, whereas FSH receptor (Fshr) and anti-Müllerian hormone (Amh) were expressed at higher levels in cumulus than mural cells. In vitro, the expression of Igf2, the differentiation markers Lhr, Star, and Cyp19a1 (aromatase) as well as 17β-estradiol production remained low in untreated cumulus cells but increased significantly after FSH treatment. Strikingly, this stimulatory effect of FSH was abolished by the inhibition of IGF1R activity. FSH-induced activation of v-akt murine thymoma viral oncogene homolog 3 (AKT) required IGF1R activity, and overexpression of constitutively active AKT rescued the induction of differentiation markers and 17β-estradiol production by FSH in the presence of the IGF1R inhibitor. CONCLUSIONS The cumulus cell response to FSH resembles the differentiation of preantral to preovulatory granulosa cells. This differentiation program requires IGF1R activity and subsequent AKT activation.
Collapse
Affiliation(s)
- Sarah C Baumgarten
- Department of Physiology and Biophysics (S.C.B., S.M.C., C.S.) and Division of Reproductive Endocrinology and Infertility (M.A.F., N.J.W., B.S.), Department of Obstetrics and Gynecology, University of Illinois College of Medicine, Chicago, Illinois 60612
| | | | | | | | | | | |
Collapse
|
26
|
León K, Boulo T, Musnier A, Morales J, Gauthier C, Dupuy L, Heyne S, Backofen R, Poupon A, Cormier P, Reiter E, Crepieux P. Activation of a GPCR leads to eIF4G phosphorylation at the 5' cap and to IRES-dependent translation. J Mol Endocrinol 2014; 52:373-82. [PMID: 24711644 DOI: 10.1530/jme-14-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The control of mRNA translation has been mainly explored in response to activated tyrosine kinase receptors. In contrast, mechanistic details on the translational machinery are far less available in the case of ligand-bound G protein-coupled receptors (GPCRs). In this study, using the FSH receptor (FSH-R) as a model receptor, we demonstrate that part of the translational regulations occurs by phosphorylation of the translation pre-initiation complex scaffold protein, eukaryotic initiation factor 4G (eIF4G), in HEK293 cells stably expressing the FSH-R. This phosphorylation event occurred when eIF4G was bound to the mRNA 5' cap, and probably involves mammalian target of rapamycin. This regulation might contribute to cap-dependent translation in response to FSH. The cap-binding protein eIF4E also had its phosphorylation level enhanced upon FSH stimulation. We also show that FSH-induced signaling not only led to cap-dependent translation but also to internal ribosome entry site (IRES)-dependent translation of some mRNA. These data add detailed information on the molecular bases underlying the regulation of selective mRNA translation by a GPCR, and a topological model recapitulating these mechanisms is proposed.
Collapse
Affiliation(s)
- Kelly León
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling System
| | - Thomas Boulo
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling System
| | - Astrid Musnier
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling System
| | - Julia Morales
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, Germany
| | - Christophe Gauthier
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling System
| | - Laurence Dupuy
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling System
| | - Steffen Heyne
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, Germany
| | - Anne Poupon
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling System
| | - Patrick Cormier
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, Germany
| | - Eric Reiter
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling System
| | - Pascale Crepieux
- UMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling Systems (BIOS)»CNRS, UMR7247, F-37380 Nouzilly, FranceUniversité François RabelaisF-37041 Tours, FranceIFCEF-37380 Nouzilly, FranceUniversité Pierre et Marie CurieUniversity of Paris VI, CNRS, UMR 7150 Mer et Santé, Equipe Traduction, Cycle Cellulaire, et Développement, Station Biologique de Roscoff, F-29239 Roscoff, FranceUniversité Européenne de BretagneF-29239 Roscoff, FranceBioinformatics GroupDepartment of Computer Science, University of Freiburg, Freiburg, GermanyUMR85Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, FranceGroup «Biology and Bioinformatics of Signaling System
| |
Collapse
|
27
|
Arsenic-induced toxicity in the endometrium of adult albino rat and the possible role of human chorionic gonadotropin hormone. ACTA ACUST UNITED AC 2014. [DOI: 10.1097/01.ehx.0000446582.73701.1b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Abstract
Chemo- and radiation therapies used to treat cancer can have the unintended effect of making patients infertile. Clinically established fertility preservation methods, such as egg and embryo cryopreservation, are not applicable to all patients, which has motivated the development of strategies that involve ovarian tissue removal and cryopreservation before the first sterilizing treatment. To restore fertility at a later date, the early-stage follicles present in the tissue must be matured to produce functional oocytes, a process that is not possible using existing cell culture technologies. This review describes the application of tissue engineering principles to promote ovarian follicle maturation and produce mature oocytes through either in vitro culture or transplantation. The design principles for these engineered systems are presented, along with identification of emerging opportunities in reproductive biology.
Collapse
|
29
|
Zhang T, Dai P, Cheng D, Zhang L, Chen Z, Meng X, Zhang F, Han X, Liu J, Pan J, Yang G, Zhang C. Obesity occurring in apolipoprotein E-knockout mice has mild effects on fertility. Reproduction 2014; 147:141-51. [DOI: 10.1530/rep-13-0470] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Apolipoprotein (Apo) family is implicated in lipid metabolism. There are five types of Apo: Apoa, Apob, Apoc, Apod, and Apoe. Apoe has been demonstrated to play a central role in lipoprotein metabolism and to be essential for efficient receptor-mediated plasma clearance of chylomicron remnants and VLDL remnant particles by the liver. Apoe-deficient (Apoe−/−) mice develop atherosclerotic plaques spontaneously, followed by obesity. In this study, we investigated whether lipid deposition caused by Apoe knockout affects reproduction in female mice. The results demonstrated that Apoe−/− mice were severely hypercholesterolemic, with their cholesterol metabolism disordered, and lipid accumulating in the ovaries causing the ovaries to be heavier compared with the WT counterparts. In addition, estrogen and progesterone decreased significantly at D 100. Quantitative PCR analysis demonstrated that at D 100 the expression of cytochromeP450 aromatase (Cyp19a1), 3β-hydroxysteroid dehydrogenase (Hsd3b), mechanistic target of rapamycin (Mtor), and nuclear factor-κB (Nfkb) decreased significantly, while that of BCL2-associated agonist of cell death (Bad) and tuberous sclerosis complex 2 (Tsc2) increased significantly in the Apoe−/− mice. However, there was no difference in the fertility rates of the Apoe−/− and WT mice; that is, obesity induced by Apoe knockout has no significant effect on reproduction. However, the deletion of Apoe increased the number of ovarian follicles and the ratio of ovarian follicle atresia and apoptosis. We believe that this work will augment our understanding of the role of Apoe in reproduction.
Collapse
|
30
|
León K, Gallay N, Poupon A, Reiter E, Dalbies-Tran R, Crepieux P. Integrating microRNAs into the complexity of gonadotropin signaling networks. Front Cell Dev Biol 2013; 1:3. [PMID: 25364708 PMCID: PMC4206998 DOI: 10.3389/fcell.2013.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/12/2013] [Indexed: 12/13/2022] Open
Abstract
Follicle-stimulating hormone (FSH) is a master endocrine regulator of mammalian reproductive functions. Hence, it is used to stimulate folliculogenesis in assisted reproductive technologies (ART), both in women and in breeding animals. However, the side effects that hormone administration induces in some instances jeopardize the success of ART. Similarly, the luteinizing hormone (LH) is also of paramount importance in the reproductive function because it regulates steroidogenesis and the LH surge is a pre-requisite to ovulation. Gaining knowledge as extensive as possible on gonadotropin-induced biological responses could certainly lead to precise selection of their effects in vivo by the use of selective agonists at the hormone receptors. Hence, over the years, numerous groups have contributed to decipher the cellular events induced by FSH and LH in their gonadal target cells. Although little is known on the effect of gonadotropins on microRNA expression so far, recent data have highlighted that a microRNA regulatory network is likely to superimpose on the signaling protein network. No doubt that this will dramatically alter our current understanding of the gonadotropin-induced signaling networks. This is the topic of this review to present this additional level of complexity within the gonadotropin signaling network, in the context of recent findings on the microRNA machinery in the gonad.
Collapse
Affiliation(s)
- Kelly León
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Nathalie Gallay
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Anne Poupon
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Eric Reiter
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Rozenn Dalbies-Tran
- BINGO Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Pascale Crepieux
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| |
Collapse
|
31
|
Fátima LA, Evangelista MC, Silva RS, Cardoso APM, Baruselli PS, Papa PC. FSH up-regulates angiogenic factors in luteal cells of buffaloes. Domest Anim Endocrinol 2013; 45:224-37. [PMID: 24209507 DOI: 10.1016/j.domaniend.2013.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 02/05/2023]
Abstract
Follicle-stimulating hormone has been widely used to induce superovulation in buffaloes and cows and usually triggers functional and morphologic alterations in the corpus luteum (CL). Several studies have shown that FSH is involved in regulating vascular development and that adequate angiogenesis is essential for normal luteal development. Angiogenesis is regulated by many growth factors, of which vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) have an established central role. Therefore, we have used a combination of in vitro and in vivo studies to assess the effects of FSH on the expression of VEGF and FGF2 and their receptors in buffalo luteal cells. The in vivo model consisted of 12 buffalo cows, divided into control (n = 6) and superovulated (n = 6) groups, and CL samples were collected on day 6 after ovulation. In this model, we analyzed the gene and protein expression of FGF2 and its receptors and the protein expression of VEGFA systems with the use of real-time PCR, Western blot analysis, and immunohistochemistry. In the in vitro model, granulosa cells were collected from small follicles (diameter, 4-6 mm) of buffaloes and cultured for 4 d in serum-free medium with or without FSH (10 ng/mL). To induce in vitro luteinization, LH (250 ng/mL) and fetal bovine serum (10%) were added to the medium, and granulosa cells were maintained in culture for 4 d more. The progesterone concentration in the medium was measured at days 4, 5, and 8 after the beginning of cell culture. Cells were collected at day 8 and subjected to real-time PCR, Western blot analysis, and immunofluorescence for assessment of the expression of FGF2, VEGF, and their receptors. To address the percentage of steroidogenic and growth factor-expressing cells in the culture, flow cytometry was performed. We observed that in superovulated buffalo CL, the FGF2 system mRNA expression was decreased even as protein expression was increased and that the VEGF protein was increased (P < 0.05). In vitro experiments with granulosa cells showed an increase in the mRNA expression of VEGF and FGF2 and its receptors 1 and 2 and protein expression of VEGF, kinase insert domain receptor, FGF receptor 2, and FGF receptor 3 in cells treated with FSH (P < 0.05), in contrast to the in vivo experiments. Moreover, the progesterone production by FSH-treated cells was elevated compared with untreated cells (P < 0.05). Our findings indicate that VEGF, FGF2, and their receptors were differentially regulated by FSH in vitro and in vivo in buffalo luteal cells, which points toward a role of CL environment in modulating cellular answers to gonadotropins.
Collapse
MESH Headings
- Angiogenic Proteins/analysis
- Angiogenic Proteins/genetics
- Animals
- Buffaloes/metabolism
- Cells, Cultured
- Female
- Fibroblast Growth Factor 2/analysis
- Fibroblast Growth Factor 2/genetics
- Fluorescent Antibody Technique
- Follicle Stimulating Hormone/pharmacology
- Granulosa Cells/chemistry
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Luteal Cells/chemistry
- Luteal Cells/metabolism
- Luteinizing Hormone/pharmacology
- Male
- Progesterone/biosynthesis
- RNA, Messenger/analysis
- Real-Time Polymerase Chain Reaction/veterinary
- Receptor, Fibroblast Growth Factor, Type 2/analysis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/analysis
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Superovulation/physiology
- Up-Regulation
- Vascular Endothelial Growth Factor A/analysis
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- L A Fátima
- Department of Surgery, Sector of Anatomy, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr Orlando Marques Paiva, 87, São Paulo, SP, 05508-270, Brazil.
| | | | | | | | | | | |
Collapse
|
32
|
Dai A, Sun H, Fang T, Zhang Q, Wu S, Jiang Y, Ding L, Yan G, Hu Y. MicroRNA-133b stimulates ovarian estradiol synthesis by targeting Foxl2. FEBS Lett 2013; 587:2474-2482. [PMID: 23810756 DOI: 10.1016/j.febslet.2013.06.023] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/10/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
Forkhead L2 (Foxl2) is expressed in ovarian granulosa cells and participates in steroidogenesis by transcriptionally regulating target genes such as steroidogenic acute regulatory protein (StAR) and CYP19A1. In this study, a direct link between microRNA-133b (miR-133b) and Foxl2-mediated estradiol release in granulosa cells was established. miR-133b was involved in follicle-stimulating hormone (FSH)-induced estrogen production. Luciferase assays confirmed that miR-133b was bound to the 3' untranslated region (3'UTR) of Foxl2 mRNA. Consistent with this finding, miR-133b overexpression reduced the Foxl2 levels. Furthermore, miR-133b inhibited Foxl2 binding to the StAR and CYP19A1 promoter sequences. These results demonstrate that miR-133b down-regulates Foxl2 expression in granulosa cells by directly targeting the 3'UTR, thus inhibiting the Foxl2-mediated transcriptional repression of StAR and CYP19A1to promote estradiol production.
Collapse
Affiliation(s)
- Anyi Dai
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu Y, Jiang H, Xing FQ, Huang WJ, Mao LH, He LY. Uncoupling protein 2 expression affects androgen synthesis in polycystic ovary syndrome. Endocrine 2013; 43:714-23. [PMID: 23008094 DOI: 10.1007/s12020-012-9802-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 09/12/2012] [Indexed: 11/24/2022]
Abstract
The roles of uncoupling protein-2 (UCP2) on the androgen synthesis of granulosa cells derived from patients with polycystic ovary syndrome (PCOS) and normal subjects were explored. Primary human granulosa cells from 18 patients who received in vitro fertilization (IVF) were examined; nine patients had PCOS with hyperandrogenism. Primary cultures were treated with genipin, a proton leak inhibitor, guanosine diphosphate (GDP), an UCP inhibitor, and triiodothyronine (T3), an inducer of UCP gene expression. Mitochondrial membrane potential was determined using the JC-1 assay. T3 induced P450scc and UCP2 expressions and testosterone synthesis in both normal and PCOS granulosa cells. Their expressions in response to T3 treatments were correlated in the PCOS group. Differences in testosterone synthesis were observed between normal and PCOS cells in response to genipin. Increased mitochondrial membrane potential was observed in response to genipin and GDP; while T3 decreased it. Increased ovarian UCP2 expression in response to T3 treatment in PCOS may alter pregnenolone synthesis by influencing P450scc expression, thus altering testosterone production. Further in vivo studies are necessary to fully elucidate the role of UCP2 in the hyperandrogenism commonly observed in PCOS.
Collapse
Affiliation(s)
- Yun Liu
- Center for Reproductive Medicine, Fuzhou General Hospital, Fuzhou General Clinical College of Fujian Medical University, East Hospital of Xiamen University, No. 156 Xi'erhuan North Road, Fuzhou, 350025, Fujian, China
| | | | | | | | | | | |
Collapse
|
34
|
Velasquez EV, Ríos M, Ortiz ME, Lizama C, Nuñez E, Abramovich D, Orge F, Oliva B, Orellana R, Villalon M, Moreno RD, Tesone M, Rokka A, Corthals G, Croxatto HB, Parborell F, Owen GI. Concanavalin-A induces granulosa cell death and inhibits FSH-mediated follicular growth and ovarian maturation in female rats. Endocrinology 2013; 154:1885-96. [PMID: 23515285 DOI: 10.1210/en.2012-1945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reproductive success stems from a finely regulated balance between follicular maturation and atresia, in which the role of carbohydrate structure is poorly understood. Here, we describe for the first time a fraction of purified recombinant human FSH that is capable of bringing about the cell death of granulosa cells and preventing follicular maturation in a rat model. Further analysis by mass spectrometry revealed the presence of the lectin Concanavalin-A (Con-A) within this fraction of recombinant FSH. Using both the fractionated FSH and Con-A, the observed cell death was predominantly located to the granulosa cells. Ex vivo culture of rat follicles demonstrated that follicle degeneration occurred and resulted in the release of a denuded and deteriorated oocyte. Moreover, in vivo experiments confirmed an increase in atresia and a corresponding reduction confined to follicle in early antral stage. As a mechanism of action, Con-A reduces ovarian proliferation, Von Willebrand staining, and angiogenesis. Based on the observation that Con-A may induce granulosa cell death followed by follicle death, our results further demonstrate that follicular carbohydrate moiety is changing under the influence of FSH, which may allow a carbohydrate-binding lectin to increase granulosa cell death. The physiological consequences of circulating lectin-like molecules remain to be determined. However, our results suggest a potential exploitation of carbohydrate binding in fertility and ovarian cancer treatment. This work may shed light on a key role of carbohydrates in the still obscure physiological process of follicular selection and atresia.
Collapse
Affiliation(s)
- Ethel V Velasquez
- Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Loreti N, Fresno C, Barrera D, Andreone L, Albarran SL, Fernandez EA, Larrea F, Campo S. The glycan structure in recombinant human FSH affects endocrine activity and global gene expression in human granulosa cells. Mol Cell Endocrinol 2013; 366:68-80. [PMID: 23261981 DOI: 10.1016/j.mce.2012.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/28/2012] [Accepted: 11/27/2012] [Indexed: 12/29/2022]
Abstract
The aim of this study was to analyse the biological response to different recombinant human FSH (rhFSH) glycosylation variants on the endocrine activity and gene expression at whole-genome scale in human granulosa-like tumor cell line, KGN. The effects of differences in rhFSH sialylation and oligosaccharide complexity were determined on steroid hormone and inhibin production. A microarray approach was used to explore gene expression patterns induced by rhFSH glycosylation variants. Set enrichment analysis revealed that hormone sialylation and oligosaccharide complexity in rhFSH differentially affected the expression of genes involved in essential biological processes and molecular functions of KGN cells. The relevance of rhFSH oligosaccharide structure on steroidogenesis was confirmed assessing gene expression by real time-PCR. The results demonstrate that FSH oligosaccharide structure affects expression of genes encoding proteins, growth factors and hormones essential for granulosa cells function.
Collapse
Affiliation(s)
- Nazareth Loreti
- Centro de Investigaciones Endocrinológicas (CEDIE/CONICET), Hospital de Niños Ricardo Gutiérrez, Gallo No. 1330, C1425EFB Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhou P, Baumgarten SC, Wu Y, Bennett J, Winston N, Hirshfeld-Cytron J, Stocco C. IGF-I signaling is essential for FSH stimulation of AKT and steroidogenic genes in granulosa cells. Mol Endocrinol 2013; 27:511-23. [PMID: 23340251 DOI: 10.1210/me.2012-1307] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
FSH and IGF-I synergistically stimulate gonadal steroid production; conversely, silencing the FSH or the IGF-I genes leads to infertility and hypogonadism. To determine the molecular link between these hormones, we examined the signaling cross talk downstream of their receptors. In human and rodent granulosa cells (GCs), IGF-I potentiated the stimulatory effects of FSH and cAMP on the expression of steroidogenic genes. In contrast, inhibition of IGF-I receptor (IGF-IR) activity or expression using pharmacological, genetic, or biochemical approaches prevented the FSH- and cAMP-induced expression of steroidogenic genes and estradiol production. In vivo experiments demonstrated that IGF-IR inactivation reduces the stimulation of steroidogenic genes and follicle growth by gonadotropins. FSH or IGF-I alone stimulated protein kinase B (PKB), which is also known as AKT and in combination synergistically increased AKT phosphorylation. Remarkably, blocking IGF-IR expression or activity decreased AKT basal activity and abolished AKT activation by FSH. In GCs lacking IGF-IR activity, FSH stimulation of Cyp19 expression was rescued by overexpression of constitutively active AKT. Our findings demonstrate, for the first time, that in human, mouse, and rat GCs, the well-known stimulatory effect of FSH on Cyp19 and AKT depends on IGF-I and on the expression and activation of the IGF-IR.
Collapse
Affiliation(s)
- Ping Zhou
- Departments of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Yin M, Lü M, Yao G, Tian H, Lian J, Liu L, Liang M, Wang Y, Sun F. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1. Mol Endocrinol 2012; 26:1129-43. [PMID: 22593182 DOI: 10.1210/me.2011-1341] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our previous studies have shown that microRNA-383 (miR-383) is one of the most down-regulated miRNA in TGF-β1-treated mouse ovarian granulosa cells (GC). However, the roles and mechanisms of miR-383 in GC function during follicular development remain unknown. In this study, we found that miR-383 was mainly expressed in GC and oocytes of mouse ovarian follicles. Overexpression of miR-383 enhanced estradiol release from GC through targeting RNA binding motif, single stranded interacting protein 1 (RBMS1). miR-383 inhibited RBMS1 by affecting its mRNA stability, which subsequently suppressed the level of c-Myc (a downstream target of RBMS1). Forced expression of RBMS1 or c-Myc attenuated miR-383-mediated steroidogenesis-promoting effects. Knockdown of the transcription factor steroidogenic factor-1 (SF-1) significantly suppressed the expression of Sarcoglycan zeta (SGCZ) (miR-383 host gene), primary and mature miR-383 in GC, indicating that miR-383 was transcriptionally regulated by SF-1. Luciferase and chromatin immunoprecipitation assays revealed that SF-1 specifically bound to the promoter region of SGCZ and directly transactivated miR-383 in parallel with SGCZ. In addition, SF-1 was involved in regulation of miR-383- and RBMS1/c-Myc-mediated estradiol release from GC. These results suggest that miR-383 functions to promote steroidogenesis by targeting RBMS1, at least in part, through inactivation of c-Myc. SF-1 acts as a positive regulator of miR-383 processing and function in GC. Understanding of regulation of miRNA biogenesis and function in estrogen production will potentiate the usefulness of miRNA in the control of reproduction and treatment of some steroid-related disorders.
Collapse
Affiliation(s)
- Mianmian Yin
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cawley NX, Wetsel WC, Murthy SRK, Park JJ, Pacak K, Loh YP. New roles of carboxypeptidase E in endocrine and neural function and cancer. Endocr Rev 2012; 33:216-53. [PMID: 22402194 PMCID: PMC3365851 DOI: 10.1210/er.2011-1039] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 01/18/2012] [Indexed: 01/14/2023]
Abstract
Carboxypeptidase E (CPE) or carboxypeptidase H was first discovered in 1982 as an enkephalin-convertase that cleaved a C-terminal basic residue from enkephalin precursors to generate enkephalin. Since then, CPE has been shown to be a multifunctional protein that subserves many essential nonenzymatic roles in the endocrine and nervous systems. Here, we review the phylogeny, structure, and function of CPE in hormone and neuropeptide sorting and vesicle transport for secretion, alternative splicing of the CPE transcript, and single nucleotide polymorphisms in humans. With this and the analysis of mutant and knockout mice, the data collectively support important roles for CPE in the modulation of metabolic and glucose homeostasis, bone remodeling, obesity, fertility, neuroprotection, stress, sexual behavior, mood and emotional responses, learning, and memory. Recently, a splice variant form of CPE has been found to be an inducer of tumor growth and metastasis and a prognostic biomarker for metastasis in endocrine and nonendocrine tumors.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which function in gene regulation with an important role in cell proliferation, maturation, and activity. The regulatory role of these small RNA molecules has recently begun to be explored in ovarian cells, uncovering their influence on gonadal development, steroidogenesis, apoptosis, ovulation, and corpus luteum development. This emerging area of research has extended and reshaped our understanding on how ovarian function is regulated. Here, we review the current understanding of miRNA biogenesis, the role and mechanism that miRNAs play in post-transcriptional gene expression regulation, and specifically the current evidence of miRNA involvement in ovarian development and function. Future comprehensive understanding of the role of miRNAs in the ovary in both physiological and pathological conditions may offer new treatment strategies for infertility and other ovarian disorders.
Collapse
Affiliation(s)
- Jason Baley
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
40
|
Telikicherla D, Ambekar A, Palapetta SM, Dwivedi SB, Raju R, Sharma J, Prasad TK, Ramachandra Y, Mohan SS, Maharudraiah J, Mukherjee S, Pandey A. A comprehensive curated resource for follicle stimulating hormone signaling. BMC Res Notes 2011; 4:408. [PMID: 21996254 PMCID: PMC3204250 DOI: 10.1186/1756-0500-4-408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 10/13/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Follicle stimulating hormone (FSH) is an important hormone responsible for growth, maturation and function of the human reproductive system. FSH regulates the synthesis of steroid hormones such as estrogen and progesterone, proliferation and maturation of follicles in the ovary and spermatogenesis in the testes. FSH is a glycoprotein heterodimer that binds and acts through the FSH receptor, a G-protein coupled receptor. Although online pathway repositories provide information about G-protein coupled receptor mediated signal transduction, the signaling events initiated specifically by FSH are not cataloged in any public database in a detailed fashion. FINDINGS We performed comprehensive curation of the published literature to identify the components of FSH signaling pathway and the molecular interactions that occur upon FSH receptor activation. Our effort yielded 64 reactions comprising 35 enzyme-substrate reactions, 11 molecular association events, 11 activation events and 7 protein translocation events that occur in response to FSH receptor activation. We also cataloged 265 genes, which were differentially expressed upon FSH stimulation in normal human reproductive tissues. CONCLUSIONS We anticipate that the information provided in this resource will provide better insights into the physiological role of FSH in reproductive biology, its signaling mediators and aid in further research in this area. The curated FSH pathway data is freely available through NetPath (http://www.netpath.org), a pathway resource developed previously by our group.
Collapse
Affiliation(s)
- Deepthi Telikicherla
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Proliferative potential and phenotypic analysis of long-term cultivated human granulosa cells initiated by addition of follicular fluid. J Assist Reprod Genet 2011; 28:939-50. [PMID: 21822582 DOI: 10.1007/s10815-011-9617-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/18/2011] [Indexed: 01/13/2023] Open
Abstract
PURPOSE The aim of this study was to develop and optimize a strategy for long-term cultivation of luteinizing human granulosa cells (GCs). METHODS GCs were cultivated in DMEM/F12 medium supplemented with 2% fetal calf serum. In vitro proliferation of GCs was supported by follicular fluid as well as FSH and growth factors. RESULTS The cultured GCs were maintained for 45 days with a doubling time of 159 ± 24 h. GCs initiated by the addition of follicular fluid and cultivated under low serum conditions reached 10 ± 0.7 population doublings. GCs maintain the typical phenotypic expression and the telomere length according to specific culture conditions. CONCLUSION Our present study has demonstrated that GCs can be maintained in vitro for at least 45 days and this cell model can be beneficial when studying hormonal regulation associated with follicular maturation and preparation of oocytes for fertilization.
Collapse
|
42
|
González-Fernández R, Peña Ó, Hernández J, Martín-Vasallo P, Palumbo A, Ávila J. Patients with endometriosis and patients with poor ovarian reserve have abnormal follicle-stimulating hormone receptor signaling pathways. Fertil Steril 2011; 95:2373-8. [DOI: 10.1016/j.fertnstert.2011.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
|
43
|
Verbraak EJC, van 't Veld EM, Groot Koerkamp M, Roelen BAJ, van Haeften T, Stoorvogel W, Zijlstra C. Identification of genes targeted by FSH and oocytes in porcine granulosa cells. Theriogenology 2010; 75:362-76. [PMID: 20965553 DOI: 10.1016/j.theriogenology.2010.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/27/2010] [Accepted: 09/08/2010] [Indexed: 11/19/2022]
Abstract
In the mammalian ovarian follicle maturing oocytes are nurtured and supported by surrounding somatic cells, the mural granulosa cells and the cumulus cells. These cells are regulated by follicle-stimulating hormone (FSH), originating from the pituitary, and paracrine factors derived from the oocyte. To gain insight into the mechanisms involved in the regulation of granulosa cell function, this study aimed to identify genes in mural granulosa cells that are regulated by FSH and oocyte secreted factors using the pig as a model organism. Mural granulosa cells were collected from 3-6 mm follicles from sow ovaries and cultured in serum free medium in the presence or absence of FSH and/or isolated cumulus oocyte complexes (COCs). FSH significantly increased both the metabolic activity and progesterone production of granulosa cells, while the presence of COCs reversed these FSH effects. Expression levels of mRNA in the absence/presence of FSH and COCs were analyzed on porcine specific microarrays representing 11,300 genes. Both previously identified and novel FSH target genes as well as some oocyte affected genes were found. Expression of inhibitor of DNA binding protein 2 and 3, ID2 and ID3, was decreased by FSH but increased by COCs, as validated by quantitative PCR. These proteins function as dominant negative basic helix loop helix (bHLH) transcription factors and since all regulated genes contain the consensus E-box sequence that can bind bHLH factors, our data suggest that FSH and COCs may regulate granulosa cell function by tuning the activity of bHLH factors, through ID2 and ID3.
Collapse
Affiliation(s)
- E J C Verbraak
- Department of Biochemistry and Cell Biology, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Yao N, Yang BQ, Liu Y, Tan XY, Lu CL, Yuan XH, Ma X. Follicle-stimulating hormone regulation of microRNA expression on progesterone production in cultured rat granulosa cells. Endocrine 2010; 38:158-66. [PMID: 20734245 DOI: 10.1007/s12020-010-9345-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 04/19/2010] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression post-transcriptionally by interacting with the 3' untranslated regions of their target mRNAs. Previously, miRNAs have been shown to regulate genes involved in cell growth, apoptosis, and differentiation, but their role in ovarian granulosa cell follicle-stimulating hormone (FSH)-stimulated steroidogenesis is unclear. Here we show that expression of 31 miRNAs is altered during FSH-mediated progesterone secretion of cultured granulosa cells. Specifically, 12 h after FSH treatment, miRNAs mir-29a and mir-30d were significantly down-regulated. However, their expression increased after 48 h. Bioinformatic analysis used to predict potential targets of mir-29a and mir-30d revealed a wide array of potential mRNA target genes, including those encoding genes involved in multiple signaling pathways. Taken together, our results pointed to a novel mechanism for the pleiotropic effects of FSH.
Collapse
Affiliation(s)
- Nan Yao
- Graduate School of Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
45
|
Chatterjee A, Chatterji U. Arsenic abrogates the estrogen-signaling pathway in the rat uterus. Reprod Biol Endocrinol 2010; 8:80. [PMID: 20598115 PMCID: PMC2909245 DOI: 10.1186/1477-7827-8-80] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/02/2010] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Arsenic, a major pollutant of water as well as soil, is a known endocrine disruptor, and shows adverse effects on the female reproductive physiology. However, the exact molecular events leading to reproductive dysfunctions as a result of arsenic exposure are yet to be ascertained. This report evaluates the effect and mode of action of chronic oral arsenic exposure on the uterine physiology of mature female albino rats. METHODS The effect of chronic oral exposure to arsenic at the dose of 4 microg/ml for 28 days was evaluated on adult female albino rats. Hematoxylin-eosin double staining method evaluated the changes in the histological architecture of the uterus. Circulating levels of gonadotropins and estradiol were assayed by enzyme-linked immunosorbent assay. Expression of the estrogen receptor and estrogen-induced genes was studied at the mRNA level by RT-PCR and at the protein level by immunohistochemistry and western blot analysis. RESULTS Sodium arsenite treatment decreased circulating levels of estradiol in a dose and time-dependent manner, along with decrease in the levels of both LH and FSH. Histological evaluation revealed degeneration of luminal epithelial cells and endometrial glands in response to arsenic treatment, along with reduction in thickness of the longitudinal muscle layer. Concomitantly, downregulation of estrogen receptor (ER alpha), the estrogen-responsive gene - vascular endothelial growth factor (VEGF), and G1 cell cycle proteins, cyclin D1 and CDK4, was also observed. CONCLUSION Together, the results indicate that arsenic disrupted the circulating levels of gonadotropins and estradiol, led to degeneration of luminal epithelial, stromal and myometrial cells of the rat uterus and downregulated the downstream components of the estrogen signaling pathway. Since development and functional maintenance of the uterus is under the influence of estradiol, arsenic-induced structural degeneration may be attributed to the reduction in circulating estradiol levels. Downregulation of the estrogen receptor and estrogen-responsive genes in response to arsenic indicates a mechanism of suppression of female reproductive functions by an environmental toxicant that is contra-mechanistic to that of estrogen.
Collapse
Affiliation(s)
- Aniruddha Chatterjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, India
| | - Urmi Chatterji
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019, India
| |
Collapse
|
46
|
Anthony DA, Andrews DM, Watt SV, Trapani JA, Smyth MJ. Functional dissection of the granzyme family: cell death and inflammation. Immunol Rev 2010; 235:73-92. [DOI: 10.1111/j.0105-2896.2010.00907.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Hendel A, Hiebert PR, Boivin WA, Williams SJ, Granville DJ. Granzymes in age-related cardiovascular and pulmonary diseases. Cell Death Differ 2010; 17:596-606. [PMID: 20139894 DOI: 10.1038/cdd.2010.5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chronic inflammation is a hallmark of age-related cardiovascular and pulmonary diseases. Granzymes are a family of serine proteases that have been traditionally viewed as initiators of immune-mediated cell death. However, recent findings suggest that the pathophysiological role of granzymes is complex. Emerging functions for granzymes in extracellular matrix degradation, autoimmunity, and inflammation suggests a multifactorial mechanism by which these enzymes are capable of mediating tissue damage. Recent discoveries showing that granzymes can be produced and secreted by nonimmune cells during disease provide an additional layer of intricacy. This review examines the emerging biochemical and clinical evidence pertaining to intracellular and/or extracellular granzymes in the pathogenesis of aging and cardiopulmonary diseases.
Collapse
Affiliation(s)
- A Hendel
- Department of Pathology and Laboratory Medicine, Providence Heart+Lung Institute, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
48
|
Portela VM, Veiga A, Price CA. Regulation of MMP2 and MMP9 metalloproteinases by FSH and growth factors in bovine granulosa cells. Genet Mol Biol 2009; 32:516-20. [PMID: 21637514 PMCID: PMC3036041 DOI: 10.1590/s1415-47572009005000048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 05/13/2009] [Indexed: 12/18/2022] Open
Abstract
Matrix metalloproteinases (MMP) are key enzymes involved in tissue remodeling. Within the ovary, they are believed to play a major role in ovulation, and have been linked to follicle atresia. To gain insight into the regulation of MMPs, we measured the effect of hormones and growth factors on MMP2 and MMP9 mRNA levels in non-luteinizing granulosa cells in serum-free culture. FSH and IGF1 both stimulated estradiol secretion and inhibited MMP2 and MMP9 mRNA abundance. In contrast, EGF and FGF2 both inhibited estradiol secretion but had no effect on MMP expression. At physiological doses, none of these hormones altered the proportion of dead cells. Although we cannot link MMP expression with apoptosis, the specific down regulation by the gonadotropic hormones FSH and IGF1 in vitro suggests that excess MMP2 and MMP9 expression is neither required nor desired for follicle development.
Collapse
Affiliation(s)
- Valerio M Portela
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC Canada
| | | | | |
Collapse
|
49
|
Alam H, Weck J, Maizels E, Park Y, Lee EJ, Ashcroft M, Hunzicker-Dunn M. Role of the phosphatidylinositol-3-kinase and extracellular regulated kinase pathways in the induction of hypoxia-inducible factor (HIF)-1 activity and the HIF-1 target vascular endothelial growth factor in ovarian granulosa cells in response to follicle-stimulating hormone. Endocrinology 2009; 150:915-28. [PMID: 18845636 PMCID: PMC2646536 DOI: 10.1210/en.2008-0850] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
FSH stimulation of granulosa cells (GCs) results in increased hypoxia-inducible factor (HIF)-1alpha protein levels and HIF-1 activity that is necessary for up-regulation of certain FSH target genes including vascular endothelial growth factor. We report that the role of the phosphatidylinositol (PI)-3-kinase/AKT pathway in increasing HIF-1alpha protein in FSH-stimulated GCs extends beyond an increase in mammalian target of rapamycin-stimulated translation. FSH increases phosphorylation of the AKT target mouse double-minute 2 (MDM2); a phosphomimetic mutation of MDM2 is sufficient to induce HIF-1 activity. The PI3-kinase/AKT target forkhead box-containing protein O subfamily 1 (FOXO1) also effects the accumulation of HIF-1alpha as evidenced by the ability of a constitutively active FOXO1 mutant to inhibit the induction by FSH of HIF-1alpha protein and HIF-1 activity. Activation of the PI3-kinase/AKT pathway in GCs by IGF-I is sufficient to induce HIF-1alpha protein but surprisingly not HIF-1 activity. HIF-1 activity also appears to require a PD98059-sensitive protein (kinase) activity stimulated by FSH that is both distinct from mitogen-activated ERK kinase1/2 or 5 and independent of the PI3-kinase/AKT pathway. These results indicate that FSH-stimulated HIF-1 activation leading to up-regulation of targets such as vascular endothelial growth factor requires not only PI3-kinase/AKT-mediated activation of mammalian target of rapamycin as well as phosphorylation of FOXO1 and possibly MDM2 but also a protein (kinase) activity that is inhibited by the classic ERK kinase inhibitor PD98059 but not ERK1/2 or 5. Thus, regulation of HIF-1 activity in GCs by FSH under normoxic conditions is complex and requires input from multiple signaling pathways.
Collapse
Affiliation(s)
- Hena Alam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The cytotoxic granzyme B (GrB)/perforin pathway has been traditionally viewed as a primary mechanism that is used by cytotoxic lymphocytes to eliminate allogeneic, virally infected and/or transformed cells. Although originally proposed to have intracellular and extracellular functions, upon the discovery that perforin, in combination with GrB, could induce apoptosis, other potential functions for this protease were, for the most part, disregarded. As there are 5 granzymes in humans and 11 granzymes in mice, many studies used perforin knockout mice as an initial screen to evaluate the role of granzymes in disease. However, in recent years, emerging clinical and biochemical evidence has shown that the latter approach may have overlooked a critical perforin-independent, pathogenic role for these proteases in disease. This review focuses on GrB, the most characterized of the granzyme family, in disease. Long known to be a pro-apoptotic protease expressed by cytotoxic lymphocytes and natural killer cells, it is now accepted that GrB can be expressed in other cell types of immune and nonimmune origin. To the latter, an emerging immune-independent role for GrB has been forwarded due to recent discoveries that GrB may be expressed in nonimmune cells such as smooth muscle cells, keratinocytes, and chondrocytes in certain disease states. Given that GrB retains its activity in the blood, can cleave extracellular matrix, and its levels are often elevated in chronic inflammatory diseases, this protease may be an important contributor to certain pathologies. The implications of sustained elevations of intracellular and extracellular GrB in chronic vascular, dermatological, and neurological diseases, among others, are developing. This review examines, for the first time, the multiple roles of GrB in disease pathogenesis.
Collapse
|