1
|
Omar OMF, Kimble AL, Cheemala A, Tyburski JD, Pandey S, Wu Q, Reese B, Jellison ER, Hao B, Li Y, Yan R, Murphy PA. Endothelial TDP-43 depletion disrupts core blood-brain barrier pathways in neurodegeneration. Nat Neurosci 2025; 28:973-984. [PMID: 40087396 DOI: 10.1038/s41593-025-01914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/05/2025] [Indexed: 03/17/2025]
Abstract
Endothelial cells (ECs) help maintain the blood-brain barrier but deteriorate in many neurodegenerative disorders. Here we show, using a specialized method to isolate EC and microglial nuclei from postmortem human cortex (92 donors, 50 male and 42 female, aged 20-98 years), that intranuclear cellular indexing of transcriptomes and epitopes enables simultaneous profiling of nuclear proteins and RNA transcripts at a single-nucleus resolution. We identify a disease-associated subset of capillary ECs in Alzheimer's disease, amyotrophic lateral sclerosis and frontotemporal degeneration. These capillaries exhibit reduced nuclear β-catenin and β-catenin-downstream genes, along with elevated TNF/NF-κB markers. Notably, these transcriptional changes correlate with the loss of nuclear TDP-43, an RNA-binding protein also depleted in neuronal nuclei. TDP-43 disruption in human and mouse ECs replicates these alterations, suggesting that TDP-43 deficiency in ECs is an important factor contributing to blood-brain barrier breakdown in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omar M F Omar
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA
| | - Amy L Kimble
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA
| | - Ashok Cheemala
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA
| | - Jordan D Tyburski
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA
| | - Swati Pandey
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA
| | - Qian Wu
- Department of Pathology, University of Connecticut Medical School, Farmington, CT, USA
| | - Bo Reese
- Center for Genome Innovation, University of Connecticut, Storrs, CT, USA
| | - Evan R Jellison
- Department of Immunology, University of Connecticut Medical School, Farmington, CT, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Medical School, Farmington, CT, USA
| | - Yunfeng Li
- Department of Molecular Biology and Biophysics, University of Connecticut Medical School, Farmington, CT, USA
| | - Riqiang Yan
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT, USA
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, USA.
- Department of Immunology, University of Connecticut Medical School, Farmington, CT, USA.
- Department of Neuroscience, University of Connecticut Medical School, Farmington, CT, USA.
| |
Collapse
|
2
|
Tapley JK, Doyle BJ, Bellinge JW, Caddy HT, Blom DC, Churack T, Newby DE, Schultz CJ, Kelsey LJ. Low endothelial shear stress is associated with increased coronary atherosclerotic plaque activity in patients that presented with acute coronary syndrome. J Cardiovasc Comput Tomogr 2025:S1934-5925(25)00063-2. [PMID: 40280791 DOI: 10.1016/j.jcct.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Both coronary atherosclerotic plaque activity and low endothelial shear stress (ESS) are predictive of adverse cardiovascular events. We aimed to investigate their association and relationship with high-risk plaque features. METHODS Coronary computed tomography angiography (CCTA) based flow simulations were used to compute ESS in patients presenting with acute coronary syndrome proceeding percutaneous coronary intervention. Associations between ESS, CCTA plaque features and coronary plaque activity, measured by 18F-sodium fluoride (18F-NaF) positron emission tomography (PET), were investigated at the coronary segment and vessel level. RESULTS ESS and coronary plaque activity were both analyzed in 330 coronary segments and 123 vessels. The area of low ESS (<0.4 Pa), termed low shear area (LSA), was larger in 18F-NaF positive regions increasing from median 11.7 mm2 (IQR: 4.6-27.4) to 29.0 mm2 (IQR: 14.1-55.2) at the segment level (P < 0.0001) and from median 27.3 mm2 (IQR: 8.6-65.3) to 57.8 mm2 (26.6-108.2) at the vessel level (P = 0.0049). The maximum tissue-to-background ratio of 18F-NaF activity positively correlated with LSA at the segment level (rs = 0.27; P < 0.0001) and at the vessel level (rs = 0.38; P < 0.0001). LSA was associated with spotty calcification at both the segment (P <0.0001) and vessel level (P = 0.0042) and positive remodeling at the vessel level (P = 0.025). CONCLUSIONS In patients with acute coronary syndrome, LSA is associated with increased coronary atherosclerotic plaque activity, as measured by 18F-NaF PET.
Collapse
Affiliation(s)
- Jonathan K Tapley
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; Navier Medical Ltd., Perth, Australia; Royal Perth Hospital, Perth, Australia.
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; Navier Medical Ltd., Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| | - Jamie W Bellinge
- School of Medicine, The University of Western Australia, Perth, Australia; Department of Cardiology, Royal Perth Hospital, Perth, Australia; Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia; School of Human Sciences, The University of Western Australia, Perth, Australia
| | - Dirk C Blom
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; Curtin Medical School, Curtin University, Perth, Australia
| | | | - David E Newby
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, United Kingdom
| | - Carl J Schultz
- School of Medicine, The University of Western Australia, Perth, Australia; Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia; Navier Medical Ltd., Perth, Australia; School of Engineering, The University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Arenas GA, Valenzuela JG, Peñaloza E, Paz AA, Iturriaga R, Saez CG, Krause BJ. Transcriptional Profiling of Human Endothelial Cells Unveils PIEZO1 and Mechanosensitive Gene Regulation by Prooxidant and Inflammatory Inputs. Antioxidants (Basel) 2023; 12:1874. [PMID: 37891953 PMCID: PMC10604317 DOI: 10.3390/antiox12101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/15/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
PIEZO1 is a mechanosensitive cation channel implicated in shear stress-mediated endothelial-dependent vasorelaxation. Since altered shear stress patterns induce a pro-inflammatory endothelial environment, we analyzed transcriptional profiles of human endothelial cells to determine the effect of altered shear stress patterns and subsequent prooxidant and inflammatory conditions on PIEZO1 and mechanosensitive-related genes (MRG). In silico analyses were validated in vitro by assessing PIEZO1 transcript levels in both the umbilical artery (HUAEC) and vein (HUVEC) endothelium. Transcriptional profiling showed that PIEZO1 and some MRG associated with the inflammatory response were upregulated in response to high (15 dyn/cm2) and extremely high shear stress (30 dyn/cm2) in HUVEC. Changes in PIEZO1 and inflammatory MRG were paralleled by p65 but not KLF or YAP1 transcription factors. Similarly, PIEZO1 transcript levels were upregulated by TNF-alpha (TNF-α) in diverse endothelial cell types, and pre-treatment with agents that prevent p65 translocation to the nucleus abolished PIEZO1 induction. ChIP-seq analysis revealed that p65 bonded to the PIEZO1 promoter region, an effect increased by the stimulation with TNF-α. Altogether this data showed that NF-kappa B activation via p65 signaling regulates PIEZO1 expression, providing a new molecular link for prooxidant and inflammatory responses and mechanosensitive pathways in the endothelium.
Collapse
Affiliation(s)
- German A. Arenas
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 2841959, Chile;
| | - Jose G. Valenzuela
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile (C.G.S.)
| | - Estefanía Peñaloza
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile
| | - Adolfo A. Paz
- Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 7500000, Chile
| | - Rodrigo Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Investigación en Fisiología y Medicina en Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile
| | - Claudia G. Saez
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile (C.G.S.)
| | - Bernardo J. Krause
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile
| |
Collapse
|
4
|
Li X, Souilhol C, Canham L, Jia X, Diagbouga M, Ayllon BT, Serbanovic-Canic J, Evans PC. DLL4 promotes partial endothelial-to-mesenchymal transition at atherosclerosis-prone regions of arteries. Vascul Pharmacol 2023; 150:107178. [PMID: 37137436 DOI: 10.1016/j.vph.2023.107178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Flowing blood regulates vascular development, homeostasis and disease by generating wall shear stress which has major effects on endothelial cell (EC) physiology. Low oscillatory shear stress (LOSS) induces a form of cell plasticity called endothelial-to-mesenchymal transition (EndMT). This process has divergent effects; in embryos LOSS-induced EndMT drives the development of atrioventricular valves, whereas in adult arteries it is associated with inflammation and atherosclerosis. The Notch ligand DLL4 is essential for LOSS-dependent valve development; here we investigated whether DLL4 is required for responses to LOSS in adult arteries. Analysis of cultured human coronary artery EC revealed that DLL4 regulates the transcriptome to induce markers of EndMT and inflammation under LOSS conditions. Consistently, genetic deletion of Dll4 from murine EC reduced SNAIL (EndMT marker) and VCAM-1 (inflammation marker) at a LOSS region of the murine aorta. We hypothesized that endothelial Dll4 is pro-atherogenic but this analysis was confounded because endothelial Dll4 negatively regulated plasma cholesterol levels in hyperlipidemic mice. We conclude that endothelial DLL4 is required for LOSS-induction of EndMT and inflammation regulators at atheroprone regions of arteries, and is also a regulator of plasma cholesterol.
Collapse
Affiliation(s)
- Xiuying Li
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; School of Pharmacy, Southwest Medical University, LuZhou, Sichuan 646000, PR China; Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK.
| | - Lindsay Canham
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Xueqi Jia
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Mannekomba Diagbouga
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Blanca Tardajos Ayllon
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, Bateson Centre, University of Sheffield, UK; Centre for Biochemical Pharmacology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts and The London, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
5
|
Ghim M, Yang SW, David KRZ, Eustaquio J, Warboys CM, Weinberg PD. NO Synthesis but Not Apoptosis, Mitosis or Inflammation Can Explain Correlations between Flow Directionality and Paracellular Permeability of Cultured Endothelium. Int J Mol Sci 2022; 23:8076. [PMID: 35897652 PMCID: PMC9332325 DOI: 10.3390/ijms23158076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
Haemodynamic wall shear stress varies from site to site within the arterial system and is thought to cause local variation in endothelial permeability to macromolecules. Our aim was to investigate mechanisms underlying the changes in paracellular permeability caused by different patterns of shear stress in long-term culture. We used the swirling well system and a substrate-binding tracer that permits visualisation of transport at the cellular level. Permeability increased in the centre of swirled wells, where flow is highly multidirectional, and decreased towards the edge, where flow is more uniaxial, compared to static controls. Overall, there was a reduction in permeability. There were also decreases in early- and late-stage apoptosis, proliferation and mitosis, and there were significant correlations between the first three and permeability when considering variation from the centre to the edge under flow. However, data from static controls did not fit the same relation, and a cell-by-cell analysis showed that <5% of uptake under shear was associated with each of these events. Nuclear translocation of NF-κB p65 increased and then decreased with the duration of applied shear, as did permeability, but the spatial correlation between them was not significant. Application of an NO synthase inhibitor abolished the overall decrease in permeability caused by chronic shear and the difference in permeability between the centre and the edge of the well. Hence, shear and paracellular permeability appear to be linked by NO synthesis and not by apoptosis, mitosis or inflammation. The effect was mediated by an increase in transport through tricellular junctions.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter D. Weinberg
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (M.G.); (S.-W.Y.); (K.R.Z.D.); (J.E.); (C.M.W.)
| |
Collapse
|
6
|
Choublier N, Taghi M, Menet MC, Le Gall M, Bruce J, Chafey P, Guillonneau F, Moreau A, Denizot C, Parmentier Y, Nakib S, Borderie D, Bouzinba-Segard H, Couraud PO, Bourdoulous S, Declèves X. Exposure of human cerebral microvascular endothelial cells hCMEC/D3 to laminar shear stress induces vascular protective responses. Fluids Barriers CNS 2022; 19:41. [PMID: 35658915 PMCID: PMC9164338 DOI: 10.1186/s12987-022-00344-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/23/2022] [Indexed: 01/01/2023] Open
Abstract
Endothelial cells (ECs) are constantly submitted in vivo to hemodynamical forces derived from the blood circulation, including shear stress (SS). ECs are able to detect SS and consequently adapt their phenotype, thus affecting many endothelial functions. If a plethora of shear stress-regulated molecular networks have been described in peripheral ECs, less is known about the molecular responses of microvascular brain ECs which constitute the blood-brain barrier (BBB). In this work, we investigated the response of human cerebral microvascular ECs to laminar physiological shear stress using the well characterized hCMEC/D3 cell line. Interestingly, we showed that hCMEC/D3 cells responded to shear stress by aligning perpendicularly to the flow direction, contrary to peripheral endothelial cells which aligned in the flow direction. Whole proteomic profiles were compared between hCMEC/D3 cells cultured either in static condition or under 5 or 10 dyn.cm-2 SS for 3 days. 3592 proteins were identified and expression levels were significantly affected for 3% of them upon both SS conditions. Pathway analyses were performed which revealed that most proteins overexpressed by SS refer to the antioxidant defense, probably mediated by activation of the NRF2 transcriptional factor. Regarding down-regulated proteins, most of them participate to the pro-inflammatory response, cell motility and proliferation. These findings confirm the induction of EC quiescence by laminar physiological SS and reveal a strong protective effect of SS on hCMEC/D3 cells, suggesting a similar effect on the BBB. Our results also showed that SS did not significantly increase expression levels nor did it affect the localization of junctional proteins and did not afect either the functional activity of several ABC transporters (P-glycoprotein and MRPs). This work provides new insights on the response of microvascular brain ECs to SS and on the importance of SS for optimizing in vitro BBB models.
Collapse
Affiliation(s)
- Nina Choublier
- INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 75006, Paris, France.
| | - Meryam Taghi
- INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 75006, Paris, France
| | - Marie-Claude Menet
- Institut de Chimie Physique, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Morgane Le Gall
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | - Johanna Bruce
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | - Philippe Chafey
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | - François Guillonneau
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | | | | | | | - Samir Nakib
- Service de Biochimie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Didier Borderie
- Service de Biochimie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Haniaa Bouzinba-Segard
- CNRS, INSERM, Institut Cochin, Inserm, CNRS, Université Paris Cité, 75014, Paris, France
| | - Pierre-Olivier Couraud
- CNRS, INSERM, Institut Cochin, Inserm, CNRS, Université Paris Cité, 75014, Paris, France
| | - Sandrine Bourdoulous
- CNRS, INSERM, Institut Cochin, Inserm, CNRS, Université Paris Cité, 75014, Paris, France
| | - Xavier Declèves
- INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 75006, Paris, France.
- Biologie du Médicament Et Toxicologie, AP-HP, Hôpital Cochin, 75014, Paris, France.
| |
Collapse
|
7
|
McQueen LW, Ladak SS, Zakkar M. Acute shear stress and vein graft disease. Int J Biochem Cell Biol 2022; 144:106173. [PMID: 35151879 DOI: 10.1016/j.biocel.2022.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/08/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
The long saphenous vein is commonly used in cardiac surgery to bypass occluded coronary arteries. Its use is complicated by late stenosis and occlusion due to the development of intimal hyperplasia. It is accepted that intimal hyperplasia is a multifactorial inflammatory process that starts immediately after surgery. The role of acute changes in haemodynamic conditions when the vein is implanted into arterial circulation, especially shear stress, is not fully appreciated. This review provides an overview of intimal hyperplasia and the effect of acute shear stress changes on the activation of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Liam W McQueen
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Shameem S Ladak
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Mustafa Zakkar
- Department of Cardiovascular Sciences, Clinical Science Wing, University of Leicester, Glenfield Hospital, Leicester, UK.
| |
Collapse
|
8
|
Raikwar SP, Thangavel R, Ahmed ME, Selvakumar GP, Kempuraj D, Wu K, Khan O, Bazley K, Bussinger B, Kukulka K, Zaheer S, Iyer SS, Govindarajan R, Burton C, James D, Zaheer A. Real-Time Noninvasive Bioluminescence, Ultrasound and Photoacoustic Imaging in NFκB-RE-Luc Transgenic Mice Reveal Glia Maturation Factor-Mediated Immediate and Sustained Spatio-Temporal Activation of NFκB Signaling Post-Traumatic Brain Injury in a Gender-Specific Manner. Cell Mol Neurobiol 2021; 41:1687-1706. [PMID: 32785863 PMCID: PMC8188847 DOI: 10.1007/s10571-020-00937-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Neurotrauma especially traumatic brain injury (TBI) is the leading cause of death and disability worldwide. To improve upon the early diagnosis and develop precision-targeted therapies for TBI, it is critical to understand the underlying molecular mechanisms and signaling pathways. The transcription factor, nuclear factor kappa B (NFκB), which is ubiquitously expressed, plays a crucial role in the normal cell survival, proliferation, differentiation, function, as well as in disease states like neuroinflammation and neurodegeneration. Here, we hypothesized that real-time noninvasive bioluminescence molecular imaging allows rapid and precise monitoring of TBI-induced immediate and rapid spatio-temporal activation of NFκB signaling pathway in response to Glia maturation factor (GMF) upregulation which in turn leads to neuroinflammation and neurodegeneration post-TBI. To test and validate our hypothesis and to gain novel mechanistic insights, we subjected NFκB-RE-Luc transgenic male and female mice to TBI and performed real-time noninvasive bioluminescence imaging (BLI) as well as photoacoustic and ultrasound imaging (PAI). Our BLI data revealed that TBI leads to an immediate and sustained activation of NFκB signaling. Further, our BLI data suggest that especially in male NFκB-RE-Luc transgenic mice subjected to TBI, in addition to brain, there is widespread activation of NFκB signaling in multiple organs. However, in the case of the female NFκB-RE-Luc transgenic mice, TBI induces a very specific and localized activation of NFκB signaling in the brain. Further, our microRNA data suggest that TBI induces significant upregulation of mir-9-5p, mir-21a-5p, mir-34a-5p, mir-16-3p, as well as mir-155-5p within 24 h and these microRNAs can be successfully used as TBI-specific biomarkers. To the best of our knowledge, this is one of the first and unique study of its kind to report immediate and sustained activation of NFκB signaling post-TBI in a gender-specific manner by utilizing real-time non-invasive BLI and PAI in NFκB-RE-Luc transgenic mice. Our study will prove immensely beneficial to gain novel mechanistic insights underlying TBI, unravel novel therapeutic targets, as well as enable us to monitor in real-time the response to innovative TBI-specific precision-targeted gene and stem cell-based precision medicine.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| | - Ramasamy Thangavel
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Duraisamy Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Kristopher Wu
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Osaid Khan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kieran Bazley
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Bret Bussinger
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Klaudia Kukulka
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Smita Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Shankar S Iyer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Raghav Govindarajan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | | | - Asgar Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO, USA.
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| |
Collapse
|
9
|
Li J, Fang Y, Wu D. Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes. CURRENT TOPICS IN MEMBRANES 2021; 87:199-253. [PMID: 34696886 PMCID: PMC8639155 DOI: 10.1016/bs.ctm.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally quiescent, endothelial cells have a hemodynamic set point and become "activated" in response to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical forces, endothelial signaling transforms in response, resulting cellular changes that herald pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate pathway that undergirds cellular transformation. In this review, we discuss the various mechanical forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how changes in environmental mechanical forces result in changes in metabolism, which ultimately influence cell physiology, cellular memory, and ultimately disease initiation and progression.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
10
|
Wang M, Liu F, Fang B, Huo Q, Yang Y. Proteome-scale profiling reveals MAFF and MAFG as two novel key transcription factors involved in palmitic acid-induced umbilical vein endothelial cell apoptosis. BMC Cardiovasc Disord 2021; 21:448. [PMID: 34535081 PMCID: PMC8447594 DOI: 10.1186/s12872-021-02246-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Background Vascular endothelial cell apoptosis is the leading risk factor of atherosclerosis (AS). The purpose of our study was to use a new generation high-throughput transcription factor (TF) detection method to identify novel key TFs in vascular endothelial cell apoptosis induced by palmitic acid (PA). Methods Human umbilical vein endothelial cells (HUVECs) were treated with 0, 300, or 500 µM PA. Candidate TFs in the three groups were identified by differential expression, pathway enrichment, Western Blot (WB), and RT-qPCR analyses. Apoptosis was assessed by fluorescence-activated cell sorting (FACS) using FITC-annexin V and propidium iodide staining. Results We established a HUVEC apoptosis model to simulate the process of atherosclerosis onset and identified 51 significant TFs. of the 51 TFs, v-maf musculoaponeurotic fibrosarcoma oncogene family protein G (MAFG) and v-maf musculoaponeurotic fibrosarcoma oncogene family protein F (MAFF), were matched to known AS signalling pathways and were validated by WB and RT-qPCR analyses in our study. Overexpression of MAFG or MAFF in HUVECs significantly inhibited PA-induced early apoptosis. Conclusions We identified MAFF and MAFG as novel key TFs in vascular endothelial cell apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02246-5.
Collapse
Affiliation(s)
- Mangyuan Wang
- Clinical Medicine Postdoctoral Research Station, The First Affiliated Hospital of Xinjiang Medical University, 137, Liyushan Road, Xin Shi District, Urumqi, 830054, People's Republic of China.,Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137, Liyushan Road, Xin Shi District, Urumqi, 830054, People's Republic of China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, People's Republic of China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, People's Republic of China
| | - Binbin Fang
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, People's Republic of China
| | - Qiang Huo
- Department of Cardiac Surgery, The First Affiliated Hospital of Xinjiang Medical University, 137, Liyushan Road, Xin Shi District, Urumqi, 830054, People's Republic of China.
| | - Yining Yang
- Department of Cardiology, The First Affiliated Hospital of Xinjiang Medical University, 137, Liyushan Road, Xin Shi District, Urumqi, 830054, People's Republic of China. .,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi, People's Republic of China.
| |
Collapse
|
11
|
Singh B, Kosuru R, Lakshmikanthan S, Sorci-Thomas M, Zhang D, Sparapani R, Vasquez-Vivar J, Chrzanowska M. Endothelial Rap1 (Ras-Association Proximate 1) Restricts Inflammatory Signaling to Protect From the Progression of Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:638-650. [PMID: 33267664 PMCID: PMC8105264 DOI: 10.1161/atvbaha.120.315401] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Small GTPase Rap1 (Ras-association proximate 1) is a novel, positive regulator of NO release and endothelial function with a potentially key role in mechanosensing of atheroprotective, laminar flow. Our objective was to delineate the role of Rap1 in the progression of atherosclerosis and its specific functions in the presence and absence of laminar flow, to better define its role in endothelial mechanisms contributing to plaque formation and atherogenesis. Approach and Results: In a mouse atherosclerosis model, endothelial Rap1B deletion exacerbates atherosclerotic plaque formation. In the thoracic aorta, where laminar shear stress-induced NO is otherwise atheroprotective, plaque area is increased in Athero-Rap1BiΔEC (atherogenic endothelial cell-specific, tamoxifen-inducible Rap1A+Rap1B knockout) mice. Endothelial Rap1 deficiency also leads to increased plaque size, leukocyte accumulation, and increased CAM (cell adhesion molecule) expression in atheroprone areas, whereas vascular permeability is unchanged. In endothelial cells, in the absence of protective laminar flow, Rap1 deficiency leads to an increased proinflammatory TNF-α (tumor necrosis factor alpha) signaling and increased NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and elevated inflammatory receptor expression. Interestingly, this increased signaling to NF-κB activation is corrected by AKTVIII-an inhibitor of Akt (protein kinase B) translocation to the membrane. Together, these data implicate Rap1 in restricting Akt-dependent signaling, preventing excessive cytokine receptor signaling and proinflammatory NF-κB activation. CONCLUSIONS Via 2 distinct mechanisms, endothelial Rap1 protects from the atherosclerosis progression in the presence and absence of laminar flow; Rap1-stimulated NO release predominates in laminar flow, and restriction of proinflammatory signaling predominates in the absence of laminar flow. Our studies provide novel insights into the mechanisms underlying endothelial homeostasis and reveal the importance of Rap1 signaling in cardiovascular disease.
Collapse
Affiliation(s)
- Bandana Singh
- Blood Research Institute, Versiti, Milwaukee, Wisconsin
| | - Ramoji Kosuru
- Blood Research Institute, Versiti, Milwaukee, Wisconsin
| | | | - Mary Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Endocrinology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Rodney Sparapani
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jeannette Vasquez-Vivar
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Magdalena Chrzanowska
- Blood Research Institute, Versiti, Milwaukee, Wisconsin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
12
|
Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, Daemen J, Dijkstra J, Edelman E, Evans P, van der Heiden K, Hose R, Koo BK, Krams R, Marsden A, Migliavacca F, Onuma Y, Ooi A, Poon E, Samady H, Stone P, Takahashi K, Tang D, Thondapu V, Tenekecioglu E, Timmins L, Torii R, Wentzel J, Serruys P. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 2020; 40:3421-3433. [PMID: 31566246 PMCID: PMC6823616 DOI: 10.1093/eurheartj/ehz551] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Frank Gijsen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yuki Katagiri
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Barlis
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, Northern Hospital, 185 Cooper Street, Epping, Australia.,St Vincent's Heart Centre, Building C, 41 Victoria Parade, Fitzroy, Australia
| | - Christos Bourantas
- Institute of Cardiovascular Sciences, University College of London, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK.,School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Carlos Collet
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Umit Coskun
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Elazer Edelman
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Kim van der Heiden
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rod Hose
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK.,Department of Circulation and Imaging, NTNU, Trondheim, Norway
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,Institute of Aging, Seoul National University, Seoul, Korea
| | - Rob Krams
- School of Engineering and Materials Science Queen Mary University of London, London, UK
| | - Alison Marsden
- Departments of Bioengineering and Pediatrics, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yoshinobu Onuma
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter Stone
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuniaki Takahashi
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Vikas Thondapu
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Thoraxcentre, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Lucas Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, UK
| | - Jolanda Wentzel
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Patrick Serruys
- Erasmus University Medical Center, Rotterdam, the Netherlands.,Imperial College London, London, UK.,Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Nikitin PV, Ryzhova MV, Galstyan SA, Kim DS, Zubova IV, Khokhlova EA, Shugay SV. Identification of different cell clusters in the endothelium of atherosclerotic vessels and determination of inter-cluster gradient of proliferative and inflammatory activity as new diagnostic markers. Biotech Histochem 2020; 96:487-497. [PMID: 32938242 DOI: 10.1080/10520295.2020.1823016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
To characterize atherogenesis functionally, we studied the functional heterogeneity of endotheliocytes in carotid vessels with atherosclerotic plaques and identified several distinct cell clusters. We measured the Ki-67 labeling index (Ki-67 LI), percentage of Bcl-2 cells (CP) and expression of CCL5, IL 6 and VCAM1 in each cell cluster. We also investigated how these indicators change when the plaque becomes unstable and how they affect the risk of adverse cerebrovascular events in patients. We evaluated the inter-cluster gradient of marker activity and its relation to patient prognosis. We identified five endothelial clusters: the under plaque cluster (UPC), peripheral cluster (PC), marginal cluster (MC), transient cluster (TC) and outside plaque cluster (OC). The UPC exhibited the greatest proliferative, proinflammatory and adhesive activity, but low anti-apoptotic activity. The PC exhibited the second greatest proliferative, adhesive and proinflammatory activity. Progression of atherosclerosis and transition of a stable atherosclerotic plaque to an unstable one was accompanied by increased expression of nearly all markers. The proliferative activity in the UPC, PC and OC, and the pro-inflammatory activity in UPC and anti-apoptotic activity in the PC, were correlated with prognosis. Also, two gradients of proliferative activity and a gradient of pro-inflammatory activity were associated with risk of adverse events.
Collapse
Affiliation(s)
- P V Nikitin
- P.K. Anokhin Institute of Normal Physiology, Moscow, Russian Federation
| | - M V Ryzhova
- N. N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - S A Galstyan
- N. N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - D S Kim
- N. N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - I V Zubova
- N. N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - E A Khokhlova
- N. N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - S V Shugay
- N. N. Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| |
Collapse
|
14
|
Zuin M, Rigatelli G, Chiastra C. Optimal Site for Proximal Optimization Technique in Complex Coronary Bifurcation Stenting: A Computational Fluid Dynamics Study. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2020; 21:826-832. [PMID: 31866275 DOI: 10.1016/j.carrev.2019.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND/PURPOSE The optimal position of the balloon distal radio-opaque marker during the post optimization technique (POT) remains debated. We analyzed three potential different balloon positions for the final POT in two different two-stenting techniques, to compare the hemodynamic effects in terms of wall shear stress (WSS) in patients with complex left main (LM) coronary bifurcation. METHODS/MATERIALS We reconstructed the patient-specific coronary bifurcation anatomy using the coronary computed tomography angiography (CCTA) data of 8 consecutive patients (6 males, mean age 68.2± 18.6 years) affected by complex LM bifurcation disease. Subsequently a virtual bench test was performed in each patient using two different double stenting techniques represented by the DK and Nano crush using the reconstruction of Orsiro stents (Biotronik IC, Bulack, Switzerland). RESULTS A significant reduction in the mean WSS values in all the lesion's sites was observed when the final POT was performed 1 mm distally the carina cut plane in both techniques. Moreover, a significant improvement in the mean WSS values of the entire SB (e.g. LCX) was obtained performing the POT 1 mm distally to the carina cut plane. The proximal POT resulted in larger area of lower WSS values at the carina using both the Nano crush and the DK crush techniques. CONCLUSIONS In patients with complex LM bifurcation disease the use of a final POT performed 1 mm distally to the carina cut plane might results in more favorable WSS patterns (i.e. higher WSS values) along all stented segments and, especially, along the entire LCX lesions.
Collapse
Affiliation(s)
- Marco Zuin
- Section of Internal and Cardiopulmonary Medicine, University of Ferrara, Faculty of Medicine Ferrara, Italy; Department of Cardiovascular Diagnosis and Endoluminal Interventions, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Gianluca Rigatelli
- Department of Cardiovascular Diagnosis and Endoluminal Interventions, Santa Maria della Misericordia Hospital, Rovigo, Italy.
| | - Claudio Chiastra
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
15
|
Xu S. Therapeutic potential of blood flow mimetic compounds in preventing endothelial dysfunction and atherosclerosis. Pharmacol Res 2020; 155:104737. [DOI: 10.1016/j.phrs.2020.104737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 01/08/2023]
|
16
|
Saqr KM, Rashad S, Tupin S, Niizuma K, Hassan T, Tominaga T, Ohta M. What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review. J Cereb Blood Flow Metab 2020; 40:1021-1039. [PMID: 31213162 PMCID: PMC7181089 DOI: 10.1177/0271678x19854640] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the plethora of published studies on intracranial aneurysms (IAs) hemodynamic using computational fluid dynamics (CFD), limited progress has been made towards understanding the complex physics and biology underlying IA pathophysiology. Guided by 1733 published papers, we review and discuss the contemporary IA hemodynamics paradigm established through two decades of IA CFD simulations. We have traced the historical origins of simplified CFD models which impede the progress of comprehending IA pathology. We also delve into the debate concerning the Newtonian fluid assumption used to represent blood flow computationally. We evidently demonstrate that the Newtonian assumption, used in almost 90% of studies, might be insufficient to describe IA hemodynamics. In addition, some fundamental properties of the Navier-Stokes equation are revisited in supplementary material to highlight some widely spread misconceptions regarding wall shear stress (WSS) and its derivatives. Conclusively, our study draws a roadmap for next-generation IA CFD models to help researchers investigate the pathophysiology of IAs.
Collapse
Affiliation(s)
- Khalid M Saqr
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan.,Department of Mechanical Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Simon Tupin
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Tamer Hassan
- Department of Neurosurgery, Alexandria University School of Medicine, Azarita Medical Campus, Alexandria, Egypt
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Makoto Ohta
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
17
|
D'Ardes D, Santilli F, Guagnano MT, Bucci M, Cipollone F. From Endothelium to Lipids, Through microRNAs and PCSK9: A Fascinating Travel Across Atherosclerosis. High Blood Press Cardiovasc Prev 2020; 27:1-8. [PMID: 31925708 DOI: 10.1007/s40292-019-00356-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022] Open
Abstract
Lipids and endothelium are pivotal players on the scene of atherosclerosis and their interaction is crucial for the establishment of the pathological processes. The endothelium is not only the border of the arterial wall: it plays a key role in regulating circulating fatty acids and lipoproteins and vice versa it is regulated by these lipidic molecules thereby promoting atherosclerosis. Inflammation is another important element in the relationship between lipids and endothelium. Recently, proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recognized as a fundamental regulator of LDL-C and anti-PCSK9 monoclonal antibodies have been approved for therapeutic use in hypercholesterolemia, with the promise to subvert the natural history of the disease. Moreover, growing experimental and clinical evidence is enlarging our understanding of the mechanisms through which this protein may facilitate the genesis of atherosclerosis, independently of its impact on lipid metabolism. In addition, environmental stimuli may affect the post-transcriptional regulation of genes through micro-RNAs, which in turn play a key role in orchestrating the crosstalk between endothelium and cholesterol. Advances in experimental research, with development of high throughput techniques, have led, over the last century, to a tremendous progress in the understanding and fine tuning of the molecular mechanisms leading to atherosclerosis. Identification of pivotal keystone molecules bridging lipid metabolism, endothelial dysfunction and atherogenesis will provide the mechanistic substrate to test valuable targets for prediction, prevention and treatment of atherosclerosis-related disease.
Collapse
Affiliation(s)
- D D'Ardes
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy
| | - F Santilli
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
| | - M T Guagnano
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
| | - M Bucci
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy
| | - F Cipollone
- Department of Medicine and Aging, "G. d'Annunzio" University, Chieti, Italy.
- Clinica Medica Division and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia "SS. Annunziata" Hospital, Chieti, Italy.
| |
Collapse
|
18
|
Pulsed Electromagnetic Fields Reduce Interleukin-6 Expression in Intervertebral Disc Cells Via Nuclear Factor-κβ and Mitogen-Activated Protein Kinase p38 Pathways. Spine (Phila Pa 1976) 2019; 44:E1290-E1297. [PMID: 31689248 DOI: 10.1097/brs.0000000000003136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This is an in vitro study of bovine disc cells exposed to pulsed electromagnetic fields. OBJECTIVE The purpose of the present study was to investigate whether pulsed electromagnetic fields (PEMF) effects on the expression of interleukin-6 (IL-6) expression is mediated by two known inflammation regulators, nuclear factor-κB (NF-κβ) and phosphorylated mitogen-activated protein kinase p38 (p38-MAPK) signaling pathways SUMMARY OF BACKGROUND DATA.: Inflammatory cytokines play a dominant role in the pathogenesis of disc degeneration. Increasing evidence showed that PEMF, a noninvasive biophysical stimulation, can have physiologically beneficial effects on inflammation and tissue repair. Our previous research shows that PEMF treatment can reduce IL-6 expression by intervertebral disc cells. However, the underlying mechanisms of PEMF action are yet to be uncovered. METHODS Intervertebral disc nuclear pulposus cells were challenged with interleukin-1α (IL-1α) (for mimicking inflammatory microenvironment) and treated with PEMF simultaneously up to 4 hours. Cells were then collected for NF-κβ and phosphorylated p38-MAPK protein detection with Western blot. Additionally, the RelA (p65) subunit of NF-κβ was examined with immunostaining for assessment of NF-κβ activation. RESULTS As expected, Western blot results showed that both NF-κβ and phosphorylated p38 expression were significantly increased by IL-1α treatment. This induction was significantly inhibited to control condition levels by PEMF treatment. Immunostaining demonstrated similar trends, that PEMF treatment reduced the NF-κβ activation induced by IL-1α exposure. CONCLUSION Our data indicate that the previously-reported inhibitory effect of PEMF treatment on disc inflammation is mediated by NF-κβ and phosphorylated p38-MAPK signaling pathways. These results further establish PEMFs anti-inflammatory activity, and may inform potential future clinical uses for management of inflammation associated with disc degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
19
|
Zemskov EA, Lu Q, Ornatowski W, Klinger CN, Desai AA, Maltepe E, Yuan JXJ, Wang T, Fineman JR, Black SM. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid Redox Signal 2019; 31:819-842. [PMID: 30623676 PMCID: PMC6751394 DOI: 10.1089/ars.2018.7720] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christina N Klinger
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, Arizona
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
20
|
Yuan S, Yurdagul A, Peretik JM, Alfaidi M, Al Yafeai Z, Pardue S, Kevil CG, Orr AW. Cystathionine γ-Lyase Modulates Flow-Dependent Vascular Remodeling. Arterioscler Thromb Vasc Biol 2019; 38:2126-2136. [PMID: 30002061 DOI: 10.1161/atvbaha.118.311402] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Objective- Flow patterns differentially regulate endothelial cell phenotype, with laminar flow promoting vasodilation and disturbed flow promoting endothelial proinflammatory activation. CSE (cystathionine γ-lyase), a major source of hydrogen sulfide (H2S) in endothelial cells, critically regulates cardiovascular function, by both promoting vasodilation and reducing endothelial activation. Therefore, we sought to investigate the role of CSE in the endothelial response to flow. Approach and Results- Wild-type C57Bl/6J and CSE knockout ( CSE-/-) mice underwent partial carotid ligation to induce disturbed flow in the left carotid. In addition, endothelial cells isolated from wild-type and CSE -/- mice were exposed to either laminar or oscillatory flow, an in vitro model of disturbed flow. Interestingly, laminar flow significantly reduced CSE expression in vitro, and only disturbed flow regions show discernable CSE protein expression in vivo, correlating with enhanced H2S production in wild-type C57BL/6J but not CSE-/- mice. Lack of CSE limited disturbed flow-induced proinflammatory gene expression (ICAM-1[intercellular adhesion molecule 1], VCAM-1 [vascular cell adhesion molecular 1]) and monocyte infiltration and CSE-/- endothelial cells showed reduced NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and proinflammatory gene expression in response to oscillatory flow in vitro. In addition, CSE-/- mice showed reduced inward remodeling after partial carotid ligation. CSE-/- mice showed elevated vascular nitrite levels (measure of nitric oxide [NO]) in the unligated carotids, suggesting an elevation in baseline NO production, and the NO scavenger 2-(4-carboxyphenyl)-4,5-dihydro-4,4,5,5-tetramethyl-1H-imidazolyl-1-oxy-3-oxide normalized the reduced inward remodeling, but not inflammation, of ligated carotids in CSE-/- mice. Conclusions- CSE expression in disturbed flow regions critically regulates both endothelial activation and flow-dependent vascular remodeling, in part through altered NO availability.
Collapse
Affiliation(s)
- Shuai Yuan
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.)
| | - Arif Yurdagul
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.)
| | - Jonette M Peretik
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.)
| | - Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.)
| | - Zaki Al Yafeai
- Department of Cellular and Molecular Physiology (Z.A.Y., C.G.K., A.W.O.)
| | - Sibile Pardue
- Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.)
| | - Christopher G Kevil
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.).,Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.).,Department of Cellular and Molecular Physiology (Z.A.Y., C.G.K., A.W.O.).,Center for Cardiovascular Diseases and Sciences (C.G.K., A.W.O.), Louisiana State University Health Sciences Center, Shreveport
| | - A Wayne Orr
- From the Department of Cellular Biology and Anatomy (S.Y., A.Y., C.G.K., A.W.O.).,Department of Pathology and Translational Pathobiology (J.M.P., M.A., S.P., C.G.K., A.W.O.).,Department of Cellular and Molecular Physiology (Z.A.Y., C.G.K., A.W.O.).,Center for Cardiovascular Diseases and Sciences (C.G.K., A.W.O.), Louisiana State University Health Sciences Center, Shreveport
| |
Collapse
|
21
|
Caligiuri G. Mechanotransduction, immunoregulation, and metabolic functions of CD31 in cardiovascular pathophysiology. Cardiovasc Res 2019; 115:1425-1434. [DOI: 10.1093/cvr/cvz132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
Biomechanical changes in the heart and vessels drive rapid and dynamic regulation of blood flow, a vital process for meeting the changing metabolic needs of the peripheral tissues at any given point in time. The fluid movement of the blood exerts haemodynamic stress upon the solid elements of the cardiovascular system: the heart, vessels, and cellular components of the blood. Cardiovascular diseases can lead to prolonged mechanical stress, such as cardiac remodelling during heart failure or vascular stiffening in atherosclerosis. This can lead to a significantly reduced or increasingly turbulent blood supply, inducing a shift in cellular metabolism that, amongst other effects, can trigger the release of reactive oxygen species and initiate a self-perpetuating cycle of inflammation and oxidative stress. CD31 is the most abundant constitutive co-signalling receptor glycoprotein on endothelial cells, which line the cardiovascular system and form the first-line of cellular contact with the blood. By associating with most endothelial receptors involved in mechanosensing, CD31 regulates the response to biomechanical stimuli. In addition, by relocating in the lipid rafts of endothelial cells as well as of cells stably interacting with the endothelium, including leucocytes and platelets, CD31–CD31 trans-homophilic engagement guides and restrains platelet and immune cell accumulation and activation and at sites of damage. In this way, CD31 is at the centre of mediating mechanical, metabolic, and immunological changes within the circulation and provides a single target that may have pleiotropic beneficial effects.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- Université de Paris, Cardiovascular Immunobiology, UMRS1148, INSERM, Paris, France
- Cardiology Department and Physiology Departments, AP-HP, University Hospital Xavier Bichat, 46 Rue Henri Huchard, Paris, France
| |
Collapse
|
22
|
Song W, Zhang CL, Gou L, He L, Gong YY, Qu D, Zhao L, Jin N, Chan TF, Wang L, Tian XY, Luo JY, Huang Y. Endothelial TFEB (Transcription Factor EB) Restrains IKK (IκB Kinase)-p65 Pathway to Attenuate Vascular Inflammation in Diabetic
db/db
Mice. Arterioscler Thromb Vasc Biol 2019; 39:719-730. [DOI: 10.1161/atvbaha.119.312316] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective—
TFEB (transcription factor EB) was recently reported to be induced by atheroprotective laminar flow and play an anti-atherosclerotic role by inhibiting inflammation in endothelial cells (ECs). This study aims to investigate whether TFEB regulates endothelial inflammation in diabetic
db/db
mice and the molecular mechanisms involved.
Approach and Results—
Endothelial denudation shows that TFEB is mainly expressed in ECs in mouse aortas. Western blotting shows TFEB total protein level decreases whereas the p-TFEB S142 (phosphorylated form of TFEB) increases in
db/db
mouse aortas, suggesting a decreased TFEB activity. Adenoviral TFEB overexpression reduces endothelial inflammation as evidenced by decreased expression of vascular inflammatory markers in
db/db
mouse aortas, and reduced expression of a wide range of adhesion molecules and chemokines in human umbilical vein ECs. Monocyte attachment assay shows TFEB suppresses monocyte adhesion to human umbilical vein ECs. RNA sequencing of TFEB-overexpressed human umbilical vein ECs suggested TFEB inhibits NF-κB (nuclear factor-kappa B) signaling. Indeed, luciferase assay shows TFEB suppresses NF-κB transcriptional activity. Mechanistically, TFEB suppresses IKK (IκB kinase) activity to protect IκB-α from degradation, leading to reduced p65 nuclear translocation. Inhibition of IKK by PS-1145 abolished TFEB silencing-induced inflammation in human umbilical vein ECs. Lastly, we identified KLF2 (Krüppel-like factor 2) upregulates TFEB expression and promoter activity. Laminar flow experiment showed that KLF2 is required for TFEB induction by laminar flow and TFEB is an anti-inflammatory effector downstream of laminar flow-KLF2 signaling in ECs.
Conclusions—
These findings suggest that TFEB exerts anti-inflammatory effects in diabetic mice and such function in ECs is achieved by inhibiting IKK activity and increasing IκBα level to suppress NF-κB activity. KLF2 mediates TFEB upregulation in response to laminar flow.
Collapse
Affiliation(s)
- Wencong Song
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Cheng-Lin Zhang
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Lingshan Gou
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Lei He
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Yao-Yu Gong
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Dan Qu
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Lei Zhao
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Nana Jin
- School of Life Sciences (N.J., T.F.C.), Chinese University of Hong Kong, China
| | - Ting Fung Chan
- School of Life Sciences (N.J., T.F.C.), Chinese University of Hong Kong, China
| | - Li Wang
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Xiao Yu Tian
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Jiang-Yun Luo
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| | - Yu Huang
- From the Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L., Y.H.)
- School of Biomedical Sciences (W.S., C.-L.Z., L.G., L.H., Y.-Y.G., Q.D., L.Z., L.W., X.Y.T., J.-Y.L.,Y.H.), Chinese University of Hong Kong, China
| |
Collapse
|
23
|
Niu N, Xu S, Xu Y, Little PJ, Jin ZG. Targeting Mechanosensitive Transcription Factors in Atherosclerosis. Trends Pharmacol Sci 2019; 40:253-266. [PMID: 30826122 DOI: 10.1016/j.tips.2019.02.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is the primary underlying cause of cardiovascular disease which preferentially develops at arterial regions exposed to disturbed flow (DF), but much less at regions of unidirectional laminar flow (UF). Recent studies have demonstrated that DF and UF differentially regulate important aspects of endothelial function, such as vascular inflammation, oxidative stress, vascular tone, cell proliferation, senescence, mitochondrial function, and glucose metabolism. DF and UF regulate vascular pathophysiology via differential regulation of mechanosensitive transcription factors (MSTFs) (KLF2, KLF4, NRF2, YAP/TAZ/TEAD, HIF-1α, NF-κB, AP-1, and others). Emerging studies show that MSTFs represent promising therapeutic targets for the prevention and treatment of atherosclerosis. We present here a comprehensive overview of the role of MSTFs in atherosclerosis, and highlight future directions for developing novel therapeutic agents by targeting MSTFs.
Collapse
Affiliation(s)
- Niu Niu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Yanni Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; National Health Commission (NHC) Key Laboratory of Biotechnology of Antibiotics, National Center for Drug (Microbiology) Screening Laboratory, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Beijing, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Guangzhou 510520, China
| | - Zheng-Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
24
|
Saqr KM, Mansour O, Tupin S, Hassan T, Ohta M. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements. Med Biol Eng Comput 2018; 57:1029-1036. [PMID: 30523533 DOI: 10.1007/s11517-018-1926-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022]
Abstract
Computational fluid dynamics (CFD) studies of intracranial hemodynamics often use Newtonian viscosity model to close the shear rate term in the Navier-Stokes equation. This is based on a commonly accepted hypothesis which state that non-Newtonian effects can be neglected in intracranial blood flow. This study aims to examine the validity of such hypothesis to guide future CFD studies of intracranial hemodynamics. Doppler ultrasonography (DUS) measurements of systolic and diastolic vessel diameter and blood velocity were conducted on 16 subjects (mean age 50.6). The measurements were conducted on the internal carotid (ICA), middle cerebral (MCA), and anterior communicating (AComA) arteries. Systolic and diastolic wall shear stress (WSS) values were calculated via the Hagen-Poiseuille exact solution using Newtonian and three different non-Newtonian models: namely Carreau, power-law and Herschel-Bulkley models. The Weissenberg-Rabinowitsch correction for blood shear-thinning viscosity was applied to the non-Newtonian models. The error percentage between the two sets of models was calculated and discussed. The Newtonian hypothesis was tested statistically and discussed using paired t tests. Significant differences (P < 0.0001) were found between the Newtonian and non-Newtonian WSS in ICA. In MCA and AComA, similar differences were found except in the systole and diastole for the Herschel-Bulkley and power-law models (P = 0.0669, P = 0.7298), respectively. The error between the Newtonian and non-Newtonian models ranged from - 27 to 30% (0.2 to 2.2 Pa). These values could affect the physical interpretation of IA CFD studies. Evidence suggests that the Newtonian assumption may be inappropriate to investigate intracranial hemodynamics. Graphical abstract The WSS estimation error resulting from using the Newtonian assumption compared to three non-Newtonian models for ICA, MCA, and AComA in systole and diastole conditions, based on TCCD measurements of 16 subjects. The error due to the Newtonian assumption ranged from 0.2 to 2.2 Pa (- 27 to 30%). These values could affect the physical interpretation of IA CFD studies.
Collapse
Affiliation(s)
- Khalid M Saqr
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, 980-8577, Japan. .,College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Abu Kir, Alexandria, 1029, Egypt. .,Research Center for Computational Neurovascular Biomechanics (RCCNB), Smouha University Hospital, Alexandria University, Alexandria, 21648, Egypt.
| | - Ossama Mansour
- Research Center for Computational Neurovascular Biomechanics (RCCNB), Smouha University Hospital, Alexandria University, Alexandria, 21648, Egypt.,Department of Neurology, Stroke Unit, Alexandria University School of Medicine, Azarita Medical Campus, Alexandria, 21514, Egypt
| | - Simon Tupin
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Tamer Hassan
- Research Center for Computational Neurovascular Biomechanics (RCCNB), Smouha University Hospital, Alexandria University, Alexandria, 21648, Egypt.,Department of Neurosurgery, Alexandria University School of Medicine, Azarita Medical Campus, Alexandria, 21514, Egypt
| | - Makoto Ohta
- Biomedical Flow Dynamics Laboratory, Institute of Fluid Science, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
25
|
Bachmann BJ, Giampietro C, Bayram A, Stefopoulos G, Michos C, Graeber G, Falk MV, Poulikakos D, Ferrari A. Honeycomb-structured metasurfaces for the adaptive nesting of endothelial cells under hemodynamic loads. Biomater Sci 2018; 6:2726-2737. [DOI: 10.1039/c8bm00660a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The thrombogenicity of artificial materials comprising ventricular assist devices (VADs) limits their long-term integration in the human body.
Collapse
Affiliation(s)
- Bjoern Johann Bachmann
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Costanza Giampietro
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Adem Bayram
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Georgios Stefopoulos
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Christos Michos
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Gustav Graeber
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Med Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery
- German Heart Institute Berlin
- Berlin
- Germany
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies
- Department of Mechanical and Process Engineering
- ETH Zurich
- Zürich
- Switzerland
| |
Collapse
|
26
|
Amschler K, Kossmann E, Erpenbeck L, Kruss S, Schill T, Schön M, Möckel SMC, Spatz JP, Schön MP. Nanoscale Tuning of VCAM-1 Determines VLA-4-Dependent Melanoma Cell Plasticity on RGD Motifs. Mol Cancer Res 2017; 16:528-542. [PMID: 29222169 DOI: 10.1158/1541-7786.mcr-17-0272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/08/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022]
Abstract
The biophysical fine-tuning of cancer cell plasticity is crucial for tumor progression but remains largely enigmatic. Although vascular cell adhesion molecule-1 (VCAM-1/CD106) has been implicated in melanoma progression, here its presentation on endothelial cells was associated with diminished melanoma cell spreading. Using a specific nanoscale modulation of VCAM-1 (tunable from 70 to 670 ligands/μm²) next to integrin ligands (RGD motifs) in a bifunctional system, reciprocal regulation of integrin α4 (ITGA4/VLA-4/CD49d)-dependent adhesion and spreading of melanoma cells was found. As the VCAM-1/VLA-4 receptor pair facilitated adhesion, while at the same time antagonizing RGD-mediated spreading, melanoma cell morphogenesis on these bifunctional matrices was directly regulated by VCAM-1 in a dichotomic and density-dependent fashion. This was accompanied by concordant regulation of F-actin cytoskeleton remodeling, Rac1-expression, and paxillin-related adhesion formation. The novel function of VCAM-1 was corroborated in vivo using two murine models of pulmonary metastasis. The regulation of melanoma cell plasticity by VCAM-1 highlights the complex regulation of tumor-matrix interactions.Implications: Nanotechnology has revealed a novel dichotomic function of the VCAM-1/VLA-4 interaction on melanoma cell plasticity, as nanoscale tuning of this interaction reciprocally determines adhesion and spreading in a ligand density-dependent manner. Mol Cancer Res; 16(3); 528-42. ©2017 AACR.
Collapse
Affiliation(s)
- Katharina Amschler
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Eugen Kossmann
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Sebastian Kruss
- Department of Physical Chemistry, Georg August University, Göttingen, Germany
| | - Tillmann Schill
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Margarete Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Sigrid M C Möckel
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg and Laboratory of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen, Germany.
| |
Collapse
|
27
|
Expression of Nuclear Lamin Proteins in Endothelial Cells is Sensitive to Cell Passage and Fluid Shear Stress. Cell Mol Bioeng 2017; 11:53-64. [PMID: 31719878 DOI: 10.1007/s12195-017-0513-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 11/02/2017] [Indexed: 12/16/2022] Open
Abstract
Introduction Vascular cells are regulated by continuous hemodynamic forces in vivo, and mechanical forces such as shear stress are proposed to involve in the progression of cardiovascular diseases such as atherosclerosis. Lamin A/C makes up the nuclear lamina, which structurally supports the nucleus while also functionally participates in chromatin organization and gene transcription. Diseases caused by lamin or other nuclear proteins are called laminopathies. One example, Hutchinson Gilford Progeria Syndrome (HGPS) where young patients show signs of accelerated aging, is caused by de novo mutations on the lamin A/C gene. Vasculature of HGPS patients shares many similarities with people of advanced age, suggesting a role for lamin in vascular aging. Methods In this study, we examined how arterial shear stress affects lamin A/C expression in bovine aortic endothelial cells at different population doubling levels (PDL). We also used fluorescence image analysis to examine nuclear shape changes with shear stress and PDL. Results Our results suggest that laminar shear stress downregulated lamin A/C expression in low PDL cells, but the effect was reversed in high PDL cells. Nuclear shape changes were more prominent after shear stress in low PDL cells. Moreover, lamin A/C accumulated more at the nuclear periphery after exposure to shear stress. Conclusions Overall, our results indicate that both shear stress and cell passage can have an impact on lamin expressions at transcriptional and translational levels, as we continue to understand the effect of shear stress on endothelial lamina as part of the vascular aging process.
Collapse
|
28
|
Ng J, Bourantas CV, Torii R, Ang HY, Tenekecioglu E, Serruys PW, Foin N. Local Hemodynamic Forces After Stenting: Implications on Restenosis and Thrombosis. Arterioscler Thromb Vasc Biol 2017; 37:2231-2242. [PMID: 29122816 DOI: 10.1161/atvbaha.117.309728] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Abstract
Local hemodynamic forces are well-known to modulate atherosclerotic evolution, which remains one of the largest cause of death worldwide. Percutaneous coronary interventions with stent implantation restores blood flow to the downstream myocardium and is only limited by stent failure caused by restenosis, stent thrombosis, or neoatherosclerosis. Cumulative evidence has shown that local hemodynamic forces affect restenosis and the platelet activation process, modulating the pathophysiological mechanisms that lead to stent failure. This article first covers the pathophysiological mechanisms through which wall shear stress regulates arterial disease formation/neointima proliferation and the role of shear rate on stent thrombosis. Subsequently, the article reviews the current evidence on (1) the implications of stent design on the local hemodynamic forces, and (2) how stent/scaffold expansion can influence local flow, thereby affecting the risk of adverse events.
Collapse
Affiliation(s)
- Jaryl Ng
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Christos V Bourantas
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Ryo Torii
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Hui Ying Ang
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Erhan Tenekecioglu
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Patrick W Serruys
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Nicolas Foin
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.).
| |
Collapse
|
29
|
Mießler KS, Vitzthum C, Markov AG, Amasheh S. Basolateral pressure challenges mammary epithelial cell monolayer integrity, in vitro. Cytotechnology 2017; 70:567-576. [PMID: 28852895 DOI: 10.1007/s10616-017-0130-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/31/2017] [Indexed: 12/17/2022] Open
Abstract
Mammary gland epithelium is physiologically exposed to variations of hydrostatic pressure due to accumulation of milk and removal by suckling and mechanical milking. Integrity of the mammary gland epithelium primarily relies on the tight junction. To analyze pressure-induced effects on the tight junction, we established a modified Ussing chamber and tested the hypothesis if hydrostatic pressure on the basal side of the epithelium is able to affect barrier properties in a mammary epithelial cell model, in vitro. Therefore, a conventional Ussing chamber was modified by an additional tube system to apply hydrostatic pressure. Monolayers of the mammary epithelial cell line HC11 were mounted in the modified Ussing chambers and incubated with increasing basal hydrostatic pressure. Transepithelial resistance and short circuit current were recorded and compared to controls. Hydrostatic pressure was stably applied and incubation steps of 30 min were technically feasible, leading to a decrease of transepithelial resistance and an increase of short circuit current in all monolayers. In a series of experiments simulating the physiological exposure time by short intervals of 5 min, these electrophysiological findings were also observed, and monolayer integrity was not significantly perturbed as analyzed by fluorescence immunohistochemistry selectively staining tight junction proteins. Moreover, electrophysiology demonstrated reversibility of effects. In conclusion, the modified Ussing chamber is an adequate method to analyze the effects of hydrostatic pressure on epithelial cell monolayers, in vitro. Both, the reduction of transepithelial resistance and the increase of short circuit current may be interpreted as protective reactions.
Collapse
Affiliation(s)
- Katharina S Mießler
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Constanze Vitzthum
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | - Alexander G Markov
- Department of General Physiology, St. Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, Russia, 199034
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| |
Collapse
|
30
|
Chao Y, Zhu L, Qu X, Zhang J, Zhang J, Kong X, Gu Y, Pu J, Wu W, Ye P, Luo J, Yang H, Chen S. Inhibition of angiotension II type 1 receptor reduced human endothelial inflammation induced by low shear stress. Exp Cell Res 2017; 360:94-104. [PMID: 28843962 DOI: 10.1016/j.yexcr.2017.08.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022]
Abstract
Low shear stress (LSS)-induced endothelial inflammation is the basis for the development of atherosclerosis. However, the mechanism underlying LSS-induced inflammation is not well understood. The angiotensin II type 1 receptor (AT1R), a component of the renin-angiotensin system, participates in atherosclerotic plaque progression. The aim of this study was to investigate the role of AT1R in LSS-induced endothelial activation. Using immunohistochemistry, we noted significant increases in AT1R, vascular endothelial adhesion cell-1 (VCAM1), and intercellular adhesion molecule-1 (ICAM1) expression in the inner curvature of the aortic arch in C57BL/6 mice compared to the descending aorta in these mice. Moreover, western blotting revealed that these LSS-induced increases in AT1R, ICAM1 and VCAM1 expression were time dependent. However, the expression of these proteins was significantly abolished by treatment with the AT1R antagonist Losartan (1μM) or AT1R small interfering RNA (siRNA). AT1R inhibition significantly suppressed extracellular signal-regulated kinase 1/2 (ERK) upregulation, which also resulted in decreases in ICAM1 and VCAM1 protein expression. These findings demonstrate that LSS induces endothelial inflammation via AT1R/ERK signaling and that Losartan has beneficial effects on endothelial inflammation.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Animals
- Cells, Cultured
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/immunology
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Inflammation/etiology
- Inflammation/prevention & control
- Losartan/pharmacology
- Losartan/therapeutic use
- Mice
- Mice, Inbred C57BL
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/therapeutic use
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Shear Strength/drug effects
- Stress, Mechanical
- Vasculitis/pathology
- Vasculitis/prevention & control
Collapse
Affiliation(s)
- Yuelin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinliang Qu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junxia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangquan Kong
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiangqin Pu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongfeng Yang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
31
|
Rathod ML, Ahn J, Jeon NL, Lee J. Hybrid polymer microfluidic platform to mimic varying vascular compliance and topology. LAB ON A CHIP 2017; 17:2508-2516. [PMID: 28653725 DOI: 10.1039/c7lc00340d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Several cardiovascular pathologies and aging have been associated with alterations in the mechanical and structural properties of the vascular wall, leading to a reduction in arterial compliance and the development of constriction. In the past, rare efforts have been directed to understand the endothelial cell response to combined mechanical stimuli from fluid flow and substrate rigidity. Recent approaches using microfluidic platforms have limitations in precisely mimicking healthy and diseased vasculature conditions from altered topological and substrate compliance perspectives. To address this, we demonstrated an effective fabrication process to realize a hybrid polymer platform to test these mechanistic features of blood vessels. The salient features of the platform include circular microchannels of varying diameters, variation in substrate rigidity along the channel length, and the coexistence of microchannels with different cross sections on a single platform. The platform demonstrates the combined effects of flow-induced shear forces and substrate rigidity on the endothelial cell layer inside the circular microchannels. The experimental results indicate a pronounced cell response to flow induced shear stress via its interplay with the underlying substrate mechanics.
Collapse
Affiliation(s)
- M L Rathod
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, South Korea.
| | | | | | | |
Collapse
|
32
|
Wei L, Zhang X, Ye Q, Yang Y, Chen X. The transfection of A20 gene prevents kidney from ischemia reperfusion injury in rats. Mol Med Rep 2017; 16:1486-1492. [PMID: 29067462 DOI: 10.3892/mmr.2017.6725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/24/2017] [Indexed: 11/06/2022] Open
Abstract
Ischemia/reperfusion may induce inflammation and cell death through the nuclear factor (NF)‑κB signaling pathway. As a negative regulator of NF‑κB, zinc finger A20 exhibits anti-apoptotic and anti‑inflammatory effects in vitro. The present study was designed to upregulate A20 expression using an A20 transfection approach to investigate the in vivo protective effects of the A20 gene on renal ischemia reperfusion injury. The A20 gene was cloned into a pcDNA3.1 vector to construct the expression plasmid pcDNA3.1‑A20. The plasmid was wrapped with a liposome and injected intravenously into rats 48 h prior to establishing the models of renal ischemia reperfusion injury. Saline and the empty plasmid pcDNA3.1 were used as controls. Following 24 h post‑operation, A20 expression was determined using reverse transcription‑quantitative polymerase chain reaction and western blotting. The renal function and structure were assessed by analyzing the concentrations of serum creatinine (Scr), blood urea nitrogen (BUN) and histological features. Renal tissues were additionally examined for renal tubular cell apoptosis and NF‑κB activity. The results demonstrated that in vivo transfection of pcDNA3.1‑A20 induced renal A20 expression in rats. A20 overexpression in vivo significantly reduced renal injury as demonstrated by the improved levels of Scr and BUN and the reduction in histological damage. These improvements were accompanied by a suppression of renal proximal tubular epithelial cell apoptosis and an inhibition of NF‑κB activity. These results indicated that transfection of the A20 gene upregulates the expression of A20 in vivo and protects the kidneys from ischemia reperfusion injury via inhibition of the NF‑κB signal transduction pathway.
Collapse
Affiliation(s)
- Lixin Wei
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xianghui Zhang
- Department of Nephropathy, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong 519000, P.R. China
| | - Qiuping Ye
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yueer Yang
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiaowen Chen
- Department of Nephropathy, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
33
|
The arterial microenvironment: the where and why of atherosclerosis. Biochem J 2017; 473:1281-95. [PMID: 27208212 DOI: 10.1042/bj20150844] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
The formation of atherosclerotic plaques in the large and medium sized arteries is classically driven by systemic factors, such as elevated cholesterol and blood pressure. However, work over the past several decades has established that atherosclerotic plaque development involves a complex coordination of both systemic and local cues that ultimately determine where plaques form and how plaques progress. Although current therapeutics for atherosclerotic cardiovascular disease primarily target the systemic risk factors, a large array of studies suggest that the local microenvironment, including arterial mechanics, matrix remodelling and lipid deposition, plays a vital role in regulating the local susceptibility to plaque development through the regulation of vascular cell function. Additionally, these microenvironmental stimuli are capable of tuning other aspects of the microenvironment through collective adaptation. In this review, we will discuss the components of the arterial microenvironment, how these components cross-talk to shape the local microenvironment, and the effect of microenvironmental stimuli on vascular cell function during atherosclerotic plaque formation.
Collapse
|
34
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Effects of shear stress on endothelial cells: go with the flow. Acta Physiol (Oxf) 2017; 219:382-408. [PMID: 27246807 DOI: 10.1111/apha.12725] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/17/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
Haemodynamic forces influence the functional properties of vascular endothelium. Endothelial cells (ECs) have a variety of receptors, which sense flow and transmit mechanical signals through mechanosensitive signalling pathways to recipient molecules that lead to phenotypic and functional changes. Arterial architecture varies greatly exhibiting bifurcations, branch points and curved regions, which are exposed to various flow patterns. Clinical studies showed that atherosclerotic plaques develop preferentially at arterial branches and curvatures, that is in the regions exposed to disturbed flow and shear stress. In the atheroprone regions, the endothelium has a proinflammatory phenotype associated with low nitric oxide production, reduced barrier function and increased proadhesive, procoagulant and proproliferative properties. Atheroresistant regions are exposed to laminar flow and high shear stress that induce prosurvival antioxidant signals and maintain the quiescent phenotype in ECs. Indeed, various flow patterns contribute to phenotypic and functional heterogeneity of arterial endothelium whose response to proatherogenic stimuli is differentiated. This may explain the preferential development of endothelial dysfunction in arterial sites with disturbed flow.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Department of Medical Nanobiotechnology; Pirogov Russian State Medical University; Moscow Russia
| | - A. N. Orekhov
- Institute of General Pathology and Pathophysiology; Russian Academy of Medical Sciences; Moscow Russia
- Institute for Atherosclerosis Research; Skolkovo Innovative Center; Moscow Russia
- Department of Biophysics; Biological Faculty; Moscow State University; Moscow Russia
| | - Y. V. Bobryshev
- Institute of General Pathology and Pathophysiology; Russian Academy of Medical Sciences; Moscow Russia
- Faculty of Medicine and St Vincent's Centre for Applied Medical Research; University of New South Wales; Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
35
|
Hazell GGJ, Peachey AMG, Teasdale JE, Sala-Newby GB, Angelini GD, Newby AC, White SJ. PI16 is a shear stress and inflammation-regulated inhibitor of MMP2. Sci Rep 2016; 6:39553. [PMID: 27996045 PMCID: PMC5171773 DOI: 10.1038/srep39553] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/23/2016] [Indexed: 01/26/2023] Open
Abstract
Raised endothelial shear stress is protective against atherosclerosis but such protection may be lost at sites of inflammation. We found that four splice variants of the peptidase inhibitor 16 (PI16) mRNA are among the most highly shear stress regulated transcripts in human coronary artery endothelial cells (HCAECs), in vitro but that expression is reduced by inflammatory mediators TNFα and IL-1β. Immunohistochemistry demonstrated that PI16 is expressed in human coronary endothelium and in a subset of neointimal cells and medial smooth muscle cells. Adenovirus-mediated PI16 overexpression inhibits HCAEC migration and secreted matrix metalloproteinase (MMP) activity. Moreover, PI16 inhibits MMP2 in part by binding an exposed peptide loop above the active site. Our results imply that, at high endothelial shear stress, PI16 contributes to inhibition of protease activity; protection that can be reversed during inflammation.
Collapse
Affiliation(s)
- Georgina G J Hazell
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Alasdair M G Peachey
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Jack E Teasdale
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Graciela B Sala-Newby
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Gianni D Angelini
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Andrew C Newby
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK
| | - Stephen J White
- School of Clinical Sciences, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, UK.,School of Healthcare Science, Manchester Metropolitan University, John Dalton Building, Manchester M1 5GD, UK
| |
Collapse
|
36
|
Meza D, Shanmugavelayudam SK, Mendoza A, Sanchez C, Rubenstein DA, Yin W. Platelets modulate endothelial cell response to dynamic shear stress through PECAM-1. Thromb Res 2016; 150:44-50. [PMID: 28013181 DOI: 10.1016/j.thromres.2016.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/07/2016] [Accepted: 12/04/2016] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Both vascular endothelial cells and platelets are sensitive to blood flow induced shear stress. We have recently reported that platelet-endothelial cell interaction could greatly affect platelet activation under flow. In the present study, we aimed to investigate how platelet-endothelial cell interaction affected endothelial cell inflammatory responses under flow. MATERIALS AND METHODS Human coronary artery endothelial cells were exposed to normal or low pulsatile shear stress with or without the presence of platelets. Following shear exposure, endothelial cell ICAM-1 expression was measured using ELISA, Western blot and PCR; cell surface PECAM-1 expression/phosphorylation was measured using ELISA. Platelet adhesion to endothelial cells was quantified using immunofluorescence microscopy. To determine the role of PECAM-1 in platelet-endothelial cell interaction, endothelial cell PECAM-1 expression was suppressed using siRNA. RESULTS Pathological low shear stress induced a significant increase in endothelial cell ICAM-1 expression, at both protein and mRNA levels. Platelet adhesion to endothelial cells increased significantly under low shear stress, co-localizing with PECAM-1 at endothelial cell junctions. The presence of platelets inhibited low shear stress-induced ICAM-1 upregulation. When endothelial cell PECAM-1 expression was suppressed, platelet adhesion to endothelial cells under low shear stress decreased significantly; endothelial cell ICAM-1 expression was not affected by shear stress, with or without platelets. CONCLUSIONS These results suggested that PECAM-1 could mediate platelet adhesion to endothelial cells under shear stress. Platelets binding to endothelial cells interfered with endothelial cell mechanotransduction through PECAM-1, affecting endothelial cell inflammatory responses towards pathological shear flow.
Collapse
Affiliation(s)
- Daphne Meza
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States
| | - Saravan K Shanmugavelayudam
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74074, United States
| | - Arielys Mendoza
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States
| | - Coralys Sanchez
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States
| | - David A Rubenstein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States
| | - Wei Yin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, United States; School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74074, United States.
| |
Collapse
|
37
|
Cicha I. Strategies to enhance nanoparticle-endothelial interactions under flow. ACTA ACUST UNITED AC 2016. [DOI: 10.3233/jcb-15020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Abstract
Atherosclerosis remains a major cause of morbidity and mortality worldwide, and a thorough understanding of the underlying pathophysiological mechanisms is crucial for the development of new therapeutic strategies. Although atherosclerosis is a systemic inflammatory disease, coronary atherosclerotic plaques are not uniformly distributed in the vascular tree. Experimental and clinical data highlight that biomechanical forces, including wall shear stress (WSS) and plaque structural stress (PSS), have an important role in the natural history of coronary atherosclerosis. Endothelial cell function is heavily influenced by changes in WSS, and longitudinal animal and human studies have shown that coronary regions with low WSS undergo increased plaque growth compared with high WSS regions. Local alterations in WSS might also promote transformation of stable to unstable plaque subtypes. Plaque rupture is determined by the balance between PSS and material strength, with plaque composition having a profound effect on PSS. Prospective clinical studies are required to ascertain whether integrating mechanical parameters with medical imaging can improve our ability to identify patients at highest risk of rapid disease progression or sudden cardiac events.
Collapse
|
39
|
Xiao Y, Hayman D, Khalafvand SS, Lindsey ML, Han HC. Artery buckling stimulates cell proliferation and NF-κB signaling. Am J Physiol Heart Circ Physiol 2015; 307:H542-51. [PMID: 24929858 DOI: 10.1152/ajpheart.00079.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tortuous carotid arteries are often seen in aged populations and are associated with atherosclerosis, but the underlying mechanisms to explain this preference are unclear. Artery buckling has been suggested as one potential mechanism for the development of tortuous arteries. The objective of this study, accordingly, was to determine the effect of buckling on cell proliferation and associated NF-κB activation in arteries. We developed a technique to generate buckling in porcine carotid arteries using long artery segments in organ culture without changing the pressure, flow rate, and axial stretch ratio. Using this technique, we examined the effect of buckling on arterial wall remodeling in 4-day organ culture under normal and hypertensive pressures. Cell proliferation, NF-κB p65, IκB-α, ERK1/2, and caspase-3 were detected using immunohistochemistry staining and immunoblot analysis. Our results showed that cell proliferation was elevated 5.8-fold in the buckling group under hypertensive pressure (n = 7, P < 0.01) with higher levels of NF-κB nuclear translocation and IκB-α degradation (P < 0.05 for both). Greater numbers of proliferating cells were observed on the inner curve side of the buckled arteries compared with the outer curve side (P < 0.01). NF-κB colocalized with proliferative nuclei. Computational simulations using a fluid-structure interaction model showed reduced wall stress on the inner side of buckled arteries and elevated wall stress on the outer side. We conclude that arterial buckling promotes site-specific wall remodeling with increased cell proliferation and NF-κB activation. These findings shed light on the biomechanical and molecular mechanisms of the pathogenesis of atherosclerosis in tortuous arteries.
Collapse
|
40
|
Huveneers S, Daemen MJAP, Hordijk PL. Between Rho(k) and a hard place: the relation between vessel wall stiffness, endothelial contractility, and cardiovascular disease. Circ Res 2015; 116:895-908. [PMID: 25722443 DOI: 10.1161/circresaha.116.305720] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular stiffness is a mechanical property of the vessel wall that affects blood pressure, permeability, and inflammation. As a result, vascular stiffness is a key driver of (chronic) human disorders, including pulmonary arterial hypertension, kidney disease, and atherosclerosis. Responses of the endothelium to stiffening involve integration of mechanical cues from various sources, including the extracellular matrix, smooth muscle cells, and the forces that derive from shear stress of blood. This response in turn affects endothelial cell contractility, which is an important property that regulates endothelial stiffness, permeability, and leukocyte-vessel wall interactions. Moreover, endothelial stiffening reduces nitric oxide production, which promotes smooth muscle cell contraction and vasoconstriction. In fact, vessel wall stiffening, and microcirculatory endothelial dysfunction, precedes hypertension and thus underlies the development of vascular disease. Here, we review the cross talk among vessel wall stiffening, endothelial contractility, and vascular disease, which is controlled by Rho-driven actomyosin contractility and cellular mechanotransduction. In addition to discussing the various inputs and relevant molecular events in the endothelium, we address which actomyosin-regulated changes at cell adhesion complexes are genetically associated with human cardiovascular disease. Finally, we discuss recent findings that broaden therapeutic options for targeting this important mechanical signaling pathway in vascular pathogenesis.
Collapse
Affiliation(s)
- Stephan Huveneers
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Mat J A P Daemen
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter L Hordijk
- From the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Swammerdam Institute for Life Sciences (S.H., P.L.H.) and Department of Pathology (M.J.A.P.D.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Abstract
Atherosclerosis is characterised by the accumulation of lipid-laden macrophages in atherosclerotic lesions and occurs preferentially at arterial branching points, which are prone to inflammation during hyperlipidaemic stress. The increased susceptibility at branching sites of arteries is attributable to poor adaptation of arterial endothelial cells to disturbed blood flow. In the past 5 years, several studies have provided mechanistic insights into the regulatory roles of microRNAs (miRNAs) in inflammatory activation, proliferation, and regeneration of endothelial cells during this maladaptive process. The intercellular transfer of vesicle-bound miRNAs contributes to arterial homeostasis, and the combinatorial effect of multiple miRNAs controls the unresolved inflammation orchestrated by macrophages in atherosclerotic lesions. In this Review, we highlight the miRNA-dependent regulation of the endothelial phenotype and the proliferative reserve that occurs in response to altered haemodynamic conditions as a prerequisite for atherogenic inflammation. In particular, we discuss the regulation of transcriptional modules by miRNAs and the protective role of complementary strand pairs, which encompasses remote miRNA signalling. In addition, we review the roles of miRNA tandems and describe the relevance of RNA target selection and competition to the behaviour of lesional macrophages. Elucidating miRNA-mediated regulatory mechanisms can aid the development of novel diagnostic and therapeutic strategies for atherosclerosis.
Collapse
|
42
|
Raasch M, Rennert K, Jahn T, Peters S, Henkel T, Huber O, Schulz I, Becker H, Lorkowski S, Funke H, Mosig A. Microfluidically supported biochip design for culture of endothelial cell layers with improved perfusion conditions. Biofabrication 2015; 7:015013. [DOI: 10.1088/1758-5090/7/1/015013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Galie PA, van Oosten A, Chen CS, Janmey PA. Application of multiple levels of fluid shear stress to endothelial cells plated on polyacrylamide gels. LAB ON A CHIP 2015; 15:1205-12. [PMID: 25573790 PMCID: PMC4500630 DOI: 10.1039/c4lc01236d] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Measurements of endothelial cell response to fluid shear stress have previously been performed on unphysiologically rigid substrates. We describe the design and implementation of a microfluidic device that applies discrete levels of shear stress to cells plated on hydrogel-based substrates of physiologically-relevant stiffness. The setup allows for measurements of cell morphology and inflammatory response to the combined stimuli, and identifies mechanisms by which vascular stiffening leads to pathological responses to blood flow. We found that the magnitude of shear stress required to affect endothelial cell morphology and inflammatory response depended on substrate stiffness. Endothelial cells on 100 Pa substrates demonstrate a greater increase in cell area and cortical stiffness and decrease in NF-κB nuclear translocation in response to TNF-α treatment compared to controls than cells plated on 10 kPa substrates. The response of endothelial cells on soft substrates to shear stress depends on the presence of hyaluronan (HA). These results emphasize the importance of substrate stiffness on endothelial function, and elucidate a means by which vascular stiffening in aging and disease can impact the endothelium.
Collapse
Affiliation(s)
- P A Galie
- Dept of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
44
|
Enesa K, Moll HP, Luong L, Ferran C, Evans PC. A20 suppresses vascular inflammation by recruiting proinflammatory signaling molecules to intracellular aggresomes. FASEB J 2015; 29:1869-78. [PMID: 25667218 DOI: 10.1096/fj.14-258533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/24/2014] [Indexed: 12/16/2022]
Abstract
A20 protects against pathologic vascular remodeling by inhibiting the inflammatory transcription factor NF-κB. A20's function has been attributed to ubiquitin editing of receptor-interacting protein 1 (RIP1) to influence activity/stability. The validity of this mechanism was tested using a murine model of transplant vasculopathy and human cells. Mouse C57BL/6 aortae transduced with adenoviruses containing A20 (or β-galactosidase as a control) were allografted into major histocompatibility complex-mismatched BALB/c mice. Primary endothelial cells, smooth muscle cells, or transformed epithelial cells (all human) were transfected with wild-type A20 or with catalytically inactive mutants as a control. NF-κB activity and intracellular localization of RIP1 was monitored by reporter gene assay, immunofluorescent staining, and Western blotting. Native and catalytically inactive versions of A20 had similar inhibitory effects on NF-κB activity (-70% vs. -76%; P > 0.05). A20 promoted localization of RIP1 to insoluble aggresomes in murine vascular allografts and in human cells (53% vs. 0%) without altering RIP1 expression, and this process was increased by the assembly of polyubiquitin chains (87% vs. 28%; P < 0.05). A20 captures polyubiquitinated signaling intermediaries in insoluble aggresomes, thus reducing their bioavailability for downstream NF-κB signaling. This novel mechanism contributes to protection from vasculopathy in transplanted organs treated with exogenous A20.
Collapse
Affiliation(s)
- Karine Enesa
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Herwig P Moll
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Le Luong
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Christiane Ferran
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Paul C Evans
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
45
|
Schlesinger M, Bendas G. Contribution of very late antigen-4 (VLA-4) integrin to cancer progression and metastasis. Cancer Metastasis Rev 2015; 34:575-91. [DOI: 10.1007/s10555-014-9545-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Abstract
Polymers have found widespread applications in cardiology, in particular in coronary vascular intervention as stent platforms (scaffolds) and coating matrices for drug-eluting stents. Apart from permanent polymers, current research is focussing on biodegradable polymers. Since they degrade once their function is fulfilled, their use might contribute to the reduction of adverse events like in-stent restenosis, late stent-thrombosis, and hypersensitivity reactions. After reviewing current literature concerning polymers used for cardiovascular applications, this review deals with parameters of tissue and blood cell functions which should be considered to evaluate biocompatibility of stent polymers in order to enhance physiological appropriate properties. The properties of the substrate on which vascular cells are placed can have a large impact on cell morphology, differentiation, motility, and fate. Finally, methods to assess these parameters under physiological conditions will be summarized.
Collapse
|
47
|
Reed DM, Foldes G, Kirkby NS, Ahmetaj-Shala B, Mataragka S, Mohamed NA, Francis C, Gara E, Harding SE, Mitchell JA. Morphology and vasoactive hormone profiles from endothelial cells derived from stem cells of different sources. Biochem Biophys Res Commun 2014; 455:172-7. [PMID: 25449267 DOI: 10.1016/j.bbrc.2014.10.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 02/02/2023]
Abstract
Endothelial cells form a highly specialised lining of all blood vessels where they provide an anti-thrombotic surface on the luminal side and protect the underlying vascular smooth muscle on the abluminal side. Specialised functions of endothelial cells include their unique ability to release vasoactive hormones and to morphologically adapt to complex shear stress. Stem cell derived-endothelial cells have a growing number of applications and will be critical in any organ regeneration programme. Generally endothelial cells are identified in stem cell studies by well-recognised markers such as CD31. However, the ability of stem cell-derived endothelial cells to release vasoactive hormones and align with shear stress has not been studied extensively. With this in mind, we have compared directly the ability of endothelial cells derived from a range of stem cell sources, including embryonic stem cells (hESC-EC) and adult progenitors in blood (blood out growth endothelial cells, BOEC) with those cultured from mature vessels, to release the vasoconstrictor peptide endothelin (ET)-1, the cardioprotective hormone prostacyclin, and to respond morphologically to conditions of complex shear stress. All endothelial cell types, except hESC-EC, released high and comparable levels of ET-1 and prostacyclin. Under static culture conditions all endothelial cell types, except for hESC-EC, had the typical cobblestone morphology whilst hESC-EC had an elongated phenotype. When cells were grown under shear stress endothelial cells from vessels (human aorta) or BOEC elongated and aligned in the direction of shear. By contrast hESC-EC did not align in the direction of shear stress. These observations show key differences in endothelial cells derived from embryonic stem cells versus those from blood progenitor cells, and that BOEC are more similar than hESC-EC to endothelial cells from vessels. This may be advantageous in some settings particularly where an in vitro test bed is required. However, for other applications, because of low ET-1 release hESC-EC may prove to be protected from vascular inflammation.
Collapse
Affiliation(s)
- Daniel M Reed
- Dept. of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, Imperial College London, SW3 6LY, United Kingdom.
| | - Gabor Foldes
- Dept. of Cardiac Pharmacology, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Imperial College London, W12 0NN, United Kingdom
| | - Nicholas S Kirkby
- Dept. of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, Imperial College London, SW3 6LY, United Kingdom
| | - Blerina Ahmetaj-Shala
- Dept. of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, Imperial College London, SW3 6LY, United Kingdom
| | - Stefania Mataragka
- Dept. of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, Imperial College London, SW3 6LY, United Kingdom
| | - Nura A Mohamed
- Dept. of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, Imperial College London, SW3 6LY, United Kingdom; Qatar Foundation Research and Development Division, Doha, Qatar
| | - Catherine Francis
- Dept. of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, Imperial College London, SW3 6LY, United Kingdom
| | - Edit Gara
- Heart and Vascular Center, Semmelweis University, Budapest H1122, Hungary
| | - Sian E Harding
- Dept. of Cardiac Pharmacology, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Imperial College London, W12 0NN, United Kingdom
| | - Jane A Mitchell
- Dept. of Cardiothoracic Pharmacology, Vascular Biology Section, National Heart and Lung Institute, Imperial College London, SW3 6LY, United Kingdom
| |
Collapse
|
48
|
Tan W, Madhavan K, Hunter KS, Park D, Stenmark KR. Vascular stiffening in pulmonary hypertension: cause or consequence? (2013 Grover Conference series). Pulm Circ 2014; 4:560-80. [PMID: 25610594 PMCID: PMC4278618 DOI: 10.1086/677370] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/27/2014] [Indexed: 12/24/2022] Open
Abstract
Recent studies have indicated that systemic arterial stiffening is a precursor to hypertension and that hypertension, in turn, can perpetuate arterial stiffening. Pulmonary artery (PA) stiffening is also well documented to occur in pulmonary hypertension (PH), and there is evidence that pulmonary vascular stiffness (PVS) may be a better predictor of outcome than pulmonary vascular resistance (PVR). We have hypothesized that the decreased flow-damping function of elastic PAs in PH likely initiates and/or perpetuates dysfunction of pulmonary microvasculature. Recent studies have shown that large-vessel stiffening increases flow pulsatility in the distal pulmonary vasculature, leading to endothelial dysfunction within a proinflammatory, vasoconstricting, and profibrogenic environment. The intricate role of stiffening-stimulated high pulsatile flow in endothelial cell dysfunction includes stepwise molecular events underlying PA hypertrophy, inflammation, endothelial-mesenchymal transition, and fibrosis. In addition to contributing to microenvironmental alterations of the distal vasculature, disordered proximal-distal PA coupling likely also plays a role in increasing ventricular afterload, ultimately causing right ventricle (RV) dysfunction and death. Current therapeutic treatments do not provide a realistic approach to destiffening arteries and, thus, to potentially abrogating the effects of high pulsatile flow on the distal pulmonary vasculature or the increased work imposed by stiffening on the RV. Scrutinizing the effect of PA stiffening on high pulsatile flow-induced cellular and molecular changes, and vice versa, might lead to important new therapeutic options that abrogate PA remodeling and PH development. With a clear understanding that PA stiffening may contribute to the progression of PH to an irreversible state by contributing to chronic microvascular damage in lungs, future studies should be aimed first at defining the underlying mechanisms leading to PA stiffening and then at improved treatment approaches based on these findings.
Collapse
Affiliation(s)
- Wei Tan
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Aurora, Colorado, USA
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Krishna Madhavan
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Department of Bioengineering, University of Colorado Denver, Aurora, Colorado, USA
| | - Kendall S. Hunter
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Department of Bioengineering, University of Colorado Denver, Aurora, Colorado, USA
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver, Aurora, Colorado, USA
| | - Kurt R. Stenmark
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
49
|
Bryan MT, Duckles H, Feng S, Hsiao ST, Kim HR, Serbanovic-Canic J, Evans PC. Mechanoresponsive networks controlling vascular inflammation. Arterioscler Thromb Vasc Biol 2014; 34:2199-205. [PMID: 24947523 DOI: 10.1161/atvbaha.114.303424] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease of arteries that develops preferentially at branches and bends that are exposed to disturbed blood flow. Vascular function is modified by flow, in part, via the generation of mechanical forces that alter multiple physiological processes in endothelial cells. Shear stress has profound effects on vascular inflammation; high uniform shear stress prevents leukocyte recruitment to the vascular wall by reducing endothelial expression of adhesion molecules and other inflammatory proteins, whereas low oscillatory shear stress has the opposite effects. Here, we review the molecular mechanisms that underpin the effects of shear stress on endothelial inflammatory responses. They include shear stress regulation of inflammatory mitogen-activated protein kinase and nuclear factor-κB signaling. High shear suppresses these pathways through the induction of several negative regulators of inflammation, whereas low shear promotes inflammatory signaling. Furthermore, we summarize recent studies indicating that inflammatory signaling is highly sensitive to pulse wave frequencies, magnitude, and direction of flow. Finally, the importance of systems biology approaches (including omics studies and functional screening) to identify novel mechanosensitive pathways is discussed.
Collapse
Affiliation(s)
- Matthew T Bryan
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Hayley Duckles
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Shuang Feng
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Sarah T Hsiao
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Hyejeong R Kim
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Jovana Serbanovic-Canic
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Paul C Evans
- From the Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
50
|
Howard MD, Hood ED, Greineder CF, Alferiev IS, Chorny M, Muzykantov V. Targeting to endothelial cells augments the protective effect of novel dual bioactive antioxidant/anti-inflammatory nanoparticles. Mol Pharm 2014; 11:2262-70. [PMID: 24877560 PMCID: PMC4086738 DOI: 10.1021/mp400677y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress and inflammation are intertwined contributors to numerous acute vascular pathologies. A novel dual bioactive nanoparticle with antioxidant/anti-inflammatory properties was developed based on the interactions of tocopherol phosphate and the manganese porphyrin SOD mimetic, MnTMPyP. The size and drug incorporation efficiency were shown to be dependent on the amount of MnTMPyP added as well as the choice of surfactant. MnTMPyP was shown to retain its SOD-like activity while in intact particles and to release in a slow and controlled manner. Conjugation of anti-PECAM antibody to the nanoparticles provided endothelial targeting and potentiated nanoparticle-mediated suppression of inflammatory activation of these cells manifested by expression of VCAM, E-selectin, and IL-8. This nanoparticle technology may find applicability with drug combinations relevant for other pathologies.
Collapse
Affiliation(s)
- Melissa D Howard
- Department of Pharmacology and Center for Targeted Therapeutics and Translational Nanomedicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|