1
|
Dattilo D, Di Timoteo G, Setti A, Giuliani A, Peruzzi G, Beltran Nebot M, Centrón-Broco A, Mariani D, Mozzetta C, Bozzoni I. The m 6A reader YTHDC1 and the RNA helicase DDX5 control the production of rhabdomyosarcoma-enriched circRNAs. Nat Commun 2023; 14:1898. [PMID: 37019933 PMCID: PMC10076346 DOI: 10.1038/s41467-023-37578-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
N6-Methyladenosine (m6A) is well-known for controlling different processes of linear RNA metabolism. Conversely, its role in the biogenesis and function of circular RNAs (circRNAs) is still poorly understood. Here, we characterize circRNA expression in the pathological context of rhabdomyosarcoma (RMS), observing a global increase when compared to wild-type myoblasts. For a set of circRNAs, such an increase is due to the raised expression of the m6A machinery, which we also find to control the proliferation activity of RMS cells. Furthermore, we identify the RNA helicase DDX5 as a mediator of the back-splicing reaction and as a co-factor of the m6A regulatory network. DDX5 and the m6A reader YTHDC1 are shown to interact and to promote the production of a common subset of circRNAs in RMS. In line with the observation that YTHDC1/DDX5 depletion reduces RMS proliferation, our results provide proteins and RNA candidates for the study of rhabdomyosarcoma tumorigenicity.
Collapse
Affiliation(s)
- Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Adriano Setti
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Andrea Giuliani
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Giovanna Peruzzi
- Center for Life Nano- & Neuro-Science@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, 00161, Italy
| | - Manuel Beltran Nebot
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Alvaro Centrón-Broco
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy
| | - Davide Mariani
- Center for Human Technologies@Istituto Italiano di Tecnologia (IIT), Genoa, 16152, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 00185, Italy.
- Center for Life Nano- & Neuro-Science@Sapienza, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, 00161, Italy.
- Center for Human Technologies@Istituto Italiano di Tecnologia (IIT), Genoa, 16152, Italy.
| |
Collapse
|
2
|
Pruller J, Figeac N, Zammit PS. DVL1 and DVL3 require nuclear localisation to regulate proliferation in human myoblasts. Sci Rep 2022; 12:8388. [PMID: 35589804 PMCID: PMC9120025 DOI: 10.1038/s41598-022-10536-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/25/2022] [Indexed: 11/09/2022] Open
Abstract
WNT signalling is essential for regulating a diverse range of cellular processes. In skeletal muscle, the WNT pathway plays crucial roles in maintenance of the stem cell pool and myogenic differentiation. Focus is usually directed at examining the function of central components of the WNT pathway, including β-CATENIN and the GSK3β complex and TCF/LEF transcription factors, in tissue homeostasis and cancer. Other core components of the WNT pathway though, are three dishevelled (DVL) proteins: membrane associated proteins that propagate WNT signalling from membrane to nucleus. Here we examined DVL function in human myogenesis and the muscle-related cancer alveolar rhabdomyosarcoma. We demonstrate that DVL1 and DVL3 are necessary for efficient proliferation in human myoblasts and are important for timely myogenic differentiation. DVL1 and DVL3 also contribute to regulation of proliferation in rhabdomyosarcoma. DVL1 or DVL3 must be present in the nucleus to regulate proliferation, but they operate through different protein domains: DVL3 requires the DIX and PDZ domains, while DVL1 does not. Importantly, DVL1 and DVL3 activity is independent of markedly increased translocation of β-CATENIN to the nucleus, normally a hallmark of active canonical WNT signalling.
Collapse
Affiliation(s)
- Johanna Pruller
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Nicolas Figeac
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
3
|
Skrzypek K, Adamek G, Kot M, Badyra B, Majka M. Progression and Differentiation of Alveolar Rhabdomyosarcoma Is Regulated by PAX7 Transcription Factor-Significance of Tumor Subclones. Cells 2021; 10:1870. [PMID: 34440639 PMCID: PMC8391953 DOI: 10.3390/cells10081870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Rhabdomyosarcoma (RMS), is the most frequent soft tissue tumor in children that originates from disturbances in differentiation process. Mechanisms leading to the development of RMS are still poorly understood. Therefore, by analysis of two RMS RH30 cell line subclones, one subclone PAX7 negative, while the second one PAX7 positive, and comparison with other RMS cell lines we aimed at identifying new mechanisms crucial for RMS progression. RH30 subclones were characterized by the same STR profile, but different morphology, rate of proliferation, migration activity and chemotactic abilities in vitro, as well as differences in tumor morphology and growth in vivo. Our analysis indicated a different level of expression of adhesion molecules (e.g., from VLA and ICAM families), myogenic microRNAs, such as miR-206 and transcription factors, such as MYOD, MYOG, SIX1, and ID. Silencing of PAX7 transcription factor with siRNA confirmed the crucial role of PAX7 transcription factor in proliferation, differentiation and migration of RMS cells. To conclude, our results suggest that tumor cell lines with the same STR profile can produce subclones that differ in many features and indicate crucial roles of PAX7 and ID proteins in the development of RMS.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland; (G.A.); (M.K.); (B.B.)
| |
Collapse
|
4
|
Vial J, Huchedé P, Fagault S, Basset F, Rossi M, Geoffray J, Soldati H, Bisaccia J, Elsensohn MH, Creveaux M, Neves D, Blay JY, Fauvelle F, Bouquet F, Streichenberger N, Corradini N, Bergeron C, Maucort-Boulch D, Castets P, Carré M, Weber K, Castets M. Low expression of ANT1 confers oncogenic properties to rhabdomyosarcoma tumor cells by modulating metabolism and death pathways. Cell Death Discov 2020; 6:64. [PMID: 32728477 PMCID: PMC7382490 DOI: 10.1038/s41420-020-00302-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most frequent form of pediatric soft-tissue sarcoma. It is divided into two main subtypes: ERMS (embryonal) and ARMS (alveolar). Current treatments are based on chemotherapy, surgery, and radiotherapy. The 5-year survival rate has plateaued at 70% since 2000, despite several clinical trials. RMS cells are thought to derive from the muscle lineage. During development, myogenesis includes the expansion of muscle precursors, the elimination of those in excess by cell death and the differentiation of the remaining ones into myofibers. The notion that these processes may be hijacked by tumor cells to sustain their oncogenic transformation has emerged, with RMS being considered as the dark side of myogenesis. Thus, dissecting myogenic developmental programs could improve our understanding of RMS molecular etiology. We focused herein on ANT1, which is involved in myogenesis and is responsible for genetic disorders associated with muscle degeneration. ANT1 is a mitochondrial protein, which has a dual functionality, as it is involved both in metabolism via the regulation of ATP/ADP release from mitochondria and in regulated cell death as part of the mitochondrial permeability transition pore. Bioinformatics analyses of transcriptomic datasets revealed that ANT1 is expressed at low levels in RMS. Using the CRISPR-Cas9 technology, we showed that reduced ANT1 expression confers selective advantages to RMS cells in terms of proliferation and resistance to stress-induced death. These effects arise notably from an abnormal metabolic switch induced by ANT1 downregulation. Restoration of ANT1 expression using a Tet-On system is sufficient to prime tumor cells to death and to increase their sensitivity to chemotherapy. Based on our results, modulation of ANT1 expression and/or activity appears as an appealing therapeutic approach in RMS management.
Collapse
Affiliation(s)
- J. Vial
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - P. Huchedé
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - S. Fagault
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - F. Basset
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - M. Rossi
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de pharmacie, Marseille, France
| | - J. Geoffray
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - H. Soldati
- Department of Cell Physiology and Metabolism, University of Geneva, CMU, CH-1211 Geneva, Switzerland
| | - J. Bisaccia
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - M. H. Elsensohn
- Service de Biostatistique—Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, F-69003 Lyon, France
| | - M. Creveaux
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | | | - J. Y. Blay
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - F. Fauvelle
- Université Grenoble Alpes, INSERM, US17, MRI facility IRMaGe, 38000 Grenoble, France
| | - F. Bouquet
- Roche Institute, Boulogne-Billancourt, France
| | - N. Streichenberger
- Hospices Civils de Lyon, Lyon, France
- INMG CNRS UMR 5310, INSERM U1217, Université Claude Bernard Lyon, Lyon, France
| | - N. Corradini
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - C. Bergeron
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - D. Maucort-Boulch
- Service de Biostatistique—Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, F-69003 Lyon, France
| | - P. Castets
- Department of Cell Physiology and Metabolism, University of Geneva, CMU, CH-1211 Geneva, Switzerland
| | - M. Carré
- Aix-Marseille Université, Inserm UMR_S 911, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Faculté de pharmacie, Marseille, France
| | - K. Weber
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| | - M. Castets
- Cell death and Childhood Cancers Laboratory—Equipe labellisée LabEx DEV2CAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
5
|
Liu Z, Zhang X, Lei H, Lam N, Carter S, Yockey O, Xu M, Mendoza A, Hernandez ER, Wei JS, Khan J, Yohe ME, Shern JF, Thiele CJ. CASZ1 induces skeletal muscle and rhabdomyosarcoma differentiation through a feed-forward loop with MYOD and MYOG. Nat Commun 2020; 11:911. [PMID: 32060262 PMCID: PMC7021771 DOI: 10.1038/s41467-020-14684-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/14/2020] [Indexed: 11/09/2022] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) is a childhood cancer that expresses myogenic master regulatory factor MYOD but fails to differentiate. Here, we show that the zinc finger transcription factor CASZ1 up-regulates MYOD signature genes and induces skeletal muscle differentiation in normal myoblasts and ERMS. The oncogenic activation of the RAS-MEK pathway suppresses CASZ1 expression in ERMS. ChIP-seq, ATAC-seq and RNA-seq experiments reveal that CASZ1 directly up-regulates skeletal muscle genes and represses non-muscle genes through affecting regional epigenetic modifications, chromatin accessibility and super-enhancer establishment. Next generation sequencing of primary RMS tumors identified a single nucleotide variant in the CASZ1 coding region that potentially contributes to ERMS tumorigenesis. Taken together, loss of CASZ1 activity, due to RAS-MEK signaling or genetic alteration, impairs ERMS differentiation, contributing to RMS tumorigenesis.
Collapse
Affiliation(s)
- Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Norris Lam
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sakereh Carter
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Oliver Yockey
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Max Xu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Edjay R Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jun S Wei
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
6
|
Rossi F, Legnini I, Megiorni F, Colantoni A, Santini T, Morlando M, Di Timoteo G, Dattilo D, Dominici C, Bozzoni I. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene 2019; 38:3843-3854. [PMID: 30670781 PMCID: PMC6544520 DOI: 10.1038/s41388-019-0699-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 01/16/2023]
Abstract
Circular RNAs (circRNAs) represent a class of covalently closed RNAs, derived from non-canonical splicing events, which are expressed in all eukaryotes and often conserved among different species. We previously showed that the circRNA originating from the ZNF609 locus (circ-ZNF609) acts as a crucial regulator of human primary myoblast growth: indeed, the downregulation of the circRNA, and not of its linear counterpart, strongly reduced the proliferation rate of in vitro cultured myoblasts. To deepen our knowledge about circ-ZNF609 role in cell cycle regulation, we studied its expression and function in rhabdomyosarcoma (RMS), a pediatric skeletal muscle malignancy. We found that circ-ZNF609 is upregulated in biopsies from the two major RMS subtypes, embryonal (ERMS) and alveolar (ARMS). Moreover, we discovered that in an ERMS-derived cell line circ-ZNF609 knock-down induced a specific block at the G1-S transition, a strong decrease of p-Akt protein level and an alteration of the pRb/Rb ratio. Regarding p-Akt, we were able to show that circ-ZNF609 acts by counteracting p-Akt proteasome-dependent degradation, thus working as a new regulator of cell proliferation-related pathways. As opposed to ERMS-derived cells, the circRNA depletion had no cell cycle effects in ARMS-derived cells. Since in these cells the p53 gene resulted downregulated, with a concomitant upregulation of its cell cycle-related target genes, we suggest that this could account for the lack of circ-ZNF609 effect in ARMS.
Collapse
Affiliation(s)
- Francesca Rossi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Ivano Legnini
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | | | - Alessio Colantoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Tiziana Santini
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Mariangela Morlando
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Dario Dattilo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Carlo Dominici
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy. .,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.
| |
Collapse
|
7
|
Vicente-García C, Villarejo-Balcells B, Irastorza-Azcárate I, Naranjo S, Acemel RD, Tena JJ, Rigby PWJ, Devos DP, Gómez-Skarmeta JL, Carvajal JJ. Regulatory landscape fusion in rhabdomyosarcoma through interactions between the PAX3 promoter and FOXO1 regulatory elements. Genome Biol 2017; 18:106. [PMID: 28615069 PMCID: PMC5470208 DOI: 10.1186/s13059-017-1225-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/28/2017] [Indexed: 12/25/2022] Open
Abstract
Background The organisation of vertebrate genomes into topologically associating domains (TADs) is believed to facilitate the regulation of the genes located within them. A remaining question is whether TAD organisation is achieved through the interactions of the regulatory elements within them or if these interactions are favoured by the pre-existence of TADs. If the latter is true, the fusion of two independent TADs should result in the rewiring of the transcriptional landscape and the generation of ectopic contacts. Results We show that interactions within the PAX3 and FOXO1 domains are restricted to their respective TADs in normal conditions, while in a patient-derived alveolar rhabdomyosarcoma cell line, harbouring the diagnostic t(2;13)(q35;q14) translocation that brings together the PAX3 and FOXO1 genes, the PAX3 promoter interacts ectopically with FOXO1 sequences. Using a combination of 4C-seq datasets, we have modelled the three-dimensional organisation of the fused landscape in alveolar rhabdomyosarcoma. Conclusions The chromosomal translocation that leads to alveolar rhabdomyosarcoma development generates a novel TAD that is likely to favour ectopic PAX3:FOXO1 oncogene activation in non-PAX3 territories. Rhabdomyosarcomas may therefore arise from cells which do not normally express PAX3. The borders of this novel TAD correspond to the original 5'- and 3'- borders of the PAX3 and FOXO1 TADs, respectively, suggesting that TAD organisation precedes the formation of regulatory long-range interactions. Our results demonstrate that, upon translocation, novel regulatory landscapes are formed allowing new intra-TAD interactions between the original loci involved. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1225-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Barbara Villarejo-Balcells
- Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Ibai Irastorza-Azcárate
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Peter W J Rigby
- Division of Cancer Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Jose L Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain
| | - Jaime J Carvajal
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-UPO-JA, Universidad Pablo de Olavide, Carretera de Utrera km1, 41013, Seville, Spain.
| |
Collapse
|
8
|
El Demellawy D, McGowan-Jordan J, de Nanassy J, Chernetsova E, Nasr A. Update on molecular findings in rhabdomyosarcoma. Pathology 2017; 49:238-246. [PMID: 28256213 DOI: 10.1016/j.pathol.2016.12.345] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumour in children and adolescents. Histologically RMS resembles developing fetal striated skeletal muscle. RMS is stratified into different histological subtypes which appear to influence management plans and patient outcome. Importantly, molecular classification of RMS seems to more accurately capture the true biology and clinical course and prognosis of RMS to guide therapeutic decisions. The identification of PAX-FOXO1 fusion status in RMS is one of the most important updates in the risk stratification of RMS. There are several genes close to PAX that are frequently altered including the RAS family, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. As with most paediatric blue round cell tumours and sarcomas, chemotherapy is the key regimen for RMS therapy. Currently there are no direct inhibitors against PAX-FOXO1 fusion oncoproteins and targeting epigenetic cofactors is limited to clinical trials. Failure of therapy in RMS is usually related to drug resistance and metastatic disease. Through this review we have highlighted most of the molecular aspects in RMS and have attempted to correlate with RMS classification, treatment and prognosis.
Collapse
Affiliation(s)
- Dina El Demellawy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada.
| | - Jean McGowan-Jordan
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Genetics, Children's Hospital of Eastern Ontario, Ontario, Canada
| | - Joseph de Nanassy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada
| | | | - Ahmed Nasr
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Surgery, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Novel Roles for Staufen1 in Embryonal and Alveolar Rhabdomyosarcoma via c-myc-dependent and -independent events. Sci Rep 2017; 7:42342. [PMID: 28211476 PMCID: PMC5314364 DOI: 10.1038/srep42342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/09/2017] [Indexed: 01/19/2023] Open
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma in children and young adults. Rhabdomyosarcomas are skeletal muscle-like tumours that typically arise in muscle beds, and express key myogenic regulatory factors. However, their developmental program remains blocked in the proliferative phase with cells unable to exit the cell cycle to fuse into myotubes. Recently, we uncovered a key role for the RNA-binding protein Staufen1 during myogenic differentiation through the regulation of c-myc translation. Given the known implication of c-myc in rhabdomyosarcoma, we hypothesized in the current work that Staufen1 controls rhabdomyosarcoma tumorigenesis. Here, we report for the first time the novel role of Staufen1 in cancer, specifically in rhabdomyosarcoma. We demonstrate that Staufen1 is markedly upregulated in human rhabdomyosarcoma tumours and cell lines as compared to normal skeletal muscle. Moreover, we show that Staufen1 promotes the tumorigenesis of embryonal and alveolar rhabdomyosarcoma subtypes both in cell culture and in animal models. Finally, our data demonstrate that Staufen1 has differential roles in embryonal versus alveolar rhabdomyosarcoma through the control of proliferative and apoptotic pathways, respectively. Together, these results provide the first evidence for Staufen1’s direct implication in cancer biology. Accordingly, Staufen1 thus represents a novel target for the development of future therapeutic strategies for rhabdomyosarcoma.
Collapse
|
10
|
Rhabdomyosarcoma: Advances in Molecular and Cellular Biology. Sarcoma 2015; 2015:232010. [PMID: 26420980 PMCID: PMC4569767 DOI: 10.1155/2015/232010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/16/2015] [Indexed: 12/19/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in childhood and adolescence. The two major histological subtypes of RMS are alveolar RMS, driven by the fusion protein PAX3-FKHR or PAX7-FKHR, and embryonic RMS, which is usually genetically heterogeneous. The prognosis of RMS has improved in the past several decades due to multidisciplinary care. However, in recent years, the treatment of patients with metastatic or refractory RMS has reached a plateau. Thus, to improve the survival rate of RMS patients and their overall well-being, further understanding of the molecular and cellular biology of RMS and identification of novel therapeutic targets are imperative. In this review, we describe the most recent discoveries in the molecular and cellular biology of RMS, including alterations in oncogenic pathways, miRNA (miR), in vivo models, stem cells, and important signal transduction cascades implicated in the development and progression of RMS. Furthermore, we discuss novel potential targeted therapies that may improve the current treatment of RMS.
Collapse
|
11
|
de Bakker BS, Soerdjbalie-Maikoe V, de Bakker HM. The use of 3D-CT in weapon caused impression fractures of the skull, from a forensic radiological point of view. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jofri.2013.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Keller C, Guttridge DC. Mechanisms of impaired differentiation in rhabdomyosarcoma. FEBS J 2013; 280:4323-34. [PMID: 23822136 DOI: 10.1111/febs.12421] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/17/2013] [Accepted: 07/01/2013] [Indexed: 12/22/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood, with presumed skeletal muscle origins, because of its myogenic phenotype. RMS is composed of two main subtypes, embryonal RMS (eRMS) and alveolar RMS (aRMS). Whereas eRMS histologically resembles embryonic skeletal muscle, the aRMS subtype is more aggressive and has a poorer prognosis. In addition, whereas the genetic profile of eRMS is not well established, aRMS is commonly associated with distinct chromosome translocations that fuse domains of the transcription factors Pax3 and Pax7 to the forkhead family member FOXO1A. Both eRMS and aRMS tumor cells express myogenic markers such as MyoD, but their ability to complete differentiation is impaired. How this impairment occurs is the subject of this review, which will focus on several themes, including signaling pathways that converge on Pax-forkhead gene targets, alterations in MyoD function, epigenetic modifications of myogenic promoters, and microRNAs whose expression patterns in RMS alter key regulatory circuits to help maintain tumor cells in an opportunistically less differentiated state.
Collapse
Affiliation(s)
- Charles Keller
- Pediatric Cancer Biology Program, Papé Family Pediatric Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
13
|
Bianchi C, Zangi R. UHRF1 discriminates against binding to fully-methylated CpG-Sites by steric repulsion. Biophys Chem 2012; 171:38-45. [PMID: 23245651 DOI: 10.1016/j.bpc.2012.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 12/27/2022]
Abstract
Cytosine methylation of CpG dinucleotide sequence is an epigenetic mark on the DNA that regulates gene expression, chromatin structure, and genome stability. Although the enzyme that catalyzes the methylation reaction after replication is Dnmt1, it was found that the protein UHRF1 is essential for maintaining DNA methylation. UHRF1 exhibits preferential binding to hemi-methylated DNA relative to both unmethylated and fully-methylated DNA strands. In this paper we report results from molecular dynamics simulations aiming to elucidate the mechanism for the discrimination of UHRF1 to bind fully-methylated DNA. From alchemical mutation free energy calculations we find that the binding affinity of fully-methylated DNA to UHRF1 is weaker by 17.9kJ/mol relative to the binding of hemi-methylated DNA. Structural analyses reveal, in agreement with the steric clash model, that a methyl group at the C5 position of the target cytosine induces a displacement of the NKR finger domain away from the DNA. As a result a net loss of, approximately, one hydrogen bond between the protein and the DNA is observed. These weakened protein-DNA interactions are located between the target cytosine and the NKR domain, as well as, between the flipped methylcytosine and the binding pocket of the SRA domain. Due to the conformational changes of the fully-methylated bound complex, water molecules intrude the protein-DNA interface and substitute the majority of the hydrogen bonds that are lost.
Collapse
Affiliation(s)
- Caterina Bianchi
- Department of Organic Chemistry I, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, San Sebastian, Spain
| | | |
Collapse
|
14
|
Baan E, de Ronde A, Luchters S, Vyankandondera J, Lange JM, Pollakis G, Paxton WA. HIV type 1 mother-to-child transmission facilitated by distinctive glycosylation sites in the gp120 envelope glycoprotein. AIDS Res Hum Retroviruses 2012; 28:715-24. [PMID: 21916748 DOI: 10.1089/aid.2011.0023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) characteristics associated with mother-to-child transmission (MTCT) are still poorly understood. We studied a cohort of 30 mothers from Rwanda infected with HIV-1 subtype A or C viruses of whom seven infected their children either during gestation or soon after birth. CD4 counts and viral load did not significantly differ between nontransmitting mother (NTM) versus transmitting mother (TM) groups. In contrast to earlier studies we not only analyzed and compared the genotypic characteristics of the V1-V5 region of the gp120 envelope of viruses found in TM and their infected children, but also included data from the NTM. No differences were found with respect to length and number of potential N-glycosylation sites (PNGS) in the V1-V2 and the V1-V5 region. We identified that viruses with a PNGS on positions AA234 and AA339 were preferably transmitted and that viruses with PNGS-N295 showed a disadvantage in transmission. We also showed that the frequency of PNGS-N339 in the viruses of TM and infected children was significantly higher than the frequency in NTM in our cohort and in viruses undergoing sexual transmission while the frequency of PNGS-N295 in children was significantly lower than the frequency in TM and acute horizontal infections. Collectively, our results provide evidence that the presence of the PNGS-N339 site and absence of the PNGS-N295 site in the gp120 envelope confers an advantage to HIV-1 when considering MTCT.
Collapse
Affiliation(s)
- Elly Baan
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, the Netherlands
| | - Anthony de Ronde
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Luchters
- IATEC, International Antiviral Therapy Evaluation Center, Amsterdam, the Netherlands
| | - Joseph Vyankandondera
- CHUK, Centre Hospitalier Universitaire de Kigali and Belgian Technical Cooperation, Kigali, Rwanda
| | - Joep M. Lange
- IATEC, International Antiviral Therapy Evaluation Center, Amsterdam, the Netherlands
| | - Georgios Pollakis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, the Netherlands
| | - William A. Paxton
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Yang XL, Zhang SC, Zhang SW, Wang H. Detection of PAX3/PAX7-FKHR fusion transcripts in rhabdomyosarcoma and other small round cell tumors by 1-step reverse transcriptase polymerase chain reaction: a novel tool for diagnosis and differentiation. Ann Diagn Pathol 2012; 16:107-111. [PMID: 22197543 DOI: 10.1016/j.anndiagpath.2011.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/07/2011] [Accepted: 09/14/2011] [Indexed: 10/14/2022]
Abstract
Rhabdomyosarcoma (RMS) is one of the most frequent soft tissue sarcomas in children. It is sometimes difficult to distinguish it from other small round cell tumors (SRCTs) depending on microscopic observations; although their treatment and prognosis varied widely, the same happens between alveolar RMS (ARMS) and embryonal RMS (ERMS). The role of PAX3/PAX7-FKHR fusion gene has been reported in ARMS but not in ERMS and SRCT. The aim of this study was to explore its value in RMS diagnosis and differentiation. Ninety-eight patients with ARMS (n = 13), ERMS (n = 25), pleomorphic RMS (n = 5), Ewing sarcoma (n = 11), neuroblastoma (n = 18), lymphoma (n = 24), and uncertain SRCT (n = 2) were analyzed. One hundred fifteen RNA samples were extracted from the primary tumor tissue at initial presentation and relapse. One-step reverse transcriptase polymerase chain reaction assays for the PAX3/PAX7-FKHR fusion transcripts were performed. Molecular findings were compared with original histologic diagnoses. PAX3-FKHR fusion transcript was detected in 9 ARMS samples, PAX7-FKHR fusion transcript was detected in 7 ARMS samples, and 2 uncertain SRCTs were detected; none of them were detected in ERMS, Ewing sarcoma, neuroblastoma, and lymphoma. Direct sequencing of PAX3 coding regions revealed a heterozygous mutation A→G (nt1380) at codon 448 (AAT→GAT), resulting in substitution of Asn-448 for Asp. Detection of PAX3/PAX7-FKHR fusion transcripts by 1-step reverse transcriptase polymerase chain reaction is a novel tool for RMS diagnosis and differentiation.
Collapse
Affiliation(s)
- Xiu-Li Yang
- Department of Pharmacology, China Medical University, Shenyang, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Rapa E, Hill SK, Morten KJ, Potter M, Mitchell C. The over-expression of cell migratory genes in alveolar rhabdomyosarcoma could contribute to metastatic spread. Clin Exp Metastasis 2012; 29:419-29. [PMID: 22415709 DOI: 10.1007/s10585-012-9460-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/16/2012] [Indexed: 12/01/2022]
Abstract
Alveolar (ARMS) and Embryonal (ERMS) rhabdomyosarcoma differ in their response to current treatments. The ARMS subtype has a less favourable prognosis and often presents with widespread metastases, while the less metastatic ERMS has a 5 year survival rate of more than 80 %. In this study we investigate gene expression differences that could contribute to the high frequency of metastasis in ARMS. Microarray analysis identified significant differences in DNA repair, cell cycle and cell migration between the two RMS subtypes. Two genes up regulated in ARMS and involved in cell migration; the engulfment and cell motility gene 1 (ELMO1) and NEL-like 1 gene (NELL1) were selected for further investigation. Over-expression of ELMO1 significantly increased cell invasion from 24.70 ± 7% to 93 ± 5.4% in primary myoblasts and from 29.43 ± 2.1% to 87.33 ± 4.1% in the ERMS cell line RD. siRNA knockout of ELMO1 in the ARMS cell line RH30 significantly reduced cell invasion from 88.2 ± 3.8% to 35.2 ± 2.5%. Over-expression of NELL1 significantly increased myoblast invasion from 23.6 ± 6.9% to 100 ± 0.1%, but had no effect on invasion of the ERMS cell line RD. These findings suggest that ELMO1 may play a key role in ARMS metastasis. NELL1 increased invasion in primary myoblasts, but other factors required for it to enhance motility were not present in the RD ERMS cell line. Impairing ELMO1 function by pharmacological or siRNA knockdown could be a highly effective approach to reduce the metastatic spread of RMS.
Collapse
Affiliation(s)
- Elizabeth Rapa
- Department of Obstetrics & Gynaecology, University of Oxford, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | |
Collapse
|
17
|
Juhász A, Makai S, Sebestyén E, Tamás L, Balázs E. Role of conserved non-coding regulatory elements in LMW glutenin gene expression. PLoS One 2011; 6:e29501. [PMID: 22242127 PMCID: PMC3248431 DOI: 10.1371/journal.pone.0029501] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/29/2011] [Indexed: 02/02/2023] Open
Abstract
Transcriptional regulation of LMW glutenin genes were investigated in-silico, using publicly available gene sequences and expression data. Genes were grouped into different LMW glutenin types and their promoter profiles were determined using cis-acting regulatory elements databases and published results. The various cis-acting elements belong to some conserved non-coding regulatory regions (CREs) and might act in two different ways. There are elements, such as GCN4 motifs found in the long endosperm box that could serve as key factors in tissue-specific expression. Some other elements, such as the AACA/TA motifs or the individual prolamin box variants, might modulate the level of expression. Based on the promoter sequences and expression characteristic LMW glutenin genes might be transcribed following two different mechanisms. Most of the s- and i-type genes show a continuously increasing expression pattern. The m-type genes, however, demonstrate normal distribution in their expression profiles. Differences observed in their expression could be related to the differences found in their promoter sequences. Polymorphisms in the number and combination of cis-acting elements in their promoter regions can be of crucial importance in the diverse levels of production of single LMW glutenin gene types.
Collapse
Affiliation(s)
- Angéla Juhász
- Applied Genomics Department, Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, Hungary.
| | | | | | | | | |
Collapse
|
18
|
Liu J, Guzman MA, Pezanowski D, Patel D, Hauptman J, Keisling M, Hou SJ, Papenhausen PR, Pascasio JM, Punnett HH, Halligan GE, de Chadarévian JP. FOXO1-FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Mod Pathol 2011; 24:1327-35. [PMID: 21666686 DOI: 10.1038/modpathol.2011.98] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rhabdomyosarcoma is the most common pediatric soft tissue malignancy. Two major subtypes, alveolar rhabdomyosarcoma and embryonal rhabdomyosarcoma, constitute 20 and 60% of all cases, respectively. Approximately 80% of alveolar rhabdomyosarcoma carry two signature chromosomal translocations, t(2;13)(q35;q14) resulting in PAX3-FOXO1 fusion, and t(1;13)(p36;q14) resulting in PAX7-FOXO1 fusion. Whether the remaining cases are truly negative for gene fusion has been questioned. We are reporting the case of a 9-month-old girl with a metastatic neck mass diagnosed histologically as solid variant alveolar rhabdomyosarcoma. Chromosome analysis showed a t(8;13;9)(p11.2;q14;9q32) three-way translocation as the sole clonal aberration. Fluorescent in situ hybridization (FISH) demonstrated a rearrangement at the FOXO1 locus and an amplification of its centromeric region. Single-nucleotide polymorphism-based microarray analysis illustrated a co-amplification of the FOXO1 gene at 13q14 and the FGFR1 gene at 8p12p11.2, suggesting formation and amplification of a chimerical FOXO1-FGFR1 gene. This is the first report to identify a novel fusion partner FGFR1 for the known anchor gene FOXO1 in alveolar rhabdomyosarcoma.
Collapse
Affiliation(s)
- Jinglan Liu
- Department of Pathology and Laboratory Medicine, St Christopher's Hospital for Children, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rengaswamy V, Kontny U, Rössler J. New approaches for pediatric rhabdomyosarcoma drug discovery: targeting combinatorial signaling. Expert Opin Drug Discov 2011; 6:1103-25. [PMID: 22646865 DOI: 10.1517/17460441.2011.611498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Rhabdomyosarcomas (RMS) are rare heterogeneous pediatric tumors that are treated by surgery, chemotherapy and irradiation. New therapeutic approaches are needed, especially in the advanced stages to target the pro-oncogenic signals. Exploring the molecular interactions of the regulatory signals and their roles in the developmental aspects of different subtypes of RMS is essential to identify potential targets and develop new therapeutic drugs. AREAS COVERED Insights into different drug discovery approaches are discussed with specific emphasis on gene expression profiling, fusion protein, role of small interfering RNA (siRNA)- and microRNA (miRNA)-based discovery approaches, targeting cancer stem cells, and in vitro and in vivo model systems. Targeting some overexpressed signals along with the possibilities of combination therapy of validated drug targets is discussed. Additionally, methods to overcome the limitations of discovery-based research are briefly discussed. EXPERT OPINION Due to drug resistance, ineffective therapy in advanced stages and relapse, there is a demand to explore new drug targets and discovery approaches. Implementing miRNA-based profiling would reveal the extent of miR-based regulation, various biomarkers and potential targets in RMS. A suitable combination of innovative techniques and the use of model systems might assist the identification and validation of novel targets and drug discovery methods. Combining specific drugs along with type-specific target inhibition of overexpressed mRNAs through siRNA approaches would enable the development of personalized therapy.
Collapse
Affiliation(s)
- Venkatesh Rengaswamy
- University Hospital Freiburg, Center for Pediatrics and Adolescent Medicine, Clinic IV: Pediatric Hematology and Oncology, Mathildenstr. 1, 79106 Freiburg , Germany +49 761 270 43000 ; +49 761 270 45180 ;
| | | | | |
Collapse
|
20
|
Roma J, Masià A, Reventós J, Sánchez de Toledo J, Gallego S. Notch pathway inhibition significantly reduces rhabdomyosarcoma invasiveness and mobility in vitro. Clin Cancer Res 2010; 17:505-13. [PMID: 21177409 DOI: 10.1158/1078-0432.ccr-10-0166] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and can be divided into two main subtypes: embryonal and alveolar RMS. Patients with metastatic disease continue to have very poor prognosis although aggressive therapies and recurrences are common in advanced localized disease. The oncogenic potential of the Notch pathway has been established in some cancers of the adult and in some pediatric malignancies. EXPERIMENTAL DESIGN A real-time PCR assay was used to ascertain the expression of several Notch pathway components in a wide panel of RMS and cell lines. Four γ-secretase inhibitors (GSIs) were tested for pathway inhibition and the degree of inhibition was assessed by analysis of Hes1 and Hey1 expression. The putative effects of Notch pathway inhibition were evaluated by wound-healing, matrigel/transwell invasion, cell-cycle, and apoptosis assays. RESULTS The Notch pathway was widely expressed and activated in RMS and underwent substantial inhibition when treated with GSIs or transfected with a dominant negative form of MAML1. RMS cells showed a significant decrease in its mobility and invasiveness when the Notch pathway was properly inhibited; conversely, its inhibition had no noticeable effect on cell cycle or apoptosis. CONCLUSION Pharmacological or genetic blockage of the pathway significantly reduced invasiveness of RMS cell lines, thereby suggesting a possible role of the Notch pathway in the regulation of the metastatic process in RMS.
Collapse
Affiliation(s)
- Josep Roma
- Biomedical Research Unit, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | | |
Collapse
|
21
|
Pinto PI, Matsumura H, Thorne MA, Power DM, Terauchi R, Reinhardt R, Canário AV. Gill transcriptome response to changes in environmental calcium in the green spotted puffer fish. BMC Genomics 2010; 11:476. [PMID: 20716350 PMCID: PMC3091672 DOI: 10.1186/1471-2164-11-476] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 08/17/2010] [Indexed: 12/13/2022] Open
Abstract
Background Calcium ion is tightly regulated in body fluids and for euryhaline fish, which are exposed to rapid changes in environmental [Ca2+], homeostasis is especially challenging. The gill is the main organ of active calcium uptake and therefore plays a crucial role in the maintenance of calcium ion homeostasis. To study the molecular basis of the short-term responses to changing calcium availability, the whole gill transcriptome obtained by Super Serial Analysis of Gene Expression (SuperSAGE) of the euryhaline teleost green spotted puffer fish, Tetraodon nigroviridis, exposed to water with altered [Ca2+] was analysed. Results Transfer of T. nigroviridis from 10 ppt water salinity containing 2.9 mM Ca2+ to high (10 mM Ca2+ ) and low (0.01 mM Ca2+) calcium water of similar salinity for 2-12 h resulted in 1,339 differentially expressed SuperSAGE tags (26-bp transcript identifiers) in gills. Of these 869 tags (65%) were mapped to T. nigroviridis cDNAs or genomic DNA and 497 (57%) were assigned to known proteins. Thirteen percent of the genes matched multiple tags indicating alternative RNA transcripts. The main enriched gene ontology groups belong to Ca2+ signaling/homeostasis but also muscle contraction, cytoskeleton, energy production/homeostasis and tissue remodeling. K-means clustering identified co-expressed transcripts with distinct patterns in response to water [Ca2+] and exposure time. Conclusions The generated transcript expression patterns provide a framework of novel water calcium-responsive genes in the gill during the initial response after transfer to different [Ca2+]. This molecular response entails initial perception of alterations, activation of signaling networks and effectors and suggests active remodeling of cytoskeletal proteins during the initial acclimation process. Genes related to energy production and energy homeostasis are also up-regulated, probably reflecting the increased energetic needs of the acclimation response. This study is the first genome-wide transcriptome analysis of fish gills and is an important resource for future research on the short-term mechanisms involved in the gill acclimation responses to environmental Ca2+ changes and osmoregulation.
Collapse
Affiliation(s)
- Patrícia Is Pinto
- Centro de Ciências do Mar, CIMAR-Laboratório Associado, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
22
|
Han TX, Xu XY, Zhang MJ, Peng X, Du LL. Global fitness profiling of fission yeast deletion strains by barcode sequencing. Genome Biol 2010; 11:R60. [PMID: 20537132 PMCID: PMC2911108 DOI: 10.1186/gb-2010-11-6-r60] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/14/2010] [Accepted: 06/10/2010] [Indexed: 12/25/2022] Open
Abstract
A genome-wide deletion library is a powerful tool for probing gene functions and one has recently become available for the fission yeast Schizosaccharomyces pombe. Here we use deep sequencing to accurately characterize the barcode sequences in the deletion library, thus enabling the quantitative measurement of the fitness of fission yeast deletion strains by barcode sequencing.
Collapse
Affiliation(s)
- Tian Xu Han
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing, 102206, PR China
| | | | | | | | | |
Collapse
|
23
|
Schaaf G, Hamdi M, Zwijnenburg D, Lakeman A, Geerts D, Versteeg R, Kool M. Silencing of SPRY1 triggers complete regression of rhabdomyosarcoma tumors carrying a mutated RAS gene. Cancer Res 2010; 70:762-71. [PMID: 20068162 DOI: 10.1158/0008-5472.can-09-2532] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RAS oncogenes are among the most frequently mutated genes in human cancer, but effective strategies for therapeutic inhibition of the RAS pathway have been elusive. Sprouty1 (SPRY1) is an upstream antagonist of RAS that is activated by extracellular signal-related kinase (ERK), providing a negative feedback loop for RAS signaling, and other evidence suggests that SPRY1 may have a tumor suppressor function. Studies of RAS status in the human childhood tumor rhabdomyosarcoma (RMS) indicated mutations in approximately half of the tumors of the embryonal rhabdomyosarcoma subtype (ERMS) but not the alveolar subtype (ARMS). ERMS tumors also showed overexpression of SPRY1, which was indeed upregulated by mutant RAS. However, we found that, in the presence of mutant RAS, the function of SPRY1 was changed from an antagonist to an agonist of RAS signaling. Thus, SPRY1 supported formation of activated ERK and mitogen-activated protein/ERK kinase and was essential for ERMS cell proliferation and survival. Conversely, silencing of SPRY1 in ERMS cells (but not ARMS cells) abolished their tumorigenicity in mice. Moreover, silencing of SPRY1 caused regression of established ERMS tumors (but not ARMS tumors) formed in xenograft settings. Our findings argue that SPRY1 inhibition can offer a therapeutic strategy to treat childhood RMS and possibly other tumors carrying oncogenic RAS mutations.
Collapse
Affiliation(s)
- Gerben Schaaf
- Department of Human Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
De Giovanni C, Landuzzi L, Nicoletti G, Lollini PL, Nanni P. Molecular and cellular biology of rhabdomyosarcoma. Future Oncol 2009; 5:1449-75. [DOI: 10.2217/fon.09.97] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rhabdomyosarcoma is a group of soft-tissue sarcomas that share features of skeletal myogenesis, but show extensive heterogeneity in histology, age and site of onset, and prognosis. This review matches recent molecular data with biological features of rhabdomyosarcoma. Alterations in molecular pathways, animal models, cell of origin and potential new therapeutic targets are discussed.
Collapse
Affiliation(s)
- Carla De Giovanni
- Department of Experimental Pathology, Cancer Research Section, University of Bologna, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Hematology and Oncological Sciences ‘L. e A. Seragnoli’, Viale Filopanti 22, Bologna 40126, Italy
| | - Patrizia Nanni
- Department of Experimental Pathology, Cancer Research Section, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Hu K, Lee C, Qiu D, Fotovati A, Davies A, Abu-Ali S, Wai D, Lawlor ER, Triche TJ, Pallen CJ, Dunn SE. Small interfering RNA library screen of human kinases and phosphatases identifies polo-like kinase 1 as a promising new target for the treatment of pediatric rhabdomyosarcomas. Mol Cancer Ther 2009; 8:3024-35. [PMID: 19887553 PMCID: PMC2783569 DOI: 10.1158/1535-7163.mct-09-0365] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rhabdomyosarcoma, consisting of alveolar (aRMS) and embryonal (eRMS) subtypes, is the most common type of sarcoma in children. Currently, there are no targeted drug therapies available for rhabdomyosarcoma. In searching for new molecular therapeutic targets, we carried out genome-wide small interfering RNA (siRNA) library screens targeting human phosphatases (n = 206) and kinases (n = 691) initially against an aRMS cell line, RH30. Sixteen phosphatases and 50 kinases were identified based on growth inhibition after 72 hours. Inhibiting polo-like kinase 1 (PLK1) had the most remarkable impact on growth inhibition (approximately 80%) and apoptosis on all three rhabdomyosarcoma cell lines tested, namely, RH30, CW9019 (aRMS), and RD (eRMS), whereas there was no effect on normal muscle cells. The loss of PLK1 expression and subsequent growth inhibition correlated with decreased p-CDC25C and Cyclin B1. Increased expression of WEE 1 was also noted. The induction of apoptosis after PLK1 silencing was confirmed by increased p-H2AX, propidium iodide uptake, and chromatin condensation, as well as caspase-3 and poly(ADP-ribose) polymerase cleavage. Pediatric Ewing's sarcoma (TC-32), neuroblastoma (IMR32 and KCNR), and glioblastoma (SF188) models were also highly sensitive to PLK1 inhibition. Finally, based on cDNA microarray analyses, PLK1 mRNA was overexpressed (>1.5 fold) in 10 of 10 rhabdomyosarcoma cell lines and in 47% and 51% of primary aRMS (17 of 36 samples) and eRMS (21 of 41 samples) tumors, respectively, compared with normal muscles. Similarly, pediatric Ewing's sarcoma, neuroblastoma, and osteosarcoma tumors expressed high PLK1. We conclude that PLK1 could be a promising therapeutic target for the treatment of a wide range of pediatric solid tumors including rhabdomyosarcoma.
Collapse
Affiliation(s)
- Kaiji Hu
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cathy Lee
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dexin Qiu
- Cell Phosphosignaling Laboratory, Departments of Pediatrics, Pathology and Laboratory Medicine, and Experimental Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abbas Fotovati
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alastair Davies
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samah Abu-Ali
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Wai
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Elizabeth R. Lawlor
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Timothy J. Triche
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Catherine J. Pallen
- Cell Phosphosignaling Laboratory, Departments of Pediatrics, Pathology and Laboratory Medicine, and Experimental Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sandra E. Dunn
- Laboratory for Oncogenomic Research, Departments of Pediatrics, Experimental Medicine, and Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Tang ZL, Zhang XJ, Yang SL, Mu YL, Cui WT, Ao H, Li K. The chromosomal localization, expression pattern and polymorphism analysis of porcine FSCN1 gene differently expressed from LongSAGE library. Mol Biol Rep 2009; 37:2361-7. [PMID: 19688270 DOI: 10.1007/s11033-009-9742-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/05/2009] [Indexed: 01/11/2023]
Abstract
Fascin homologue 1 (FSCN1) has established roles in cell adhesion, motility, and cell-cell interactions. Our LongSAGE analysis suggested that FSCN1 was potentially differentially expressed in prenatal pig skeletal muscle. We have cloned the genomic DNA and mRNA sequence of FSCN1 gene and mapped it to SSC3p16-p17. The FSCN1 gene was differently expressed during prenatal skeletal muscle development and exhibited different expression pattern between Tongcheng and Landrace pigs. In Tongcheng pigs, FSCN1 expression was similar at 33 and 65 days post conception (dpc), and then sharply increased to a peak at 90 dpc. In Landrace pigs, however, expression increased between 33 and 65 dpc, peaked at 65 dpc, and was down-regulated thereafter. Significantly different expression levels between Tongcheng and Landrace were observed at 65 and 90 dpc. In postnatal pigs, it was strongly expressed only in the brain, but weakly in skeletal muscle and other tissues. We initially identified 32 SNPs through genomic DNA of FSCN1 gene. Association analysis suggested that the 6840(C/T) mutation was significantly associated with the age at market weight (AGE) (p = 0.0004), average day gain from birth to market (ADG1) (p = 0.0002), and average day gain at testing period (ADG2) (p < 0.0001). Our study suggested that FSCN1 gene plays an in prenatal skeletal muscle development and was a candidate gene for meat production trait.
Collapse
Affiliation(s)
- Zh L Tang
- Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Hornshøj H, Bendixen E, Conley LN, Andersen PK, Hedegaard J, Panitz F, Bendixen C. Transcriptomic and proteomic profiling of two porcine tissues using high-throughput technologies. BMC Genomics 2009; 10:30. [PMID: 19152685 PMCID: PMC2633351 DOI: 10.1186/1471-2164-10-30] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 01/19/2009] [Indexed: 02/03/2023] Open
Abstract
Background The recent development within high-throughput technologies for expression profiling has allowed for parallel analysis of transcriptomes and proteomes in biological systems such as comparative analysis of transcript and protein levels of tissue regulated genes. Until now, such studies of have only included microarray or short length sequence tags for transcript profiling. Furthermore, most comparisons of transcript and protein levels have been based on absolute expression values from within the same tissue and not relative expression values based on tissue ratios. Results Presented here is a novel study of two porcine tissues based on integrative analysis of data from expression profiling of identical samples using cDNA microarray, 454-sequencing and iTRAQ-based proteomics. Sequence homology identified 2.541 unique transcripts that are detectable by both microarray hybridizations and 454-sequencing of 1.2 million cDNA tags. Both transcript-based technologies showed high reproducibility between sample replicates of the same tissue, but the correlation across these two technologies was modest. Thousands of genes being differentially expressed were identified with microarray. Out of the 306 differentially expressed genes, identified by 454-sequencing, 198 (65%) were also found by microarray. The relationship between the regulation of transcript and protein levels was analyzed by integrating iTRAQ-based proteomics data. Protein expression ratios were determined for 354 genes, of which 148 could be mapped to both microarray and 454-sequencing data. A comparison of the expression ratios from the three technologies revealed that differences in transcript and protein levels across heart and muscle tissues are positively correlated. Conclusion We show that the reproducibility within cDNA microarray and 454-sequencing is high, but that the agreement across these two technologies is modest. We demonstrate that the regulation of transcript and protein levels across identical tissue samples is positively correlated when the tissue expression ratios are used for comparison. The results presented are of interest in systems biology research in terms of integration and analysis of high-throughput expression data from mammalian tissues.
Collapse
Affiliation(s)
- Henrik Hornshøj
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, Aarhus University, Tjele, Denmark.
| | | | | | | | | | | | | |
Collapse
|
28
|
Dal Monego S, Pallavicini A, Graziosi G, Stefanon B. Serial Analysis of Gene Expression (SAGE) in the Skeletal Muscle of Pig. ITALIAN JOURNAL OF ANIMAL SCIENCE 2009. [DOI: 10.4081/ijas.2009.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Qian C, Li S, Jakoncic J, Zeng L, Walsh MJ, Zhou MM. Structure and hemimethylated CpG binding of the SRA domain from human UHRF1. J Biol Chem 2008; 283:34490-4. [PMID: 18945682 DOI: 10.1074/jbc.c800169200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human UHRF1 (ubiquitin-like PHD and RING finger 1) functions to maintain CpG DNA methylation patterns through DNA replication by co-localizing with the DNA methyltransferase DNMT1 at chromatin in mammals. Recent studies show that UHRF1 binds selectively to hemimethylated CpG via its conserved SRA (SET- and RING finger-associated) domain. However, the underlying molecular mechanism is not known. Here, we report a 1.95 A resolution crystal structure of the SRA domain of human UHRF1. Using NMR structure-guided mutagenesis, electrophoretic mobility shift assay, and fluorescence anisotropy analysis, we determined key amino acid residues for methyl-DNA binding that are conserved in the SRA domain.
Collapse
Affiliation(s)
- Chengmin Qian
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York University, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
30
|
Linardic CM. PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett 2008; 270:10-8. [PMID: 18457914 PMCID: PMC2575376 DOI: 10.1016/j.canlet.2008.03.035] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 01/22/2023]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. The predominant histologic variants of this disease are termed embryonal (eRMS) and alveolar (aRMS), based on their appearance under light microscopy. Of the two, aRMS is associated with an more aggressive disease pattern and a higher mortality, mandating a better understanding of this cancer at the molecular level. The PAX3-FOXO1 fusion gene, resulting from the stable reciprocal translocation of chromosomes 2 and 13, is a signature genetic change found only in aRMS, and thought to be responsible at least in part for its malignant phenotype. This review will discuss the clinical significance of the PAX3-FOXO1 fusion gene, the pertinent historical and current models used to study its oncogenic contributions, the transcriptional targets that are thought to mediate these contributions, and the cellular mechanisms impacted by PAX3-FOXO1 that ultimately lead to aRMS.
Collapse
Affiliation(s)
- Corinne M Linardic
- Department of Pediatrics and Pharmacology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Rybak JN, Trachsel E, Scheuermann J, Neri D. Ligand-based vascular targeting of disease. ChemMedChem 2008; 2:22-40. [PMID: 17154429 DOI: 10.1002/cmdc.200600181] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review illustrates the basic principles of ligand-based vascular targeting and presents some of the most advanced results obtained in this field, not only in terms of biopharmaceuticals, which are currently being investigated in clinical and preclinical studies, but also in terms of enabling technologies that facilitate target and ligand discovery. Whereas most of the vascular targeting research activities have so far concentrated on tumoral angiogenesis, the development of non-oncological applications has recently gained momentum and is likely to become an important area of modern pharmaceutical research.
Collapse
Affiliation(s)
- Jascha-N Rybak
- ETH Zürich, Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | | | | | | |
Collapse
|
32
|
Abstract
The paired box genes are a family of nine developmental control genes, which in human beings (PAX) and mice (Pax) encode nuclear transcription factors. The temporal and spatial expressions of these highly conserved genes are tightly regulated during foetal development including organogenesis. PAY/Paxgenes are switched off during the terminal differentiation of most structures. Specific mutations within a number of PAX/Pax genes lead to developmental abnormalities in both human beings and mice. Mutation in PAX3 causes Waardenburg syndrome, and craniofacial-deafness-hand syndrome. The Splotch phenotype in mouse exhibits defects in neural crest derivatives such as, pigment cells, sympathetic ganglia and cardiac neural crest-derived structures. The PAX family also plays key roles in several human malignancies. In particular, PAX3 is involved in rhabdomyosarcoma and tumours of neural crest origin, including melanoma and neuroblastoma. This review critically evaluates the roles of PAX/Pax in oncogenesis. It especially highlights recent advances in knowledge of how their genetic alterations directly interfere in the transcriptional networks that regulate cell differentiation, proliferation, migration and survival and may contribute to oncogenesis.
Collapse
Affiliation(s)
- Qiuyu Wang
- School of Biology, Chemistry and Health Science, Manchester Metropolitan University, and Department of Pathology Sciences, Christie Hospital, Manchester, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Schaaf GJ, van Ruissen F, van Kampen A, Kool M, Ruijter JM. Statistical comparison of two or more SAGE libraries: one tag at a time. Methods Mol Biol 2008; 387:151-68. [PMID: 18287630 DOI: 10.1007/978-1-59745-454-4_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several statistical tests have been introduced for the comparison of serial analysis of gene expression (SAGE) libraries to quantitatively analyze the differential expression of genes. As each SAGE library is only one measurement, the necessary information on biological variation or experimental precision is lacking. Therefore, each test includes its own approach to derive such a variance measure from the data set or a theoretical distribution. Because the confidence in tag counts depends on the library size, a test between two or more libraries should be based on original tag counts. When groups of libraries are compared, the test should determine that the proportion of a specific tag in all libraries is the same (null hypothesis), but also offer the possibility to detect specific differences between individual libraries and groups of libraries. The Z-test and the G-test encompass these characteristics and are described for the comparison of two libraries and (two or more) groups of libraries, respectively.
Collapse
Affiliation(s)
- Gerben J Schaaf
- Department of Human Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Abstract
Rhabdomyosarcoma (RMS) is one of the most common extracranial solid tumours in children. Embryonal and alveolar subtypes of RMS present completely different genetic abnormalities. Embryonal RMS (eRMS) is characterised by loss of heterozygosity on the short arm of chromosome 11 (11p15.5), suggesting inactivation of a tumour-suppressor gene. In contrast, the majority (80-85%) of the alveolar RMS (aRMS) have the reciprocal chromosomal translocations 't(2;13)(q35;q14) or t(1;13)(p36;q14). t(2;13) appears in approximately 70% of patients with the alveolar subtype. The molecular counterpart of this translocation consists of the generation of a chimeric fusion gene involving the /PAX3/ gene located in chromosome 2 and a member of the fork-head family, /FOXO1/ (formerly /FKHR/), located in chromosome 13. A less frequent variant translocation t(1;13) involves another PAX family gene, /PAX7/, located in chromosome 1 and /FOXO1/ and is present in 10-15% of cases of the alveolar subtype in RMS. Recently, many studies focused on cancer have demonstrated the great potential of the genomic approach based on tumour expression profiles. These technologies permit the identification of new regulatory pathways. Molecular detection of minimal disease by a sensitive method could contribute to better treatment stratification in these patients. In RMS, the advances in the knowledge of the biological characteristics of the tumour are slowly translated into the clinical management of children with this tumour.
Collapse
Affiliation(s)
- S Gallego Melcón
- Servicio de Oncología y Hematología Pediátrica, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | | |
Collapse
|
35
|
The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene 2007; 27:2187-97. [PMID: 17934516 DOI: 10.1038/sj.onc.1210855] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inverted CCAAT box-binding protein of 90 kDa (ICBP90) is over-expressed in several types of cancer, including breast, prostate and lung cancers. In search for proteins that interact with the set and ring-associated (SRA) domain of ICBP90, we used the two-hybrid system and screened a placental cDNA library. Several clones coding for a new domain of DNMT1 were found. The interaction, between the ICBP90 SRA domain and the DNMT1 domain, has been confirmed with purified proteins by glutathione-S-transferase pull-down experiments. We checked whether ICBP90 and DNMT1 are present in the same macro-molecular complexes in Jurkat cells and immortalized human vascular smooth muscle cells (HVTs-SM1). Co-immunoprecipitation experiments showed that ICBP90 and DNMT1 are present in the same molecular complex, which was further confirmed by co-localization experiments as assessed by immunocytochemistry. Downregulation of ICBP90 and DNMT1 decreased VEGF gene expression, a major pro-angiogenic factor, whereas those of p16(INK4A) gene and RB1 gene were significantly enhanced. Together, these results indicate that DNMT1 and ICBP90 are involved in VEGF gene expression, possibly via an interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 and an upregulation of p16(INK4A). They further suggest a new role of ICBP90 in the relationship between histone ubiquitination and DNA methylation in the context of tumoral angiogenesis and tumour suppressor genes silencing.
Collapse
|
36
|
Bronner C, Achour M, Arima Y, Chataigneau T, Saya H, Schini-Kerth VB. The UHRF family: Oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther 2007; 115:419-34. [PMID: 17658611 DOI: 10.1016/j.pharmthera.2007.06.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 12/21/2022]
Abstract
In this paper, we review the current literature about the UHRF family that in particular includes the UHRF1 and UHRF2 genes. Its members play a fundamental role in cell proliferation through different structural domains. These domains include a ubiquitin-like domain (NIRF_N), a plant homeodomain (PHD) domain, a SRA domain and a RING domain. The SRA domain has only been observed in this family probably conferring unique properties to it. The unique enzymatic activity so far identified in this family involves the RING finger that contains a ubiquitin E3 ligase activity toward, for instance, histones. The physiological roles played by the UHRF family are most likely exerted during embryogenic development and when proliferation is required in adults. Interestingly, UHRF members are putative oncogenes regulated by tumor suppressor genes, but they exert also a feedback control on these latter. Finally, we propose some new roles for this family, including regulation and/or inheritance of the epigenetic code. Alteration of these regulatory mechanisms, such as those occurring in cancer cells, may be involved in carcinogenesis. The reasons why the UHRF family could be an interesting target for developing anticancer drugs is also developed.
Collapse
Affiliation(s)
- Christian Bronner
- CNRS UMR 7175, Département de Pharmacologie et Pharmacochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | | | | | | | | | | |
Collapse
|
37
|
Romualdi C, De Pittà C, Tombolan L, Bortoluzzi S, Sartori F, Rosolen A, Lanfranchi G. Defining the gene expression signature of rhabdomyosarcoma by meta-analysis. BMC Genomics 2006; 7:287. [PMID: 17090319 PMCID: PMC1636648 DOI: 10.1186/1471-2164-7-287] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 11/07/2006] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Rhabdomyosarcoma is a highly malignant soft tissue sarcoma in childhood and arises as a consequence of regulatory disruption of the growth and differentiation pathways of myogenic precursor cells. The pathogenic pathways involved in this tumor are mostly unknown and therefore a better characterization of RMS gene expression profile would represent a considerable advance. The availability of publicly available gene expression datasets have opened up new challenges especially for the integration of data generated by different research groups and different array platforms with the purpose of obtaining new insights on the biological process investigated. RESULTS In this work we performed a meta-analysis on four microarray and two SAGE datasets of gene expression data on RMS in order to evaluate the degree of agreement of the biological results obtained by these different studies and to identify common regulatory pathways that could be responsible of tumor growth. Regulatory pathways and biological processes significantly enriched has been investigated and a list of differentially meta-profiles have been identified as possible candidate of aggressiveness of RMS. CONCLUSION Our results point to a general down regulation of the energy production pathways, suggesting a hypoxic physiology for RMS cells. This result agrees with the high malignancy of RMS and with its resistance to most of the therapeutic treatments. In this context, different isoforms of the ANT gene have been consistently identified for the first time as differentially expressed in RMS. This gene is involved in anti-apoptotic processes when cells grow in low oxygen conditions. These new insights in the biological processes responsible of RMS growth and development demonstrate the effective advantage of the use of integrated analysis of gene expression studies.
Collapse
Affiliation(s)
- Chiara Romualdi
- CRIBI Biotechnology Centre and Biology Department, University of Padova, Padova, Italy
| | - Cristiano De Pittà
- CRIBI Biotechnology Centre and Biology Department, University of Padova, Padova, Italy
| | - Lucia Tombolan
- CRIBI Biotechnology Centre and Biology Department, University of Padova, Padova, Italy
| | | | - Francesca Sartori
- Clinica di Oncoematologia Pediatrica, Azienda Ospedaliera-University of Padova, Padova, Italy
| | - Angelo Rosolen
- Clinica di Oncoematologia Pediatrica, Azienda Ospedaliera-University of Padova, Padova, Italy
| | - Gerolamo Lanfranchi
- CRIBI Biotechnology Centre and Biology Department, University of Padova, Padova, Italy
| |
Collapse
|
38
|
Ten Asbroek ALMA, Van Ruissen F, Ruijter JM, Baas F. Comparison of Schwann cell and sciatic nerve transcriptomes indicates that mouse is a valid model for the human peripheral nervous system. J Neurosci Res 2006; 84:542-52. [PMID: 16786575 DOI: 10.1002/jnr.20966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High-throughput gene expression analyses of murine models of the peripheral nervous system (PNS), and its cellular components, have yielded enormous amounts of expression data of the PNS in various conditions. These data provided clues for future research directions to further decipher this complex organ in relation to acquired and inherited PNS diseases. Various studies addressing the validity of mouse models for human conditions in other tissues and cell types have indicated that in many cases the mouse model only poorly represents the human situation. To determine how well the mouse can serve as model to study the biological processes occurring in the PNS, we compared the gene expression profiles that we generated for mouse and human sciatic nerve and cultured Schwann cells derived thereof. A two-way analysis based on the differentially expressed genes between the sciatic nerve and the cultured Schwann cell, and which takes into account the differential expression between mouse and man, indicates that the human PNS is well represented by that of the mouse in terms of the "biological processes" ontology.
Collapse
|
39
|
Rosinski-Chupin I, Briolay J, Brouilly P, Perrot S, Gomez SM, Chertemps T, Roth CW, Keime C, Gandrillon O, Couble P, Brey PT. SAGE analysis of mosquito salivary gland transcriptomes during Plasmodium invasion. Cell Microbiol 2006; 9:708-24. [PMID: 17054438 DOI: 10.1111/j.1462-5822.2006.00822.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Invasion of the vector salivary glands by Plasmodium is a critical step for malaria transmission. To describe salivary gland cellular responses to sporozoite invasion, we have undertaken the analysis of Anopheles gambiae salivary gland transcriptome using Serial Analysis of Gene Expression (SAGE). Statistical analysis of the more than 160000 sequenced tags generated from four libraries, two from glands infected by Plasmodium berghei, two from glands of controls, revealed that at least 57 Anopheles genes are differentially expressed in infected salivary glands. Among the 37 immune-related genes identified by SAGE tags, four (Defensin1, GNBP, Serpin6 and Cecropin2) were found to be upregulated during salivary gland invasion, while five genes encoding small secreted proteins display induction patterns strongly reminiscent of that of Cecropin2. Invasion by Plasmodium has also an impact on the expression of genes involved in transport, lipid and energy metabolism, suggesting that the sporozoite may exploit the metabolism of its host. In contrast, protein composition of saliva is predicted to be only slightly modified after infection. This study, which is the first transcriptome analysis of the salivary gland response to Plasmodium infection, provides a basis for a better understanding of Plasmodium/Anopheles salivary gland interactions.
Collapse
Affiliation(s)
- Isabelle Rosinski-Chupin
- Unité de Biochimie et Biologie Moléculaire des Insectes, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
De Pittà C, Tombolan L, Albiero G, Sartori F, Romualdi C, Jurman G, Carli M, Furlanello C, Lanfranchi G, Rosolen A. Gene expression profiling identifies potential relevant genes in alveolar rhabdomyosarcoma pathogenesis and discriminates PAX3-FKHR positive and negative tumors. Int J Cancer 2006; 118:2772-81. [PMID: 16381018 DOI: 10.1002/ijc.21698] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We analyzed the expression signatures of 14 tumor biopsies from children affected by alveolar rhabdomyosarcoma (ARMS) to identify genes correlating to biological features of this tumor. Seven of these patients were positive for the PAX3-FKHR fusion gene and 7 were negative. We used a cDNA platform containing a large majority of probes derived from muscle tissues. The comparison of transcription profiles of tumor samples with fetal skeletal muscle identified 171 differentially expressed genes common to all ARMS patients. The functional classification analysis of altered genes led to the identification of a group of transcripts (LGALS1, BIN1) that may be relevant for the tumorigenic processes. The muscle-specific microarray platform was able to distinguish PAX3-FKHR positive and negative ARMS through the expression pattern of a limited number of genes (RAC1, CFL1, CCND1, IGFBP2) that might be biologically relevant for the different clinical behavior and aggressiveness of the 2 ARMS subtypes. Expression levels for selected candidate genes were validated by quantitative real-time reverse-transcription PCR.
Collapse
Affiliation(s)
- Cristiano De Pittà
- CRIBI Biotechnology Centre and Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Carey KA, Segal D, Klein R, Sanigorski A, Walder K, Collier GR, Cameron-Smith D. Identification of novel genes expressed during rhabdomyosarcoma differentiation using cDNA microarrays. Pathol Int 2006; 56:246-55. [PMID: 16669873 DOI: 10.1111/j.1440-1827.2006.01958.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhabdomyosarcomas (RMS) are highly aggressive tumors that are thought to arise as a consequence of the regulatory disruption of the growth and differentiation of skeletal muscle progenitor cells. Normal myogenesis is characterized by the expression of the myogenic regulatory factor gene family but, despite their expression in RMS, these tumor cells fail to complete the latter stages of myogenesis. The RMS cell line RD-A was treated with 12-O-tetradecanoylphorbol-13-acetate to induce differentiation and cultured for 10 days. RNA was extracted on days 1, 3, 6, 8 and 10. A human skeletal muscle cDNA microarray was developed and used to analyze the global gene expression of RMS tumors over the time-course of differentiation. As a comparison, the genes identified were subsequently examined during the differentiated primary human skeletal muscle cultures. Prothymosin alpha (PTMA), and translocase of inner mitochondrial membrane 10 (Tim10), two genes not previously implicated in RMS, showed reduced expression during differentiation. Marked differences in the expression of PTMA and Tim10 were observed during the differentiation of human primary skeletal muscle cells. These results identify several new genes with potential roles in the myogenic arrest present in rhabdomyosarcoma. PTMA expression in RMS biopsy samples might prove to be an effective diagnostic marker for this disease.
Collapse
Affiliation(s)
- Kate A Carey
- Center for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Rhabdomyosarcoma is a highly malignant, small blue cell tumor characterized by muscle differentiation. With modern treatment, more than 70% of children and adolescents with this disease are cured. Adequate biopsy to obtain sufficient tissue for accurate diagnosis and molecular characterization is critical. Patients must be assessed for tumor extent; the Intergroup Rhabdomyosarcoma Study (IRS) clinical group and Staging system is universally applied in North America. Multidisciplinary therapy is necessary to maximize cure rates. Local control relies on complete surgical excision when possible; those whose tumors are not completely excised and those with alveolar histology tumors require local irradiation to maximize local control. In North America, vincristine (Oncovin); Eli Lilly and Company, Indianapolis, http://www.lilly.com), dactinomycin (Cosmegen); Merck & Co., Inc., Whitehouse Station, NJ, http://www.merck.com), and cyclophosphamide are the standard chemotherapy agents. The IRS has used therapeutic window studies to confirm the predictive nature of preclinical xenograft models and to identify several new single agents and combinations of agents with activity in high-risk patient groups. Despite these efforts, the outcome for these high-risk patients remains poor. The next generation of Children's Oncology Group studies will evaluate the efficacy of topoisomerase-I inhibitors and dose-compression therapy approaches. New advances in molecular characterization of tumors, including gene-expression analysis, may identify new therapeutic targets that can be exploited by expanded preclinical drug discovery efforts, and hold the promise of revolutionizing risk-based therapies.
Collapse
|
43
|
van Ruissen F, Ruijter JM, Schaaf GJ, Asgharnegad L, Zwijnenburg DA, Kool M, Baas F. Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips. BMC Genomics 2005; 6:91. [PMID: 15955238 PMCID: PMC1186021 DOI: 10.1186/1471-2164-6-91] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Accepted: 06/14/2005] [Indexed: 12/20/2022] Open
Abstract
Background Serial Analysis of Gene Expression (SAGE) and microarrays have found awidespread application, but much ambiguity exists regarding the evaluation of these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce the need for duplicate experiments and facilitate a more extensive exchange of data within the research community. This requires a measure for the correspondence of the different gene expression platforms. To date, a number of cross-platform evaluations (including a few studies using SAGE and Affymetrix GeneChips) have been conducted showing a variable, but overall low, concordance. This study evaluates these overall measures and introduces the between-ratio difference as a concordance measure pergene. Results In this study, gene expression measurements of Unigene clusters represented by both Affymetrix GeneChips HG-U133A and SAGE were compared using two independent RNA samples. After matching of the data sets the final comparison contains a small data set of 1094 unique Unigene clusters, which is unbiased with respect to expression level. Different overall correlation approaches, like Up/Down classification, contingency tables and correlation coefficients were used to compare both platforms. In addition, we introduce a novel approach to compare two platforms based on the calculation of differences between expression ratios observed in each platform for each individual transcript. This approach results in a concordance measure per gene (with statistical probability value), as opposed to the commonly used overall concordance measures between platforms. Conclusion We can conclude that intra-platform correlations are generally good, but that overall agreement between the two platforms is modest. This might be due to the binomially distributed sampling variation in SAGE tag counts, SAGE annotation errors and the intensity variation between probe sets of a single gene in Affymetrix GeneChips. We cannot identify or advice which platform performs better since both have their (dis)-advantages. Therefore it is strongly recommended to perform follow-up studies of interesting genes using additional techniques. The newly introduced between-ratio difference is a filtering-independent measure for between-platform concordance. Moreover, the between-ratio difference per gene can be used to detect transcripts with similar regulation on both platforms.
Collapse
Affiliation(s)
- Fred van Ruissen
- Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jan M Ruijter
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gerben J Schaaf
- Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lida Asgharnegad
- Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Danny A Zwijnenburg
- Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Marcel Kool
- Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Frank Baas
- Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|