1
|
Ran Z, Mu BR, Wang DM, Xin-Huang, Ma QH, Lu MH. Parkinson's Disease and the Microbiota-Gut-Brain Axis: Metabolites, Mechanisms, and Innovative Therapeutic Strategies Targeting the Gut Microbiota. Mol Neurobiol 2025; 62:5273-5296. [PMID: 39531191 DOI: 10.1007/s12035-024-04584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
The human gut microbiota is diverse and abundant and plays important roles in regulating health by participating in metabolism and controlling physiological activities. The gut microbiota and its metabolites have been shown to affect the functioning of the gut and central nervous system through the microbiota-gut-brain axis. It is well established that microbiota play significant roles in the pathogenesis and progression of Parkinson's disease (PD). Disorders of the intestinal microbiota and altered metabolite levels are closely associated with PD. Here, the changes in intestinal microbiota and effects of metabolites in patients with PD are reviewed. Potential mechanisms underlying intestinal microbiota disorders in the pathogenesis of PD are briefly discussed. Additionally, we outline the current strategies for the treatment of PD that target the gut microbiota, emphasizing the development of promising novel strategies.
Collapse
Affiliation(s)
- Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dong-Mei Wang
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xin-Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215021, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Wang XL, Xu YT, Zhang SL, Zhu XY, Zhang HX, Liu YJ. Hydrogen sulfide inhibits alveolar type II cell senescence and limits pulmonary fibrosis via promoting MDM2-mediated p53 degradation. Acta Physiol (Oxf) 2024; 240:e14059. [PMID: 37987182 DOI: 10.1111/apha.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
AIM Senescence of alveolar type II (AT2) cells is an important driver of pulmonary fibrosis. This study aimed to investigate whether and how dysregulation of hydrogen sulfide (H2 S) production affected AT2 cell senescence, and then explored the effect of H2 S on the communication between AT2 and fibroblasts. METHODS ICR mice were intratracheally administered with bleomycin (3 mg/kg). Sodium hydrosulfide (NaHS, 28 μmol/kg/d) was intraperitoneally injected for 2 weeks. The H2 S-generating enzyme cystathionine-β-synthase (CBS) knockout heterozygous (CBS+/- ) mice were used as a low H2 S production model. RESULTS Analysis of microarray datasets revealed downregulation of H2 S-generating enzymes in lung tissues of patients with pulmonary fibrosis. Decreased H2 S production was correlated with higher levels of cell senescence markers p53 and p21 in bleomycin-induced lung fibrosis. CBS+/- mice exhibited increased levels of p53 and p21. The numbers of AT2 cells positive for p53 and p21 were increased in CBS+/- mice as compared to control mice. H2 S donor NaHS attenuated bleomycin-induced AT2 cell senescence both in vivo and in vitro. H2 S donor suppressed bleomycin-induced senescence-associated secretory phenotype (SASP) of AT2 cells via inhibiting p53/p21 pathway, consequently suppressing proliferation and myofibroblast transdifferentiation of fibroblasts. Mechanically, H2 S suppressed p53 expression by enhancing the mouse double-minute 2 homologue (MDM2)-mediated ubiquitination and degradation of p53. CONCLUSION H2 S inactivated p53-p21 pathway, consequently suppressing AT2 cell senescence as well as cell communication between senescent AT2 cells and fibroblasts. Aberrant H2 S synthesis may contribute to the development of pulmonary fibrosis through promoting the activation loop involving senescent AT2 cells and activated fibroblasts.
Collapse
Affiliation(s)
- Xiu-Li Wang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Yi-Tong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shu-Li Zhang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Hong-Xia Zhang
- Department of Geriatrics, Kongjiang Hospital, Shanghai, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
3
|
Chen H, Li K, Qin Y, Zhou J, Li T, Qian L, Yang C, Ji X, Wu D. Recent advances in the role of endogenous hydrogen sulphide in cancer cells. Cell Prolif 2023; 56:e13449. [PMID: 36929586 PMCID: PMC10472536 DOI: 10.1111/cpr.13449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Hydrogen sulphide (H2 S) is a gaseous neurotransmitter that can be self-synthesized by living organisms. With the deepening of research, the pathophysiological mechanisms of endogenous H2 S in cancer have been increasingly elucidated: (1) promote angiogenesis, (2) stimulate cell bioenergetics, (3) promote migration and proliferation thereby invasion, (4) inhibit apoptosis and (5) activate abnormal cell cycle. However, the increasing H2 S levels via exogenous sources show the opposite trend. This phenomenon can be explained by the bell-shaped pharmacological model of H2 S, that is, the production of endogenous (low concentration) H2 S promotes tumour growth while the exogenous (high concentration) H2 S inhibits tumour growth. Here, we review the impact of endogenous H2 S synthesis and metabolism on tumour progression, summarize the mechanism of action of H2 S in tumour growth, and discuss the possibility of H2 S as a potential target for tumour treatment.
Collapse
Affiliation(s)
- Hao‐Jie Chen
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Ke Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Yang‐Zhe Qin
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Jing‐Jing Zhou
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Tao Li
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Lei Qian
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
| | - Chang‐Yong Yang
- School of Nursing and HealthHenan UniversityKaifengHenan475004China
| | - Xin‐Ying Ji
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
| | - Dong‐Dong Wu
- School of Basic Medical SciencesHenan UniversityKaifengHenan475004China
- Henan International Joint Laboratory for Nuclear Protein RegulationHenan UniversityKaifengHenan475004China
- School of StomatologyHenan UniversityKaifengHenan475004China
| |
Collapse
|
4
|
Gupta K, Mathew AB, Chakrapani H, Saini DK. H 2S contributed from CSE during cellular senescence suppresses inflammation and nitrosative stress. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119388. [PMID: 36372112 DOI: 10.1016/j.bbamcr.2022.119388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Aging involves the time-dependent deterioration of physiological functions attributed to various intracellular and extracellular factors. Cellular senescence is akin to aging and involves alteration in redox homeostasis. This is primarily marked by increased reactive oxygen/nitrogen species (ROS/RNS), inflammatory gene expression, and senescence-associated beta-galactosidase activity, all hallmarks of aging. It is proposed that gasotransmitters which include hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), may affect redox homeostasis during senescence. H2S has been independently shown to induce DNA damage and suppress oxidative stress. While an increase in NO levels during aging is well established, the role of H2S has remained controversial. To understand the role of H2S during aging, we evaluated H2S homeostasis in non-senescent and senescent cells, using a combination of direct measurements with a fluorescent reporter dye (WSP-5) and protein sulfhydration analysis. The free intracellular H2S and total protein sulfhydration levels are high during senescence, concomitant to cystathionine gamma-lyase (CSE) expression induction. Using lentiviral shRNA-mediated expression knockdown, we identified that H2S contributed by CSE alters global gene expression, which regulates key inflammatory processes during cellular senescence. We propose that H2S decreases inflammation during cellular senescence by reducing phosphorylation of IκBα and the p65 subunit of nuclear factor kappa B (NF-κB). H2S was also found to reduce NO levels, a significant source of nitrosative stress during cellular senescence. Overall, we establish H2S as a key gasotransmitter molecule that regulates inflammatory phenotype and nitrosative stress during cellular senescence.
Collapse
Affiliation(s)
- Kavya Gupta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Abraham Binoy Mathew
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India; Center for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
5
|
Huynh VA, Takala TM, Murros KE, Diwedi B, Saris PEJ. Desulfovibrio bacteria enhance alpha-synuclein aggregation in a Caenorhabditis elegans model of Parkinson's disease. Front Cell Infect Microbiol 2023; 13:1181315. [PMID: 37197200 PMCID: PMC10183572 DOI: 10.3389/fcimb.2023.1181315] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction The aggregation of the neuronal protein alpha-synuclein (alpha-syn) is a key feature in the pathology of Parkinson's disease (PD). Alpha-syn aggregation has been suggested to be induced in the gut cells by pathogenic gut microbes such as Desulfovibrio bacteria, which has been shown to be associated with PD. This study aimed to investigate whether Desulfovibrio bacteria induce alpha-syn aggregation. Methods Fecal samples of ten PD patients and their healthy spouses were collected for molecular detection of Desulfovibrio species, followed by bacterial isolation. Isolated Desulfovibrio strains were used as diets to feed Caenorhabditis elegans nematodes which overexpress human alpha-syn fused with yellow fluorescence protein. Curli-producing Escherichia coli MC4100, which has been shown to facilitate alpha-syn aggregation in animal models, was used as a control bacterial strain, and E. coli LSR11, incapable of producing curli, was used as another control strain. The head sections of the worms were imaged using confocal microscopy. We also performed survival assay to determine the effect of Desulfovibrio bacteria on the survival of the nematodes. Results and Discussion Statistical analysis revealed that worms fed Desulfovibrio bacteria from PD patients harbored significantly more (P<0.001, Kruskal-Wallis and Mann-Whitney U test) and larger alpha-syn aggregates (P<0.001) than worms fed Desulfovibrio bacteria from healthy individuals or worms fed E. coli strains. In addition, during similar follow-up time, worms fed Desulfovibrio strains from PD patients died in significantly higher quantities than worms fed E. coli LSR11 bacteria (P<0.01). These results suggest that Desulfovibrio bacteria contribute to PD development by inducing alpha-syn aggregation.
Collapse
Affiliation(s)
- Vy A. Huynh
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Timo M. Takala
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Kari E. Murros
- Adjunct Professor of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Bidhi Diwedi
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- University of Padova, Padova, Italy
| | - Per E. J. Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- *Correspondence: Per E. J. Saris,
| |
Collapse
|
6
|
Stummer N, Weghuber D, Feichtinger RG, Huber S, Mayr JA, Kofler B, Neureiter D, Klieser E, Hochmann S, Lauth W, Schneider AM. Hydrogen Sulfide Metabolizing Enzymes in the Intestinal Mucosa in Pediatric and Adult Inflammatory Bowel Disease. Antioxidants (Basel) 2022; 11:2235. [PMID: 36421421 PMCID: PMC9686699 DOI: 10.3390/antiox11112235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Hydrogen sulfide (H2S) is a toxic gas that has important regulatory functions. In the colon, H2S can be produced and detoxified endogenously. Both too little and too much H2S exposure are associated with inflammatory bowel disease (IBD), a chronic intestinal disease mainly classified as Crohn's disease (CD) and ulcerative colitis (UC). As the pathogenesis of IBD remains elusive, this study's aim was to investigate potential differences in the expression of H2S-metabolizing enzymes in normal aging and IBD. Intestinal mucosal biopsies of 25 adults and 22 children with IBD along with those of 26 healthy controls were stained immunohistochemically for cystathionine-γ-lyase (CSE), 3-mercapto-sulfurtransferase (3-MST), ethylmalonic encephalopathy 1 protein (ETHE1), sulfide:quinone oxidoreductase (SQOR) and thiosulfate sulfurtransferase (TST). Expression levels were calculated by multiplication of the staining intensity and percentage of positively stained cells. Healthy adults showed an overall trend towards lower expression of H2S-metabolizing enzymes than healthy children. Adults with IBD also tended to have lower expression compared to controls. A similar trend was seen in the enzyme expression of children with IBD compared to controls. These results indicate an age-related decrease in the expression of H2S-metabolizing enzymes and a dysfunctional H2S metabolism in IBD, which was less pronounced in children.
Collapse
Affiliation(s)
- Nathalie Stummer
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - René G. Feichtinger
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Sara Huber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Johannes A. Mayr
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Barbara Kofler
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Eckhard Klieser
- Institute of Pathology, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Wanda Lauth
- Department of Mathematics, Paris Lodron University, 5020 Salzburg, Austria
| | - Anna M. Schneider
- Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| |
Collapse
|
7
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
8
|
Murros KE. Hydrogen Sulfide Produced by Gut Bacteria May Induce Parkinson's Disease. Cells 2022; 11:978. [PMID: 35326429 PMCID: PMC8946538 DOI: 10.3390/cells11060978] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022] Open
Abstract
Several bacterial species can generate hydrogen sulfide (H2S). Study evidence favors the view that the microbiome of the colon harbors increased amounts of H2S producing bacteria in Parkinson's disease. Additionally, H2S can easily penetrate cell membranes and enter the cell interior. In the cells, excessive amounts of H2S can potentially release cytochrome c protein from the mitochondria, increase the iron content of the cytosolic iron pool, and increase the amount of reactive oxygen species. These events can lead to the formation of alpha-synuclein oligomers and fibrils in cells containing the alpha-synuclein protein. In addition, bacterially produced H2S can interfere with the body urate metabolism and affect the blood erythrocytes and lymphocytes. Gut bacteria responsible for increased H2S production, especially the mucus-associated species of the bacterial genera belonging to the Desulfovibrionaceae and Enterobacteriaceae families, are likely play a role in the pathogenesis of Parkinson's disease. Special attention should be devoted to changes not only in the colonic but also in the duodenal microbiome composition with regard to the pathogenesis of Parkinson's disease. Influenza infections may increase the risk of Parkinson's disease by causing the overgrowth of H2S-producing bacteria both in the colon and duodenum.
Collapse
Affiliation(s)
- Kari Erik Murros
- Institute of Clinical Medicine, University of Eastern Finland (UEF), 70211 Kuopio, Finland
| |
Collapse
|
9
|
Jiang X, MacArthur MR, Treviño-Villarreal JH, Kip P, Ozaki CK, Mitchell SJ, Mitchell JR. Intracellular H 2S production is an autophagy-dependent adaptive response to DNA damage. Cell Chem Biol 2021; 28:1669-1678.e5. [PMID: 34166610 PMCID: PMC8665944 DOI: 10.1016/j.chembiol.2021.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter with broad physiological activities, including protecting cells against stress, but little is known about the regulation of cellular H2S homeostasis. We have performed a high-content small-molecule screen and identified genotoxic agents, including cancer chemotherapy drugs, as activators of intracellular H2S levels. DNA damage-induced H2S in vitro and in vivo. Mechanistically, DNA damage elevated autophagy and upregulated H2S-generating enzyme CGL; chemical or genetic disruption of autophagy or CGL impaired H2S induction. Importantly, exogenous H2S partially rescued autophagy-deficient cells from genotoxic stress. Furthermore, stressors that are not primarily genotoxic (growth factor depletion and mitochondrial uncoupler FCCP) increased intracellular H2S in an autophagy-dependent manner. Our findings highlight the role of autophagy in H2S production and suggest that H2S generation may be a common adaptive response to DNA damage and other stressors.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Michael R MacArthur
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Peter Kip
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Einthoven Laboratory for Experimental Vascular Medicine and Department of Surgery, Leiden University Medical Center, 2333 CC Leiden, the Netherlands
| | - C Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sarah J Mitchell
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| | - James R Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Shackelford RE, Li Y, Ghali GE, Kevil CG. Bad Smells and Broken DNA: A Tale of Sulfur-Nucleic Acid Cooperation. Antioxidants (Basel) 2021; 10:1820. [PMID: 34829691 PMCID: PMC8614844 DOI: 10.3390/antiox10111820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that exerts numerous physiologic and pathophysiologic effects. Recently, a role for H2S in DNA repair has been identified, where H2S modulates cell cycle checkpoint responses, the DNA damage response (DDR), and mitochondrial and nuclear genomic stability. In addition, several DNA repair proteins modulate cellular H2S concentrations and cellular sulfur metabolism and, in turn, are regulated by cellular H2S concentrations. Many DDR proteins are now pharmacologically inhibited in targeted cancer therapies. As H2S and the enzymes that synthesize it are increased in many human malignancies, it is likely that H2S synthesis inhibition by these therapies is an underappreciated aspect of these cancer treatments. Moreover, both H2S and DDR protein activities in cancer and cardiovascular diseases are becoming increasingly apparent, implicating a DDR-H2S signaling axis in these pathophysiologic processes. Taken together, H2S and DNA repair likely play a central and presently poorly understood role in both normal cellular function and a wide array of human pathophysiologic processes. Here, we review the role of H2S in DNA repair.
Collapse
Affiliation(s)
- Rodney E. Shackelford
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| | - Yan Li
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| | - Ghali E. Ghali
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA;
| | - Christopher G. Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA; (Y.L.); (C.G.K.)
| |
Collapse
|
11
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
12
|
Guo X, Qi Y, Li J, Fan H, Yang L, Wu X, Ni J, Wang H, Wang X. A comprehensive study of the genotoxic and anti-genotoxic effects of homocysteine in HUVECs and mouse bone marrow cells. Food Chem Toxicol 2021; 156:112518. [PMID: 34418477 DOI: 10.1016/j.fct.2021.112518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/24/2023]
Abstract
Elevated Homocysteine (Hcy) is associated with increased risk of vascular disease, but whether it induces genotoxicity to vascular endothelial cells remains unknown. Here, we conducted a comprehensive study of the genotoxicity, and unexpected anti-genotoxicity, of Hcy by cytokinesis-blocked micronucleus assay in HUVECs and erythrocyte micronucleus test in mouse bone marrow cells. Our experiments led to several important findings. First, while supraphysiological Hcy (SP-Hcy) exhibited remarkable genotoxicity, physiologically-relevant Hcy (PR-Hcy) reduced the basal genotoxicity. Second, among the metabolites of Hcy, cysteine phenocopied the anti-genotoxicity of PR-Hcy and, methionine, S-adenosylhomocysteine and H2S phenocopied the genotoxicity of SP-Hcy. Third, the genotoxicity of SP-Hcy was mitigated by vitamin B6, Fe2+ and Cu2+, but was exacerbated by N-acetylcysteine. Fourth, under pre-, co- or post-treatment protocol, both SP-Hcy and PR-Hcy attenuated the genotoxicity of cisplatin, mitomycin-C, nocodazole or deoxycholate. Finally, 100 and 250 mg/kg Hcy ameliorated cisplatin-induced genotoxicity in bone marrow cells of CF-1 and Kunming mice. Our results suggest that genotoxicity may be one mechanism through which Hcy confers an increased risk for vascular disease, but more importantly, they challenge the long-standing paradigm that Hcy is always harmful to human health. Our study calls for a more systematic effort in understanding the molecular mechanisms underlying the anti-genotoxicity of Hcy.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China.
| | - Yanmei Qi
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Jianfei Li
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Houhong Fan
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Limei Yang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China
| | - Han Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China.
| |
Collapse
|
13
|
Hao Y, Wang H, Fang L, Bian J, Gao Y, Li C. H2S Donor and Bone Metabolism. Front Pharmacol 2021; 12:661601. [PMID: 34366840 PMCID: PMC8339202 DOI: 10.3389/fphar.2021.661601] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022] Open
Abstract
Hydrogen sulfide (H2S) has been recognized as the third gasotransmitter, following nitric oxide and carbon monoxide, and it exerts important biological effects in the body. Growing evidence has shown that H2S is involved in many physiological processes in the body. In recent years, much research has been carried out on the role of H2S in bone metabolism. Bone metabolic diseases have been linked to abnormal endogenous H2S functions and metabolism. It has been found that H2S plays an important role in the regulation of bone diseases such as osteoporosis and osteoarthritis. Regulation of H2S on bone metabolism has many interacting signaling pathways at the molecular level, which play an important role in bone formation and absorption. H2S releasing agents (donors) have achieved significant effects in the treatment of metabolic bone diseases such as osteoporosis and osteoarthritis. In addition, H2S donors and related drugs have been widely used as research tools in basic biomedical research and may be explored as potential therapeutic agents in the future. Donors are used to study the mechanism and function of H2S as they release H2S through different mechanisms. Although H2S releasers have biological activity, their function can be inconsistent. Additionally, donors have different H2S release capabilities, which could lead to different effects. Side effects may form with the formation of H2S; however, it is unclear whether these side effects affect the biological effects of H2S. Therefore, it is necessary to study H2S donors in detail. In this review, we summarize the current information about H2S donors related to bone metabolism diseases and discuss some mechanisms and biological applications.
Collapse
Affiliation(s)
- Yanming Hao
- Department of Orthopedics, the First Peoples' Hospital of Kunshan, Kunshan, China
| | - Hongzhen Wang
- Department of Orthopedics, the First Peoples' Hospital of Kunshan, Kunshan, China
| | - Lingna Fang
- Department of Endocrinology, the First Peoples' Hospital of Kunshan, Kunshan, China
| | - Jinsong Bian
- Department of Pharmacology, Southern University of Science and Technology, Shenzhen, China
| | - Yan Gao
- Department of Orthopedics, the First Peoples' Hospital of Kunshan, Kunshan, China
| | - Chong Li
- Department of Orthopedics, the First Peoples' Hospital of Kunshan, Kunshan, China
| |
Collapse
|
14
|
Characterization of hyperglycemia due to sub-chronic administration of red ginseng extract via comparative global proteomic analysis. Sci Rep 2021; 11:12374. [PMID: 34117292 PMCID: PMC8196207 DOI: 10.1038/s41598-021-91664-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Ginseng (Panax ginseng Meyer) is commonly used as an herbal remedy worldwide. Few studies have explored the possible physiological changes in the liver although patients often self-medicate with ginseng preparations, which may lead to exceeding the recommended dose for long-term administration. Here, we analyzed changes in the hepatic proteins of mouse livers using quantitative proteomics after sub-chronic administration of Korean red ginseng (KRG) extract (control group and 0.5, 1.0, and 2.0 g/kg KRG) using tandem mass tag (TMT) 6-plex technology. The 1.0 and 2.0 g/kg KRG groups exhibited signs of liver injury, including increased levels of aspartate transaminase (AST) and alanine aminotransferase (ALT) in the serum. Furthermore, serum glucose levels were significantly higher following KRG administration compared with the control group. Based on the upregulated proteins found in the proteomic analysis, we found that increased cystathionine beta-synthase (CBS) and cystathionine gamma-lyase (CSE) levels promoted greater hydrogen sulfide (H2S) synthesis in the liver. This investigation provides novel evidence that sub-chronic administration of KRG can elevate H2S production by increasing protein expression of CBS and CSE in the liver.
Collapse
|
15
|
Sokolov AS, Nekrasov PV, Shaposhnikov MV, Moskalev AA. Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Res Rev 2021; 67:101262. [PMID: 33516916 DOI: 10.1016/j.arr.2021.101262] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is one of the biologically active gases (gasotransmitters), which plays an important role in various physiological processes and aging. Its production in the course of methionine and cysteine catabolism and its degradation are finely balanced, and impairment of H2S homeostasis is associated with various pathologies. Despite the strong geroprotective action of exogenous H2S in C. elegans, there are controversial effects of hydrogen sulfide and its donors on longevity in other models, as well as on stress resistance, age-related pathologies and aging processes, including regulation of senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Here we discuss that the translation potential of H2S as a geroprotective compound is influenced by a multiplicity of its molecular targets, pleiotropic biological effects, and the overlapping ranges of toxic and beneficial doses. We also consider the challenges of the targeted delivery of H2S at the required dose. Along with this, the complexity of determining the natural levels of H2S in animal and human organs and their ambiguous correlations with longevity are reviewed.
Collapse
|
16
|
Suzuki Y, Saito J, Munakata M, Shibata Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol Int 2021; 70:181-189. [PMID: 33214087 DOI: 10.1016/j.alit.2020.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has recently been recognised as the third important gas-signalling molecule, besides nitric oxide and carbon monoxide. H2S has been reported to be produced by many cell types in mammalian tissues and organs throughout the actions of H2S-generating enzymes or redox reactions between the oxidation of glucose and element of sulfur. Although the pathological role of H2S has not yet been fully elucidated, accumulative data suggest that H2S may have biphasic effects. Briefly, it mainly has anti-inflammatory and antioxidant roles, although it can also have pro-inflammatory effects under certain conditions where rapid release of H2S in tissues occur, such as sepsis. To date, there have been several clinical studies published on H2S in respiratory disorders, including asthma and chronic obstructive pulmonary disease (COPD). According to previous studies, H2S is detectable in serum, sputum, and exhaled breath, although a gold standard method for detection has not yet been established. In asthma and COPD, H2S levels in serum and sputum can vary depending on the underlying conditions such as an acute exacerbation. Furthermore, sputum H2S in particular correlates with sputum neutrophils and the degree of airflow limitation, indicating that H2S has potential as a novel promising biomarker for neutrophilic airway inflammation for predicting current control state as well as future risks of asthma. In the future, concurrent measures of H2S with conventional inflammatory biomarkers (fractional exhaled nitric oxide, eosinophils etc) may provide more useful information regarding the identification of inflammatory phenotypes of asthma and COPD for personalised treatment.
Collapse
Affiliation(s)
- Yasuhito Suzuki
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Junpei Saito
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan.
| | - Mitsuru Munakata
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| |
Collapse
|
17
|
Schiliro M, Bartman CM, Pabelick C. Understanding hydrogen sulfide signaling in neonatal airway disease. Expert Rev Respir Med 2021; 15:351-372. [PMID: 33086886 PMCID: PMC10599633 DOI: 10.1080/17476348.2021.1840981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Airway dysfunction leading to chronic lung disease is a common consequence of premature birth and mechanisms responsible for early and progressive airway remodeling are not completely understood. Current therapeutic options are only partially effective in reducing the burden of neonatal airway disease and premature decline of lung function. Gasotransmitter hydrogen sulfide (H2S) has been recently recognized for its therapeutic potential in lung diseases. AREAS COVERED Contradictory to its well-known toxicity at high concentrations, H2S has been characterized to have anti-inflammatory, antioxidant, and antiapoptotic properties at physiological concentrations. In the respiratory system, endogenous H2S production participates in late lung development and exogenous H2S administration has a protective role in a variety of diseases such as acute lung injury and chronic pulmonary hypertension and fibrosis. Literature searches performed using NCBI PubMed without publication date limitations were used to construct this review, which highlights the dichotomous role of H2S in the lung, and explores its promising beneficial effects in lung diseases. EXPERT OPINION The emerging role of H2S in pathways involved in chronic lung disease of prematurity along with its recent use in animal models of BPD highlight H2S as a potential novel candidate in protecting lung function following preterm birth.
Collapse
Affiliation(s)
- Marta Schiliro
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | | | - Christina Pabelick
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Yakovleva DV, Ulyasheva NS, Gorbunova AA, Minnikhanova NR, Moskalev AA. Geroprotective potential of genetic and pharmacological interventions to endogenous hydrogen sulfide synthesis in Drosophila melanogaster. Biogerontology 2021; 22:197-214. [PMID: 33544267 DOI: 10.1007/s10522-021-09911-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Endogenous hydrogen sulfide (H2S) is a gasotransmitter with a wide range of physiological functions. Aging is accompanied by disruption of H2S homeostasis, therefore, interventions to the processes of H2S metabolism to maintain its balance may have geroprotective potential. Here we demonstrated the additive geroprotective effect of combined genetic and pharmacological interventions to the hydrogen sulfide biosynthesis system by overexpression of cystathionine-β-synthase and cystathionine-γ-lyase genes and treatment with precursors of H2S synthesis cysteine (Cys) and N-acetyl-L-cysteine (NAC). The obtained results suggest that additive effects of genetic and pharmacological interventions to H2S metabolism may be associated with the complex interaction between beneficial action of H2S production and prevention of adverse effects of excess H2S production by Cys and NAC treatment.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation.,Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Liubov A Koval
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Eugenia V Schegoleva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Daria V Yakovleva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Natalya R Minnikhanova
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation. .,Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation.
| |
Collapse
|
19
|
Qinyu-Zeng, Shuhua-He, Fengzhi-Chen, Li-Wang, Liren-Zhong, Jialiang-Hui, Wei-Ding, Junhong-Fan, Haibo-Zhang, Anyang-Wei. Administration of H 2S improves erectile dysfunction by inhibiting phenotypic modulation of corpus cavernosum smooth muscle in bilateral cavernous nerve injury rats. Nitric Oxide 2021; 107:1-10. [PMID: 33246103 DOI: 10.1016/j.niox.2020.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 09/28/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
Phenotypic modulation of Corpus Cavernosum Smooth Muscle Cells (CCSMCs) is an important step in the development and progression of bilateral cavernous nerve injury induced erectile dysfunction (BCNI-ED). To investigate the effect of exogenous hydrogen sulfide (H2S) on the phenotypic modulation of CCSMCs in BCNI-ED rats, a total of 18 male Sprague-Dawley rats were equally divided into 3 groups, including sham-operated (Sham) group, BCNI group and BCNI treated with NaHS (BCNI + NaHS) group. The treated group received intraperitoneal injection of NaHS (100 μmol kg-1day-1) for 4 weeks starting day 1 postoperatively. Erectile function was measured by the ratio of intracavernous pressure (ICP)/mean arterial pressure (MAP), and relevant tissues were harvested for Immunohistochemistry, Hematoxylin and eosin (H&E), Masson's trichrome staining, H2S fluorescent probe WSP-1 and Western blot. The primary CCSMCs were isolated and pretreatment with NaHS before exposed to PDGF-BB (platelet-derived growth factor). Relative expression mRNA and protein of phenotypic biomarkers, RhoA, ROCK-1 and cell cycle proteins were detected. Cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (3-MST) and H2S levels in penile tissue was significantly decreased in the BCNI group compared with the Sham group. Compared with the BCNI group, administration of NaHS significantly increased the ratio of ICP/MAP, ratio of smooth muscle to collagen, expressions of a-SMA, calponin and decreased the expression of OPN, collagen-I, RhoA, ROCK1 in the penile tissue. PDGF-BB-treated CCSMCs exhibited higher expression of OPN, RhoA, ROCK1, and lower α-SMA, calponin, which were attenuated by NaHS pretreatment. NaHS suppressed RhoA/ROCK activity and decreased the expression of CDK2, Cyclin E1, while increased the expression of P27kip1 induced by PDGF-BB in CCSMCs. Taken together, this study indicated that exogenous H2S inhibited the phenotypic modulation of CCSMCs by suppressing RhoA/ROCK1 signaling and affecting its downstream factor, CDK2, Cyclin E1, P27kip1, thereby improved BCNI rat erectile function.
Collapse
Affiliation(s)
- Qinyu-Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shuhua-He
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fengzhi-Chen
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, Guangdong, China
| | - Li-Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Liren-Zhong
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jialiang-Hui
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Ding
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Urology, The First Affiliated Hospital of Guiyang University of Chinese Medicine, Guiyang, China
| | - Junhong-Fan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haibo-Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Anyang-Wei
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Szabo C. Hydrogen Sulfide, an Endogenous Stimulator of Mitochondrial Function in Cancer Cells. Cells 2021; 10:cells10020220. [PMID: 33499368 PMCID: PMC7911547 DOI: 10.3390/cells10020220] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) has a long history as toxic gas and environmental hazard; inhibition of cytochrome c oxidase (mitochondrial Complex IV) is viewed as a primary mode of its cytotoxic action. However, studies conducted over the last two decades unveiled multiple biological regulatory roles of H2S as an endogenously produced mammalian gaseous transmitter. Cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST) are currently viewed as the principal mammalian H2S-generating enzymes. In contrast to its inhibitory (toxicological) mitochondrial effects, at lower (physiological) concentrations, H2S serves as a stimulator of electron transport in mammalian mitochondria, by acting as an electron donor—with sulfide:quinone oxidoreductase (SQR) being the immediate electron acceptor. The mitochondrial roles of H2S are significant in various cancer cells, many of which exhibit high expression and partial mitochondrial localization of various H2S producing enzymes. In addition to the stimulation of mitochondrial ATP production, the roles of endogenous H2S in cancer cells include the maintenance of mitochondrial organization (protection against mitochondrial fission) and the maintenance of mitochondrial DNA repair (via the stimulation of the assembly of mitochondrial DNA repair complexes). The current article overviews the state-of-the-art knowledge regarding the mitochondrial functions of endogenously produced H2S in cancer cells.
Collapse
Affiliation(s)
- Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
21
|
Manandhar S, Sinha P, Ejiwale G, Bhatia M. Hydrogen Sulfide and its Interaction with Other Players in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:129-159. [PMID: 34302691 DOI: 10.1007/978-981-16-0991-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) plays a vital role in human physiology and in the pathophysiology of several diseases. In addition, a substantial role of H2S in inflammation has emerged. This chapter will discuss the involvement of H2S in various inflammatory diseases. Furthermore, the contribution of reactive oxygen species (ROS), adhesion molecules, and leukocyte recruitment in H2S-mediated inflammation will be discussed. The interrelationship of H2S with other gasotransmitters in inflammation will also be examined. There is mixed literature on the contribution of H2S to inflammation due to studies reporting both pro- and anti-inflammatory actions. These apparent discrepancies in the literature could be resolved with further studies.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Grace Ejiwale
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
22
|
Karaman Y, Kaya-Yasar Y, Bozkurt TE, Sahin-Erdemli I. Hydrogen sulfide donors prevent lipopolysaccharide-induced airway hyperreactivity in an in vitro model of chronic inflammation in mice. Basic Clin Pharmacol Toxicol 2020; 128:652-660. [PMID: 33369105 DOI: 10.1111/bcpt.13551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/24/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
We aimed to investigate and compare the effects of rapid (NaHS) and slow (GYY4137 and AP39) hydrogen sulfide (H2 S) releasing donors on LPS-induced tracheal hyperreactivity and pro-inflammatory cytokine levels in lung tissues of mice. Tissues were isolated from male BALB/c mice and incubated with LPS (10 µg/mL) in tissue culture. The subgroups were incubated with NaHS, GYY4137 and mitochondria-targeted donor AP39. LPS incubation did not alter contraction response to carbachol, but enhanced 5-HT and bradykinin-induced contractions in tracheal rings, and elevated IL-1β, IL-6 and TNF-α levels in lung homogenates. NaHS at 300 µmol/L and 1000 µmol/L, GYY4137 at 30 µmol/L and 100 µmol/L, and AP39 at 30 nmol/L concentrations inhibited the tracheal hyperreactivity to 5-HT, whereas none of these donors affected the enhanced contraction to bradykinin. GYY4137 was also effective to inhibit 5-HT hyperreactivity acutely. In lung tissues, NaHS prevented the elevation of IL-1β level at 1000 μmol/L, and IL-6 and TNF-α levels at 100 μmol/L concentrations. Incubation with GYY4137 (100 µmol/L) and AP39 (30 nmol/L and 300 nmol/L) inhibited the increase in IL-6 and TNF-α levels, but not IL-1β at concentrations that they affected tracheal hyperreactivity. These results indicate that H2 S donors can decrease inflammation and prevent airway hyperreactivity.
Collapse
Affiliation(s)
- Yasemin Karaman
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| | - Yesim Kaya-Yasar
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey
| | - T Emrah Bozkurt
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| | - Inci Sahin-Erdemli
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
23
|
Abstract
This review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.
Collapse
|
24
|
Abstract
Aims: Cysteine persulfidation (also called sulfhydration or sulfuration) has emerged as a potential redox mechanism to regulate protein functions and diverse biological processes in hydrogen sulfide (H2S) signaling. Due to its intrinsically unstable nature, working with this modification has proven to be challenging. Although methodological progress has expanded the inventory of persulfidated proteins, there is a continued need to develop methods that can directly and unequivocally identify persulfidated cysteine residues in complex proteomes. Results: A quantitative chemoproteomic method termed as low-pH quantitative thiol reactivity profiling (QTRP) was developed to enable direct site-specific mapping and reactivity profiling of proteomic persulfides and thiols in parallel. The method was first applied to cell lysates treated with NaHS, resulting in the identification of overall 1547 persulfidated sites on 994 proteins. Structural analysis uncovered unique consensus motifs that might define this distinct type of modification. Moreover, the method was extended to profile endogenous protein persulfides in cells expressing H2S-generating enzyme, mouse tissues, and human serum, which led to additional insights into mechanistic, structural, and functional features of persulfidation events, particularly on human serum albumin. Innovation and Conclusion: Low-pH QTRP represents the first method that enables direct and unbiased proteomic mapping of cysteine persulfidation. Our method allows to generate the most comprehensive inventory of persulfidated targets of NaHS so far and to perform the first analysis of in vivo persulfidation events, providing a valuable tool to dissect the biological functions of this important modification.
Collapse
Affiliation(s)
- Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Keke Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Jingyang He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
25
|
Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. The Role of Host-Generated H 2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol 2020; 10:586923. [PMID: 33330130 PMCID: PMC7711268 DOI: 10.3389/fcimb.2020.586923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.
Collapse
Affiliation(s)
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
26
|
Oxidative, Reductive, and Nitrosative Stress Effects on Epigenetics and on Posttranslational Modification of Enzymes in Cardiometabolic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8819719. [PMID: 33204398 PMCID: PMC7649698 DOI: 10.1155/2020/8819719] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Oxidative (OS), reductive (RS), and nitrosative (NSS) stresses produce carbonylation, glycation, glutathionylation, sulfhydration, nitration, and nitrosylation reactions. OS, RS, and NSS are interrelated since RS results from an overactivation of antioxidant systems and NSS is the result of the overactivation of the oxidation of nitric oxide (NO). Here, we discuss the general characteristics of the three types of stress and the way by which the reactions they induce (a) damage the DNA structure causing strand breaks or inducing the formation of 8-oxo-d guanosine; (b) modify histones; (c) modify the activities of the enzymes that determine the establishment of epigenetic cues such as DNA methyl transferases, histone methyl transferases, acetyltransferases, and deacetylases; (d) alter DNA reparation enzymes by posttranslational mechanisms; and (e) regulate the activities of intracellular enzymes participating in metabolic reactions and in signaling pathways through posttranslational modifications. Furthermore, the three types of stress may establish new epigenetic marks through these reactions. The development of cardiometabolic disorders in adult life may be programed since early stages of development by epigenetic cues which may be established or modified by OS, RS, and NSS. Therefore, the three types of stress participate importantly in mediating the impact of the early life environment on later health and heritability. Here, we discuss their impact on cardiometabolic diseases. The epigenetic modifications induced by these stresses depend on union and release of chemical residues on a DNA sequence and/or on amino acid residues in proteins, and therefore, they are reversible and potentially treatable.
Collapse
|
27
|
Shackelford R, Ozluk E, Islam MZ, Hopper B, Meram A, Ghali G, Kevil CG. Hydrogen sulfide and DNA repair. Redox Biol 2020; 38:101675. [PMID: 33202302 PMCID: PMC7677119 DOI: 10.1016/j.redox.2020.101675] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/12/2020] [Accepted: 08/02/2020] [Indexed: 12/28/2022] Open
Abstract
Recent evidence has revealed that exposing cells to exogenous H 2 S or inhibiting cellular H 2 S synthesis can modulate cell cycle checkpoints, DNA damage and repair, and the expression of proteins involved in the maintenance of genomic stability, all suggesting that H 2 S plays an important role in the DNA damage response (DDR). Here we review the role of H 2 S in the DRR and maintenance of genomic stability. Treatment of various cell types with pharmacologic H 2 S donors or cellular H 2 S synthesis inhibitors modulate the G 1 checkpoint, inhibition of DNA synthesis, and cause p21, and p53 induction. Moreover, in some cell models H 2 S exposure induces PARP-1 and g-H2AX foci formation, increases PCNA, CHK2, Ku70, Ku80, and DNA polymerase-d protein expression, and maintains mitochondrial genomic stability. Our group has also revealed that H 2 S bioavailability and the ATR kinase regulate each other with ATR inhibition lowering cellular H 2 S concentrations, whereas intracellular H 2 S concentrations regulate ATR kinase activity via ATR serine 435 phosphorylation. In summary, these findings have many implications for the DDR, for cancer chemotherapy, and fundamental biochemical metabolic pathways involving H 2 S. Inhibition of the ATR kinase lowers intracellular H2S concentrations. Inhibition of H2S synthesis activates the ATR kinase and increases its kinase activity. Inhibition of H2S synthesis combined with low-level oxidative stress increases genomic instability. These findings may have applications the cancer chemotherapeutics.
Collapse
Affiliation(s)
- Rodney Shackelford
- LSU Health Shreveport, Department of Pathology, Shreveport, LA, United States.
| | - Ekin Ozluk
- Department of Pathology & Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| | - Mohammad Z Islam
- Department of Pathology & Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| | - Brian Hopper
- Department of Pathology & Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| | - Andrew Meram
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| | - Ghali Ghali
- Head & Neck Oncologic/Microvascular Reconstructive Surgery Department of Oral & Maxillofacial/Head & Neck Surgery, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| | - Christopher G Kevil
- Department of Pathology & Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, United States
| |
Collapse
|
28
|
Fu Q, Liu Z, Bhawal R, Anderson ET, Sherwood RW, Yang Y, Thannhauser T, Schroyen M, Tang X, Zhang H, Zhang S. Comparison of MS 2, synchronous precursor selection MS 3, and real-time search MS 3 methodologies for lung proteomes of hydrogen sulfide treated swine. Anal Bioanal Chem 2020; 413:419-429. [PMID: 33099676 DOI: 10.1007/s00216-020-03009-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023]
Abstract
Tandem mass tags (TMTs) have increasingly become an attractive technique for global proteomics. However, its effectiveness for multiplexed quantitation by traditional tandem mass spectrometry (MS2) suffers from ratio distortion. Synchronous precursor selection (SPS) MS3 has been widely accepted for improved quantitation accuracy, but concurrently decreased proteome coverage. Recently, a Real-Time Search algorithm has been integrated with the SPS MS3 pipeline (RTS MS3) to provide accurate quantitation and improved depth of coverage. In this mechanistic study of the impact of exposure to hydrogen sulfide (H2S) on the respiration of swine, we used TMT-based comparative proteomics of lung tissues from control and H2S-treated subjects as a test case to evaluate traditional MS2, SPS MS3, and RTS MS3 acquisition methods on both the Orbitrap Fusion and Orbitrap Eclipse platforms. Comparison of the results obtained by the MS2 with those of SPS MS3 and RTS MS3 methods suggests that the MS3-driven quantitative strategies provided a more accurate global-scale quantitation; however, only RTS MS3 provided proteomic coverage that rivaled that of traditional MS2 analysis. RTS MS3 not only yields more productive MS3 spectra than SPS MS3 but also appears to focus the analysis more effectively on unique peptides. Furthermore, pathway enrichment analyses of the H2S-altered proteins demonstrated that an additional apoptosis pathway was discovered exclusively by RTS MS3. This finding was verified by RT-qPCR, western blotting, and TUNEL staining experiments. We conclude that RTS MS3 workflow enables simultaneous improvement of quantitative accuracy and proteome coverage over alternative approaches (MS2 and SPS MS3). Graphical abstract.
Collapse
Affiliation(s)
- Qin Fu
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Zhen Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, Teaching and Research Centre, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Robert W Sherwood
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, 538 Tower Road, Ithaca, NY, 14853, USA
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, 538 Tower Road, Ithaca, NY, 14853, USA
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, Teaching and Research Centre, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing, 100193, China
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
29
|
Bernardini C, La Mantia D, Nesci S, Salaroli R, Algieri C, Pagliarani A, Zannoni A, Forni M. Effects of Hydrogen Sulfide Donor NaHS on Porcine Vascular Wall-Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:5267. [PMID: 32722269 PMCID: PMC7432345 DOI: 10.3390/ijms21155267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is now considered not only for its toxicity, but also as an endogenously produced gas transmitter with multiple physiological roles, also in maintaining and regulating stem cell physiology. In the present work, we evaluated the effect of a common H2S donor, NaHS, on porcine vascular wall-mesenchymal stem cells (pVW-MSCs). pVW-MSCs were treated for 24 h with increasing doses of NaHS, and the cell viability, cell cycle, and reactive oxygen species (ROS) production were evaluated. Moreover, the long-term effects of NaHS administration on the noteworthy characteristics of pVW-MSCs were analyzed. The MTT test revealed no alteration in cell viability, however, the cell cycle analysis demonstrated that the highest NaHS dose tested (300 μM) determined a block in S phase, which did not depend on the ROS production. Moreover, NaHS (10 μM), continuously administered in culture for 21 days, was able to significantly reduce NG2, Nestin and PDGFR-β expression. The pro-angiogenic attitude of pVW-MSCs was partially reduced by NaHS: the cells maintained the ability to grow in spheroid and sprouting from that, but endothelial markers (Factor VIII and CD31) were reduced. In conclusion, NaHS can be toxic for pVW-MSCs in high doses, while in low doses, it influences cellular physiology, by affecting the gene expression with a slowing down of the endothelial lineage.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Debora La Mantia
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Salvatore Nesci
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Roberta Salaroli
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Cristina Algieri
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Alessandra Pagliarani
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
| | - Augusta Zannoni
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40100 Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Science, University of Bologna, Via Tolara di Sopra, 50-40064 Ozzano Emilia (BO), Italy; (C.B.); (D.L.M.); (S.N.); (R.S.); (C.A.); (A.P.); (M.F.)
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
30
|
Feng X, Zhang H, Shi M, Chen Y, Yang T, Fan H. Toxic effects of hydrogen sulfide donor NaHS induced liver apoptosis is regulated by complex IV subunits and reactive oxygen species generation in rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:322-332. [PMID: 31680430 DOI: 10.1002/tox.22868] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
In recent years, the protective effect of hydrogensulfide donor sodium hydrosulfide(NaHS) on multiple organs has been widely reported. The study aimed to explorethe effect of commonly used concentration of NaHS on theliver and its potential damage mechanism. Rats divided into 4 groups: control, NaHS I (1 mg/kg), II (3 mg/kg) and III(5 mg/kg) groups, and each group is divided into four-timepoints (2, 6, 12, and 24 hours). Results showed that H2S concentration increased, mitochondrial complex IV activity inhibited, the COX I and IV subunits and mitochondrial apoptosis pathway-related proteins expression increased in atime- and dose-dependent manner. We confirmed that 1 mg/kg NaHS had no injuryeffect on the liver, 3 and 5 mg/kg NaHS inhibitsthe activity of mitochondrial complex IV by promoting COX I and IV subunits expression, leading to the increase in ROS and ultimately inducing apoptosis and liver injury.
Collapse
Affiliation(s)
- Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Haiyang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingxian Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianyuan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
31
|
Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. FASEB J 2019; 33:13098-13125. [PMID: 31648556 PMCID: PMC6894098 DOI: 10.1096/fj.201901304r] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide can signal through 3 distinct mechanisms: 1) reduction and/or direct binding of metalloprotein heme centers, 2) serving as a potent antioxidant through reactive oxygen species/reactive nitrogen species scavenging, or 3) post-translational modification of proteins by addition of a thiol (-SH) group onto reactive cysteine residues: a process known as persulfidation. Below toxic levels, hydrogen sulfide promotes mitochondrial biogenesis and function, thereby conferring protection against cellular stress. For these reasons, increases in hydrogen sulfide and hydrogen sulfide-producing enzymes have been implicated in several human disease states. This review will first summarize our current understanding of hydrogen sulfide production and metabolism, as well as its signaling mechanisms; second, this work will detail the known mechanisms of hydrogen sulfide in the mitochondria and the implications of its mitochondrial-specific impacts in several pathologic conditions.-Murphy, B., Bhattacharya, R., Mukherjee, P. Hydrogen sulfide signaling in mitochondria and disease.
Collapse
Affiliation(s)
- Brennah Murphy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
32
|
Zochio GP, Possomato-Vieira JS, Chimini JS, da Silva MLS, Dias-Junior CA. Effects of fast versus slow-releasing hydrogen sulfide donors in hypertension in pregnancy and fetoplacental growth restriction. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1561-1568. [PMID: 31363805 DOI: 10.1007/s00210-019-01697-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Hydrogen sulfide (H2S) is a vasorelaxant gas with therapeutic potential in several diseases. However, effects of H2S donors in hypertensive pregnancy complicated by feto-placental growth restriction are unclear. Therefore, we aimed to examine and compare the effects of fast-releasing H2S donor (sodium hydrosulfide-NaHS) and slow-releasing H2S donor (GYY4137) in hypertension-in-pregnancy. Pregnant rats were distributed into four groups: normal pregnancy (Norm-Preg), hypertensive pregnancy (HTN-Preg), hypertensive pregnancy + NaHS (HTN-Preg + NaHS), and hypertensive pregnancy + GYY4137 (HTN-Preg + GYY). Systolic blood pressure, plasma H2S levels, fetal and placental weights, number of viable fetuses, litter size, and endothelium-dependent vasodilation were examined. Also, oxidative stress was assessed in placenta. We found that GYY4137 attenuated hypertension on gestational days 16 and 18, while NaHS presented antihypertensive effect only on gestational day 18. GYY4137, but not NaHS, increased plasma H2S levels. Greater fetal and placental weights were found with GYY4137 than NaHS treatment. Also, HTN-Preg + NaHS presented further reductions in placental weights when compared to HTN-Preg group. Number of viable fetuses and litter size presented no significant changes. GYY4137 reduced placental oxidative stress caused by hypertension, while greater increases in oxidative stress were found in HTN-Preg + NaHS than HTN-Preg group. Hypertensive pregnancy caused impaired endothelium-dependent vasodilation, while GYY4137 and NaHS treatments blunted endothelial dysfunction. Endothelium-dependent vasodilation was completely blocked by the nitric oxide synthase inhibitor. We conclude that slow-releasing H2S donor GYY4137 is advantageous compared with fast-releasing H2S-donor NaHS to attenuate hypertension-in-pregnancy and to protect against feto-placental growth restriction and oxidative stress.
Collapse
Affiliation(s)
- Gabriela Palma Zochio
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University-UNESP, Distrito de Rubiao Junior, S/N,, Botucatu, SP, 18.618-689, Brazil
| | - Jose Sergio Possomato-Vieira
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University-UNESP, Distrito de Rubiao Junior, S/N,, Botucatu, SP, 18.618-689, Brazil
| | - Jessica Sabbatine Chimini
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University-UNESP, Distrito de Rubiao Junior, S/N,, Botucatu, SP, 18.618-689, Brazil
| | - Maria Luiza Santos da Silva
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University-UNESP, Distrito de Rubiao Junior, S/N,, Botucatu, SP, 18.618-689, Brazil
| | - Carlos Alan Dias-Junior
- Department of Pharmacology, Biosciences Institute of Botucatu, Sao Paulo State University-UNESP, Distrito de Rubiao Junior, S/N,, Botucatu, SP, 18.618-689, Brazil.
| |
Collapse
|
33
|
Viegas J, Esteves AF, Cardoso EM, Arosa FA, Vitale M, Taborda-Barata L. Biological Effects of Thermal Water-Associated Hydrogen Sulfide on Human Airways and Associated Immune Cells: Implications for Respiratory Diseases. Front Public Health 2019; 7:128. [PMID: 31231626 PMCID: PMC6560203 DOI: 10.3389/fpubh.2019.00128] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
Natural mineral (thermal) waters have been used for centuries as treatment for various diseases. However, the scientific background of such therapeutic action is mostly empiric and based on knowledge acquired over time. Among the various types of natural mineral waters, sulfurous thermal waters (STWs) are the most common type in the center of Portugal. STWs are characterized by high pH, poor mineralization, and the presence of several ions and salts, such as bicarbonate, sodium, fluoride, silica, and carbonate. Furthermore, these waters are indicated as a good option for the treatment of various illnesses, namely respiratory diseases (e.g., allergic rhinitis, asthma, and chronic obstructive pulmonary disease). From the sulfide species present in these waters, hydrogen sulfide (H2S) stands out due to its abundance. In healthy conditions, H2S-related enzymes (e.g., cystathionine β-synthase and cystathionine γ-lyase) are expressed in human lungs, where they have mucolytic, antioxidant, anti-inflammatory, and antibacterial roles, thus contributing to airway epithelium homeostasis. These roles occur mainly through S-sulfhydration, a post-translational modification through which H2S is able to change the activity of several targets, such as ion channels, second messengers, proteins, among others. However, in respiratory diseases the metabolism of H2S is altered, which seems to contribute somehow to the respiratory deterioration. Moreover, H2S has been regarded as a good biomarker of airway dysfunction and severity, and can be measured in serum, sputum, and exhaled air. Hence, in this review we will recapitulate the effects of STWs on lung epithelial-immune crosstalk through the action of its main component, H2S.
Collapse
Affiliation(s)
- Joana Viegas
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana Filipa Esteves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elsa M Cardoso
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Escola Superior da Saúde, IPG-Instituto Politécnico da Guarda, Guarda, Portugal
| | - Fernando A Arosa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Marco Vitale
- DiMeC-Department of Medicine & Surgery, University of Parma, Parma, Italy.,FoRST-Fondazione per la Ricerca Scientifica Termale, Rome, Italy
| | - Luís Taborda-Barata
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,NuESA-Health & Environment Study Group, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,Department of Immunoallergology, CHUCB-Cova da Beira University Hospital Centre, Covilhã, Portugal
| |
Collapse
|
34
|
Xiao AY, Maynard MR, Piett CG, Nagel ZD, Alexander JS, Kevil CG, Berridge MV, Pattillo CB, Rosen LR, Miriyala S, Harrison L. Sodium sulfide selectively induces oxidative stress, DNA damage, and mitochondrial dysfunction and radiosensitizes glioblastoma (GBM) cells. Redox Biol 2019; 26:101220. [PMID: 31176262 PMCID: PMC6556549 DOI: 10.1016/j.redox.2019.101220] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) has a poor prognosis despite intensive treatment with surgery and chemoradiotherapy. Previous studies using dose-escalated radiotherapy have demonstrated improved survival; however, increased rates of radionecrosis have limited its use. Development of radiosensitizers could improve patient outcome. In the present study, we report the use of sodium sulfide (Na2S), a hydrogen sulfide (H2S) donor, to selectively kill GBM cells (T98G and U87) while sparing normal human cerebral microvascular endothelial cells (hCMEC/D3). Na2S also decreased mitochondrial respiration, increased oxidative stress and induced γH2AX foci and oxidative base damage in GBM cells. Since Na2S did not significantly alter T98G capacity to perform non-homologous end-joining or base excision repair, it is possible that GBM cell killing could be attributed to increased damage induction due to enhanced reactive oxygen species production. Interestingly, Na2S enhanced mitochondrial respiration, produced a more reducing environment and did not induce high levels of DNA damage in hCMEC/D3. Taken together, this data suggests involvement of mitochondrial respiration in Na2S toxicity in GBM cells. The fact that survival of LN-18 GBM cells lacking mitochondrial DNA (ρ0) was not altered by Na2S whereas the survival of LN-18 ρ+ cells was compromised supports this conclusion. When cells were treated with Na2S and photon or proton radiation, GBM cell killing was enhanced, which opens the possibility of H2S being a radiosensitizer. Therefore, this study provides the first evidence that H2S donors could be used in GBM therapy to potentiate radiation-induced killing. Sodium sulfide selectively kills GBM cells by inducing DNA damage. Sodium sulfide induces mitochondrial dysfunction and oxidative stress in GBM cells. Toxicity to sodium sulfide is dependent on mitochondrial respiration. Sodium sulfide radiosensitizes GBM cells to photon and proton radiation.
Collapse
Affiliation(s)
- Adam Y Xiao
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Matthew R Maynard
- Radiation Oncology, Willis-Knighton Cancer Center, Shreveport, LA, 71103, USA
| | - Cortt G Piett
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - Zachary D Nagel
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | | | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Lane R Rosen
- Radiation Oncology, Willis-Knighton Cancer Center, Shreveport, LA, 71103, USA
| | - Sumitra Miriyala
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Lynn Harrison
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA.
| |
Collapse
|
35
|
Guo J, Xing H, Chen M, Wang W, Zhang H, Xu S. H 2S inhalation-induced energy metabolism disturbance is involved in LPS mediated hepatocyte apoptosis through mitochondrial pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:380-386. [PMID: 30716628 DOI: 10.1016/j.scitotenv.2019.01.360] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas and one of the air pollutants of great concern. High-concentrated H2S can induce energy metabolism disturbance and apoptosis. However, the mechanism of H2S-induced liver injuries is unknown. Lipopolysaccharide (LPS), the main component of endotoxin, can cause fulminant hepatitis. Here, we evaluated the effects of H2S combined with LPS on the energy metabolism and apoptosis pathway in the liver using a one-day-old chicken as a model. Our results showed that the expression levels of energy metabolism-related genes (AMP-activated protein kinase (AMPK), Hypoxia-inducible factor-1 (HIF-1), aconitase 2 (ACO2), hexokinase1 (HK1), hexokinase 2 (HK2), lactate dehydrogenase A (LDHA), lactate dehydrogenase B (LDHB), phosphofructokinase (PFK), pyruvate kinase (PK) and succinate dehydrogenase B (SDHB)) tended to decrease, that the status of apoptosis increased, and that the expression levels of apoptosis-related genes (caspase3, BCL2, and bax) increased in H2S group, suggesting that H2S exposure disturbed the energy metabolism in the liver and induced hepatocyte apoptosis through the mitochondrial pathway. In addition, H2S combined with the LPS aggravated the level of energy metabolism disorders and apoptosis, indicating that H2S inhalation-induced energy metabolism disturbance is involved in LPS-mediated hepatocyte apoptosis through the mitochondrial pathway.
Collapse
Affiliation(s)
- Jinming Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Menghao Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
36
|
Park HJ, Kim JW. Role of Hydrogen Sulfide in the Survival of Fibroblasts and Fibroblast-mediated Contraction of Collagen Gel. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2019. [DOI: 10.3341/jkos.2019.60.10.975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hyeon Jin Park
- Department of Ophthalmology, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Jae Woo Kim
- Department of Ophthalmology, Daegu Catholic University School of Medicine, Daegu, Korea
| |
Collapse
|
37
|
Suzuki Y, Saito J, Kikuchi M, Uematsu M, Fukuhara A, Sato S, Munakata M. Sputum-to-serum hydrogen sulphide ratio as a novel biomarker of predicting future risks of asthma exacerbation. Clin Exp Allergy 2018; 48:1155-1163. [PMID: 29758106 DOI: 10.1111/cea.13173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Increased level of hydrogen sulphide (H2 S) in sputum is reported to be a new biomarker of neutrophilic airway inflammation in chronic airway disorders. However, the relationship between H2 S and disease activity remains unclear. OBJECTIVE We investigated whether H2 S levels could vary during different conditions in asthma. METHOD H2 S levels in sputum and serum were measured using a sulphide-sensitive electrode in 47 stable asthmatic subjects (S-BA), 21 uncontrolled asthmatic subjects (UC-BA), 26 asthmatic subjects with acute exacerbation (AE-BA) and 15 healthy subjects. Of these, H2 S levels during stable, as well as exacerbation states, were obtained in 13 asthmatic subjects. RESULTS Sputum H2 S levels were significantly higher in the AE-BA subjects compared to the UC-BA and healthy subjects (P < .05). However, serum H2 S levels in the AE-BA subjects were lower than in the S-BA subjects (P < .001) and similar to those in healthy subjects. Thus, the sputum-to-serum ratio of H2 S (H2 S ratio) in the AE-BA subjects was significantly higher than in the S-BA, UC-BA and healthy subjects (P < .05). Among all subjects, sputum H2 S levels showed a trend to decrease with FEV1 %predicted and significantly positive correlations with sputum neutrophils (%), sputum IL-8 and serum IL-8. A multiple linear regression analysis showed that sputum H2 S was independently associated with increased sputum neutrophils (%) and decreased FEV1 %predicted (P < .05). The cut-off level of H2 S ratio to indicate an exacerbation was ≥0.34 (area under the curve; 0.88, with a sensitivity of 81.8% and specificity of 72.7%, P < .001). Furthermore, half of the asthmatic subjects with H2 S ratios higher than the cut-off level experienced asthma exacerbations over the following 3 months after enrolment. CONCLUSIONS The H2 S ratio may provide useful information on predicting future risks of asthma exacerbation, as well as on obstructive neutrophilic airway inflammation as one of the non-Th2 biomarkers, in asthma.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - J Saito
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - M Kikuchi
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - M Uematsu
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - A Fukuhara
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - S Sato
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - M Munakata
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
38
|
Zendehboodi Z, Saadat M. Association of the XRCC1 Arg194Trp and Arg399Gln polymorphisms with depression and hopelessness levels in individuals exposed to sour gas. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Perridon BW, Leuvenink HGD, Hillebrands JL, van Goor H, Bos EM. The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 2017; 8:2264-2289. [PMID: 27683311 PMCID: PMC5115888 DOI: 10.18632/aging.101026] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging process. Several proposed aging theories were recently combined as the 'hallmarks of aging'. These hallmarks describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype. Sustaining evidence shows a potential role for hydrogen sulfide (H2S) in the regulation of aging. Nowadays, H2S is acknowledged as an endogenously produced signaling molecule with various (patho-) physiological effects. H2S is involved in several diseases including pathologies related to aging. In this review, the known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by reviewing its actions on the hallmarks of aging and on several age-related pathologies.
Collapse
Affiliation(s)
- Bernard W Perridon
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | | | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands.,Department of Neurosurgery, Erasmus Medical Center Rotterdam, the Netherlands
| |
Collapse
|
40
|
Kaya-Yasar Y, Karaman Y, Bozkurt TE, Onder SC, Sahin-Erdemli I. Effects of intranasal treatment with slow (GYY4137) and rapid (NaHS) donors of hydrogen sulfide in lipopolysaccharide-induced airway inflammation in mice. Pulm Pharmacol Ther 2017. [DOI: 10.1016/j.pupt.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Jia H, Ye J, You J, Shi X, Kang W, Wang T. Role of the cystathionine β-synthase/H2S system in liver cancer cells and the inhibitory effect of quinolone-indolone conjugate QIC2 on the system. Oncol Rep 2017; 37:3001-3009. [PMID: 28440458 DOI: 10.3892/or.2017.5513] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/30/2016] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S), the third gasotransmitter, plays important roles in cancer biological processes. As endogenous H2S exerts pro-cancer functions, inhibition of its production in cancer cells may provide a new cancer treatment strategy and be achieved via regulation of the function of cystathionine β-synthase (CBS), one of the main metabolic enzymes synthesizing H2S. This enzyme plays important roles in the development and progression of colon and ovarian cancer, primarily regulating mitochondrial bioenergetics and accelerating cell cycle progression. In the present study, we firstly investigated the role of the CBS/H2S system in human hepatoma cells, and then the inhibitory effect of a quinolone-indolone conjugate QIC2 on this system. When CBS was overexpressed in human hepatoma HepG2 and SMMC-7721 cells, inhibition of endogenous CBS/H2S significantly reduced their viability and growth rate, as well as the proliferation of SMMC-7721 cells. Meanwhile, CBS knockdown caused multiple effects, including apoptosis of SMMC-7721 cells, an increase in the Bcl-2-associated X protein (Bax)/B cell lymphoma/leukemia (Bcl-2) ratio, activation of caspase-3 and polyADP-ribose polymerase (PARP), when compared with the scramble siRNA (Sc siRNA)-transfected groups. Heme oxygenase-1 (HO-1; a microsomal enzyme) expression was significantly decreased while the reactive oxygen species (ROS) level was increased in the CBS siRNA-transfected SMMC-7721 cells. QIC2 significantly reduced SMMC-7721 cell viability in a dose-dependent manner and showed a lower toxicity in human normal liver HL-7702 cells relative to the positive controls sunitinib and doxorubicin (DOX). The compound also inhibited cell proliferation and induced cell apoptosis in SMMC-7721 cells. Further analysis indicated that QIC2 downregulated the CBS/H2S system, decreased both HO-1 protein and glutathione (GSH) levels while increased the ROS level and activated the caspase-3 cascade. Collectively, our results demonstrated that the CBS/H2S system plays important roles in human hepatoma cells and QIC2 significantly inhibited cell growth via downregulation of the system.
Collapse
Affiliation(s)
- Huina Jia
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Juan Ye
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jing You
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaoyan Shi
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wenyi Kang
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Tianxiao Wang
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
42
|
Functional and Molecular Insights of Hydrogen Sulfide Signaling and Protein Sulfhydration. J Mol Biol 2016; 429:543-561. [PMID: 28013031 DOI: 10.1016/j.jmb.2016.12.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a novel gasotransmitter, is endogenously synthesized by multiple enzymes that are differentially expressed in the peripheral tissues and central nervous systems. H2S regulates a wide range of physiological processes, namely cardiovascular, neuronal, immune, respiratory, gastrointestinal, liver, and endocrine systems, by influencing cellular signaling pathways and sulfhydration of target proteins. This review focuses on the recent progress made in H2S signaling that affects mechanistic and functional aspects of several biological processes such as autophagy, inflammation, proliferation and differentiation of stem cell, cell survival/death, and cellular metabolism under both physiological and pathological conditions. Moreover, we highlighted the cross-talk between nitric oxide and H2S in several bilogical contexts.
Collapse
|
43
|
Ma X, Liu X, Zhou D, Bai Y, Gao B, Zhang Z, Qin Z. The NF-κB pathway participates in the response to sulfide stress in Urechis unicinctus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:229-238. [PMID: 27633672 DOI: 10.1016/j.fsi.2016.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/31/2016] [Accepted: 09/11/2016] [Indexed: 05/26/2023]
Abstract
The NF-κB pathway is known to be involved in regulating apoptosis, inflammation and immunity in organisms. In this study, we first identified full-length cDNA sequences of two key molecules in the NF-κB pathway, namely, NEMO and p65, and characterized their responses in the hindgut of Urechis unicinctus (Echiura, Urechidae) exposed to sulfide. The full-length of cDNA was 2491 bp for U. unicinctus NEMO (UuNEMO) and 1971 bp for U. unicinctus p65 (Uup65), and both polyclonal antibodies were prepared using UuNEMO or Uup65 expressed prokaryotically with the sequence of their whole open reading frame. Immunoprecipitation and Western blotting showed that the NF-κB pathway was activated in U. unicinctus exposed to sulfide, in which the content of UuNEMO ubiquitination and nuclear Uup65 increased significantly (p < 0.05) in hindgut tissue of U. unicinctus exposed to sulfide. Furthermore, the mRNA level of UuBcl-xL, a downstream anti-apoptosis gene of the NF-κB pathway, increased significantly (p < 0.05) from 48 h to 72 h and the mRNA level of UuBax, a Bcl-xL antagonist gene, decreased significantly (p < 0.05) at 48 h in the hindgut of U. unicinctus exposed to 50 μM sulfide. During the 150 μM sulfide exposure, the level of UuBcl-xL showed no obvious change, whereas the UuBax mRNA level increased significantly (p < 0.05) at 72 h post-exposure to 150 μM sulfide. We suggested that the activated NF-κB pathway up-regulates UuBcl-xL expression, and evokes an anti-apoptotic response to resist sulfide damage at 50 μM in U. unicinctus. Meanwhile, a Bax-mediated pro-apoptotic response occurs when U. unicinctus is exposed to 150 μM sulfide.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Di Zhou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yajiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Beibei Gao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
44
|
Hu Q, Wu D, Ma F, Yang S, Tan B, Xin H, Gu X, Chen X, Chen S, Mao Y, Zhu YZ. Novel Angiogenic Activity and Molecular Mechanisms of ZYZ-803, a Slow-Releasing Hydrogen Sulfide-Nitric Oxide Hybrid Molecule. Antioxid Redox Signal 2016; 25:498-514. [PMID: 27174595 DOI: 10.1089/ars.2015.6607] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Revascularization strategies and gene therapy for treatment of ischemic diseases remain to be fully optimized for use in human and veterinary clinical medicine. The continued evolution of such strategies must take into consideration two compounds, which act as critical effectors of angiogenesis by endothelial cells. Nevertheless, the nature of interaction between hydrogen sulfide (H2S) and nitric oxide (NO) remained undefined at the time of this writing. RESULTS The present study uses ZYZ-803, a novel synthetic H2S-NO hybrid molecule, which, under physiological conditions, slowly decomposes to release H2S and NO. This is observed to dose dependently mediate cell proliferation, migration, and tube-like structure formation in vitro along with increased angiogenesis in rat aortic rings, Matrigel plug in vivo, and a murine ischemic hind limb model. The effects of ZYZ-803 exhibited significantly greater potency than those of H2S and/or NO donor alone. The compound stimulated cystathionine γ-lyase (CSE) expression and endothelial NO synthase (eNOS) activity to produce H2S and NO. Blocking CSE and/or eNOS suppressed both H2S and NO generation as well as the proangiogenic effect of ZYZ-803. Sirtuin-1 (SIRT1), CSE, and/or eNOS small interfering RNA (siRNA) suppressed the angiogenic effect of ZYZ-803-induced SIRT1 expression, VEGF, and cyclic guanosine 5'-monophosphate (cGMP) levels. These gasotransmitters cooperatively regulated angiogenesis through an SIRT1/VEGF/cGMP pathway. INNOVATION AND CONCLUSION H2S and NO exert mutual influence on biological functions mediated by both compounds. Functional convergence occurs in the SIRT1-dependent proangiogenic processes. These two gasotransmitters are mutually required for physiological regulation of endothelial homeostasis. These ongoing characterizations of mechanisms by which ZYZ-803 influences angiogenesis provide expanding insight into strategies for treatment of ischemic diseases. Antioxid. Redox Signal. 25, 498-514.
Collapse
Affiliation(s)
- Qingxun Hu
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Dan Wu
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China .,2 Department of Pharmacy, Tongji Hospital, Tongji University School of Medicine , Shanghai, China
| | - Fenfen Ma
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Suna Yang
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Bo Tan
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Hong Xin
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Xianfeng Gu
- 3 Department of Medicinal Chemistry, School of Pharmacy, Fudan University , Shanghai, China
| | - Xu Chen
- 4 School of Pharmacy, Guilin Medical University , Guilin, China
| | - Siyao Chen
- 5 Department of Cardiac Surgery, Guangdong Cardiovascular Institute , Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Yicheng Mao
- 1 Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai, China
| | - Yi Zhun Zhu
- 6 School of Pharmacy, Macau University of Science and Technology , Macau, China
| |
Collapse
|
45
|
Rumbeiha W, Whitley E, Anantharam P, Kim DS, Kanthasamy A. Acute hydrogen sulfide-induced neuropathology and neurological sequelae: challenges for translational neuroprotective research. Ann N Y Acad Sci 2016; 1378:5-16. [PMID: 27442775 PMCID: PMC5063677 DOI: 10.1111/nyas.13148] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/02/2022]
Abstract
Hydrogen sulfide (H2 S), the gas with the odor of rotten eggs, was formally discovered in 1777, over 239 years ago. For many years, it was considered an environmental pollutant and a health concern only in occupational settings. Recently, however, it was discovered that H2 S is produced endogenously and plays critical physiological roles as a gasotransmitter. Although at low physiological concentrations it is physiologically beneficial, exposure to high concentrations of H2 S is known to cause brain damage, leading to neurodegeneration and long-term neurological sequelae or death. Neurological sequelae include motor, behavioral, and cognitive deficits, which are incapacitating. Currently, there are concerns about accidental or malicious acute mass civilian exposure to H2 S. There is a major unmet need for an ideal neuroprotective treatment, for use in the field, in the event of mass civilian exposure to high H2 S concentrations. This review focuses on the neuropathology of high acute H2 S exposure, knowledge gaps, and the challenges associated with development of effective neuroprotective therapy to counteract H2 S-induced neurodegeneration.
Collapse
Affiliation(s)
- Wilson Rumbeiha
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa.
| | | | - Poojya Anantharam
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Dong-Suk Kim
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
46
|
Liu X, Zhang Z, Ma X, Li X, Zhou D, Gao B, Bai Y. Sulfide exposure results in enhanced sqr transcription through upregulating the expression and activation of HSF1 in echiuran worm Urechis unicinctus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:229-239. [PMID: 26675369 DOI: 10.1016/j.aquatox.2015.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 05/26/2023]
Abstract
Sulfide is a natural, widely distributed, poisonous substance. Sulfide: quinone oxidoreductase (SQR) is responsible for the initial oxidation of sulfide in mitochondria. To study transcriptional regulation of sqr after sulfide exposure, a 2.6-kb sqr upstream sequence from echiuran worm Urechis unicinctus was cloned by genome walking. Bioinformatics analysis showed 3 heat shock elements (HSEs) in proximal promoter region of the sqr upstream sequence. Moreover, an Hsf1 cDNA in U. unicinctus (UuHsf1) was isolated with a full-length sequence of 2334 bp and its polyclonal antibody was prepared using U. unicinctus HSF1 (UuHSF1) expressed prokaryotically with whole sequence of its open reading frame (ORF). In vivo ChIP and in vitro EMSA assays revealed UuHSF1 could interact with the sqr proximal promoter region. Transient transfection and mutation assays indicated that UuHSF1 bound specifically to HSE (-155bp to -143bp) and enhanced the transcription of sqr. Furthermore, sulfide treatment experiments demonstrated that sulfide could increase the expression of HSF1 protein, and induce trimerization of the protein which binds to HSEs and then activate sqr transcription. Quantitative real-time PCR analysis revealed sqr mRNA level increased significantly after U. unicinctus was exposed to sulfide for 6h, which corresponded to content changes of both trimeric HSF1 and HSF1-HSE complex. We concluded that UuHSF1 is a transcription factor of sqr and sulfide could induce sqr transcription by upregulating the expression and activation of HSF1 in U. unicinctus exposed to sulfide.
Collapse
Affiliation(s)
- Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiaoyu Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xueyu Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Di Zhou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Beibei Gao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yajiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
47
|
Meng G, Ma Y, Xie L, Ferro A, Ji Y. Emerging role of hydrogen sulfide in hypertension and related cardiovascular diseases. Br J Pharmacol 2015; 172:5501-11. [PMID: 25204754 PMCID: PMC4667855 DOI: 10.1111/bph.12900] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 12/31/2022] Open
Abstract
Hydrogen sulfide (H2 S) has traditionally been viewed as a highly toxic gas; however, recent studies have implicated H2 S as a third member of the gasotransmitter family, exhibiting properties similar to NO and carbon monoxide. Accumulating evidence has suggested that H2 S influences a wide range of physiological and pathological processes, among which blood vessel relaxation, cardioprotection and atherosclerosis have been particularly studied. In the cardiovascular system, H2 S production is predominantly catalyzed by cystathionine γ-lyase (CSE). Decreased endogenous H2 S levels have been found in hypertensive patients and animals, and CSE(-/-) mice develop hypertension with age, suggesting that a deficiency in H2 S contributes importantly to BP regulation. H2 S supplementation attenuates hypertension in different hypertensive animal models. The mechanism by which H2 S was originally proposed to attenuate hypertension was by virtue of its action on vascular tone, which may be related to effects on different ion channels. Both H2 S and NO cause vasodilatation and there is cross-talk between these two molecules to regulate BP. Suppression of oxidative stress may also contribute to antihypertensive effects of H2 S. This review also summarizes the state of research on H2 S and hypertension in China. A better understanding of the role of H2 S in hypertension and related cardiovascular diseases will allow novel strategies to be devised for their treatment.
Collapse
Affiliation(s)
- Guoliang Meng
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Yan Ma
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Liping Xie
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| | - Albert Ferro
- Department of Clinical PharmacologyCardiovascular DivisionSchool of MedicineKing's College LondonLondonUK
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, State Key Laboratory of Reproductive Medicine, Atherosclerosis Research CentreNanjing Medical UniversityNanjingChina
| |
Collapse
|
48
|
Vasorelaxant Effect of a New Hydrogen Sulfide-Nitric Oxide Conjugated Donor in Isolated Rat Aortic Rings through cGMP Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7075682. [PMID: 26635911 PMCID: PMC4655279 DOI: 10.1155/2016/7075682] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 06/28/2015] [Indexed: 01/13/2023]
Abstract
Endothelium-dependent vasorelaxant injury leads to a lot of cardiovascular diseases. Both hydrogen sulfide (H2S) and nitric oxide (NO) are gasotransmitters, which play a critical role in regulating vascular tone. However, the interaction between H2S and NO in vasorelaxation is still unclear. ZYZ-803 was a novel H2S and NO conjugated donor developed by H2S-releasing moiety (S-propyl-L-cysteine (SPRC)) and NO-releasing moiety (furoxan). ZYZ-803 could time- and dose-dependently relax the sustained contraction induced by PE in rat aortic rings, with potencies of 1.5- to 100-fold greater than that of furoxan and SPRC. Inhibition of the generations of H2S and NO with respective inhibitors abolished the vasorelaxant effect of ZYZ-803. ZYZ-803 increased cGMP level and the activity of vasodilator stimulated phosphoprotein (VASP) in aortic rings, and those effects could be suppressed by the inhibitory generation of H2S and NO. Both the inhibitor of protein kinase G (KT5823) and the inhibitor of KATP channel (glibenclamide) suppressed the vasorelaxant effect of ZYZ-803. Our results demonstrated that H2S and NO generation from ZYZ-803 cooperatively regulated vascular tone through cGMP pathway, which indicated that ZYZ-803 had therapeutic potential in cardiovascular diseases.
Collapse
|
49
|
Liu X, Zhang L, Zhang Z, Ma X, Liu J. Transcriptional response to sulfide in the Echiuran Worm Urechis unicinctus by digital gene expression analysis. BMC Genomics 2015; 16:829. [PMID: 26487380 PMCID: PMC4618349 DOI: 10.1186/s12864-015-2094-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/15/2015] [Indexed: 12/21/2022] Open
Abstract
Background Urechis unicinctus, an echiuran worm inhabiting the U-shaped burrows in the coastal mud flats, is an important commercial and ecological invertebrate in Northeast Asian countries, which has potential applications in the study of animal evolution, coastal sediment improvement and marine drug development. Furthermore, the worm can tolerate and utilize well-known toxicant-sulfide. However, knowledge is limited on the molecular mechanism of U. unicinctus responding to sulfide due to deficiency of its genetic information. Methods In this study, we performed Illumina sequencing to obtain the first Urechis unicinctus transcriptome data. Sequenced reads were assembled and then annotated using blast searches against Nr, Nt, Swiss-Prot, KEGG and COG. The clean tags from four digital gene expression (DGE) libraries were mapped to the U. unicinctus transcriptome. DGE analysis and functional annotation were then performed to reveal its response to sulfide. The expressions of 12 candidate genes were validated using quantitative real-time PCR. The results of qRT-PCR were regressed against the DGE analysis, with a correlation coefficient and p-value reported for each of them. Results Here we first present a draft of U. unicinctus transcriptome using the Illumina HiSeqTM 2000 platform and 52,093 unique sequences were assembled with the average length of 738 bp and N50 of 1131 bp. About 51.6 % of the transcriptome were functionally annotated based on the databases of Nr, Nt, Swiss-Prot, KEGG and COG. Then based on the transcriptome, the digital gene expression analysis was conducted to examine the transcriptional response to sulfide during 6, 24 and 48 h exposure, and finally 1705, 1181 and 1494 tag-mapped genes were identified as differentially expressed genes in the 6-h, 24-h and 48-h libraries, then were further subjected to pathway analyses. Conclusions In the DGE database of U. unicinctus, the alterations in certain known sulfide-related pathways indicate similar changes in response to sulfide. For more than 80 % of the identified pathway members, this is the first report on their association with sulfide stress, among which glycolysis pathway and PIDD involving pathways were unique and discussed in details, and were thought to play important roles in the sulfide tolerance of U. unicinctus. All the results are helpful to explain the mechanism of sulfide tolerance and detoxification. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2094-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolong Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Litao Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyu Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Jianguo Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
50
|
Hydrogen sulfide suppresses transforming growth factor-β1-induced differentiation of human cardiac fibroblasts into myofibroblasts. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1126-34. [PMID: 26246380 DOI: 10.1007/s11427-015-4904-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
In heart disease, transforming growth factor-β1 (TGF-β1) converts fibroblasts into myofibroblasts, which synthesize and secrete fibrillar type I and III collagens. The purpose of the present study was to investigate how hydrogen sulfide (H2S) suppresses TGF-β1-induced differentiation of human cardiac fibroblasts to myofibroblasts. Human cardiac fibroblasts were serum-starved in fibroblast medium for 16 h before exposure to TGF-β1 (10 ng mL(-1)) for 24 h with or without sodium hydrosulfide (NaHS, 100 µmol L(-1), 30 min pretreatment) treatment. NaHS, an exogenous H2S donor, potently inhibited the proliferation and migration of TGF-β1-induced human cardiac fibroblasts and regulated their cell cycle progression. Furthermore, NaHS treatment led to suppression of fibroblast differentiation into myofibroblasts, and reduced the levels of collagen, TGF-β1, and activated Smad3 in TGF-β1-induced human cardiac fibroblasts in vitro. We therefore conclude that H2S suppresses TGF-β1-stimulated conversion of fibroblasts to myofibroblasts by inhibiting the TGF-β1/Smad3 signaling pathway, as well as by inhibiting the proliferation, migration, and cell cycle progression of human cardiac myofibroblasts. These effects of H2S may play significant roles in cardiac remodeling associated with heart failure.
Collapse
|