1
|
Parvan R, Aboumsallem JP, Meijers WC, De Boer RA, Danser AHJ. Innovative hypertension treatments: Transitioning from conventional therapies to siRNA-based solutions. Eur J Pharmacol 2024; 985:177110. [PMID: 39547406 DOI: 10.1016/j.ejphar.2024.177110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Hypertension remains a critical global health issue, despite significant advancements in treatment, management and preventive approaches. Current antihypertensive drugs have limitations, such as low adherence, renin-angiotensin-aldosterone system reactivation, and drug resistance,. Ongoing preclinical and clinical studies for siRNA therapies show promising results, demonstrating significant blood pressure reductions and their potential as effective, durable treatments. This narrative review explores the potential of siRNA therapies in transforming hypertension management covering the literature until May 2024 and offering a precision medicine approach. We searched various databases, including PubMed, http://www.clinicaltrial.gov, and www.Espacenet.com, using 'hypertension' and 'siRNA' as the main keywords to retrieve relevant studies. The impact of these therapies could be profound, offering improved efficacy, reduced side effects, and enhanced patient adherence. As research continues to validate their safety and effectiveness, siRNA therapies may become integral components of hypertension management.
Collapse
Affiliation(s)
- Reza Parvan
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| | - Joseph Pierre Aboumsallem
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands.
| | - Wouter C Meijers
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| | - Rudolf A De Boer
- Cardiovascular Research Institute, Thorax Center, Department of Cardiology, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| | - A H Jan Danser
- Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 40, Rotterdam, 3015, GD, the Netherlands
| |
Collapse
|
2
|
Kopp EL, Deussen DN, Cuomo R, Lorenz R, Roth DM, Mahata SK, Patel HH. Modeling and Phenotyping Acute and Chronic Type 2 Diabetes Mellitus In Vitro in Rodent Heart and Skeletal Muscle Cells. Cells 2023; 12:2786. [PMID: 38132105 PMCID: PMC10741513 DOI: 10.3390/cells12242786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Type 2 diabetes (T2D) has a complex pathophysiology which makes modeling the disease difficult. We aimed to develop a novel model for simulating T2D in vitro, including hyperglycemia, hyperlipidemia, and variably elevated insulin levels targeting muscle cells. We investigated insulin resistance (IR), cellular respiration, mitochondrial morphometry, and the associated function in different T2D-mimicking conditions in rodent skeletal (C2C12) and cardiac (H9C2) myotubes. The physiological controls included 5 mM of glucose with 20 mM of mannitol as osmotic controls. To mimic hyperglycemia, cells were exposed to 25 mM of glucose. Further treatments included insulin, palmitate, or both. After short-term (24 h) or long-term (96 h) exposure, we performed radioactive glucose uptake and mitochondrial function assays. The mitochondrial size and relative frequencies were assessed with morphometric analyses using electron micrographs. C2C12 and H9C2 cells that were treated short- or long-term with insulin and/or palmitate and HG showed IR. C2C12 myotubes exposed to T2D-mimicking conditions showed significantly decreased ATP-linked respiration and spare respiratory capacity and less cytoplasmic area occupied by mitochondria, implying mitochondrial dysfunction. In contrast, the H9C2 myotubes showed elevated ATP-linked and maximal respiration and increased cytoplasmic area occupied by mitochondria, indicating a better adaptation to stress and compensatory lipid oxidation in a T2D environment. Both cell lines displayed elevated fractions of swollen/vacuolated mitochondria after T2D-mimicking treatments. Our stable and reproducible in vitro model of T2D rapidly induced IR, changes in the ATP-linked respiration, shifts in energetic phenotypes, and mitochondrial morphology, which are comparable to the muscles of patients suffering from T2D. Thus, our model should allow for the study of disease mechanisms and potential new targets and allow for the screening of candidate therapeutic compounds.
Collapse
Affiliation(s)
- Elena L. Kopp
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- Faculty of Medicine, University of Munich (LMU Munich), 80539 Munich, Germany
| | - Daniel N. Deussen
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- Faculty of Medicine, University of Munich (LMU Munich), 80539 Munich, Germany
| | - Raphael Cuomo
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Reinhard Lorenz
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80539 Munich, Germany
| | - David M. Roth
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Sushil K. Mahata
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Hemal H. Patel
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
3
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
4
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
5
|
Chen J, Rodriguez M, Miao J, Liao J, Jain PP, Zhao M, Zhao T, Babicheva A, Wang Z, Parmisano S, Powers R, Matti M, Paquin C, Soroureddin Z, Shyy JYJ, Thistlethwaite PA, Makino A, Wang J, Yuan JXJ. Mechanosensitive channel Piezo1 is required for pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 2022; 322:L737-L760. [PMID: 35318857 PMCID: PMC9076422 DOI: 10.1152/ajplung.00447.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 01/10/2023] Open
Abstract
Concentric pulmonary vascular wall thickening due partially to increased pulmonary artery (PA) smooth muscle cell (PASMC) proliferation contributes to elevating pulmonary vascular resistance (PVR) in patients with pulmonary hypertension (PH). Although pulmonary vasoconstriction may be an early contributor to increasing PVR, the transition of contractile PASMCs to proliferative PASMCs may play an important role in the development and progression of pulmonary vascular remodeling in PH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) is a trigger for PASMC contraction and proliferation. Here, we report that upregulation of Piezo1, a mechanosensitive cation channel, is involved in the contractile-to-proliferative phenotypic transition of PASMCs and potential development of pulmonary vascular remodeling. By comparing freshly isolated PA (contractile PASMCs) and primary cultured PASMCs (from the same rat) in a growth medium (proliferative PASMCs), we found that Piezo1, Notch2/3, and CaSR protein levels were significantly higher in proliferative PASMCs than in contractile PASMCs. Upregulated Piezo1 was associated with an increase in expression of PCNA, a marker for cell proliferation, whereas downregulation (with siRNA) or inhibition (with GsMTx4) of Piezo1 attenuated PASMC proliferation. Furthermore, Piezo1 in the remodeled PA from rats with experimental PH was upregulated compared with PA from control rats. These data indicate that PASMC contractile-to-proliferative phenotypic transition is associated with the transition or adaptation of membrane channels and receptors. Upregulated Piezo1 may play a critical role in PASMC phenotypic transition and PASMC proliferation. Upregulation of Piezo1 in proliferative PASMCs may likely be required to provide sufficient Ca2+ to assure nuclear/cell division and PASMC proliferation, contributing to the development and progression of pulmonary vascular remodeling in PH.
Collapse
Affiliation(s)
- Jiyuan Chen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Marisela Rodriguez
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jinrui Miao
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pritesh P Jain
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Manjia Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ziyi Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sophia Parmisano
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ryan Powers
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Moreen Matti
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Cole Paquin
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Zahra Soroureddin
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - John Y-J Shyy
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Patricia A Thistlethwaite
- Division of Cardiothoracic Surgery, Department of Surgery, University of California, San Diego, La Jolla, California
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jian Wang
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- State Key Laboratory of Respiratory Disease and First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Abstract
The development of pulmonary hypertension (PH) is common and has adverse prognostic implications in patients with heart failure due to left heart disease (LHD), and thus far, there are no known treatments specifically for PH-LHD, also known as group 2 PH. Diagnostic thresholds for PH-LHD, and clinical classification of PH-LHD phenotypes, continue to evolve and, therefore, present a challenge for basic and translational scientists actively investigating PH-LHD in the preclinical setting. Furthermore, the pathobiology of PH-LHD is not well understood, although pulmonary vascular remodeling is thought to result from (1) increased wall stress due to increased left atrial pressures; (2) hemodynamic congestion-induced decreased shear stress in the pulmonary vascular bed; (3) comorbidity-induced endothelial dysfunction with direct injury to the pulmonary microvasculature; and (4) superimposed pulmonary arterial hypertension risk factors. To ultimately be able to modify disease, either by prevention or treatment, a better understanding of the various drivers of PH-LHD, including endothelial dysfunction, abnormalities in vascular tone, platelet aggregation, inflammation, adipocytokines, and systemic complications (including splanchnic congestion and lymphatic dysfunction) must be further investigated. Here, we review the diagnostic criteria and various hemodynamic phenotypes of PH-LHD, the potential biological mechanisms underlying this disorder, and pressing questions yet to be answered about the pathobiology of PH-LHD.
Collapse
Affiliation(s)
- Jessica H Huston
- Division of Cardiology, Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (J.H.H.)
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.)
| |
Collapse
|
7
|
Luo Y, Cao Z, Wu S, Sun X. Ring Finger Protein 213 in Moyamoya Disease With Pulmonary Arterial Hypertension: A Mini-Review. Front Neurol 2022; 13:843927. [PMID: 35401401 PMCID: PMC8987108 DOI: 10.3389/fneur.2022.843927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 11/28/2022] Open
Abstract
Moyamoya disease (MMD), most often diagnosed in children and adolescents, is a chronic cerebrovascular disease characterized by progressive stenosis at the terminal portion of the internal carotid artery and an abnormal vascular network at the base of the brain. Recently, many investigators show a great interest in MMD with pulmonary arterial hypertension (PAH). Ring finger protein 213 (RNF213) is a major susceptibility gene for MMD and also has strong correlations with PAH. Therefore, this review encapsulates current cases of MMD with PAH and discusses MMD with PAH in the aspects of epidemiology, pathology, possible pathogenesis, clinical manifestations, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yuting Luo
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhixin Cao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoqing Wu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shaoqing Wu
| | - Xunsha Sun
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xunsha Sun
| |
Collapse
|
8
|
Mathew R. Critical Role of Caveolin-1 Loss/Dysfunction in Pulmonary Hypertension. Med Sci (Basel) 2021; 9:medsci9040058. [PMID: 34698188 PMCID: PMC8544475 DOI: 10.3390/medsci9040058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/17/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a rare disease with a high morbidity and mortality rate. A number of systemic diseases and genetic mutations are known to lead to PH. The main features of PH are altered vascular relaxation responses and the activation of proliferative and anti-apoptotic pathways, resulting in pulmonary vascular remodeling, elevated pulmonary artery pressure, and right ventricular hypertrophy, ultimately leading to right heart failure and premature death. Important advances have been made in the field of pulmonary pathobiology, and several deregulated signaling pathways have been shown to be associated with PH. Clinical and experimental studies suggest that, irrespective of the underlying disease, endothelial cell disruption and/or dysfunction play a key role in the pathogenesis of PH. Endothelial caveolin-1, a cell membrane protein, interacts with and regulates several transcription factors and maintains homeostasis. Disruption of endothelial cells leads to the loss or dysfunction of endothelial caveolin-1, resulting in reciprocal activation of proliferative and inflammatory pathways, leading to cell proliferation, medial hypertrophy, and PH, which initiates PH and facilitates its progression. The disruption of endothelial cells, accompanied by the loss of endothelial caveolin-1, is accompanied by enhanced expression of caveolin-1 in smooth muscle cells (SMCs) that leads to pro-proliferative and pro-migratory responses, subsequently leading to neointima formation. The neointimal cells have low caveolin-1 and normal eNOS expression that may be responsible for promoting nitrosative and oxidative stress, furthering cell proliferation and metabolic alterations. These changes have been observed in human PH lungs and in experimental models of PH. In hypoxia-induced PH, there is no endothelial disruption, loss of endothelial caveolin-1, or enhanced expression of caveolin-1 in SMCs. Hypoxia induces alterations in membrane composition without caveolin-1 or any other membrane protein loss. However, caveolin-1 is dysfunctional, resulting in cell proliferation, medial hypertrophy, and PH. These alterations are reversible upon removal of hypoxia, provided there is no associated EC disruption. This review examined the role of caveolin-1 disruption and dysfunction in PH.
Collapse
Affiliation(s)
- Rajamma Mathew
- Section of Pediatric Cardiology, Departments of Pediatrics and Physiology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
9
|
Mineharu Y, Miyamoto S. RNF213 and GUCY1A3 in Moyamoya Disease: Key Regulators of Metabolism, Inflammation, and Vascular Stability. Front Neurol 2021; 12:687088. [PMID: 34381413 PMCID: PMC8350054 DOI: 10.3389/fneur.2021.687088] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Moyamoya disease is an idiopathic chronically progressive cerebrovascular disease, which causes both ischemic and hemorrhagic stroke. Genetic studies identified RNF213/Mysterin and GUCY1A3 as disease-causing genes. They were also known to be associated with non-moyamoya intracranial large artery disease, coronary artery disease and pulmonary artery hypertension. This review focused on these two molecules and their strong linker, calcineurin/NFAT signaling and caveolin to understand the pathophysiology of moyamoya disease and related vascular diseases. They are important regulators of lipid metabolism especially lipotoxicity, NF-κB mediated inflammation, and nitric oxide-mediated vascular protection. Although intimal thickening with fibrosis and damaged vascular smooth muscle cells are the distinguishing features of moyamoya disease, origin of the fibrous tissue and the mechanism of smooth muscle cell damages remains not fully elucidated. Endothelial cells and smooth muscle cells have long been a focus of interest, but other vascular components such as immune cells and extracellular matrix also need to be investigated in future studies. Molecular research on moyamoya disease would give us a clue to understand the mechanism preserving vascular stability.
Collapse
Affiliation(s)
- Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
10
|
Bovine Parainfluenza Virus Type 3 (BPIV3) Enters HeLa Cells via Clathrin-Mediated Endocytosis in a Cholesterol- and Dynamin-Dependent Manner. Viruses 2021; 13:v13061035. [PMID: 34072688 PMCID: PMC8228847 DOI: 10.3390/v13061035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bovine parainfluenza virus 3 (BPIV3) is a crucial causative agent of respiratory disease in young and adult cattle. No specific therapies are available for BPIV3 infection. Understanding the internalization pathway of the virus will provide a new strategy for the development of antiviral therapy. Here, the mechanism of BPIV3 entry into HeLa cells was analyzed using RNA silencing and pharmacological inhibitors. Treatment of HeLa cells with hypertonic medium prevented BPIV3 internalization. These results indicated that BPIV3 entered HeLa cells via receptor-mediated endocytosis. Moreover, removing cell membrane cholesterol through MβCD treatment hampered viral penetration but not viral replication. In addition, BPIV3 infection was inhibited by pretreatment with dynasore or chlorpromazine (CPZ) or knockdown of dynamin II or clathrin heavy chain. However, virus entry was unaffected by nystatin, EIPA, wortmannin, or cytochalasin D treatment or caveolin-1 knockdown. These data demonstrated that the entry of BPIV3 into HeLa cells was dependent on clathrin-mediated endocytosis but not on caveolae-mediated endocytosis or the macropinocytosis pathway. Many viruses are transported to endosomes, which provide an acidic environment and release their genome upon separation from primary endocytic vesicles. However, we found that BPIV3 infection required endosomal cathepsins, but not a low pH. In summary, we show, for the first time, that BPIV3 enters HeLa cells through the clathrin-mediated endocytosis pathway, presenting novel insights into the invasion mechanism of Paramyxoviridae.
Collapse
|
11
|
Bortezomib Inhibits Hypoxia-Induced Proliferation by Suppressing Caveolin-1/SOCE/[Ca 2+] i Signaling Axis in Human PASMCs. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5551504. [PMID: 33928148 PMCID: PMC8049800 DOI: 10.1155/2021/5551504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Background Previous studies have demonstrated the ubiquitin-proteasome inhibitor bortezomib (BTZ) can effectively alleviate hypoxia-induced pulmonary hypertension (HPH) by suppressing the intracellular calcium homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Further evaluation showed that the antiproliferation roles of BTZ are mainly mediated by inhibition of the intracellular calcium homeostasis. Caveolin-1 belongs to one of the key regulators of the intracellular calcium homeostasis in PASMCs, which can regulate the store-operated calcium entry (SOCE). However, the effects of BTZ on Caveolin-1 remain unclear. Methods Primarily cultured human PASMCs were used as the cell model. CCK-8 assay was performed to assess the PASMCs proliferation. Western blotting and real-time qPCR were used to detect the mRNA and protein expressions. Fura-2-based fluorescence imaging experiments were used to determine the intracellular calcium concentration ([Ca2+]i). The protein synthesis inhibitor cycloheximide (CHX) was utilized to determine the protein degradation process. Results Firstly, in cultured human PASMCs, treatment of BTZ for 24 or 60 hours significantly downregulates Caveolin-1 at both mRNA and protein levels. Secondly, in the presence CHX, BTZ treatment also leads to downregulated protein expression and fastened protein degradation of Caveolin-1, indicating that BTZ can promote the Caveolin-1 protein degradation, other than the BTZ on Caveolin-1 mRNA transcription. Then, BTZ significantly attenuates the hypoxia-elevated baseline [Ca2+]i, SOCE, and cell proliferation. Conclusion We firstly observed that the ubiquitin-proteasome inhibitor BTZ can inhibit the Caveolin-1 expression at both mRNA transcription and protein degradation processes, providing new mechanistic basis of BTZ on PASMC proliferation.
Collapse
|
12
|
Zou B, Zheng J, Deng W, Tan Y, Jie L, Qu Y, Yang Q, Ke M, Ding Z, Chen Y, Yu Q, Li X. Kirenol inhibits RANKL-induced osteoclastogenesis and prevents ovariectomized-induced osteoporosis via suppressing the Ca 2+-NFATc1 and Cav-1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153377. [PMID: 33126167 DOI: 10.1016/j.phymed.2020.153377] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Osteoporosis is a threat to aged people who have excessive osteoclast activation and bone resorption, subsequently causing fracture and even disability. Inhibiting osteoclast differentiation and absorptive functions has become an efficient approach to treat osteoporosis, but osteoclast-targeting inhibitors available clinically remain rare. Kirenol (Kir), a bioactive diterpenoid derived from an antirheumatic Chinese herbal medicine Herba Siegesbeckiae, can treat collagen-induced arthritis in vivo and promote osteoblast differentiation in vitro, while the effects of Kir on osteoclasts are still unclear. PURPOSE We explore the role of Kir on RANKL-induced osteoclastogenesis in vitro and bone loss in vivo. METHODS The in vitro effects of Kir on osteoclast differentiation, bone resorption and the underlying mechanisms were evaluated with bone marrow-derived macrophages (BMMs). In vivo experiments were performed using an ovariectomy (OVX)-induced osteoporosis model. RESULTS We found that Kir remarkably inhibited osteoclast generation and bone resorption in vitro. Mechanistically, Kir significantly inhibited F-actinring formation and repressed RANKL-induced NF-κB p65 activation and p-p38, p-ERK and c-Fos expression. Moreover, Kir inhibited both the expression and nuclear translocation of NFATc1. Ca2+ oscillation and caveolin-1 (Cav-1) were also reduced by Kir during osteoclastogenesis in vitro. Consistent with these findings, 2-10 mg/kg Kir attenuated OVX-induced osteoporosis in vivo as evidenced by decreased osteoclast numbers and downregulated Cav-1 and NFATc1 expression. CONCLUSIONS Kir suppresses osteoclastogenesis and the Cav-1/NFATc1 signaling pathway both in vitro and in vivo and protects against OVX-induced osteoporosis. Our findings reveal Kir as a potential safe oral treatment for osteoporosis.
Collapse
Affiliation(s)
- Binhua Zou
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Jiehuang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Wende Deng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Yanhui Tan
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Ligang Jie
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuan Qu
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Minhong Ke
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Zongbao Ding
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China
| | - Qinghong Yu
- Rheumatology and Clinical Immunology, ZhuJiang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515,China.
| |
Collapse
|
13
|
Gorr MW, Sriram K, Muthusamy A, Insel PA. Transcriptomic analysis of pulmonary artery smooth muscle cells identifies new potential therapeutic targets for idiopathic pulmonary arterial hypertension. Br J Pharmacol 2020; 177:3505-3518. [PMID: 32337710 DOI: 10.1111/bph.15074] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH, type 1 pulmonary hypertension) has a 3-year survival of ~50% and is in need of new, effective therapies. In PAH, remodelling of the pulmonary artery (PA) increases pulmonary vascular resistance and can result in right heart dysfunction and failure. Genetic mutations can cause PAH but it can also be idiopathic (IPAH). Enhanced contractility and proliferation of PA smooth muscle cells (PASMCs) are key contributors to the pathophysiology of PAH, but the underlying mechanisms are not well understood. EXPERIMENTAL APPROACH We utilized RNA-sequencing (RNA-seq) of IPAH and control patient-derived PASMCs as an unbiased approach to define differentially expressed (DE) genes that may identify new biology and potential therapeutic targets. KEY RESULTS Analysis of DE genes for shared gene pathways revealed increases in genes involved in cell proliferation and mitosis and decreases in a variety of gene sets, including response to cytokine signalling. ADGRG6/GPR126, an adhesion G protein-coupled receptor (GPCR), was increased in IPAH-PASMCs compared to control-PASMCs. Increased expression of this GPCR in control-PASMCs decreased their proliferation; siRNA knockdown of ADGRG6/GPR126 in IPAH-PASMCs tended to increase proliferation. CONCLUSION AND IMPLICATIONS These data provide insights regarding the expression of current and experimental PAH drug targets, GPCRs and GPCR-related genes as potentially new therapeutic targets in PAH-PASMCs. Overall, the findings identify genes and pathways that may contribute to IPAH-PASMC function and suggest that ADGRG6/GPR126 is a novel therapeutic target for IPAH.
Collapse
Affiliation(s)
- Matthew W Gorr
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Colleges of Nursing and Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Abinaya Muthusamy
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
Grimmer B, Kuebler WM. Cholesterol: A Novel Regulator of Vasoreactivity in Pulmonary Arteries. Am J Respir Cell Mol Biol 2020; 62:671-673. [PMID: 32011912 PMCID: PMC7258827 DOI: 10.1165/rcmb.2020-0020ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Benjamin Grimmer
- Institute of PhysiologyCharité-University Medicine BerlinBerlin, Germany
| | - Wolfgang M Kuebler
- Institute of PhysiologyCharité-University Medicine BerlinBerlin, Germany.,The Keenan Research Centre for Biomedical ScienceSt. Michael's HospitalToronto, Ontario, Canada.,Department of Surgeryand.,Department of PhysiologyUniversity of TorontoToronto, Ontario, Canada
| |
Collapse
|
15
|
Mathew R, Huang J, Iacobas S, Iacobas DA. Pulmonary Hypertension Remodels the Genomic Fabrics of Major Functional Pathways. Genes (Basel) 2020; 11:genes11020126. [PMID: 31979420 PMCID: PMC7074533 DOI: 10.3390/genes11020126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
Pulmonary hypertension (PH) is a serious disorder with high morbidity and mortality rate. We analyzed the right-ventricular systolic pressure (RVSP), right-ventricular hypertrophy (RVH), lung histology, and transcriptomes of six-week-old male rats with PH induced by (1) hypoxia (HO), (2) administration of monocrotaline (CM), or (3) administration of monocrotaline and exposure to hypoxia (HM). The results in PH rats were compared to those in control rats (CO). After four weeks exposure, increased RVSP and RVH, pulmonary arterial wall thickening, and alteration of the lung transcriptome were observed in all PH groups. The HM group exhibited the largest alterations, as well as neointimal lesions and obliteration of the lumen in small arteries. We found that PH increased the expression of caveolin1, matrix metallopeptidase 2, and numerous inflammatory and cell proliferation genes. The cell cycle, vascular smooth muscle contraction, and oxidative phosphorylation pathways, as well as their interplay, were largely perturbed. Our results also suggest that the upregulated Rhoa (Ras homolog family member A) mediates its action through expression coordination with several ATPases. The upregulation of antioxidant genes and the extensive mitochondrial damage observed, especially in the HM group, indicate metabolic shift toward aerobic glycolysis.
Collapse
Affiliation(s)
- Rajamma Mathew
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA; (R.M.); (J.H.)
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | - Jing Huang
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA; (R.M.); (J.H.)
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | - Dumitru A. Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
- Correspondence: ; Tel.: +1-936-261-9926
| |
Collapse
|
16
|
Norton CE, Weise-Cross L, Ahmadian R, Yan S, Jernigan NL, Paffett ML, Naik JS, Walker BR, Resta TC. Altered Lipid Domains Facilitate Enhanced Pulmonary Vasoconstriction after Chronic Hypoxia. Am J Respir Cell Mol Biol 2020; 62:709-718. [PMID: 31945301 DOI: 10.1165/rcmb.2018-0318oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic hypoxia (CH) augments depolarization-induced pulmonary vasoconstriction through superoxide-dependent, Rho kinase-mediated Ca2+ sensitization. Nicotinamide adenine dinucleotide phosphate oxidase and EGFR (epidermal growth factor receptor) signaling contributes to this response. Caveolin-1 regulates the activity of a variety of proteins, including EGFR and nicotinamide adenine dinucleotide phosphate oxidase, and membrane cholesterol is an important regulator of caveolin-1 protein interactions. We hypothesized that derangement of these membrane lipid domain components augments depolarization-induced Ca2+ sensitization and resultant vasoconstriction after CH. Although exposure of rats to CH (4 wk, ∼380 mm Hg) did not alter caveolin-1 expression in intrapulmonary arteries or the incidence of caveolae in arterial smooth muscle, CH markedly reduced smooth muscle membrane cholesterol content as assessed by filipin fluorescence. Effects of CH on vasoreactivity and superoxide generation were examined using pressurized, Ca2+-permeabilized, endothelium-disrupted pulmonary arteries (∼150 μm inner diameter) from CH and control rats. Depolarizing concentrations of KCl evoked greater constriction in arteries from CH rats than in those obtained from control rats, and increased superoxide production as assessed by dihydroethidium fluorescence only in arteries from CH rats. Both cholesterol supplementation and the caveolin-1 scaffolding domain peptide antennapedia-Cav prevented these effects of CH, with each treatment restoring membrane cholesterol in CH arteries to control levels. Enhanced EGF-dependent vasoconstriction after CH similarly required reduced membrane cholesterol. However, these responses to CH were not associated with changes in EGFR expression or activity, suggesting that cholesterol regulates this signaling pathway downstream of EGFR. We conclude that alterations in membrane lipid domain signaling resulting from reduced cholesterol content facilitate enhanced depolarization- and EGF-induced pulmonary vasoconstriction after CH.
Collapse
Affiliation(s)
- Charles E Norton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Rosstin Ahmadian
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Simin Yan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
17
|
Hu CJ, Poth JM, Zhang H, Flockton A, Laux A, Kumar S, McKeon B, Mouradian G, Li M, Riddle S, Pugliese SC, Brown RD, Wallace EM, Graham BB, Frid MG, Stenmark KR. Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension. Eur Respir J 2019; 54:13993003.00378-2019. [PMID: 31515405 DOI: 10.1183/13993003.00378-2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/28/2019] [Indexed: 11/05/2022]
Abstract
Most published studies addressing the role of hypoxia inducible factors (HIFs) in hypoxia-induced pulmonary hypertension development employ models that may not recapitulate the clinical setting, including the use of animals with pre-existing lung/vascular defects secondary to embryonic HIF ablation or activation. Furthermore, critical questions including how and when HIF signalling contributes to hypoxia-induced pulmonary hypertension remain unanswered.Normal adult rodents in which global HIF1 or HIF2 was inhibited by inducible gene deletion or pharmacological inhibition (antisense oligonucleotides (ASO) and small molecule inhibitors) were exposed to short-term (4 days) or chronic (4-5 weeks) hypoxia. Haemodynamic studies were performed, the animals euthanised, and lungs and hearts obtained for pathological and transcriptomic analysis. Cell-type-specific HIF signals for pulmonary hypertension initiation were determined in normal pulmonary vascular cells in vitro and in mice (using cell-type-specific HIF deletion).Global Hif1a deletion in mice did not prevent hypoxia-induced pulmonary hypertension at 5 weeks. Mice with global Hif2a deletion did not survive long-term hypoxia. Partial Hif2a deletion or Hif2-ASO (but not Hif1-ASO) reduced vessel muscularisation, increases in pulmonary arterial pressures and right ventricular hypertrophy in mice exposed to 4-5 weeks of hypoxia. A small molecule HIF2 inhibitor (PT2567) significantly attenuated early events (monocyte recruitment and vascular cell proliferation) in rats exposed to 4 days of hypoxia, as well as vessel muscularisation, tenascin C accumulation and pulmonary hypertension development in rats exposed to 5 weeks of hypoxia. In vitro, HIF2 induced a distinct set of genes in normal human pulmonary vascular endothelial cells, mediating inflammation and proliferation of endothelial cells and smooth muscle cells. Endothelial Hif2a knockout prevented hypoxia-induced pulmonary hypertension in mice.Inhibition of HIF2 (but not HIF1) can provide a therapeutic approach to prevent the development of hypoxia-induced pulmonary hypertension. Future studies are needed to investigate the role of HIFs in pulmonary hypertension progression and reversal.
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Dept of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO, USA.,Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA.,These authors share first authorship.,These authors are joint corresponding authors
| | - Jens M Poth
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA.,Dept of Anesthesiology and Intensive Care Medicine, University Medical Center, Rheinische Friedrich Wilhelms University of Bonn, Bonn, Germany.,These authors share first authorship
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Amanda Flockton
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Aya Laux
- Dept of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO, USA
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Brittany McKeon
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Gary Mouradian
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Steven C Pugliese
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - R Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | | | - Brian B Graham
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA .,These authors are joint corresponding authors
| |
Collapse
|
18
|
Lian X, Matthaeus C, Kaßmann M, Daumke O, Gollasch M. Pathophysiological Role of Caveolae in Hypertension. Front Med (Lausanne) 2019; 6:153. [PMID: 31355199 PMCID: PMC6635557 DOI: 10.3389/fmed.2019.00153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/20/2019] [Indexed: 12/02/2022] Open
Abstract
Caveolae, flask-shaped cholesterol-, and glycosphingolipid-rich membrane microdomains, contain caveolin 1, 2, 3 and several structural proteins, in particular Cavin 1-4, EHD2, pacsin2, and dynamin 2. Caveolae participate in several physiological processes like lipid uptake, mechanosensitivity, or signaling events and are involved in pathophysiological changes in the cardiovascular system. They serve as a specific membrane platform for a diverse set of signaling molecules like endothelial nitric oxide synthase (eNOS), and further maintain vascular homeostasis. Lack of caveolins causes the complete loss of caveolae; induces vascular disorders, endothelial dysfunction, and impaired myogenic tone; and alters numerous cellular processes, which all contribute to an increased risk for hypertension. This brief review describes our current knowledge on caveolae in vasculature, with special focus on their pathophysiological role in hypertension.
Collapse
Affiliation(s)
- Xiaoming Lian
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Claudia Matthaeus
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Mario Kaßmann
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center—A Joint Cooperation Between the Charité–University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Medical Clinic for Nephrology and Internal Intensive Care, Berlin, Germany
| |
Collapse
|
19
|
Huang J, Mathew R. Loss of cavin1 and expression of p-caveolin-1 in pulmonary hypertension: Possible role in neointima formation. World J Hypertens 2019; 9:17-29. [DOI: 10.5494/wjh.v9.i2.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive disease with a high morbidity and mortality rate; and neointima formation leads to the irreversibility of the disease. We have previously reported that in rats, monocrotaline (MCT) injection leads to progressive disruption of endothelial cells (EC), and endothelial caveolin-1 (cav-1) loss, accompanied by the activation of pro-proliferative pathways leading to PH. Four weeks post-MCT, extensive endothelial cav-1 loss is associated with increased cav-1 expression in smooth muscle cells (SMC). Exposing the MCT-treated rats to hypoxia hastens the disease process; and at 4 wk, neointimal lesions and occlusion of the small arteries are observed.
AIM To identify the alterations that occur during the progression of PH that lead to neointima formation.
METHODS Male Sprague-Dawley rats (150-175 g) were divided in 4 groups (n = 6-8 per group): controls (C); MCT (M, a single sc injection 40 mg/kg); Hypoxia (H, hypobaric hypoxia); MCT + hypoxia (M+H, MCT-injected rats subjected to hypobaric hypoxia starting on day1). Four weeks later, right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH), lung histology, and cav-1 localization using immunofluorescence technique were analyzed. In addition, the expression of cav-1, tyrosine 14 phosphorylated cav-1 (p-cav-1), caveolin-2 (cav-2), cavin-1, vascular endothelial cadherin (VE-Cad) and p-ERK1/2 in the lungs were examined, and the results were compared with the controls.
RESULTS Significant PH and right ventricular hypertrophy were present in M and H groups [RVSP, mmHg, M 54±5*, H 45±2*, vs C 20±1, P < 0.05; RVH, RV/LV ratio M 0.57±0.02*, H 0.50±0.03*, vs C 0.23±0.007, P < 0.05]; with a further increase in M+H group [RVSP 69±9 mmHg, RV/LV 0.59±0.01 P < 0.05 vs M and H]. All experimental groups revealed medial hypertrophy; but only M+H group exhibited small occluded arteries and neointimal lesions. Immunofluorescence studies revealed endothelial cav-1 loss and increased cav-1 expression in SMC in M group; however, the total cav-1 level in the lungs remained low. In the M+H group, significant endothelial cav-1 loss was associated with increasing expression of cav-1 in SMC; resulting in near normalization of cav-1 levels in the lungs [cav-1, expressed as % control, C 100±0, M 22±4*, H 96±7, M+H 77±6, * = P < 0.05 vs C]. The expression of p-cav-1 was observed in M and M+H groups [M 314±4%, M+H 255±22% P < 0.05 vs C]. Significant loss of cav-2 [% control, C 100±0, M 15±1.4*, H 97±7, M+H 15±2*; M and M+H vs C, * = P < 0.05], cavin-1 [% control, C 100±0, M 20±3*, H 117±7, M+H 20±4*; M and M+H vs C, P < 0.05] and VE-Cad [% control, C 100±0, M 17±4*, H 96±9, M+H 8±3*; M and M+H vs C, P < 0.05] was present in M and M+H groups, confirming extensive disruption of EC. Hypoxia alone did not alter the expression of cav-1 or cav-1 related proteins. Expression of p-ERK1/2 was increased in all 3 PH groups [%control, C 100±0, M 284±23*, H 254±25*, M+H 270±17*; * = P < 0.05 vs C].
CONCLUSION Both cavin-1 loss and p-cav-1 expression are known to facilitate cell migration; thus, these alterations may in part play a role in neointima formation in PH.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, United States
| | - Rajamma Mathew
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, United States
- Department of Physiology, New York Medical College, Valhalla, NY 10595, United States
| |
Collapse
|
20
|
Thangavel C, Gomes CM, Zderic SA, Javed E, Addya S, Singh J, Das S, Birbe R, Den RB, Rattan S, Deshpande DA, Penn RB, Chacko S, Boopathi E. NF-κB and GATA-Binding Factor 6 Repress Transcription of Caveolins in Bladder Smooth Muscle Hypertrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:847-867. [PMID: 30707892 DOI: 10.1016/j.ajpath.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Caveolins (CAVs) are structural proteins of caveolae that function as signaling platforms to regulate smooth muscle contraction. Loss of CAV protein expression is associated with impaired contraction in obstruction-induced bladder smooth muscle (BSM) hypertrophy. In this study, microarray analysis of bladder RNA revealed down-regulation of CAV1, CAV2, and CAV3 gene transcription in BSM from models of obstructive bladder disease in mice and humans. We identified and characterized regulatory regions responsible for CAV1, CAV2, and CAV3 gene expression in mice with obstruction-induced BSM hypertrophy, and in men with benign prostatic hyperplasia. DNA affinity chromatography and chromatin immunoprecipitation assays revealed a greater increase in binding of GATA-binding factor 6 (GATA-6) and NF-κB to their cognate binding motifs on CAV1, CAV2, and CAV3 promoters in obstructed BSM relative to that observed in control BSM. Knockout of NF-κB subunits, shRNA-mediated knockdown of GATA-6, or pharmacologic inhibition of GATA-6 and NF-κB in BSM increased CAV1, CAV2, and CAV3 transcription and promoter activity. Conversely, overexpression of GATA-6 decreased CAV2 and CAV3 transcription and promoter activity. Collectively, these data provide new insight into the mechanisms by which CAV gene expression is repressed in hypertrophied BSM in obstructive bladder disease.
Collapse
Affiliation(s)
| | - Cristiano M Gomes
- Division of Urology, University of Sao Paulo School of Medicine, Hospital das Clinicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Stephen A Zderic
- Department of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elham Javed
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sankar Addya
- Kimmel Cancer Centre, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jagmohan Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sreya Das
- Kimmel Cancer Centre, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ruth Birbe
- Department of Pathology and Laboratory Medicine, Cooper University Health Care, Camden, New Jersey
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Satish Rattan
- Division of Gastroenterology and Hepatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Samuel Chacko
- Division of Urology, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ettickan Boopathi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Division of Urology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
21
|
Huang J, Frid M, Gewitz MH, Fallon JT, Brown D, Krafsur G, Stenmark K, Mathew R. Hypoxia-induced pulmonary hypertension and chronic lung disease: caveolin-1 dysfunction an important underlying feature. Pulm Circ 2019; 9:2045894019837876. [PMID: 30806156 PMCID: PMC6434444 DOI: 10.1177/2045894019837876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
Caveolin-1 (cav-1) has been shown to play a significant role in the pathogenesis of pulmonary hypertension (PH). In the monocrotaline model of PH, the loss of endothelial cav-1 as well as reciprocal activation of proliferative and anti-apoptotic pathways initiate the disease process and facilitate its progression. In order to examine the role of cav-1 in hypoxia-induced PH, we exposed rats and neonatal calves to hypobaric hypoxia and obtained hemodynamic data and assessed the expression of cav-1 and related proteins eNOS, HSP90, PTEN, gp130, PY-STAT3, β-catenin, and Glut1 in the lung tissue. Chronic hypoxic exposure in rats (48 h-4 weeks) and calves (two weeks) did not alter the expression of cav-1, HSP90, or eNOS. PTEN expression was significantly decreased accompanied by PY-STAT3 activation and increased expression of gp130, Glut1, and β-catenin in hypoxic animals. We also examined cav-1 expression in the lung sections from steers with chronic hypoxic disease (Brisket disease) and from patients with chronic lung disease who underwent lung biopsy for medical reasons. There was no cav-1 loss in Brisket disease. In chronic lung disease cases, endothelial cav-1 expression was present, albeit with less intense staining in some cases. In conclusion, hypoxia did not alter the cav-1 expression in experimental models. The presence of cav-1, however, did not suppress hypoxia-induced activation of PY-STAT3 and β catenin, increased gp130 and Glut1 expression, or prevent the PTEN loss, indicating cav-1 dysfunction in hypoxia-induced PH.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pediatrics, Maria Fareri Children’s Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Maria Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael H. Gewitz
- Department of Pediatrics, Maria Fareri Children’s Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - John T. Fallon
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Greta Krafsur
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rajamma Mathew
- Department of Pediatrics, Maria Fareri Children’s Hospital at Westchester Medical Center, New York Medical College, Valhalla, NY, USA
- Department of Physiology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
22
|
Impact of nitrate therapy on the expression of caveolin-1 and its phosphorylated isoform in lungs in the model of monocrotaline induced pulmonary hypertension. EUROPEAN PHARMACEUTICAL JOURNAL 2018. [DOI: 10.2478/afpuc-2018-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Aim: Nitric oxide signalling pathway showed to be one of the crucial factors in the treatment and pathogenesis of pulmonary arterial hypertension. The aim of this study was to determine the effect of administration of inorganic nitrate, NaNO3, on the expression of caveolin-1 and its phosphorylated isoform (pTyr14Cav-1) in lungs in the experimental model of monocrotaline induced pulmonary hypertension.
Methods: 10 weeks old male Wistar rats were subcutaneously injected with 60 mg/kg dose of monocrotaline (MCT) or vehicle (CON). Twelve days after the injection, part of the MCT group was receiving 0.3 mM NaNO3 (MCT+N0.3) daily in the drinking water and rest was receiving 0.08% NaCl solution. Four weeks after MCT administration, the rats were sacrificed in CO2. Protein expression in lungs was determined by western blot.
Results: We observed a significant decrease in the caveolin-1 expression and a significant shift towards the expression of pTyr14Cav-1 in the group treated with nitrate (p < 0.05).
Conclusion: NaNO3 administration affected the expression of caveolin-1 and the ratio of its active (phosphorylated) isoform increased.
Collapse
|
23
|
Iyinikkel J, Murray F. GPCRs in pulmonary arterial hypertension: tipping the balance. Br J Pharmacol 2018; 175:3063-3079. [PMID: 29468655 PMCID: PMC6031878 DOI: 10.1111/bph.14172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, fatal disease characterised by increased pulmonary vascular resistance and excessive proliferation of pulmonary artery smooth muscle cells (PASMC). GPCRs, which are attractive pharmacological targets, are important regulators of pulmonary vascular tone and PASMC phenotype. PAH is associated with the altered expression and function of a number of GPCRs in the pulmonary circulation, which leads to the vasoconstriction and proliferation of PASMC and thereby contributes to the imbalance of pulmonary vascular tone associated with PAH; drugs targeting GPCRs are currently used clinically to treat PAH and extensive preclinical work supports the utility of a number of additional GPCRs. Here we review how GPCR expression and function changes with PAH and discuss why GPCRs continue to be relevant drug targets for the disease.
Collapse
Affiliation(s)
- Jean Iyinikkel
- College of Life Sciences and Medicine, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| | - Fiona Murray
- College of Life Sciences and Medicine, School of Medicine, Medical Sciences and NutritionUniversity of AberdeenAberdeenUK
| |
Collapse
|
24
|
Afdal P, AbdelMassih AF. Is pulmonary vascular disease reversible with PPAR ɣ agonists? Microcirculation 2018; 25:e12444. [DOI: 10.1111/micc.12444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 02/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Peter Afdal
- Faculty of Medicine; Cairo University; Cairo Egypt
| | | |
Collapse
|
25
|
Huang L, Li L, Hu E, Chen G, Meng X, Xiong C, He J. Potential biomarkers and targets in reversibility of pulmonary arterial hypertension secondary to congenital heart disease: an explorative study. Pulm Circ 2018; 8:2045893218755987. [PMID: 29480151 PMCID: PMC5865461 DOI: 10.1177/2045893218755987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Whether pulmonary arterial hypertension (PAH) is reversible in congenital heart disease (CHD) is important for the operability of CHD. However, little is known about that. Our research was aimed at exploring novel biomarkers and targets in the reversibility of CHD-PAH. CHD-PAH patients diagnosed with right heart catheterization (RHC) were enrolled (n = 14). Lung biopsy was performed during the repair surgery. After one year follow-up, mean pulmonary arterial pressures (mPAP) were evaluated by RHC to determine the diagnosis of reversible (mPAP < 25 mmHg, n = 10) and irreversible (mPAP ≥ 25 mmHg, n = 4) PAH. Harvested normal lung tissues (n = 6) were included as the control group. Pulmonary arteriole lesions were identified by pathological grading in tissue staining. iTRAQ-labelled mass-spectrometry analysis followed by immunohistochemistry and western blot was used to explore the most meaningful differential proteins. For enrolled patients, the histopathological grading of pulmonary vascular lesions in reversible CHD-PAH patients was all at grades 0-II while grades III-IV were shown only in irreversible CHD-PAH patients. Proteomic analysis identified 85 upregulated and 75 downregulated proteins, including cytoskeletal proteins and collagen chains, mainly involved in cell adhesion, extracellular matrix, cytoskeleton, immune response, and complement pathways. Among them, caveolin-1, filamin A expression, and cathepsin D combined with macrophagocytes counts were significantly increased; glutathione S-transferase mu1 (GSTM1) expression was significantly decreased in the irreversible CHD-PAH group (all P < 0.05). Caveolin-1, filamin A, and cathepsin D expression showed a positive relation and GSTM1 showed a negative relation with pathological grading. Upregulated caveolin-1, filamin A, and cathepsin D combined with increased macrophagocytes and downregulated GSTM1 may be potential biomarkers and targets in the irreversibility CHD-PAH, and which may be useful in evaluating the operability and understanding the irreversibility of CHD-PAH. Expression of these pathological biomarkers combined with pathological changes in lung biopsy may have great value in predicting the irreversibility of PAH.
Collapse
Affiliation(s)
- Li Huang
- 1 Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- 2 Departement of Pathology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Enci Hu
- 1 Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo Chen
- 1 Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianmin Meng
- 3 Central Laboratory, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming Xiong
- 1 Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianguo He
- 1 Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Yang K, Zhao M, Huang J, Zhang C, Zheng Q, Chen Y, Jiang H, Lu W, Wang J. Pharmacological activation of PPARγ inhibits hypoxia-induced proliferation through a caveolin-1-targeted and -dependent mechanism in PASMCs. Am J Physiol Cell Physiol 2018; 314:C428-C438. [PMID: 29351409 DOI: 10.1152/ajpcell.00143.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previously, we and others have demonstrated that activation of peroxisome proliferator-activated receptor γ (PPARγ) by specific pharmacological agonists inhibits the pathogenesis of chronic hypoxia-induced pulmonary hypertension (CHPH) by suppressing the proliferation and migration in distal pulmonary arterial smooth muscle cells (PASMCs). Moreover, these beneficial effects of PPARγ are mediated by targeting the intracellular calcium homeostasis and store-operated calcium channel (SOCC) proteins, including the main caveolae component caveolin-1. However, other than the caveolin-1 targeted mechanism, in this study, we further uncovered a caveolin-1 dependent mechanism within the activation of PPARγ by the specific agonist GW1929. First, effective knockdown of caveolin-1 by small-interfering RNA (siRNA) markedly abolished the upregulation of GW1929 on PPARγ expression at both mRNA and protein levels; Then, in HEK293T, which has previously been reported with low endogenous caveolin-1 expression, exogenous expression of caveolin-1 significantly enhanced the upregulation of GW1929 on PPARγ expression compared with nontransfection control. In addition, inhibition of PPARγ by either siRNA or pharmacological inhibitor T0070907 led to increased phosphorylation of cellular mitogen-activated protein kinases ERK1/2 and p38. In parallel, GW1929 dramatically decreased the expression of the proliferative regulators (cyclin D1 and PCNA), whereas it increased the apoptotic factors (p21, p53, and mdm2) in hypoxic PASMCs. Furthermore, these effects of GW1929 could be partially reversed by recovery of the drug treatment. In combination, PPARγ activation by GW1929 reversibly drove the cell toward an antiproliferative and proapoptotic phenotype in a caveolin-1-dependent and -targeted mechanism.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Mingming Zhao
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | - Junyi Huang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong , China.,Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona College of Medicine , Tucson, Arizona
| |
Collapse
|
27
|
Copeland CA, Han B, Tiwari A, Austin ED, Loyd JE, West JD, Kenworthy AK. A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal. Mol Biol Cell 2017; 28:3095-3111. [PMID: 28904206 PMCID: PMC5662265 DOI: 10.1091/mbc.e17-06-0421] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Heterozygous mutations in caveolin-1 (CAV1) have been linked to pulmonary arterial hypertension (PAH), but their impact on caveolae is unclear. We show that a PAH-associated frameshift mutation introduces an endoplasmic reticulum retention signal in CAV1 that partially disrupts caveolae assembly and interferes with their ability to serve as membrane buffers. Caveolin-1 (CAV1) is an essential component of caveolae and is implicated in numerous physiological processes. Recent studies have identified heterozygous mutations in the CAV1 gene in patients with pulmonary arterial hypertension (PAH), but the mechanisms by which these mutations impact caveolae assembly and contribute to disease remain unclear. To address this question, we examined the consequences of a familial PAH-associated frameshift mutation in CAV1, P158PfsX22, on caveolae assembly and function. We show that C-terminus of the CAV1 P158 protein contains a functional ER-retention signal that inhibits ER exit and caveolae formation and accelerates CAV1 turnover in Cav1–/– MEFs. Moreover, when coexpressed with wild-type (WT) CAV1 in Cav1–/– MEFs, CAV1-P158 functions as a dominant negative by partially disrupting WT CAV1 trafficking. In patient skin fibroblasts, CAV1 and caveolar accessory protein levels are reduced, fewer caveolae are observed, and CAV1 complexes exhibit biochemical abnormalities. Patient fibroblasts also exhibit decreased resistance to a hypo-osmotic challenge, suggesting the function of caveolae as membrane reservoir is compromised. We conclude that the P158PfsX22 frameshift introduces a gain of function that gives rise to a dominant negative form of CAV1, defining a new mechanism by which disease-associated mutations in CAV1 impair caveolae assembly.
Collapse
Affiliation(s)
- Courtney A. Copeland
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Bing Han
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Ajit Tiwari
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University, Nashville, TN 37232
| | - James E. Loyd
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - James D. West
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Anne K. Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Epithelial Biology Program, Vanderbilt University School of Medicine, Nashville, TN 37232
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
28
|
Up-regulation of caveolin-1 by DJ-1 attenuates rat pulmonary arterial hypertension by inhibiting TGFβ/Smad signaling pathway. Exp Cell Res 2017; 361:192-198. [PMID: 29069575 DOI: 10.1016/j.yexcr.2017.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023]
Abstract
Pulmonary arterial hypertension (PAH), characterized by excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs), is closely associated with the imbalance in vasoactive mediators and massive remodeling of pulmonary vasculature. DJ-1/park7, a multifunctional protein, plays a critical defense role in several cytobiological activity, such as transcriptional regulation, anti-oxidative stress and tumor formation. In this study, we investigated the effects of DJ-1 on hypoxia-induced PAH model rats and PASMCs, as well as its possible molecular mechanism. First, the low expressions of DJ-1 and caveolin-1 (Cav-1) were synchronously detected in lung tissue of PAH model rats and hypoxia-induced PASMCs by Western blot. Then, the DJ-1 wild type (WT) or Knock out (KO) rats were exposed to chronic hypoxia to mimic a hypoxic PAH condition. The protein level of Cav-1 was markedly decreased in the tissue of DJ-1 KO rats, and additionally lower in tissue of the hypoxia group than that in the normoxia group for DJ-1 WT and KO rats. In vivo, hemodynamic data showed that the pulmonary arterial pressure (mPAP), right ventricle systolic pressure (RVSP) and pulmonary arterial systolic pressure (PASP), as well as the weight of the right ventricle/left ventricle plus septum (RV/LV+S) ratio of PAH model rats were higher in the DJ-1 KO group than those in the DJ-1 WT group. Moreover, knockout of DJ-1 also results in the phenotype switch from contractile to synthetic PASMC, which is reflected by reduced calponin and SM22α expressions. In vitro, DJ-1 overexpression reversed hypoxia-induced elevation of PASMC cell proliferation, migration and Ca2+ concentration, which were not obviously observed in Cav-1 shRNA (sh-Cav-1) and DJ-1 co-transfected cells. Then the increased levels of calponin and SM22α were detected in the DJ-1 group; similarly those levels were not changed in the DJ-1+sh-Cav-1 group. Finally, the expression of TGFβ1, p-Smad2 and p-Smad3 were obviously decreased in the ad-DJ-1 group, however those were all elevated in the DJ-1 and sh-Cav-1 co-transfected groups. In conclusion, these results indicate that DJ-1 may alleviate hypoxia-induced PASMCs injury by Cav-1 through inhibiting the TGFβ/Smad signaling pathway.
Collapse
|
29
|
Xu H, Zhang L, Chen W, Xu J, Zhang R, Liu R, Zhou L, Hu W, Ju R, Lee C, Lu W, Kumar A, Li X, Tang Z. Inhibitory effect of caveolin-1 in vascular endothelial cells, pericytes and smooth muscle cells. Oncotarget 2017; 8:76165-76173. [PMID: 29100301 PMCID: PMC5652695 DOI: 10.18632/oncotarget.19191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
Caveolin-1 (Cav1) is the principle structural protein of caveolae. It plays important roles in the vascular system under both physiological and pathological conditions. Although Cav1 has been shown to inhibit microvascular permeability and has been considered as a tumor-suppressor for years, the underlying cellular mechanism has yet to be discovered. Here, we systematically investigated Cav1 functions in the main types of vascular cells, including endothelial cells (ECs), pericytes (PCs) and smooth muscle cells (SMCs). We synthesized a cell-permeable peptide called cavtratin that is derived from the Cav1 scaffolding domain. We found that cavtratin inhibited ECs in all assays, including survival, proliferation, migration and permeability assays. It also inhibited the proliferation of PCs and SMCs but had no effect on their survival or migration. The inhibitory effect of cavtratin on the proliferation of all vascular cells suggests that Cav1 plays important roles in vascular development and angiogenesis. Under physiological condition, the main function of Cav1 is to inhibit EC permeability.
Collapse
Affiliation(s)
- Hongping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Liwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Jiazhou Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Ruting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Ran Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Lan Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wenjie Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Zhongshu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| |
Collapse
|
30
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A. VDAC1 functions in Ca 2+ homeostasis and cell life and death in health and disease. Cell Calcium 2017; 69:81-100. [PMID: 28712506 DOI: 10.1016/j.ceca.2017.06.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/15/2023]
Abstract
In the outer mitochondrial membrane (OMM), the voltage-dependent anion channel 1 (VDAC1) serves as a mitochondrial gatekeeper, controlling the metabolic and energy cross-talk between mitochondria and the rest of the cell. VDAC1 also functions in cellular Ca2+ homeostasis by transporting Ca2+ in and out of mitochondria. VDAC1 has also been recognized as a key protein in mitochondria-mediated apoptosis, contributing to the release of apoptotic proteins located in the inter-membranal space (IMS) and regulating apoptosis via association with pro- and anti-apoptotic members of the Bcl-2 family of proteins and hexokinase. VDAC1 is highly Ca2+-permeable, transporting Ca2+ to the IMS and thus modulating Ca2+ access to Ca2+ transporters in the inner mitochondrial membrane. Intra-mitochondrial Ca2+ controls energy metabolism via modulating critical enzymes in the tricarboxylic acid cycle and in fatty acid oxidation. Ca2+ also determines cell sensitivity to apoptotic stimuli and promotes the release of pro-apoptotic proteins. However, the precise mechanism by which intracellular Ca2+ mediates apoptosis is not known. Here, the roles of VDAC1 in mitochondrial Ca2+ homeostasis are presented while emphasizing a new proposed mechanism for the mode of action of pro-apoptotic drugs. This view, proposing that Ca2+-dependent enhancement of VDAC1 expression levels is a major mechanism by which apoptotic stimuli induce apoptosis, position VDAC1 oligomerization at a molecular focal point in apoptosis regulation. The interactions of VDAC1 with many proteins involved in Ca2+ homeostasis or regulated by Ca2+, as well as VDAC-mediated control of cell life and death and the association of VDAC with disease, are also presented.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
31
|
Caveolin-1 Promotes the Imbalance of Th17/Treg in Patients with Chronic Obstructive Pulmonary Disease. Inflammation 2017; 39:2008-2015. [PMID: 27613621 DOI: 10.1007/s10753-016-0436-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The imbalance of Th17/Treg cells plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). Caveolin-1 (Cav-1) has been regarded as a potential critical regulatory protein in pathological mechanisms of chronic inflammatory respiratory diseases. Therefore, we investigated whether the loss of Cav-1 is involved in the homeostasis of Th17/Treg cells in COPD. We examined the expressions of plasma Cav-1 and circulating Th17, Treg cells, and the related cytokines in patients with COPD. Enzyme-linked immunosorbent assay (ELISA) analyses showed a significant reduction of plasma Cav-1 levels in patients with stable COPD (SCOPD) and acutely exacerbated COPD (AECOPD) compared to smokers without COPD. This loss was associated with an increase in frequency of Treg and decreased in frequency of Th17 cells. To further identify the role of Cav-1, we studied the effects of Cav-1 overexpression or downregulation on frequencies of Treg and Th17 cells in peripheral blood mononuclear cells (PBMCs) from subjects. Interestingly, small interfering RNA (siRNA) downregulation of Cav-1 was accompanied by an augmentation of Treg and reduction of Th17 expression. Together, our study demonstrated that the loss of Cav-1 contributed to the imbalance of Th17/Treg cells in patients with COPD.
Collapse
|
32
|
Ribas J, Zhang YS, Pitrez PR, Leijten J, Miscuglio M, Rouwkema J, Dokmeci MR, Nissan X, Ferreira L, Khademhosseini A. Biomechanical Strain Exacerbates Inflammation on a Progeria-on-a-Chip Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201603737. [PMID: 28211642 PMCID: PMC5545787 DOI: 10.1002/smll.201603737] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/02/2017] [Indexed: 05/22/2023]
Abstract
Organ-on-a-chip platforms seek to recapitulate the complex microenvironment of human organs using miniaturized microfluidic devices. Besides modeling healthy organs, these devices have been used to model diseases, yielding new insights into pathophysiology. Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease showing accelerated vascular aging, leading to the death of patients due to cardiovascular diseases. HGPS targets primarily vascular cells, which reside in mechanically active tissues. Here, a progeria-on-a-chip model is developed and the effects of biomechanical strain are examined in the context of vascular aging and disease. Physiological strain induces a contractile phenotype in primary smooth muscle cells (SMCs), while a pathological strain induces a hypertensive phenotype similar to that of angiotensin II treatment. Interestingly, SMCs derived from human induced pluripotent stem cells of HGPS donors (HGPS iPS-SMCs), but not from healthy donors, show an exacerbated inflammatory response to strain. In particular, increased levels of inflammation markers as well as DNA damage are observed. Pharmacological intervention reverses the strain-induced damage by shifting gene expression profile away from inflammation. The progeria-on-a-chip is a relevant platform to study biomechanics in vascular biology, particularly in the setting of vascular disease and aging, while simultaneously facilitating the discovery of new drugs and/or therapeutic targets.
Collapse
Affiliation(s)
- João Ribas
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Doctoral Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Patrícia R. Pitrez
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jeroen Leijten
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Mario Miscuglio
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Xavier Nissan
- INSERM U861, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry Cedex 91030, France
| | | | | |
Collapse
|
33
|
Nie X, Tan J, Dai Y, Mao W, Chen Y, Qin G, Li G, Shen C, Zhao J, Chen J. Nur77 downregulation triggers pulmonary artery smooth muscle cell proliferation and migration in mice with hypoxic pulmonary hypertension via the Axin2-β-catenin signaling pathway. Vascul Pharmacol 2016; 87:230-241. [PMID: 27871853 DOI: 10.1016/j.vph.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 11/03/2016] [Indexed: 01/15/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by remodeling of the pulmonary vasculature, including marked proliferation and reduced apoptosis of pulmonary artery smooth muscle cells (PASMCs). Members of the nuclear receptor 4A (NR4A) subfamily are involved in a variety of biological events, such as cell apoptosis, proliferation, inflammation, and metabolism. Activation of Nur77 (an orphan nuclear receptor that belongs to NR4A subfamily) has recently been reported to be as a beneficial agent in the treatment of cardiovascular and metabolic diseases. In the present study, we investigated the effects of NR4A on human PASMCs function in vitro and determined the underlying mechanisms. We found a robust expression of NR4A receptors in lung tissues of PAH patients and hypoxic mice but a highly significant downregulation within pulmonary arteries (PAs) as assessed by quantitative polymerase chain reaction, immunoblotting, and immunohistochemistry. In vitro, NR4A receptors were found significantly decreased in PASMCs derived from PAH patients. To explore the pathological effects of decreased Nur77 in PASMCs, PASMCs were transduced with siRNA against Nur77. The siRNA-mediated knockdown of Nur77 significantly augmented PASMCs proliferation and migration. In contrast, Nur77 overexpression prevented PASMCs from proliferation and migration. Mechanistically, overexpression of Axis inhibition protein 2 (Axin2) or inhibition of β-catenin signaling was shown to be responsible for Nur77 knockdown-induced proliferation of PASMCs. Following hypoxia-induced angiogenesis of the pulmonary artery in C57BL/6 mice, small-molecule Nur77 agonists-Octaketide Cytosporone B (Csn-B) can significantly decreased thickness of vascular wall and markedly attenuated the development of chronic hypoxia-induced PAH in vivo. Therefore, reconstitution of Nur77 levels represents a promising therapeutic option to prevent vascular remodeling processes.
Collapse
Affiliation(s)
- Xiaowei Nie
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China.
| | - Jianxin Tan
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China
| | - Youai Dai
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China
| | - Yuan Chen
- Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China
| | - Guowei Qin
- Department of Anesthesiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China
| | - Guirong Li
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China
| | - Chenyou Shen
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China
| | - Jingjing Zhao
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China
| | - Jingyu Chen
- Jiangsu Key Laboratory of Organ Transplantation, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China; Department of Cardiothoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China; Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, PR China.
| |
Collapse
|
34
|
Jiao HX, Mu YP, Gui LX, Yan FR, Lin DC, Sham JS, Lin MJ. Increase in caveolae and caveolin-1 expression modulates agonist-induced contraction and store- and receptor-operated Ca2+ entry in pulmonary arteries of pulmonary hypertensive rats. Vascul Pharmacol 2016; 84:55-66. [DOI: 10.1016/j.vph.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/03/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
|
35
|
Yang K, Lu W, Jiang Q, Yun X, Zhao M, Jiang H, Wang J. Peroxisome Proliferator-Activated Receptor γ-Mediated Inhibition on Hypoxia-Triggered Store-Operated Calcium Entry. A Caveolin-1-Dependent Mechanism. Am J Respir Cell Mol Biol 2016; 53:882-92. [PMID: 26020612 DOI: 10.1165/rcmb.2015-0002oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Our previous publication demonstrated that peroxisome proliferator-activated receptor γ (PPARγ) inhibits the pathogenesis of chronic hypoxia (CH)-induced pulmonary hypertension by targeting store-operated calcium entry (SOCE) in rat distal pulmonary arterial smooth muscle cells (PASMCs). In this study, we aim to determine the role of a membrane scaffolding protein, caveolin-1, during the suppressive process of PPARγ on SOCE. Adult (6-8 weeks) male Wistar rats (200-250 g) were exposed to CH (10% O2) for 21 days to establish CH-induced pulmonary hypertension. Primary cultured rat distal PASMCs were applied for the molecular biological experiments. First, hypoxic exposure led to 2.5-fold and 1-fold increases of caveolin-1 protein expression in the distal pulmonary arteries and PASMCs, respectively. Second, effective knockdown of caveolin-1 significantly reduced hypoxia-induced SOCE for 58.2% and 41.5%, measured by Mn(2+) quenching and extracellular Ca(2+) restoration experiments, respectively. These results suggested that caveolin-1 acts as a crucial regulator of SOCE, and hypoxia-up-regulated caveolin-1 largely accounts for hypoxia-elevated SOCE in PASMCs. Then, by using a high-potency PPARγ agonist, GW1929, we detected that PPARγ activation inhibited SOCE and caveolin-1 protein for 62.5% and 59.8% under hypoxia, respectively, suggesting that caveolin-1 also acts as a key target during the suppressive process of PPARγ on SOCE in PASMCs. Moreover, by using effective small interfering RNAs against PPARγ and caveolin-1, and PPARγ antagonist, T0070907, we observed that PPARγ plays an inhibitory role on caveolin-1 protein by promoting its lysosomal degradation, without affecting the messenger RNA level. PPARγ inhibits SOCE, at least partially, by suppressing cellular caveolin-1 protein in PASMCs.
Collapse
Affiliation(s)
- Kai Yang
- 1 State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Wenju Lu
- 1 State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Qian Jiang
- 1 State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Xin Yun
- 1 State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Mingming Zhao
- 3 Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland
| | - Haiyang Jiang
- 2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Jian Wang
- 1 State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,4 Division of Pulmonary, the People's Hospital of Inner Mongolia, Hohhot, Inner Mongolia, China.,2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
36
|
Gilbert G, Ducret T, Savineau JP, Marthan R, Quignard JF. Caveolae are involved in mechanotransduction during pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1078-87. [PMID: 27016585 DOI: 10.1152/ajplung.00198.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
Caveolae are stiff plasma membrane microdomains implicated in various cell response mechanisms like Ca(2+) signaling and mechanotransduction. Pulmonary arterial smooth muscle cells (PASMC) transduce mechanical stimuli into Ca(2+) increase via plasma membrane stretch-activated channels (SAC). This mechanotransduction process is modified in pulmonary hypertension (PH) during which stretch forces are increased by the increase in arterial blood pressure. We propose to investigate how caveolae are involved in the pathophysiology of PH and particularly in mechanotransduction. PASMC were freshly isolated from control rats (Ctrl rats) and rats suffering from PH induced by 3 wk of chronic hypoxia (CH rats). Using a caveolae disrupter (methyl-β-cyclodextrin), we showed that SAC activity measured by patch-clamp, stretch-induced Ca(2+) increase measured with indo-1 probe and pulmonary arterial ring contraction to osmotic shock are enhanced in Ctrl rats when caveolae are disrupted. In CH rats, SAC activity, Ca(2+), and contraction responses to stretch are all higher compared with Ctrl rats. However, in contrast to Ctrl rats, caveolae disruption in CH-PASMC, reduces SAC activity, Ca(2+) responses to stretch and arterial contractions. Furthermore, by means of immunostainings and transmission electron microscopy, we observed that caveolae and caveolin-1 are expressed in PASMC from both Ctrl and CH rats and localize close to subplasmalemmal sarcoplasmic reticulum (ryanodine receptors) and mitochondria, thus facilitating Ca(2+) exchanges, particularly in CH. In conclusion, caveolae are implicated in mechanotransduction in Ctrl PASMC by buffering mechanical forces. In PH-PASMC, caveolae form a distinct Ca(2+) store facilitating Ca(2+) coupling between SAC and sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France; and Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France; and Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Jean-Pierre Savineau
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France; and Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Roger Marthan
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France; and Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Jean-François Quignard
- Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France; and Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| |
Collapse
|
37
|
Yoon MS, Won KJ, Kim DY, Hwang DI, Yoon SW, Jung SH, Lee KP, Jung D, Choi WS, Kim B, Lee HM. Diminished Lipid Raft SNAP23 Increases Blood Pressure by Inhibiting the Membrane Fluidity of Vascular Smooth-Muscle Cells. J Vasc Res 2016; 52:321-33. [PMID: 26930561 DOI: 10.1159/000443888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/10/2016] [Indexed: 11/19/2022] Open
Abstract
Synaptosomal-associated protein 23 (SNAP23) is involved in microvesicle trafficking and exocytosis in various cell types, but its functional role in blood pressure (BP) regulation has not yet been defined. Here, we found that lipid raft SNAP23 expression was much lower in vascular smooth-muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) than in those from normotensive Wistar-Kyoto (WKY) rats. This led us to investigate the hypothesis that this lower expression may be linked to the spontaneous hypertension found in SHR. The expression level of lipid raft SNAP23 and the fluidity in the plasma membrane of VSMCs were lower in SHR than in WKY rats. Cholesterol content in the VSMC membrane was higher, but the secreted cholesterols found in VSMC-conditioned medium and in the blood serum were lower in SHR than in WKY rats. SNAP23 knockdown in WKY rat VSMCs reduced the membrane fluidity and increased the membrane cholesterol level. Systemic overexpression of SNAP23 in SHR resulted in an increase of cholesterol content in their serum, a decrease in cholesterol in their aorta and the reduction of their BP. Our findings suggest that the low expression of the lipid raft SNAP23 in VSMCs might be a potential cause for the characteristic hypertension of SHR.
Collapse
Affiliation(s)
- Mi So Yoon
- Department of Cosmetic Science, College of Life and Health Sciences, Hoseo University, Asan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Reconciling paradigms of abnormal pulmonary blood flow and quasi-malignant cellular alterations in pulmonary arterial hypertension. Vascul Pharmacol 2016; 83:17-25. [PMID: 26804008 DOI: 10.1016/j.vph.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/19/2016] [Indexed: 01/29/2023]
Abstract
In pulmonary arterial hypertension (PAH) structural and functional abnormalities of the small lung vessels interact and lead to a progressive increase in pulmonary vascular resistance and right heart failure. A current pathobiological concept characterizes PAH as a 'quasi-malignant' disease focusing on cancer-like alterations in endothelial cells (EC) and the importance of their acquired apoptosis-resistant, hyper-proliferative phenotype in the process of vascular remodeling. While changes in pulmonary blood flow (PBF) have been long-since recognized and linked to the development of PAH, little is known about a possible relationship between an altered PBF and the quasi-malignant cell phenotype in the pulmonary vascular wall. This review summarizes recognized and hypothetical effects of an abnormal PBF on the pulmonary vascular bed and links these to quasi-malignant changes found in the pulmonary endothelium. Here we describe that abnormal PBF does not only trigger a pulmonary vascular cell growth program, but may also maintain the cancer-like phenotype of the endothelium. Consequently, normalization of PBF and EC response to abnormal PBF may represent a treatment strategy in patients with established PAH.
Collapse
|
39
|
Huang J, Wolk JH, Gewitz MH, Loyd JE, West J, Austin ED, Mathew R. Enhanced caveolin-1 expression in smooth muscle cells: Possible prelude to neointima formation. World J Cardiol 2015; 7:671-684. [PMID: 26516422 PMCID: PMC4620079 DOI: 10.4330/wjc.v7.i10.671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/24/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the genesis of neointima formation in pulmonary hypertension (PH), we investigated the role of caveolin-1 and related proteins.
METHODS: Male Sprague Dawley rats were given monocrotaline (M, 40 mg/kg) or subjected to hypobaric hypoxia (H) to induce PH. Another group was given M and subjected to H to accelerate the disease process (M + H). Right ventricular systolic pressure, right ventricular hypertrophy, lung histology for medial hypertrophy and the presence of neointimal lesions were examined at 2 and 4 wk. The expression of caveolin-1 and its regulatory protein peroxisome proliferator-activated receptor (PPAR) γ, caveolin-2, proliferative and anti-apoptotic factors (PY-STAT3, p-Erk, Bcl-xL), endothelial nitric oxide synthase (eNOS) and heat shock protein (HSP) 90 in the lungs were analyzed, and the results from M + H group were compared with the controls, M and H groups. Double immunofluorescence technique was used to identify the localization of caveolin-1 in pulmonary arteries in rat lungs and in human PH lung tissue.
RESULTS: In the M + H group, PH was more severe compared with M or H group. In the 4 wk M+H group, several arteries with reduced caveolin-1 expression in endothelial layer coupled with an increased expression in smooth muscle cells (SMC), exhibited neointimal lesions. Neointima was present only in the arteries exhibiting enhanced caveolin-1 expression in SMC. Lung tissue obtained from patients with PH also revealed neointimal lesions only in the arteries exhibiting endothelial caveolin-1 loss accompanied by an increased caveolin-1 expression in SMC. Reduction in eNOS and HSP90 expression was present in the M groups (2 and 4 wk), but not in the M + H groups. In both M groups and in the M + H group at 2 wk, endothelial caveolin-1 loss was accompanied by an increase in PPARγ expression. In the M + H group at 4 wk, increase in caveolin-1 expression was accompanied by a reduction in the PPARγ expression. In the H group, there was neither a loss of endothelial caveolin-1, eNOS or HSP90, nor an increase in SMC caveolin-1 expression; or any alteration in PPARγ expression. Proliferative pathways were activated in all experimental groups.
CONCLUSION: Enhanced caveolin-1 expression in SMC follows extensive endothelial caveolin-1 loss with subsequent neointima formation. Increased caveolin-1 expression in SMC, thus, may be a prelude to neointima formation.
Collapse
|
40
|
Serum Caveolin-1 as a Novel Biomarker in Idiopathic Pulmonary Artery Hypertension. BIOMED RESEARCH INTERNATIONAL 2015; 2015:173970. [PMID: 26539466 PMCID: PMC4619756 DOI: 10.1155/2015/173970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 12/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease but with significant morbidity and high mortality. There is no specific way to diagnose PAH. Thus, an easy used with good sensitivity and specificity biomarker of PAH is highly desirable to aid in the screening, diagnosis, and follow-up. Caveolin-1 (Cav1) is the structural protein of caveolae and is highly expressed in type I pneumocytes. Lungs tissues from idiopathic PAH (IPAH) patients showed decreased expression of Cav1 in vascular endothelial cells. Therefore, we developed a direct sandwich immunoassay for the determination of Cav1 in IAPH patient's serum. The result disclosed serum Cav1 level was significantly lower in IPAH than control groups. Using serum Cav1, 17.17 pg/mL as a cutoff value, the sensitivity was 0.59 and the specificity was 1.0. There were two major findings in our results. First, serum Cav1 might be a novel biomarker in the diagnosis of IPAH with fare sensitivity and good specificity. Second, Cav1 might be used to make differential diagnosis between COPD-PH and IPAH group.
Collapse
|
41
|
Ong HL, Ambudkar IS. Molecular determinants of TRPC1 regulation within ER–PM junctions. Cell Calcium 2015; 58:376-86. [DOI: 10.1016/j.ceca.2015.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/30/2022]
|
42
|
de Boer K, Lee JS. Under-recognised co-morbidities in idiopathic pulmonary fibrosis: A review. Respirology 2015; 21:995-1004. [PMID: 26365251 DOI: 10.1111/resp.12622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/17/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022]
Abstract
Co-morbidities in idiopathic pulmonary fibrosis are common. These co-morbidities include obstructive sleep apnoea, gastro-oesophageal reflux disease, pulmonary hypertension and depression. The presence of co-morbidities among patients with idiopathic pulmonary fibrosis contributes to worse quality of life, morbidity and mortality. Despite the high prevalence of certain co-morbidities in idiopathic pulmonary fibrosis, the optimal screening and management of many of these conditions remains unclear. The impact of co-morbidities on this patient population is becoming more apparent. Their relevance will only increase as significant effort is being made to develop novel therapeutics that will alter the disease trajectory of patients with idiopathic pulmonary fibrosis. The purpose of this review is to focus on the epidemiology, pathophysiology, diagnosis and management of select co-morbidities, including obstructive sleep apnoea, gastro-oesophageal reflux disease, pulmonary hypertension and depression, in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Kaïssa de Boer
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California, USA.,Department of Medicine, Division of Respirology, University of Ottawa, Ottawa, Ontario, Canada
| | - Joyce S Lee
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
43
|
Chettimada S, Yang J, Moon HG, Jin Y. Caveolae, caveolin-1 and cavin-1: Emerging roles in pulmonary hypertension. World J Respirol 2015; 5:126-134. [PMID: 28529892 PMCID: PMC5438095 DOI: 10.5320/wjr.v5.i2.126] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 02/25/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Caveolae are flask-shaped invaginations of cell membrane that play a significant structural and functional role. Caveolae harbor a variety of signaling molecules and serve to receive, concentrate and transmit extracellular signals across the membrane. Caveolins are the main structural proteins residing in the caveolae. Caveolins and another category of newly identified caveolae regulatory proteins, named cavins, are not only responsible for caveolae formation, but also interact with signaling complexes in the caveolae and regulate transmission of signals across the membrane. In the lung, two of the three caveolin isoforms, i.e., cav-1 and -2, are expressed ubiquitously. Cavin protein family is composed of four proteins, named cavin-1 (or PTRF for polymerase I and transcript release factor), cavin-2 (or SDPR for serum deprivation protein response), cavin-3 (or SRBC for sdr-related gene product that binds to-c-kinase) and cavin-4 (or MURC for muscle restricted coiled-coiled protein or cavin-4). All the caveolin and cavin proteins are essential regulators for caveolae dynamics. Recently, emerging evidence suggest that caveolae and its associated proteins play crucial roles in development and progression of pulmonary hypertension. The focus of this review is to outline and discuss the contrast in alteration of cav-1 (cav-1),-2 and cavin-1 (PTRF) expression and downstream signaling mechanisms between human and experimental models of pulmonary hypertension.
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The identification of the genetic basis for heritable predisposition to pulmonary arterial hypertension (PAH) has altered the clinical and research landscape for PAH patients and their care providers. This review aims to describe the genetic discoveries and their impact on clinical medicine. RECENT FINDINGS Since the landmark discovery that bone morphogenetic protein receptor type II (BMPR2) mutations cause the majority of cases of familial PAH, investigators have discovered mutations in genes that cause PAH in families without BMPR2 mutations, including the type I receptor ACVRL1 and the type III receptor ENG (both associated with hereditary hemorrhagic telangiectasia), caveolin-1 (CAV1), and a gene (KCNK3) encoding a two-pore potassium channel. Mutations in these genes cause an autosomal-dominant predisposition to PAH in which a fraction of mutation carriers develop PAH (incomplete penetrance). In 2014, scientists discovered mutations in eukaryotic initiation factor 2 alpha kinase 4 (EIF2AK4) that cause pulmonary capillary hemangiomatosis and pulmonary veno-occlusive disease, an autosomal recessively inherited disorder. SUMMARY The discovery that some forms of pulmonary hypertension are heritable and can be genetically defined adds important opportunities for physicians to educate their patients and their families to understand the potential risks and benefits of genetic testing.
Collapse
Affiliation(s)
- D Hunter Best
- aDepartment of Pathology, University of Utah School of Medicine bARUP Laboratories, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah cDepartment of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee dDepartments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York eDepartment of Medicine, Intermountain Medical Center, Murray fDepartment of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
45
|
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol 2015; 6:272. [PMID: 26106387 PMCID: PMC4459100 DOI: 10.3389/fimmu.2015.00272] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023] Open
Abstract
Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc.
Collapse
Affiliation(s)
- Debendra Pattanaik
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| | - Monica Brown
- Section of Pediatric Rheumatology, Department of Pediatrics, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Bradley C Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Arnold E Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| |
Collapse
|
46
|
Prewitt AR, Ghose S, Frump AL, Datta A, Austin ED, Kenworthy AK, de Caestecker MP. Heterozygous null bone morphogenetic protein receptor type 2 mutations promote SRC kinase-dependent caveolar trafficking defects and endothelial dysfunction in pulmonary arterial hypertension. J Biol Chem 2014; 290:960-71. [PMID: 25411245 DOI: 10.1074/jbc.m114.591057] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hereditary pulmonary arterial hypertension (HPAH) is a rare, fatal disease of the pulmonary vasculature. The majority of HPAH patients inherit mutations in the bone morphogenetic protein type 2 receptor gene (BMPR2), but how these promote pulmonary vascular disease is unclear. HPAH patients have features of pulmonary endothelial cell (PEC) dysfunction including increased vascular permeability and perivascular inflammation associated with decreased PEC barrier function. Recently, frameshift mutations in the caveolar structural protein gene Caveolin-1 (CAV-1) were identified in two patients with non-BMPR2-associated HPAH. Because caveolae regulate endothelial function and vascular permeability, we hypothesized that defects in caveolar function might be a common mechanism by which BMPR2 mutations promote pulmonary vascular disease. To explore this, we isolated PECs from mice carrying heterozygous null Bmpr2 mutations (Bmpr2(+/-)) similar to those found in the majority of HPAH patients. We show that Bmpr2(+/-) PECs have increased numbers and intracellular localization of caveolae and caveolar structural proteins CAV-1 and Cavin-1 and that these defects are reversed after blocking endocytosis with dynasore. SRC kinase is also constitutively activated in Bmpr2(+/-) PECs, and localization of CAV-1 to the plasma membrane is restored after treating Bmpr2(+/-) PECs with the SRC kinase inhibitor 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2). Late outgrowth endothelial progenitor cells isolated from HPAH patients show similar increased activation of SRC kinase. Moreover, Bmpr2(+/-) PECs have impaired endothelial barrier function, and barrier function is restored after treatment with PP2. These data suggest that heterozygous null BMPR2 mutations promote SRC-dependent caveolar trafficking defects in PECs and that this may contribute to pulmonary endothelial barrier dysfunction in HPAH patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne K Kenworthy
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232
| | | |
Collapse
|
47
|
Rathor N, Chung HK, Wang SR, Wang JY, Turner DJ, Rao JN. Caveolin-1 enhances rapid mucosal restitution by activating TRPC1-mediated Ca2+ signaling. Physiol Rep 2014; 2:2/11/e12193. [PMID: 25367694 PMCID: PMC4255804 DOI: 10.14814/phy2.12193] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Early rapid mucosal restitution occurs as a consequence of epithelial cell migration to reseal superficial wounds, a process independent of cell proliferation. Our previous studies revealed that the canonical transient receptor potential-1 (TRPC1) functions as a store-operated Ca(2+) channel (SOCs) in intestinal epithelial cells (IECs) and regulates epithelial restitution after wounding, but the exact mechanism underlying TRPC1 activation remains elusive. Caveolin-1 (Cav1) is a major component protein that is associated with caveolar lipid rafts in the plasma membrane and was recently identified as a regulator of store-operated Ca(2+) entry (SOCE). Here, we showed that Cav1 plays an important role in the regulation of mucosal restitution by activating TRPC1-mediated Ca(2+) signaling. Target deletion of Cav1 delayed gastric mucosal repair after exposure to hypertonic NaCl in mice, although it did not affect total levels of TRPC1 protein. In cultured IECs, Cav1 directly interacted with TRPC1 and formed Cav1/TRPC1 complex as measured by immunoprecipitation assays. Cav1 silencing in stable TRPC1-transfected cells by transfection with siCav1 reduced SOCE without effect on the level of resting [Ca(2+)]cyt. Inhibition of Cav1 expression by siCav1 and subsequent decrease in Ca(2+) influx repressed epithelial restitution, as indicated by a decrease in cell migration over the wounded area, whereas stable ectopic overexpression of Cav1 increased Cav1/TRPC1 complex, induced SOCE, and enhanced cell migration after wounding. These results indicate that Cav1 physically interacts with and activates TRPC1, thus stimulating TRPC1-mediated Ca(2+) signaling and rapid mucosal restitution after injury.
Collapse
Affiliation(s)
- Navneeta Rathor
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA Baltimore VA Medical Center, Baltimore, Maryland, USA
| | - Hee K Chung
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA Baltimore VA Medical Center, Baltimore, Maryland, USA
| | - Shelley R Wang
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jian-Ying Wang
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA Baltimore VA Medical Center, Baltimore, Maryland, USA Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Douglas J Turner
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA Baltimore VA Medical Center, Baltimore, Maryland, USA
| | - Jaladanki N Rao
- Department of Surgery, Cell Biology Group, University of Maryland School of Medicine, Baltimore, Maryland, USA Baltimore VA Medical Center, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Mathew R. Pulmonary hypertension and metabolic syndrome: Possible connection, PPARγ and Caveolin-1. World J Cardiol 2014; 6:692-705. [PMID: 25228949 PMCID: PMC4163699 DOI: 10.4330/wjc.v6.i8.692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
Abstract
A number of disparate diseases can lead to pulmonary hypertension (PH), a serious disorder with a high morbidity and mortality rate. Recent studies suggest that the associated metabolic dysregulation may be an important factor adversely impacting the prognosis of PH. Furthermore, metabolic syndrome is associated with vascular diseases including PH. Inflammation plays a significant role both in PH and metabolic syndrome. Adipose tissue modulates lipid and glucose metabolism, and also produces pro- and anti-inflammatory adipokines that modulate vascular function and angiogenesis, suggesting a close functional relationship between the adipose tissue and the vasculature. Both caveolin-1, a cell membrane scaffolding protein and peroxisome proliferator-activated receptor (PPAR) γ, a ligand-activated transcription factor are abundantly expressed in the endothelial cells and adipocytes. Both caveolin-1 and PPARγ modulate proliferative and anti-apoptotic pathways, cell migration, inflammation, vascular homeostasis, and participate in lipid transport, triacylglyceride synthesis and glucose metabolism. Caveolin-1 and PPARγ regulate the production of adipokines and in turn are modulated by them. This review article summarizes the roles and inter-relationships of caveolin-1, PPARγ and adipokines in PH and metabolic syndrome.
Collapse
|
49
|
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease for which there is an ever-expanding body of genetic and related pathophysiological information on disease pathogenesis. Many germline gene mutations have now been described, including mutations in the gene coding bone morphogenic protein receptor type 2 (BMPR2) and related genes. Recent advanced gene-sequencing methods have facilitated the discovery of additional genes with mutations among those with and those without familial forms of PAH (CAV1, KCNK3, EIF2AK4). The reduced penetrance, variable expressivity, and female predominance of PAH suggest that genetic, genomic, and other factors modify disease expression. These multi-faceted variations are an active area of investigation in the field, including but not limited to common genetic variants and epigenetic processes, and may provide novel opportunities for pharmacological intervention in the near future. They also highlight the need for a systems-oriented multi-level approach to incorporate the multitude of biological variations now associated with PAH. Ultimately, an in-depth understanding of the genetic factors relevant to PAH provides the opportunity for improved patient and family counseling about this devastating disease.
Collapse
Affiliation(s)
- Eric D Austin
- From the Division of Allergy, Pulmonary, and Immunology Medicine, Department of Pediatrics (E.D.A.) and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine (J.E.L.), Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN.
| | - James E Loyd
- From the Division of Allergy, Pulmonary, and Immunology Medicine, Department of Pediatrics (E.D.A.) and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine (J.E.L.), Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
50
|
Chen F, Barman S, Yu Y, Haigh S, Wang Y, Black SM, Rafikov R, Dou H, Bagi Z, Han W, Su Y, Fulton DJR. Caveolin-1 is a negative regulator of NADPH oxidase-derived reactive oxygen species. Free Radic Biol Med 2014; 73:201-13. [PMID: 24835767 PMCID: PMC4228786 DOI: 10.1016/j.freeradbiomed.2014.04.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 01/14/2023]
Abstract
Changes in the expression and function of caveolin-1 (Cav-1) have been proposed as a pathogenic mechanism underlying many cardiovascular diseases. Cav-1 binds to and regulates the activity of numerous signaling proteins via interactions with its scaffolding domain. In endothelial cells, Cav-1 has been shown to reduce reactive oxygen species (ROS) production, but whether Cav-1 regulates the activity of NADPH oxidases (Noxes), a major source of cellular ROS, has not yet been shown. Herein, we show that Cav-1 is primarily expressed in the endothelium and adventitia of pulmonary arteries (PAs) and that Cav-1 expression is reduced in isolated PAs from multiple models of pulmonary artery hypertension (PH). Reduced Cav-1 expression correlates with increased ROS production in the adventitia of hypertensive PA. In vitro experiments revealed a significant ability of Cav-1 and its scaffolding domain to inhibit Nox1-5 activity and it was also found that Cav-1 binds to Nox5 and Nox2 but not Nox4. In addition to posttranslational actions, in primary cells, Cav-1 represses the mRNA and protein expression of Nox2 and Nox4 through inhibition of the NF-κB pathway. Last, in a mouse hypoxia model, the genetic ablation of Cav-1 increased the expression of Nox2 and Nox4 and exacerbated PH. Together, these results suggest that Cav-1 is a negative regulator of Nox function via two distinct mechanisms, acutely through direct binding and chronically through alteration of expression levels. Accordingly, the loss of Cav-1 expression in cardiovascular diseases such as PH may account for the increased Nox activity and greater production of ROS.
Collapse
Affiliation(s)
- Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA.
| | - Scott Barman
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA
| | - Steven Haigh
- Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA
| | - Yusi Wang
- Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA
| | | | | | | | - Zsolt Bagi
- Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA
| | - Weihong Han
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA
| | - David J R Fulton
- Vascular Biology Center and Georgia Regents University, Augusta, GA 30912, USA; Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|