1
|
Campbell JM, Gosnell M, Agha A, Handley S, Knab A, Anwer AG, Bhargava A, Goldys EM. Label-Free Assessment of Key Biological Autofluorophores: Material Characteristics and Opportunities for Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403761. [PMID: 38775184 DOI: 10.1002/adma.202403761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Indexed: 06/13/2024]
Abstract
Autofluorophores are endogenous fluorescent compounds that naturally occur in the intra and extracellular spaces of all tissues and organs. Most have vital biological functions - like the metabolic cofactors NAD(P)H and FAD+, as well as the structural protein collagen. Others are considered to be waste products - like lipofuscin and advanced glycation end products - which accumulate with age and are associated with cellular dysfunction. Due to their natural fluorescence, these materials have great utility for enabling non-invasive, label-free assays with direct ties to biological function. Numerous technologies, with different advantages and drawbacks, are applied to their assessment, including fluorescence lifetime imaging microscopy, hyperspectral microscopy, and flow cytometry. Here, the applications of label-free autofluorophore assessment are reviewed for clinical and health-research applications, with specific attention to biomaterials, disease detection, surgical guidance, treatment monitoring, and tissue assessment - fields that greatly benefit from non-invasive methodologies capable of continuous, in vivo characterization.
Collapse
Affiliation(s)
- Jared M Campbell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | | | - Adnan Agha
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Shannon Handley
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Aline Knab
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ayad G Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Akanksha Bhargava
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
2
|
Lin S, Ota U, Imazato H, Takahashi K, Ishizuka M, Osaki T. In vitro evaluation of the efficacy of photodynamic therapy using 5-ALA on homologous feline mammary tumors in 2D and 3D culture conditions and a mouse subcutaneous model with 3D cultured cells. Photodiagnosis Photodyn Ther 2024; 45:103993. [PMID: 38280675 DOI: 10.1016/j.pdpdt.2024.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Numerous studies have shown that photodynamic therapy (PDT) has a therapeutic effect on mammary tumor cells, with 5-aminolevulinic acid (5-ALA-HCL) being a commonly used photosensitizer for PDT. Feline mammary tumors (FMTs) are relatively common. However, the cytotoxic and antitumor effects of 5-ALA-PDT on FMTs have not been clarified. To this end, we evaluated the therapeutic effect of 5-ALA-PDT on FMTs through in vitro experiments using an FMT FKR cell line established for this study. METHODS We performed 5-ALA-PDT in 2D-cultured FKR-A (adherent cells) and 3D-cultured FKR-S (spheroid cells) cells and performed a series of studies to evaluate the cell viability and determine the protoporphyrin IX (PpIX) content in the cells as well as the expression levels of mRNAs associated with PpIX production and release. An in vivo study was performed to assess the effectiveness of 5-ALA-PDT. RESULTS There was a significant difference in the concentration of PpIX in FMT cells under different incubation culture modes (2D versus 3D culture). The concentration of PpIX in FMT cells was correlated with the differences in cell culture (2D and 3D) as well as the expression levels of genes such as PEPT1, PEPT2, FECH, and HO-1. CONCLUSIONS In the in vitro study, 5-ALA-PDT had a stronger inhibitory effect on 3D-cultured FKR-S cells, which resemble the internal environment of organisms more closely. We also observed a significant inhibitory effect of 5-ALA-PDT on FMT cells in vivo. To our knowledge, this is the first study on 5-ALA-PDT for FMTs under both 2D and 3D conditions.
Collapse
Affiliation(s)
- Siyao Lin
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Urara Ota
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan
| | - Hideo Imazato
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan
| | | | | | - Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| |
Collapse
|
3
|
Park J, Oh SJ, Shim JK, Ji YB, Moon JH, Kim EH, Huh YM, Suh JS, Chang JH, Lee SJ, Kang SG. C5α secreted by tumor mesenchymal stem-like cells mediates resistance to 5-aminolevulinic acid-based photodynamic therapy against glioblastoma tumorspheres. J Cancer Res Clin Oncol 2023; 149:4391-4402. [PMID: 36107247 DOI: 10.1007/s00432-022-04347-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Advancements in photodynamic diagnosis (PDD) and photodynamic therapy (PDT) as a standard care in cancer therapy have been limited. This study is aimed to investigate the clinical availability of 5-aminolevulinic acid (5-ALA)-based PDD and PDT in glioblastoma (GBM) patient-derived tumorspheres (TSs) and mouse orthotopic xenograft model. METHODS PDT was performed using a 635 nm light-emitting diode (LED). Transcriptome profiles were obtained from microarray data. For knockdown of C5α, siRNA was transfected into tumor mesenchymal stem-like cells (tMSLCs). The invasiveness of TSs was quantified using collagen-based 3D invasion assays. RESULTS Treatment with 1 mM 5 ALA induced distinct protoporphyrin IX (PpIX) fluorescence in GBM TSs, but not in non-tumor cells or tissues, including tMSLCs. These observations were negatively correlated with the expression levels of FECH, which catalyzes the conversion of accumulated PpIX to heme. Furthermore, the 5-ALA-treated GBM TSs were sensitive to PDT, thereby significantly decreasing cell viability and invasiveness. Notably, the effects of PDT were abolished by culturing TSs with tMSLC-conditioned media. Transcriptome analysis revealed diverse tMSLC-secreted chemokines, including C5α, and their correlations with the expression of stemness- or mesenchymal transition-associated genes. By adding or inhibiting C5α, we confirmed that acquired resistance to PDT was induced via tMSLC-secreted C5α. CONCLUSIONS Our results show substantial therapeutic effects of 5-ALA-based PDT on GBM TSs, suggesting C5α as a key molecule responsible for PDT resistance. These findings could trigger PDT as a standard clinical modality for the treatment of GBM.
Collapse
Affiliation(s)
- Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Jae Oh
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Bin Ji
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, Republic of Korea
- Gimhae Biomedical Center, Gimhae Biomedical Industry Promotion Agency, Gimhae, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Min Huh
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, Republic of Korea
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Suck Suh
- YUHS-KRIBB Medical Convergence Research Institute, Yonsei University, Seoul, Republic of Korea
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Su-Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Fibrosis and Cancer Targeting Biotechnology, FNCT Biotech, Seoul, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Department of Medical Science, Yonsei University Graduate School, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Lynch J, Wang Y, Li Y, Kavdia K, Fukuda Y, Ranjit S, Robinson CG, Grace CR, Xia Y, Peng J, Schuetz JD. A PPIX-binding probe facilitates discovery of PPIX-induced cell death modulation by peroxiredoxin. Commun Biol 2023; 6:673. [PMID: 37355765 PMCID: PMC10290680 DOI: 10.1038/s42003-023-05024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/07/2023] [Indexed: 06/26/2023] Open
Abstract
While heme synthesis requires the formation of a potentially lethal intermediate, protoporphyrin IX (PPIX), surprisingly little is known about the mechanism of its toxicity, aside from its phototoxicity. The cellular protein interactions of PPIX might provide insight into modulators of PPIX-induced cell death. Here we report the development of PPB, a biotin-conjugated, PPIX-probe that captures proteins capable of interacting with PPIX. Quantitative proteomics in a diverse panel of mammalian cell lines reveal a high degree of concordance for PPB-interacting proteins identified for each cell line. Most differences are quantitative, despite marked differences in PPIX formation and sensitivity. Pathway and quantitative difference analysis indicate that iron and heme metabolism proteins are prominent among PPB-bound proteins in fibroblasts, which undergo PPIX-mediated death determined to occur through ferroptosis. PPB proteomic data (available at PRIDE ProteomeXchange # PXD042631) reveal that redox proteins from PRDX family of glutathione peroxidases interact with PPIX. Targeted gene knockdown of the mitochondrial PRDX3, but not PRDX1 or 2, enhance PPIX-induced death in fibroblasts, an effect blocked by the radical-trapping antioxidant, ferrostatin-1. Increased PPIX formation and death was also observed in a T-lymphoblastoid ferrochelatase-deficient leukemia cell line, suggesting that PPIX elevation might serve as a potential strategy for killing certain leukemias.
Collapse
Affiliation(s)
- John Lynch
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yao Wang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yuxin Li
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sabina Ranjit
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Camenzind G Robinson
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Youlin Xia
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
5
|
Howley R, Chandratre S, Chen B. 5-Aminolevulinic Acid as a Theranostic Agent for Tumor Fluorescence Imaging and Photodynamic Therapy. Bioengineering (Basel) 2023; 10:bioengineering10040496. [PMID: 37106683 PMCID: PMC10136048 DOI: 10.3390/bioengineering10040496] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
5-Aminolevulinic acid (ALA) is a naturally occurring amino acid synthesized in all nucleated mammalian cells. As a porphyrin precursor, ALA is metabolized in the heme biosynthetic pathway to produce protoporphyrin IX (PpIX), a fluorophore and photosensitizing agent. ALA administered exogenously bypasses the rate-limit step in the pathway, resulting in PpIX accumulation in tumor tissues. Such tumor-selective PpIX disposition following ALA administration has been exploited for tumor fluorescence diagnosis and photodynamic therapy (PDT) with much success. Five ALA-based drugs have now received worldwide approval and are being used for managing very common human (pre)cancerous diseases such as actinic keratosis and basal cell carcinoma or guiding the surgery of bladder cancer and high-grade gliomas, making it the most successful drug discovery and development endeavor in PDT and photodiagnosis. The potential of ALA-induced PpIX as a fluorescent theranostic agent is, however, yet to be fully fulfilled. In this review, we would like to describe the heme biosynthesis pathway in which PpIX is produced from ALA and its derivatives, summarize current clinical applications of ALA-based drugs, and discuss strategies for enhancing ALA-induced PpIX fluorescence and PDT response. Our goal is two-fold: to highlight the successes of ALA-based drugs in clinical practice, and to stimulate the multidisciplinary collaboration that has brought the current success and will continue to usher in more landmark advances.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Sharayu Chandratre
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Qian Y, Wang J, Bu W, Zhu X, Zhang P, Zhu Y, Fan X, Wang C. Targeted implementation strategies of precise photodynamic therapy based on clinical and technical demands. Biomater Sci 2023; 11:704-718. [PMID: 36472233 DOI: 10.1039/d2bm01384c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
With the development of materials science, photodynamic-based treatments have gradually entered clinics. Photodynamic therapy is ideal for cancer treatment due to its non-invasive and spatiotemporal properties and is the first to be widely promoted in clinical practice. However, the shortcomings resulting from the gap between technical and clinical demands, such as phototoxicity, low tissue permeability, and tissue hypoxia, limit its wide applications. This article reviews the available data regarding the pharmacological and clinical factors affecting the efficacy of photodynamic therapy, such as photosensitizers and oxygen supply, disease diagnosis, and other aspects of photodynamic therapy. In addition, the synergistic treatment of photodynamic therapy with surgery and nanotechnology is also discussed, which is expected to provide inspiration for the design of photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yun Qian
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Jialun Wang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Wenbo Bu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Xiaoyan Zhu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Ping Zhang
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Yun Zhu
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China. .,Department of Pharmacy, Nanjing Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.,Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu Province, China
| | - Xiaoli Fan
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
7
|
Dali A, Gabler T, Sebastiani F, Destinger A, Furtmüller PG, Pfanzagl V, Becucci M, Smulevich G, Hofbauer S. Active site architecture of coproporphyrin ferrochelatase with its physiological substrate coproporphyrin III: Propionate interactions and porphyrin core deformation. Protein Sci 2023; 32:e4534. [PMID: 36479958 PMCID: PMC9794026 DOI: 10.1002/pro.4534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Coproporphyrin ferrochelatases (CpfCs) are enzymes catalyzing the penultimate step in the coproporphyrin-dependent (CPD) heme biosynthesis pathway, which is mainly utilized by monoderm bacteria. Ferrochelatases insert ferrous iron into a porphyrin macrocycle and have been studied for many decades, nevertheless many mechanistic questions remain unanswered to date. Especially CpfCs, which are found in the CPD pathway, are currently in the spotlight of research. This pathway was identified in 2015 and revealed that the correct substrate for these ferrochelatases is coproporphyrin III (cpIII) instead of protoporphyrin IX, as believed prior the discovery of the CPD pathway. The chemistry of cpIII, which has four propionates, differs significantly from protoporphyrin IX, which features two propionate and two vinyl groups. These findings let us to thoroughly describe the physiological cpIII-ferrochelatase complex in solution and in the crystal phase. Here, we present the first crystallographic structure of the CpfC from the representative monoderm pathogen Listeria monocytogenes bound to its physiological substrate, cpIII, together with the in-solution data obtained by resonance Raman and UV-vis spectroscopy, for wild-type ferrochelatase and variants, analyzing propionate interactions. The results allow us to evaluate the porphyrin distortion and provide an in-depth characterization of the catalytically-relevant binding mode of cpIII prior to iron insertion. Our findings are discussed in the light of the observed structural restraints and necessities for this porphyrin-enzyme complex to catalyze the iron insertion process. Knowledge about this initial situation is essential for understanding the preconditions for iron insertion in CpfCs and builds the basis for future studies.
Collapse
Affiliation(s)
- Andrea Dali
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy
| | - Thomas Gabler
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Federico Sebastiani
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy
| | - Alina Destinger
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Paul Georg Furtmüller
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Vera Pfanzagl
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| | - Maurizio Becucci
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff” – DICUSUniversità di FirenzeSesto Fiorentino (FI)Italy,INSTM Research Unit of FirenzeSesto Fiorentino (Fi)Italy
| | - Stefan Hofbauer
- Department of ChemistryInstitute of Biochemistry, University of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
8
|
FECH Expression Correlates with the Prognosis and Tumor Immune Microenvironment in Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8943643. [PMID: 36059798 PMCID: PMC9436586 DOI: 10.1155/2022/8943643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022]
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is, by far, the most prevalent and fatal kind of kidney cancer. Ferrochelatase (FECH) is an enzyme that performs a significant function in the onset and progression of many distinct kinds of malignant tumors. Nevertheless, its predictive usefulness in renal clear cell carcinoma (RCC) has not yet been fully investigated. Methods FECH expression in ccRCC and healthy adjoining tissues was primarily screened utilizing data sourced from The Cancer Genome Atlas (TCGA) and subsequently validated using data from an independent cohort derived from the Gene Expression Omnibus (GEO) and the Human Protein Atlas HPA databases. The relationship among FECH expression, clinicopathological parameters, and overall survival (OS) was assessed utilizing multivariate analysis and Kaplan–Meier survival curves. Additionally, the protein networks with FECH interaction were constructed with the aid of the online Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Gene ontology (GO) analysis, and gene set enrichment analysis (GSEA) were conducted based on TCGA data, and a single-sample GSEA was utilized to explore the link between FECH expression and the infiltration status of immune cells in the tumor. The Gene Expression Profiling Interactive Analysis (GEPIA) and TIMER databases were utilized to investigate the relationships of FECH expression with the infiltrating immune cells and the matching gene marker sets. Results FECH expression was shown to be substantially lowered in ccRCC tumors as opposed to that observed in normal tissues (p < 0.05). Lower levels of FECH expression were shown to have a strong association with higher grades of cancer and more advanced TNM stages. The findings of multivariate and univariate analyses illustrated that the OS in patients with ccRCC with low FECH expression is shorter in contrast with that in the high FECH expression group (p < 0.05). It was discovered that CPOX and frataxin are key proteins that interact with FECH. ccRCC with FECH deficiency was linked to the lack of infiltrating immune cells and their respective marker sets, which included CD4+ T cells. Conclusion In ccRCC, decreased FECH expression was linked to disease progression, unfavorable prognosis, and impaired immune cell infiltration.
Collapse
|
9
|
Zhou Y, Mo M, Luo D, Yang Y, Hu J, Ye C, Lin L, Xu C, Chen W. Evolutionary Trend Analysis of Research on 5-ALA Delivery and Theranostic Applications Based on a Scientometrics Study. Pharmaceutics 2022; 14:pharmaceutics14071477. [PMID: 35890373 PMCID: PMC9320574 DOI: 10.3390/pharmaceutics14071477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
5-aminolevulinic acid (5-ALA) has been extensively studied for its sustainability and broad-spectrum applications in medical research and theranostics, as well as other areas. It’s a precursor of protoporphyrin IX (PpIX), a sustainable endogenous and naturally-existing photosensitizer. However, to the best of our knowledge, a scientometrics study based on the scientific knowledge assay of the overall situation on 5-ALA research has not been reported so far, which would be of major importance to the relevant researchers. In this study, we collected all the research articles published in the last two decades from the Web of Science Core Collection database and employed bibliometric methods to comprehensively analyze the dataset from different perspectives using CiteSpace. A total of 1595 articles were identified. The analysis results showed that China published the largest number of articles, and SBI Pharmaceuticals Co., Ltd. was the most productive institution that sponsored several of the most productive authors. The cluster analysis and burst detections indicated that the improvement of photodynamic efficacy theranostics is the up-to-date key direction in 5-ALA research. Furthermore, we emphatically studied nanotechnology involvement in 5-ALA delivery and theranostics research. We envision that our results will be beneficial for researchers to have a panorama of and deep insights into this area, thus inspiring further exploitations, especially of the nanomaterial-based systems for 5-ALA delivery and theranostic applications.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, China;
| | - Mulan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Dexu Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Yi Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Jialin Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Chenqing Ye
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, China;
| | - Longxiang Lin
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen 518118, China;
| | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- Correspondence: (C.X.); (W.C.)
| | - Wenjie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- State Key Laboratory of Respiratory Disease, Guangdong-Hongkong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510182, China
- Sydney Vital Translational Cancer Research Centre, Westbourne St., Sydney, NSW 2065, Australia
- Correspondence: (C.X.); (W.C.)
| |
Collapse
|
10
|
Sishtla K, Lambert-Cheatham N, Lee B, Han DH, Park J, Sardar Pasha SPB, Lee S, Kwon S, Muniyandi A, Park B, Odell N, Waller S, Park IY, Lee SJ, Seo SY, Corson TW. Small-molecule inhibitors of ferrochelatase are antiangiogenic agents. Cell Chem Biol 2022; 29:1010-1023.e14. [PMID: 35090600 PMCID: PMC9233146 DOI: 10.1016/j.chembiol.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/10/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Activity of the heme synthesis enzyme ferrochelatase (FECH) is implicated in multiple diseases. In particular, it is a mediator of neovascularization in the eye and thus an appealing therapeutic target for preventing blindness. However, no drug-like direct FECH inhibitors are known. Here, we set out to identify small-molecule inhibitors of FECH as potential therapeutic leads using a high-throughput screening approach to identify potent inhibitors of FECH activity. A structure-activity relationship study of a class of triazolopyrimidinone hits yielded drug-like FECH inhibitors. These compounds inhibit FECH in cells, bind the active site in cocrystal structures, and are antiangiogenic in multiple in vitro assays. One of these promising compounds was antiangiogenic in vivo in a mouse model of choroidal neovascularization. This foundational work may be the basis for new therapeutic agents to combat not only ocular neovascularization but also other diseases characterized by FECH activity.
Collapse
Affiliation(s)
- Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nathan Lambert-Cheatham
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bit Lee
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Duk Hee Han
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Jaehui Park
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Sheik Pran Babu Sardar Pasha
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanha Lee
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Sangil Kwon
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Anbukkarasi Muniyandi
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bomina Park
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Noa Odell
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spelman College, Atlanta, GA 30314, USA
| | - Sydney Waller
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Soo Jae Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea.
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon 21936, South Korea.
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Mazurek M, Szczepanek D, Orzyłowska A, Rola R. Analysis of Factors Affecting 5-ALA Fluorescence Intensity in Visualizing Glial Tumor Cells-Literature Review. Int J Mol Sci 2022; 23:ijms23020926. [PMID: 35055109 PMCID: PMC8779265 DOI: 10.3390/ijms23020926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Glial tumors are one of the most common lesions of the central nervous system. Despite the implementation of appropriate treatment, the prognosis is not successful. As shown in the literature, maximal tumor resection is a key element in improving therapeutic outcome. One of the methods to achieve it is the use of fluorescent intraoperative navigation with 5-aminolevulinic acid. Unfortunately, often the level of fluorescence emitted is not satisfactory, resulting in difficulties in the course of surgery. This article summarizes currently available knowledge regarding differences in the level of emitted fluorescence. It may depend on both the histological type and the genetic profile of the tumor, which is reflected in the activity and expression of enzymes involved in the intracellular metabolism of fluorescent dyes, such as PBGD, FECH, UROS, and ALAS. The transport of 5-aminolevulinic acid and its metabolites across the blood–brain barrier and cell membranes mediated by transporters, such as ABCB6 and ABCG2, is also important. Accompanying therapies, such as antiepileptic drugs or steroids, also have an impact on light emission by tumor cells. Accurate determination of the factors influencing the fluorescence of 5-aminolevulinic acid-treated cells may contribute to the improvement of fluorescence navigation in patients with highly malignant gliomas.
Collapse
|
12
|
Targeting glioblastoma stem cells: The first step of photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102585. [PMID: 34687963 DOI: 10.1016/j.pdpdt.2021.102585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma is one of the most malignant types of brain cancer. Evidence suggests that within gliomas there is a small subpopulation of cells with the capacity for self-renewal, called glioma stem cells. These cells could be responsible for tumorigenesis, chemo and radioresistance, and finally for the recurrence of the tumor. Fluorescence-guided resection have improved the results of treatment against this disease, prolonging the survival of patients by a few months. Also, clinical trials have reported potential improvements in the therapeutic response after photodynamic therapy. Thus far, there are few published works that show the response of glioblastoma stem-like cells to photodynamic therapy. Here, we present a brief review exclusively commenting on the therapeutic approaches to eliminate glioblastoma stem cells and on the research publications about this topic of glioblastoma stem cells in relation to photodynamic therapy. It is our hope that this review will be useful to provide an overview about what is known to date on the topic and to promote the generation of new ideas for the eradication of glioblastoma stem cells by photodynamic treatment.
Collapse
|
13
|
Yang G, Li G, Du X, Zhou W, Zou X, Liu Y, Lv H, Li Z. Down-regulation of IGHG1 enhances Protoporphyrin IX accumulation and inhibits hemin biosynthesis in colorectal cancer by suppressing the MEK-FECH axis. Open Life Sci 2021; 16:930-936. [PMID: 34553073 PMCID: PMC8422984 DOI: 10.1515/biol-2021-0098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin γ-1 heavy chain constant region (IGHG1) is a functional isoform of immunoglobulins and plays an important role in the cytolytic activity of immune effector cells. Dysregulated IGHG1 was implicated in the occurrence and development of various tumors. Protoporphyrin IX (PpIX) is an endogenous fluorophore and is used in photodynamic therapy, which induces the generation of reactive oxygen species to initiate the death of tumor cells. However, the roles of IGHG1 in the colorectal cancer cell proliferation and PpIX accumulation have not been reported yet. Data from qRT-PCR and western blot analysis showed that IGHG1 was up-regulated in the colorectal cancer cells. Colorectal cancer cells were then transfected with shRNA targeting IGHG1 to down-regulate IGHG1 and conducted with Cell Counting Kit 8 (CCK8) and colony formation assays. Results demonstrated that shRNA-mediated down-regulation of IGHG1 decreased cell viability of colorectal cancer and suppressed cell proliferation. Moreover, PpIX accumulation was promoted and the hemin content was decreased by the silence of IGHG1. Interference of IGHG1 reduced the phosphorylated extracellular signal-regulated kinase (ERK) and ferrochelatase (FECH) expression, resulting in retarded cell proliferation in an MEK-FECH axis-dependent pathway.
Collapse
Affiliation(s)
- Guangjian Yang
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Gang Li
- Department of Anorectal, The First People’s Hospital of Longquanyi District of Chengdu, No. 201, Group 3, Chengdu, Sichuan, 610100, China
| | - Xuemei Du
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Wenting Zhou
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Xiaohong Zou
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Yuanfu Liu
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Hong Lv
- Department of Pathology, The First People’s Hospital of Longquanyi District of Chengdu, Chengdu, Sichuan, 610100, China
| | - Zhenjiang Li
- Department of Research and Development, Sichuan Haosidelifu Science and Technology Ltd, Chengdu, Sichuan, 610041, China
| |
Collapse
|
14
|
Palasuberniam P, Kraus D, Mansi M, Howley R, Braun A, Myers KA, Chen B. Small molecule kinase inhibitors enhance aminolevulinic acid-mediated protoporphyrin IX fluorescence and PDT response in triple negative breast cancer cell lines. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210229R. [PMID: 34545713 PMCID: PMC8451314 DOI: 10.1117/1.jbo.26.9.098002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/08/2021] [Indexed: 05/13/2023]
Abstract
SIGNIFICANCE We demonstrate that clinically used kinase inhibitors such as lapatinib can be used for enhancing aminolevulinic acid (ALA) for tumor fluorescence imaging and photodynamic therapy (PDT). AIM ALA is used as a prodrug for protoporphyrin IX (PpIX) fluorescence-guided tumor resection and PDT. Our previous studies indicate that tumors with high ABCG2 activity exhibit low PpIX fluorescence, which hampers the application of ALA. We aim to determine whether clinically used ABCG2-interacting kinase inhibitors increase ALA-PpIX fluorescence and PDT. APPROACH PpIX fluorescence was determined by spectrofluorometry, flow cytometry, and confocal microscopy after ALA alone or in combination with kinase inhibitors in triple negative breast cancer (TNBC) cell lines. Cytotoxicity was examined after ALA-PDT alone or in combination with kinase inhibitors. Effect of single and combination treatments on apoptosis was assessed by Western blot. RESULTS Four kinase inhibitors (lapatinib, PD169316, sunitinib, gefitinib) significantly increased ALA-PpIX fluorescence and PDT response in TNBC cells with ABCG2 activity, but not in MCF10A nontumor breast epithelial cell line without ABCG2 activity. Confocal microscopic imaging showed that PpIX fluorescence was weak and diffuse after ALA alone, which was greatly enhanced by kinase inhibitors, particularly in the mitochondria. Lapatinib was the only inhibitor that significantly reduced PpIX efflux in cell culture medium and showed stronger enhancement of PDT response than other kinase inhibitors. Lapatinib, in combination with ALA, induced tumor cells to undergo apoptosis, whereas no apoptosis was detected after each individual treatment. CONCLUSIONS Although all four kinase inhibitors were able to enhance ALA-PpIX fluorescence and PDT, lapatinib exhibited the strongest enhancement effect. As an FDA-approved kinase inhibitor for breast cancer treatment, lapatinib is ready to be used in combination with ALA for therapeutic enhancement in tumors with elevated ABCG2 activity. This rational combination approach warrants further investigation in tumor models.
Collapse
Affiliation(s)
- Pratheeba Palasuberniam
- University of the Sciences, Philadelphia College of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia, Pennsylvania, United States
| | - Daniel Kraus
- University of the Sciences, Philadelphia College of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia, Pennsylvania, United States
| | - Matthew Mansi
- University of the Sciences, Philadelphia College of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia, Pennsylvania, United States
| | - Richard Howley
- University of the Sciences, Philadelphia College of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia, Pennsylvania, United States
| | - Alexander Braun
- University of the Sciences, Misher College of Arts and Sciences, Philadelphia, Pennsylvania, United States
| | - Kenneth A. Myers
- University of the Sciences, Misher College of Arts and Sciences, Philadelphia, Pennsylvania, United States
| | - Bin Chen
- University of the Sciences, Philadelphia College of Pharmacy, Department of Pharmaceutical Sciences, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Perelman School of Medicine, Department of Radiation Oncology, Philadelphia, Pennsylvania, United States
- Address all correspondence to Bin Chen,
| |
Collapse
|
15
|
Alectinib treatment improves photodynamic therapy in cancer cell lines of different origin. BMC Cancer 2021; 21:971. [PMID: 34461853 PMCID: PMC8404354 DOI: 10.1186/s12885-021-08667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Photodynamic therapy with a photosensitizer such as protoporphyrin-IX, a light sensitive metabolite of heme synthesis, is a highly selective treatment for various carcinomas. In previous studies, we found a significant down regulation of the relevant enzyme ferrochelatase in gastrointestinal carcinomas leading to an accumulation of protoporphyrin-IX within the tumor cells. Recent studies showed that a novel anti-cancer drug, Alectinib, an orally available, highly selective, potent second-generation inhibitor of anaplastic lymphoma tyrosinkinase binds to ferrochelatase. Therefore, we were interested to see whether Alectinib treatment might lead to an accumulation of protoporphyrin IX. Methods Tumor cells of different origin were cultured, treated with LED-light and Alectinib. Results were gained by flow cytometry, immunohistochemistry and western blotting. Apoptosis was determined by flow cytometric analysis of Annexin V-FITC stained cells. In addition, cells were counterstained with propidium iodide to distinguish early apoptotic cells and late apoptotic/necrotic cells. Results Here, we report that photodynamic treatment of tumor cell lines of different origin in combination with Alectinib increased protoporphyrin-IX specific fluorescence and concomitantly cell death. Conclusions The usage of Alectinib could be another step for enhancing the effectiveness of photodynamic therapy. Further experiments will show whether photodynamic therapy in combination with Alectinib could be a new strategy for the treatment of e.g. peritoneal disseminated carcinomas. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08667-x.
Collapse
|
16
|
Alekseeva PM, Efendiev KT, Shiryaev AA, Rusakov MA, Simonova MS, Samoylova SI, Fatyanova AS, Reshetov IV, Loschenov VB. Sublingual administration of 5-aminolevulinic acid for laser-induced photodiagnostics and photodynamic therapy of oral cavity and larynx cancers. Photodiagnosis Photodyn Ther 2021; 34:102289. [PMID: 33839329 DOI: 10.1016/j.pdpdt.2021.102289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The study aimed to develop a method for sublingual administration of 5-aminolevulinic acid to patients and evaluate its effectiveness in fluorescence diagnostics and photodynamic therapy of neoplasms of the oral cavity and larynx. METHODS The boundaries of the neoplasms were established by the video-fluorescence diagnostics and clarified using spectral-fluorescent diagnosis before and after photodynamic therapy. RESULTS The fluorescence diagnostics demonstrated a high accumulation of protoporphyrin IX, induced by sublingual administration of 5-aminolevulinic acid to patients before the photodynamic therapy and photobleaching of protoporphyrin IX in pathologically altered tissues after the photodynamic therapy. Glucose contained in the sublingual dose supports active transport of 5-ALA into the cells. It increases the PpIX accumulation in the cells, therefore improving the PD and PDT efficacy. CONCLUSION The study and the initially obtained results demonstrated the possibility and effectiveness of laser-induced photodiagnostics and photodynamic therapy with sublingual administration of 5-ALA to patients with premalignant lesions of the oral cavity and larynx. It can eliminate the threat of the transformation of these diseases into malignant tumors and prevent the need for surgical treatment.
Collapse
Affiliation(s)
- P M Alekseeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409, Russia.
| | - K T Efendiev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409, Russia.
| | - A A Shiryaev
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, University Clinical Hospital No.1, Levshin Institute of Cluster Oncology, ul. Bolshaya Pirogovskaya 6, Moscow, 119435, Russia.
| | - M A Rusakov
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, University Clinical Hospital No.1, Levshin Institute of Cluster Oncology, ul. Bolshaya Pirogovskaya 6, Moscow, 119435, Russia.
| | - M S Simonova
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, University Clinical Hospital No.1, Levshin Institute of Cluster Oncology, ul. Bolshaya Pirogovskaya 6, Moscow, 119435, Russia.
| | - S I Samoylova
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, University Clinical Hospital No.1, Levshin Institute of Cluster Oncology, ul. Bolshaya Pirogovskaya 6, Moscow, 119435, Russia.
| | - A S Fatyanova
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, University Clinical Hospital No.1, Levshin Institute of Cluster Oncology, ul. Bolshaya Pirogovskaya 6, Moscow, 119435, Russia.
| | - I V Reshetov
- Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation, University Clinical Hospital No.1, Levshin Institute of Cluster Oncology, ul. Bolshaya Pirogovskaya 6, Moscow, 119435, Russia.
| | - V B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, ul. Vavilova 38, Moscow, 119991, Russia; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute MEPhI), Kashirskoye shosse 31, Moscow, 115409, Russia.
| |
Collapse
|
17
|
Moses AS, Demessie AA, Taratula O, Korzun T, Slayden OD, Taratula O. Nanomedicines for Endometriosis: Lessons Learned from Cancer Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004975. [PMID: 33491876 PMCID: PMC7928207 DOI: 10.1002/smll.202004975] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/03/2020] [Indexed: 05/02/2023]
Abstract
Endometriosis is an incurable gynecological disease characterized by the abnormal growth of endometrium-like tissue, characteristic of the uterine lining, outside of the uterine cavity. Millions of people with endometriosis suffer from pelvic pain and infertility. This review aims to discuss whether nanomedicines that are promising therapeutic approaches for various diseases have the potential to create a paradigm shift in endometriosis management. For the first time, the available reports and achievements in the field of endometriosis nanomedicine are critically evaluated, and a summary of how nanoparticle-based systems can improve endometriosis treatment and diagnosis is provided. Parallels between cancer and endometriosis are also drawn to understand whether some fundamental principles of the well-established cancer nanomedicine field can be adopted for the development of novel nanoparticle-based strategies for endometriosis. This review provides the state of the art of endometriosis nanomedicine and perspective for researchers aiming to realize and exploit the full potential of nanoparticles for treatment and imaging of the disorder.
Collapse
Affiliation(s)
- Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Olena Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tetiana Korzun
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| |
Collapse
|
18
|
Chelakkot VS, Liu K, Yoshioka E, Saha S, Xu D, Licursi M, Dorward A, Hirasawa K. MEK reduces cancer-specific PpIX accumulation through the RSK-ABCB1 and HIF-1α-FECH axes. Sci Rep 2020; 10:22124. [PMID: 33335181 PMCID: PMC7747616 DOI: 10.1038/s41598-020-79144-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
The efficacy of aminolevulinic acid (5-ALA)-based photodynamic diagnosis (5-ALA-PDD) and photodynamic therapy (5-ALA-PDT) is dependent on 5-ALA-induced cancer-specific accumulation of protoporphyrin IX (PpIX). We previously reported that inhibition of oncogenic Ras/MEK increases PpIX accumulation in cancer cells by reducing PpIX efflux through ATP-binding cassette sub-family B member 1 (ABCB1) and ferrochelatase (FECH)-catalysed PpIX conversion to haem. Here, we sought to identify the downstream pathways of Ras/MEK involved in the regulation of PpIX accumulation via ABCB1 and FECH. First, we demonstrated that Ras/MEK activation reduced PpIX accumulation in RasV12-transformed NIH3T3 cells and HRAS transgenic mice. Knockdown of p90 ribosomal S6 kinases (RSK) 2, 3, or 4 increased PpIX accumulation in RasV12-transformed NIH3T3 cells. Further, treatment with an RSK inhibitor reduced ABCB1 expression and increased PpIX accumulation. Moreover, HIF-1α expression was reduced when RasV12-transformed NIH3T3 cells were treated with a MEK inhibitor, demonstrating that HIF-1α is a downstream element of MEK. HIF-1α inhibition decreased FECH activity and increased PpIX accumulation. Finally, we demonstrated the involvement of RSKs and HIF-1α in the regulation of PpIX accumulation in human cancer cell lines. These results demonstrate that the RSK-ABCB1 and HIF-1α-FECH axes are the downstream pathways of Ras/MEK involved in the regulation of PpIX accumulation.
Collapse
Affiliation(s)
- Vipin Shankar Chelakkot
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Kaiwen Liu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Ema Yoshioka
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Shaykat Saha
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Danyang Xu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Maria Licursi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Ann Dorward
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Kensuke Hirasawa
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
19
|
Howley R, Mansi M, Shinde J, Restrepo J, Chen B. Evaluation of aminolevulinic acid-mediated protoporphyrin IX fluorescence and enhancement by ABCG2 inhibitors in renal cell carcinoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 211:112017. [PMID: 32919173 DOI: 10.1016/j.jphotobiol.2020.112017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022]
Abstract
Aminolevulinic acid (ALA) has been approved as an intraoperative molecular imaging probe for protoporphyrin IX (PpIX) fluorescence-guided resection of glioma. Here we explored its potential application for renal cell carcinoma (RCC) that is showing increased incidence in recent years. ALA-mediated PpIX in cell lysates (intracellular) and culture medium was measured in five human RCC cell lines (786-O, 769-P, A-704, Caki-1, Caki-2) and a non-tumor human kidney epithelial cell line HK-2 by spectrofluorometry and flow cytometry. The activity of PpIX bioconversion enzyme ferrochelatase (FECH) and PpIX efflux transporter ABCG2 was determined to correlate with the PpIX level. We found that ALA-PpIX fluorescence was highly variable among RCC cell lines and A-704 was the only RCC cell line exhibiting significantly higher intracellular PpIX than HK-2 cells. Neither the intracellular PpIX level nor the total amount of PpIX (including PpIX in cell lysates and the medium) had significant correlation with the activity of FECH or ABCG2. To enhance the intracellular PpIX, cells were treated with Ko143, a pharmacological inhibitor of ABCG2. Ko143 significantly increased the intracellular PpIX in cell lines with ABCG2 activity, but not in cell lines with little ABCG2 activity. In fact, there was a positive correlation between the ABCG2 activity and Ko143-induced PpIX enhancement across kidney cell lines. To identify clinically relevant ABCG2 inhibitors, small molecule inhibitors targeting various cell signaling pathways, some of which are known to inhibit ABCG2, were evaluated for the enhancement of ALA-PpIX in Caki-2 cells that had the highest ABCG2 activity in the RCC cell panel. Our screening led to the identification of several clinically available inhibitors that significantly increased the intracellular PpIX. Particularly, kinase inhibitor lapatinib exhibited the strongest enhancement effect. These clinical inhibitors can be used for the enhancement of ALA-PpIX fluorescence in tumors with elevated ABCG2 activity.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Janhavi Shinde
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Juliana Restrepo
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Qin J, Zhou C, Zhu M, Shi S, Zhang L, Zhao Y, Li C, Wang Y, Wang Y. Iron chelation promotes 5-aminolaevulinic acid-based photodynamic therapy against oral tongue squamous cell carcinoma. Photodiagnosis Photodyn Ther 2020; 31:101907. [DOI: 10.1016/j.pdpdt.2020.101907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
|
21
|
Holt D, Singhal S, Selmic LE. Near-infrared imaging and optical coherence tomography for intraoperative visualization of tumors. Vet Surg 2020; 49:33-43. [PMID: 31609011 PMCID: PMC11059208 DOI: 10.1111/vsu.13332] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Surgical excision is the foundation of treatment for early-stage solid tumors in man and companion animals. Complete excision with appropriate margins of surrounding tumor-free tissue is crucial to survival. Intraoperative imaging allows real-time visualization of tumors, assessment of surgical margins, and, potentially, lymph nodes and satellite metastatic lesions, allowing surgeons to perform complete tumor resections while sparing surrounding vital anatomic structures. This Review will focus on the use of near-infrared imaging and optical coherence tomography for intraoperative tumor visualization.
Collapse
Affiliation(s)
- David Holt
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Department of Thoracic Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Laura E Selmic
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| |
Collapse
|
22
|
Abstract
Optical imaging offers a high potential for noninvasive detection and therapy of cancer in humans. Recent advances in instrumentation for diffuse optical imaging have led to new capabilities for the detection of cancer in highly scattering tissue such as the female breast. In particular, fluorescence imaging was made applicable as a sensitive technique to image molecular probes in vivo. We review recent developments in the detection of breast cancer and fluorescence-guided surgery of the breast by contrast agents available for application on humans. Detection of cancer has been investigated with the unspecific contrast agents "indocyanine green" and "omocianine" so far. Hereby, indocyanine green was found to offer high potential for the differentiation of malignant and benign lesions by exploiting vessel permeability for macromolecules as a cancer-specific feature. Tumor-specific molecular targeting and activatable probes have been investigated in clinical trials for fluorescence-guided tumor margin detection. In this application, high spatial resolution can be achieved, since tumor regions are visualized mainly at the tissue surface. As another example of superficial tumor tissue, imaging of lesions in the gastrointestinal tract is discussed. Promising results have been obtained on high-risk patients with Barrett´s esophagus and with ulcerative colitis by administering 5-aminolevulinic acid which induces accumulation of protoporphyrin IX serving as a tumor-specific fluorescent marker. Time-gated fluorescence imaging and spectroscopy are effective ways to suppress underlying background from tissue autofluorescence. Furthermore, recently developed tumor-specific molecular probes have been demonstrated to be superior to white-light endoscopy offering new ways for early detection of malignancies in the gastrointestinal tract.
Collapse
|
23
|
Safi R, Mohsen-Kanson T, Nemer G, Dekmak B, Rubeiz N, El-Sabban M, Nassar D, Eid A, Abbas O, Kibbi AG, Kurban M. Loss of ferrochelatase is protective against colon cancer cells: ferrochelatase a possible regulator of the long noncoding RNA H19. J Gastrointest Oncol 2019; 10:859-868. [PMID: 31602323 DOI: 10.21037/jgo.2019.03.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Ferrochelatase (FECH) is the last enzyme of the heme biosynthesis pathway. Deficiency in FECH was associated with many diseases, including protoporphyria. Correlation studies showed that variations of FECH expression was detected in human carcinomas and more specifically in colon cancer. Nevertheless, the potential role of FECH in colon cancer carcinogenesis in vitro was not depicted yet. Methods A small interfering RNA (siRNA) was used to knockdown FECH in human Caco-2 colon cancer cells. The effect of FECH down-regulation on the cellular proliferation, the migration and the expression of target genes was assessed in cancer cells and compared to human normal fibroblasts. Results Following FECH down-regulation, our results demonstrated that the proliferation of Caco-2 cells was not affected. Furthermore, the migration of cancer and normal cells was affected, only when an additional stress factor (H2O2) was applied to the medium. The expression of twist, snail, hypoxia induced factor (HIF-1α) and vascular endothelial growth factor (VEGF) was reduced in Caco-2 cells. Conversely, VEGF and HIF-1α expression were upregulated by up to 2 folds in control fibroblasts. Interestingly, the pro-carcinogenic long noncoding RNA (LncRNA) H19 was 70% down-regulated in Caco-2 cells upon FECH down regulation whereas no effect was observed in normal fibroblasts. Conclusions In conclusion, we showed that loss of FECH is protective against colon cancer tumorigenesis in vitro and this effect could possibly be mediated through inhibition of H19.
Collapse
Affiliation(s)
- Rémi Safi
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
| | - Tala Mohsen-Kanson
- Department of Biology, Faculty of Sciences, Lebanese University, Zahle, Lebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Batoul Dekmak
- American University of Beirut, Beirut, Lebanon, Cell biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Nelly Rubeiz
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Dany Nassar
- Department of Dermatology, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Assaad Eid
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
| | - Abdul-Ghani Kibbi
- Department of Dermatology, American University of Beirut, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut, Beirut, Lebanon.,Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
24
|
Gawecki R, Malarz K, Rejmund M, Polanski J, Mrozek-Wilczkiewicz A. Impact of thiosemicarbazones on the accumulation of PpIX and the expression of the associated genes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 199:111585. [PMID: 31450131 DOI: 10.1016/j.jphotobiol.2019.111585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023]
Abstract
Thiosemicarbazone derivatives are known for their broad biological activity including their antitumor potency. The aim of the current study was to examine the effect of a novel series of non-toxic iron chelators on the accumulation of protoporphyrin IX after external 5-aminolevulonic acid administration. From this series we selected one the most promising derivative which causes a pronounced increase in the concentration of protoporphyrin IX. The increase of the photosensitizer concentration is necessary for the trigger the efficient therapeutic effect of the photodynamic reaction. For selected compound 2 we performed an examination of a panel of the genes that are involved in the heme biosynthesis and degradation. Results indicated the crucial roles of ferrochelatase and heme oxygenase in the described processes. Surprisingly, there was a strict dependence on the type of the tested cell line. A decrease in the expression of the two aforementioned enzymes after incubation with compound 2 and 5-aminolevulonic acid is a commonly known fact and we detected this trend for the MCF-7 and HCT 116 cell lines. However, we noticed the upregulation of the tested targets for the Hs683 cells. These unconventional results prompted us to do a more in-depth analysis of the described processes. In conclusion, we found that compound 2 is a novel, highly effective booster of photodynamic therapy that has prospective applications.
Collapse
Affiliation(s)
- Robert Gawecki
- A. Chelkowski Institute of Physics, Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzow, Poland
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzow, Poland
| | - Marta Rejmund
- Institute of Chemistry, University of Silesia, Katowice, Poland
| | | | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzow, Poland.
| |
Collapse
|
25
|
McNicholas K, MacGregor MN, Gleadle JM. In order for the light to shine so brightly, the darkness must be present-why do cancers fluoresce with 5-aminolaevulinic acid? Br J Cancer 2019; 121:631-639. [PMID: 31406300 PMCID: PMC6889380 DOI: 10.1038/s41416-019-0516-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Photodynamic diagnosis and therapy have emerged as a promising tool in oncology. Using the visible fluorescence from photosensitisers excited by light, clinicians can both identify and treat tumour cells in situ. Protoporphyrin IX, produced in the penultimate step of the haem synthesis pathway, is a naturally occurring photosensitiser that visibly fluoresces when exposed to light. This fluorescence is enhanced considerably by the exogenous administration of the substrate 5-aminolaevulinic acid (5-ALA). Significantly, 5-ALA-induced protoporphyrin IX accumulates preferentially in cancer cells, and this enhanced fluorescence has been harnessed for the detection and photodynamic treatment of brain, skin and bladder tumours. However, surprisingly little is known about the mechanistic basis for this phenomenon. This review focuses on alterations in the haem pathway in cancer and considers the unique features of the cancer environment, such as altered glucose metabolism, oncogenic mutations and hypoxia, and their potential effects on the protoporphyrin IX phenomenon. A better understanding of why cancer cells fluoresce with 5-ALA would improve its use in cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Kym McNicholas
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia. .,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Melanie N MacGregor
- Future Industries Institute, School of Engineering, University of South Australia, Adelaide, SA, 5095, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
26
|
Petronek MS, Spitz DR, Buettner GR, Allen BG. Linking Cancer Metabolic Dysfunction and Genetic Instability through the Lens of Iron Metabolism. Cancers (Basel) 2019; 11:cancers11081077. [PMID: 31366108 PMCID: PMC6721799 DOI: 10.3390/cancers11081077] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023] Open
Abstract
Iron (Fe) is an essential element that plays a fundamental role in a wide range of cellular functions, including cellular proliferation, DNA synthesis, as well as DNA damage and repair. Because of these connections, iron has been strongly implicated in cancer development. Cancer cells frequently have changes in the expression of iron regulatory proteins. For example, cancer cells frequently upregulate transferrin (increasing uptake of iron) and down regulate ferroportin (decreasing efflux of intracellular iron). These changes increase the steady-state level of intracellular redox active iron, known as the labile iron pool (LIP). The LIP typically contains approximately 2% intracellular iron, which primarily exists as ferrous iron (Fe2+). The LIP can readily contribute to oxidative distress within the cell through Fe2+-dioxygen and Fenton chemistries, generating the highly reactive hydroxyl radical (HO•). Due to the reactive nature of the LIP, it can contribute to increased DNA damage. Mitochondrial dysfunction in cancer cells results in increased steady-state levels of hydrogen peroxide and superoxide along with other downstream reactive oxygen species. The increased presence of H2O2 and O2•- can increase the LIP, contributing to increased mitochondrial uptake of iron as well as genetic instability. Thus, iron metabolism and labile iron pools may play a central role connecting the genetic mutational theories of cancer to the metabolic theories of cancer.
Collapse
Affiliation(s)
- Michael S Petronek
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Free Radical Metabolism and Imaging Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Free Radical Metabolism and Imaging Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Free Radical Metabolism and Imaging Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Free Radical Metabolism and Imaging Program, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
27
|
Palasuberniam P, Kraus D, Mansi M, Braun A, Howley R, Myers KA, Chen B. Ferrochelatase Deficiency Abrogated the Enhancement of Aminolevulinic Acid-mediated Protoporphyrin IX by Iron Chelator Deferoxamine. Photochem Photobiol 2019; 95:1052-1059. [PMID: 30767226 DOI: 10.1111/php.13091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/09/2019] [Indexed: 01/12/2023]
Abstract
Aminolevulinic acid (ALA) is a prodrug that is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) for tumor fluorescence detection and photodynamic therapy (PDT). The iron chelator deferoxamine (DFO) has been widely used to enhance PpIX accumulation by inhibiting the iron-dependent bioconversion of PpIX to heme, a reaction catalyzed by ferrochelatase (FECH). Tumor response to DFO treatment is known to be highly variable, and some tumors even show no response. Given the fact that tumors often exhibit reduced FECH expression/enzymatic activity, we examined how reducing FECH level affected the DFO enhancement effect. Our results showed that reducing FECH level by silencing FECH in SkBr3 breast cancer cells completely abrogated the enhancement effect of DFO. Although DFO enhanced ALA-PpIX fluorescence and PDT response in SkBr3 vector control cells, it caused a similar increase in MCF10A breast epithelial cells, resulting in no net gain in the selectivity toward tumor cells. We also found that DFO treatment induced less increase in ALA-PpIX fluorescence in tumor cells with lower FECH activity (MDA-MB-231, Hs 578T) than in tumor cells with higher FECH activity (MDA-MB-453). Our study demonstrates that FECH activity is an important determinant of tumor response to DFO treatment.
Collapse
Affiliation(s)
- Pratheeba Palasuberniam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA
| | - Daniel Kraus
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA
| | - Alexander Braun
- Department of Biological Sciences, Misher College of Arts & Sciences, University of the Sciences, Philadelphia, PA
| | - Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA
| | - Kenneth A Myers
- Department of Biological Sciences, Misher College of Arts & Sciences, University of the Sciences, Philadelphia, PA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA.,Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
28
|
El Ahmadieh TY, Aoun SG, Lega BC. Autofluorescence Technology in Glioblastoma Resection: Evolution of New Tool and Approach. World Neurosurg 2019; 126:139-141. [PMID: 30862573 DOI: 10.1016/j.wneu.2019.02.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Tarek Y El Ahmadieh
- Department of Neurological Surgery, The University of Texas Southwestern, Zale Lipshy Hospital, Dallas, Texas, USA
| | - Salah G Aoun
- Department of Neurological Surgery, The University of Texas Southwestern, Zale Lipshy Hospital, Dallas, Texas, USA.
| | - Bradley C Lega
- Department of Neurological Surgery, The University of Texas Southwestern, Zale Lipshy Hospital, Dallas, Texas, USA
| |
Collapse
|
29
|
Kamp MA, Munoz-Bendix C, Mijderwijk HJ, Turowski B, Dibué-Adjei M, von Saß C, Cornelius JF, Steiger HJ, Rapp M, Sabel M. Is 5-ALA fluorescence of cerebral metastases a prognostic factor for local recurrence and overall survival? J Neurooncol 2018; 141:547-553. [DOI: 10.1007/s11060-018-03066-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/28/2018] [Indexed: 11/30/2022]
|
30
|
Augmentation of 5-Aminolevulinic Acid Treatment of Glioblastoma by Adding Ciprofloxacin, Deferiprone, 5-Fluorouracil and Febuxostat: The CAALA Regimen. Brain Sci 2018; 8:brainsci8120203. [PMID: 30469467 PMCID: PMC6315943 DOI: 10.3390/brainsci8120203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023] Open
Abstract
The CAALA (Complex Augmentation of ALA) regimen was developed with the goal of redressing some of the weaknesses of 5-aminolevulinic acid (5-ALA) use in glioblastoma treatment as it now stands. 5-ALA is approved for use prior to glioblastoma surgery to better demarcate tumor from brain tissue. 5-ALA is also used in intraoperative photodynamic treatment of glioblastoma by virtue of uptake of 5-ALA and its preferential conversion to protoporphyrin IX in glioblastoma cells. Protoporphyrin IX becomes cytotoxic after exposure to 410 nm or 635 nm light. CAALA uses four currently-marketed drugs—the antibiotic ciprofloxacin, the iron chelator deferiprone, the antimetabolite 5-FU, and the xanthine oxidase inhibitor febuxostat—that all have evidence of ability to both increase 5-ALA mediated intraoperative glioblastoma demarcation and photodynamic cytotoxicity of in situ glioblastoma cells. Data from testing the full CAALA on living minipigs xenotransplanted with human glioblastoma cells will determine safety and potential for benefit in advancing CAALA to a clinical trial.
Collapse
|
31
|
Briel-Pump A, Beez T, Ebbert L, Remke M, Weinhold S, Sabel MC, Sorg RV. Accumulation of protoporphyrin IX in medulloblastoma cell lines and sensitivity to subsequent photodynamic treatment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:298-305. [PMID: 30445362 DOI: 10.1016/j.jphotobiol.2018.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/04/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant primary brain tumor of childhood. High risk patients still have a poor outcome, and especially young patients suffer from standard therapy induced sequelae. Therefore, other therapeutic options need to be explored. In glioblastoma (GBM), application of 5-aminolaevulinic acid (5-ALA) results in selective accumulation of protoporphyrin IX (PPIX) in the tumor cells, which can be exploited during fluorescence-guided surgery to increase the extent of resection or for photodynamic therapy (PDT) induced phototoxicity. It is not entirely clear, whether MB cells accumulate PPIX and are sensitive to PDT. METHODS Human MYC-amplified (Med8A and D283) and non-amplified (UW228-2 and ONS76) MB cell lines were incubated for 2, 4 or 6 h with increasing doses (0-100 μg/ml) of 5-ALA, and PPIX accumulation was determined by flow cytometry. To assess sensitivity to 5-ALA/PDT, cells were incubated with 5-ALA and subsequently exposed to laser light of 635 nm wavelength (18.75 J/cm2). After an additional 24 h culture period, viability of cells was quantified using the WST-1 assay. Expression of ferrochelatase was detected by reverse transcription and quantitative polymerase chain reaction. Ferrochelatase activity was quantified by measuring the enzymatic conversion of PPIX to zinc-protoporphyrin. Expression of the ABCG2 transporter protein CD338 was detected by flow cytometry. RESULTS All MB cell lines showed a time- and dose-dependent accumulation of PPIX after exposure to exogenous 5-ALA and became sensitive to 5-ALA/PDT-induced phototoxicity. PPIX accumulation was reduced compared to U373 GBM cells at shorter incubation periods and limiting 5-ALA doses. Moreover, not all MB cells became PPIX positive and overall phototoxicity was lower in the MB cell lines. Notably, the MYC-amplified MB cells demonstrated a more pronounced photosensitivity compared to their non-amplified counterparts. There was no difference in expression of ferrochelatase, but enzymatic activity appeared to be reduced in the MB cells compared to U373 GBM cells, whereas CD338 was expressed on the MB cells only. CONCLUSION Medulloblastoma cell lines accumulate PPIX after application of 5-ALA and become sensitive to PDT, associated with low ferrochelatase expression and activity. Photosensitivity is more pronounced in MYC-amplified cell lines. In contrast to GBM cells, however, PPIX accumulation appears to be reduced, restricted to a subset of cells and associated with lower photosensitivity of the MB cell lines, possibly due to expression of the ABCG2 transporter protein CD338 on MB cells.
Collapse
Affiliation(s)
- Anna Briel-Pump
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Moorenstrasse 5, 40225 Düsseldorf, Germany; Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Thomas Beez
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Lara Ebbert
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Immunology, Heinrich Heine University Hospital, Moorenstrasse 5, 40225 Düsseldorf, Germany; Department of Neuropathology, Medical Faculty, Heinrich Heine University Hospital, Moorenstrasse 5, 40225 Düsseldorf, Germany; Department of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Sandra Weinhold
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Michael C Sabel
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
32
|
Lualdi M, Cavalleri A, Battaglia L, Colombo A, Garrone G, Morelli D, Pignoli E, Sottotetti E, Leo E. Early detection of colorectal adenocarcinoma: a clinical decision support tool based on plasma porphyrin accumulation and risk factors. BMC Cancer 2018; 18:841. [PMID: 30134852 PMCID: PMC6106935 DOI: 10.1186/s12885-018-4754-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND An increase in naturally-occurring porphyrins has been described in the blood of subjects bearing different kinds of tumors, including colorectal, and this is probably related to a systemic alteration of heme metabolism induced by tumor cells. The aim of our study was to develop an artificial neural network (ANN) classifier for early detection of colorectal adenocarcinoma based on plasma porphyrin accumulation and risk factors. METHODS We measured the endogenous fluorescence of blood plasma in 100 colorectal adenocarcinoma patients and 112 controls using a conventional spectrofluorometer. Height, weight, personal and family medical history, use of alcohol, red meat, vegetables and tobacco were all recorded. An ANN model was built up from demographic data and from the integral of the fluorescence emission peak in the range 610-650 nm. We used the Receiver Operating Characteristic (ROC) curve to assess performance in distinguishing colorectal adenocarcinoma patients and controls. A liquid chromatography-high resolution mass spectrometry (LC-HRMS) analytical method was employed to identify the agents responsible for native fluorescence. RESULTS The fluorescence analysis indicated that the integral of the fluorescence emission peak in the range 610-650 nm was significantly higher in colorectal adenocarcinoma patients than controls (p < 0.0001) and was weakly correlated with the TNM staging (Spearman's rho = 0.224, p = 0.011). LC-HRMS measurements showed that the agents responsible for the fluorescence emission were mainly protoporphyrin-IX (PpIX) and coproporphyrin-I (CpI). The overall accuracy of our ANN model was 88% (87% sensitivity and 90% specificity) with an area under the ROC curve of 0.83. CONCLUSIONS These results confirm that tumor cells accumulate a diagnostic level of endogenous porphyrin compounds and suggest that plasma porphyrin concentrations, indirectly measured through fluorescence analysis, may be useful, together with risk factors, as a clinical decision support tool for the early detection of colorectal adenocarcinoma. Our future efforts will be aimed at examining how plasma porphyrin accumulation correlates with survival and response to therapy.
Collapse
Affiliation(s)
- Manuela Lualdi
- Medical Physics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| | - Adalberto Cavalleri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luigi Battaglia
- Colorectal Cancer Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ambrogio Colombo
- Health Administration, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Garrone
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniele Morelli
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuele Pignoli
- Medical Physics Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Elisa Sottotetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ermanno Leo
- Colorectal Cancer Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
33
|
Xiao Q, Chen T, Chen S. Fluorescent contrast agents for tumor surgery. Exp Ther Med 2018; 16:1577-1585. [PMID: 30186374 PMCID: PMC6122374 DOI: 10.3892/etm.2018.6401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of cases of mortality worldwide. The most effective method to cure solid tumors is surgery. Every year, >50% of cancer patients receive surgery to remove solid tumors. Surgery may increase the cure rate of most solid tumors by 4–11 fold. Surgery has many challenges, including identifying small lesions, locating metastases and confirming complete tumor removal. Fluorescence guidance describes a new approach to improve surgical accuracy. Near-infrared fluorescence imaging allows for real-time early diagnosis and intraoperative imaging of lesion tissue. The results of previous preclinical studies in the field of near-infrared fluorescence imaging are promising. This review provides examples introducing the three kinds of fluorescent dyes: The passive fluorescent dye indocyanine green, which has been approved by the Food and Drug Administration for clinical use in the USA, the fluorescent prodrug 5-aminolevulinic acid, a porphyrin precursor in the heme synthesis, and biomarker-targeted fluorescent dyes, which allow conjugation to different target sites.
Collapse
Affiliation(s)
- Qi Xiao
- School of Life Science, Nanjing Normal University, Nanjing, Jiangsu 210046, P.R. China
| | - Tianming Chen
- Department of Surgery, Nanjing Medical University Third Affiliated Hospital, Nanjing, Jiangsu 211166, P.R. China
| | - Shilin Chen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
34
|
Yoshioka E, Chelakkot VS, Licursi M, Rutihinda SG, Som J, Derwish L, King JJ, Pongnopparat T, Mearow K, Larijani M, Dorward AM, Hirasawa K. Enhancement of Cancer-Specific Protoporphyrin IX Fluorescence by Targeting Oncogenic Ras/MEK Pathway. Am J Cancer Res 2018; 8:2134-2146. [PMID: 29721068 PMCID: PMC5928876 DOI: 10.7150/thno.22641] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Protoporphyrin IX (PpIX) is an endogenous fluorescent molecule that selectively accumulates in cancer cells treated with the heme precursor 5-aminolevulinic acid (5-ALA). This cancer-specific accumulation of PpIX is used to distinguish tumor from normal tissues in fluorescence-guided surgery (FGS) and to destroy cancer cells by photodynamic therapy (PDT). In this study, we demonstrate that oncogenic Ras/mitogen-activated protein kinase kinase (MEK) pathway can modulate PpIX accumulation in cancer cells. Methods: To identify Ras downstream elements involved in PpIX accumulation, chemical inhibitors were used. To demonstrate the increase of PpIX accumulation by MEK inhibition, different human normal and cancer cell lines, BALB/c mice bearing mammary 4T1 tumors and athymic nude mice bearing human tumors were used. To identify the mechanisms of PpIX regulation by MEK, biochemical and molecular biological experiments were conducted. Results: Inhibition of one of the Ras downstream elements, MEK, promoted PpIX accumulation in cancer cells treated with 5-ALA, while inhibitors against other Ras downstream elements did not. Increased PpIX accumulation with MEK inhibition was observed in different types of human cancer cell lines, but not in normal cell lines. We identified two independent cellular mechanisms that underlie this effect in cancer cells. MEK inhibition reduced PpIX efflux from cancer cells by decreasing the expression level of ATP binding cassette subfamily B member 1 (ABCB1) transporter. In addition, the activity of ferrochelatase (FECH), the enzyme responsible for converting PpIX to heme, was reduced by MEK inhibition. Finally, we found that in vivo treatment with MEK inhibitors increased PpIX accumulation (2.2- to 2.4-fold) within mammary 4T1 tumors in BALB/c mice injected with 5-ALA without any change in normal organs. Similar results were also observed in a human tumor xenograft model. Conclusion: Our study demonstrates that inhibition of oncogenic Ras/MEK significantly enhances PpIX accumulation in vitro and in vivo in a cancer-specific manner. Thus, suppressing the Ras/MEK pathway may be a viable strategy to selectively intensify PpIX fluorescence in cancer cells and improve its clinical applications in FGS.
Collapse
|
35
|
Dobson J, de Queiroz GF, Golding JP. Photodynamic therapy and diagnosis: Principles and comparative aspects. Vet J 2018; 233:8-18. [DOI: 10.1016/j.tvjl.2017.11.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/22/2017] [Accepted: 11/21/2017] [Indexed: 12/16/2022]
|
36
|
5-ALA fluorescence of cerebral metastases and its impact for the local-in-brain progression. Oncotarget 2018; 7:66776-66789. [PMID: 27564260 PMCID: PMC5341837 DOI: 10.18632/oncotarget.11488] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022] Open
Abstract
Aim of the present study was to analyze the oncological impact of 5-ALA fluorescence of cerebral metastases. A retrospective analysis was performed for 84 patients who underwent 5-ALA fluorescence-guided surgery of a cerebral metastasis. Dichotomized fluorescence behavior was correlated to the histopathological subtype and primary site of the metastases, the degree of surgical resection on an early postoperative MRI within 72 hours after surgery, the local in-brain-progression rate and the overall survival. 34/84 metastases (40.5%) showed either strong or faint and 50 metastases (59.5%) no 5-ALA derived fluorescence. Neither the primary site of the cerebral metastases nor their subtype correlated with fluorescence behavior. The dichotomized 5-ALA fluorescence (yes vs. no) had no statistical influence on the degree of surgical resection. Local in-brain progression within or at the border of the resection cavity was observed in 26 patients (30.9%). A significant correlation between 5-ALA fluorescence and local in-brain-progression rate was observed and patients with 5-ALA-negative metastases had a significant higher risk of local recurrence compared to patients with 5-ALA positive metastases. After exclusion of the 20 patients without any form of adjuvant radiation therapy, there was a trend towards a relation of the 5-ALA behavior on the local recurrence rate and the time to local recurrence, although results did not reach significance anymore. Absence of 5-ALA-induced fluorescence may be a risk factor for local in-brain-progression but did not influence the mean overall survival. Therefore, the dichotomized 5-ALA fluorescence pattern might be an indicator for a more aggressive tumor.
Collapse
|
37
|
Kurumi H, Kanda T, Kawaguchi K, Yashima K, Koda H, Ogihara K, Matsushima K, Nakao K, Saito H, Fujiwara Y, Osaki M, Okada F, Isomoto H. Protoporphyrinogen oxidase is involved in the fluorescence intensity of 5-aminolevulinic acid-mediated laser-based photodynamic endoscopic diagnosis for early gastric cancer. Photodiagnosis Photodyn Ther 2018; 22:79-85. [PMID: 29425880 DOI: 10.1016/j.pdpdt.2018.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/10/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM Laser-based photodynamic endoscopic diagnosis (LPDED) is a type of endoscopic diagnosis that uses the fluorescence caused by the photochemical reaction that occurs when a fluorescent substance is irradiated by a light of a specific wavelength. Although 5-aminolevulinic acid (5-ALA) can detect early gastric cancer (EGC) during LPDED, there is an unresolved issue of the differences in fluorescence intensity among histopathological types of gastric cancer. Thus, the aim of the present study was to assess whether protoporphyrinogen oxidase (PPOX), involved in the activation of protoporphyrin IX, can affect the fluorescence intensity in EGC. METHODS Thirty-three gastric tumor lesions in 30 patients were assessed by LPDED using a prototype endoscope equipped with a blue laser ray to cause excitation following oral 5-ALA administration. The tumors were then resected by endoscopic submucosal dissection or laparoscopic surgery. PPOX expression was examined immunohistochemically in the excised specimens. To explore the mechanisms of histopathological diversity in PPOX and coproporphyrinogen oxidase (CPOX) expression of EGC, immunohistochemical analysis was performed using 75 surgically resected specimens of diverse EGCs. RESULTS Among the 33 lesions, 26 tumors were detectable by LPDED, whereas seven were undetectable. Between the LPDED-positive and negative groups, there was a significant difference in histopathology. The expression of PPOX was higher in tubular adenocarcinoma (tub) than in signet-ring cell carcinoma (sig). There were significant differences in PPOX and CPOX expression scores of the surgically resected specimens among tub, poorly differentiated adenocarcinoma (por), and sig. CONCLUSION PPOX protein expression could be involved in the fluorescence intensity of LPDED in EGC, possibly reflecting histopathological features.
Collapse
Affiliation(s)
- Hiroki Kurumi
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Tsutomu Kanda
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Koichiro Kawaguchi
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Kazuo Yashima
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Hiroki Koda
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Kumi Ogihara
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Kayoko Matsushima
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hiroaki Saito
- Division of Surgical Oncology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Faculty of Medicine, Tottori University, 86-1 Nishi-cho, Yonago 683-8503, Japan
| | - Futoshi Okada
- Division of Pathological Biochemistry, Faculty of Medicine, Tottori University, 86-1 Nishi-cho, Yonago 683-8503, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago 683-8504, Japan.
| |
Collapse
|
38
|
He L, Guo Y, Deng Y, Li C, Zuo C, Peng W. Involvement of protoporphyrin IX accumulation in the pathogenesis of isoniazid/rifampicin-induced liver injury: the prevention of curcumin. Xenobiotica 2017; 47:154-163. [PMID: 28118809 DOI: 10.3109/00498254.2016.1160159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Combination of isoniazid (INH) and rifampicin (RFP) causes liver injury frequently among tuberculosis patients. However, mechanisms of the hepatotoxicity are not entirely understood. Protoporphyrin IX (PPIX) accumulation, as an endogenous hepatotoxin, resulting from isoniazid and rifampicin co-therapy (INH/RFP) has been reported in PXR-humanized mice. Aminolevulinic acid synthase1 (ALAS1), ferrochelatase (FECH) and breast cancer resistance protein (BCRP) play crucial roles in PPIX synthesis, metabolism and transport, respectively. Herein, this study focused on the role of INH/RFP in these processes. We observed PPIX accumulation in human hepatocytes (L-02) and mouse livers. FECH expression was initially found downregulated both in L-02 cells and mouse livers and expression levels of ALAS1 and BCRP were elevated in L-02 cells after INH/RFP treatment, indicating FECH inhibition and ALAS1 induction might confer a synergistic effect on PPIX accumulation. Additionally, our results revealed that curcumin alleviated INH/RFP-induced liver injury, declined PPIX levels and induced FECH expression in both L-02 cells and mice. In conclusion, our data provide a novel insight in the mechanism of INH/RFP-induced PPIX accumulation and evidence for understanding pathogenesis of INH/RFP-induced liver injury, and suggest that amelioration of PPIX accumulation might be involved in the protective effect of curcumin on INH/RFP-induced liver injury.
Collapse
Affiliation(s)
- Leiyan He
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and.,b School of Pharmaceutical Sciences, Central South University , Changsha , China
| | - Yaoxue Guo
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and.,b School of Pharmaceutical Sciences, Central South University , Changsha , China
| | - Ye Deng
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and.,b School of Pharmaceutical Sciences, Central South University , Changsha , China
| | - Chun Li
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and.,b School of Pharmaceutical Sciences, Central South University , Changsha , China
| | - Chengzi Zuo
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and
| | - Wenxing Peng
- a Institute of Clinical Pharmacy and Pharmacology, Second Xiangya Hospital, Central South University , Changsha , China and
| |
Collapse
|
39
|
Huang H, Wang W, Zou J, Nakajima O, Zhang L, He Q, Diao Y, Liang H, Zhou L, Peng Y. Over expression of 5-aminolevulinic acid synthase 2 increased protoporphyrin IX in nonerythroid cells. Photodiagnosis Photodyn Ther 2017; 17:22-28. [DOI: 10.1016/j.pdpdt.2016.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/15/2022]
|
40
|
Galli R, Uckermann O, Temme A, Leipnitz E, Meinhardt M, Koch E, Schackert G, Steiner G, Kirsch M. Assessing the efficacy of coherent anti-Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples. JOURNAL OF BIOPHOTONICS 2017; 10:404-414. [PMID: 27854107 DOI: 10.1002/jbio.201500323] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/10/2016] [Accepted: 02/21/2016] [Indexed: 05/20/2023]
Abstract
Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging technique for identification of brain tumors. However, tumor identification by CARS microscopy on bulk samples and in vivo has been so far verified retrospectively on histological sections, which only provide a gross reference for the interpretation of CARS images without matching at cellular level. Therefore, fluorescent labels were exploited for direct assessment of the interpretation of CARS images of solid and infiltrative tumors. Glioblastoma cells expressing green fluorescent protein (GFP) were used for induction of tumors in mice (n = 7). The neoplastic nature of cells imaged by CARS microscopy was unequivocally verified by addressing two-photon fluorescence of GFP on fresh brain slices and in vivo. In fresh unfixed biopsies of human glioblastoma (n = 10), the fluorescence of 5-aminolevulinic acid-induced protoporphyrin IX was used for identification of tumorous tissue. Distinctive morphological features of glioblastoma cells, i.e. larger nuclei, evident nuclear membrane and nucleolus, were identified in the CARS images of both mouse and human brain tumors. This approach demonstrates that the chemical contrast provided by CARS allows the localization of infiltrating tumor cells in fresh tissue and that the cell morphology in CARS images is useful for tumor recognition. Experimental glioblastoma expressing green fluorescent protein.
Collapse
Affiliation(s)
- Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ortrud Uckermann
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Achim Temme
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Elke Leipnitz
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Matthias Meinhardt
- Neuropathology, Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
| | - Gerald Steiner
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Faculty of Physics, dept. of General Physics and Spectroscopy, Vilnius University, Sauletekio av. 9 bl. 3, 10222, Vilnius, Lithuania
| | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74,, 01307, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| |
Collapse
|
41
|
Shaikh R, Prabitha VG, Dora TK, Chopra S, Maheshwari A, Deodhar K, Rekhi B, Sukumar N, Krishna CM, Subhash N. A comparative evaluation of diffuse reflectance and Raman spectroscopy in the detection of cervical cancer. JOURNAL OF BIOPHOTONICS 2017; 10:242-252. [PMID: 26929106 DOI: 10.1002/jbio.201500248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 05/09/2023]
Abstract
Optical spectroscopic techniques show improved diagnostic accuracy for non-invasive detection of cervical cancers. In this study, sensitivity and specificity of two in vivo modalities, i.e diffuse reflectance spectroscopy (DRS) and Raman spectroscopy (RS), were compared by utilizing spectra recorded from the same sites (67 tumor (T), 22 normal cervix (C), and 57 normal vagina (V)). Data was analysed using principal component - linear discriminant analysis (PC-LDA), and validated using leave-one-out-cross-validation (LOOCV). Sensitivity, specificity, positive predictive value and negative predictive value for classification between normal (N) and tumor (T) sites were 91%, 96%, 95% and 93%, respectively for RS and 85%, 95%, 93% and 88%, respectively for DRS. Even though DRS revealed slightly lower diagnostic accuracies, owing to its lower cost and portability, it was found to be more suited for cervical cancer screening in low resource settings. On the other hand, RS based devices could be ideal for screening patients with centralised facilities in developing countries.
Collapse
Affiliation(s)
- Rubina Shaikh
- Chilakapati Laboratory, ACTREC, Kharghar, Navi Mumbai, 410210, India
| | - Vasumathi G Prabitha
- Biophotonics Laboratory, National Centre for Earth Science Studies, Akkulam, Thiruvananthapuram, 695 031, Kerala, India
| | - Tapas Kumar Dora
- Tata Memorial Center, Radiation Oncology, ACTREC, Kharghar, Navi Mumbai, 410210, India
| | - Supriya Chopra
- Tata Memorial Center, Radiation Oncology, ACTREC, Kharghar, Navi Mumbai, 410210, India
| | - Amita Maheshwari
- Tata Memorial Hospital, Gynecology Oncology, Parel, Mumbai, 400012, India
| | - Kedar Deodhar
- Tata Memorial Hospital, Surgical Pathology, Cytopathology, Parel, Mumbai, 400012, India
| | - Bharat Rekhi
- Tata Memorial Hospital, Surgical Pathology, Cytopathology, Parel, Mumbai, 400012, India
| | - Nita Sukumar
- Biophotonics Laboratory, National Centre for Earth Science Studies, Akkulam, Thiruvananthapuram, 695 031, Kerala, India
| | - C Murali Krishna
- Chilakapati Laboratory, ACTREC, Kharghar, Navi Mumbai, 410210, India
| | - Narayanan Subhash
- Sascan Meditech Pvt Ltd, Centre for Innovation in Medical Electronics, BMS College of Engineering, Basavanagudi, Bangalore, 560019, India
| |
Collapse
|
42
|
Bae SJ, Lee DS, Berezin V, Kang U, Lee KH. Multispectral autofluorescence imaging for detection of cervical lesions: A preclinical study. J Obstet Gynaecol Res 2016; 42:1846-1853. [DOI: 10.1111/jog.13101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 05/05/2016] [Accepted: 06/14/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Soo-Jin Bae
- Korea Electrotechnology Research Institute; Seoul Korea
- Department of Obstetrics and Gynecology; Catholic Research Institutes of Medical Science, The Catholic University of Korea; Seoul Korea
| | - Dae-Sic Lee
- Korea Electrotechnology Research Institute; Seoul Korea
| | | | - Uk Kang
- Korea Electrotechnology Research Institute; Seoul Korea
- SNUH Biomedical Research Institute; Seoul Korea
| | - Keun-Ho Lee
- Department of Obstetrics and Gynecology; Catholic Research Institutes of Medical Science, The Catholic University of Korea; Seoul Korea
| |
Collapse
|
43
|
Yang X, Palasuberniam P, Myers KA, Wang C, Chen B. Her2 oncogene transformation enhances 5-aminolevulinic acid-mediated protoporphyrin IX production and photodynamic therapy response. Oncotarget 2016; 7:57798-57810. [PMID: 27527860 PMCID: PMC5295390 DOI: 10.18632/oncotarget.11058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Enhanced protoporphyrin IX (PpIX) production in tumors derived from the administration of 5-aminolevulinic acid (ALA) enables the use of ALA as a prodrug for photodynamic therapy (PDT) and fluorescence-guided tumor resection. Although ALA has been successfully used in the clinic, the mechanism underlying enhanced ALA-induced PpIX production in tumors is not well understood. Human epidermal growth receptor 2 (Her2, Neu, ErbB2) is a driver oncogene in human cancers, particularly breast cancers. Here we showed that, in addition to activating Her2/Neu cell signaling, inducing epithelial-mesenchymal transition and upregulating glycolytic enzymes, transfection of NeuT (a mutated Her2/Neu) oncogene in MCF10A human breast epithelial cells significantly enhanced ALA-induced PpIX fluorescence by elevating some enzymes involved in PpIX biosynthesis. Furthermore, NeuT-transformed and vector control cells exhibited drastic differences in the intracellular localization of PpIX, either produced endogenously from ALA or applied exogenously. In vector control cells, PpIX displayed a cell contact-dependent membrane localization at high cell densities and increased mitochondrial localization at low cell densities. In contrast, no predominant membrane localization of PpIX was observed in NeuT cells and ALA-induced PpIX showed a consistent mitochondrial localization regardless of cell density. PDT with ALA caused significantly more decrease in cell viability in NeuT cells than in vector cells. Our data demonstrate that NeuT oncogene transformation enhanced ALA-induced PpIX production and altered PpIX intracellular localization, rendering NeuT-transformed cells increased response to ALA-mediated PDT. These results support the use of ALA for imaging and photodynamic targeting Her2/Neu-positive tumors.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of The Sciences, Philadelphia, Pennsylvania, USA
| | - Pratheeba Palasuberniam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of The Sciences, Philadelphia, Pennsylvania, USA
| | - Kenneth A. Myers
- Department of Biological Sciences, Misher College of Arts and Sciences, University of The Sciences, Philadelphia, Pennsylvania, USA
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, China
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of The Sciences, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Sachar M, Li F, Liu K, Wang P, Lu J, Ma X. Chronic Treatment with Isoniazid Causes Protoporphyrin IX Accumulation in Mouse Liver. Chem Res Toxicol 2016; 29:1293-7. [PMID: 27438535 DOI: 10.1021/acs.chemrestox.6b00121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isoniazid (INH) can cause hepatotoxicity. In addition, INH is contraindicated in patients suffering from porphyrias. Our metabolomic analysis revealed that chronic treatment with INH in mice causes a hepatic accumulation of protoporphyrin IX (PPIX). PPIX is an intermediate in the heme biosynthesis pathway, and it is also known as a hepatotoxin. We further found that INH induces delta-aminolevulinate synthase 1 (ALAS1), the rate-limiting enzyme in heme biosynthesis. We also found that INH downregulates ferrochelatase (FECH), the enzyme that converts PPIX to heme. In summary, this study illustrated that chronic treatment with INH causes PPIX accumulation in mouse liver in part through ALAS1 induction and FECH downregulation. This study also highlights that drugs can disrupt the metabolic pathways of endobiotics and increase the risk of liver damage.
Collapse
Affiliation(s)
- Madhav Sachar
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Feng Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine , Houston, Texas 77030, United States
| | - Ke Liu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Pengcheng Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Jie Lu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
45
|
Fonda-Pascual P, Moreno-Arrones OM, Alegre-Sanchez A, Saceda-Corralo D, Buendia-Castaño D, Pindado-Ortega C, Fernandez-Gonzalez P, Velazquez-Kennedy K, Calvo-Sánchez MI, Harto-Castaño A, Perez-Garcia B, Bagazgoitia L, Vaño-Galvan S, Espada J, Jaen-Olasolo P. In situ production of ROS in the skin by photodynamic therapy as a powerful tool in clinical dermatology. Methods 2016; 109:190-202. [PMID: 27422482 DOI: 10.1016/j.ymeth.2016.07.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinical modality of photochemotherapy based on the accumulation of a photosensitizer in target cells and subsequent irradiation of the tissue with light of adequate wavelength promoting reactive oxygen species (ROS) formation and cell death. PDT is used in several medical specialties as an organ-specific therapy for different entities. In this review we focus on the current dermatological procedure of PDT. In the most widely used PDT protocol in dermatology, ROS production occurs by accumulation of the endogenous photosensitizer protoporphyrin IX after treatment with the metabolic precursors 5-methylaminolevulinic acid (MAL) or 5-aminolevulinic acid (ALA). To date, current approved dermatological indications of PDT include actinic keratoses (AK), basal cell carcinoma (BCC) and in situ squamous cell carcinoma (SCC) also known as Bowen disease (BD). With regards to AKs, PDT can also treat the cancerization field carrying an oncogenic risk. In addition, an increasing number of pathologies, such as other skin cancers, infectious, inflammatory or pilosebaceous diseases are being considered as potentially treatable entities with PDT. Besides the known therapeutic properties of PDT, there is a modality used for skin rejuvenation and aesthetic purposes defined as photodynamic photorejuvenation. This technique enables the remodelling of collagen, which in turn prevents and treats photoaging stygmata. Finally we explore a new potential treatment field for PDT determined by the activation of follicular bulge stem cells caused by in situ ROS formation.
Collapse
Affiliation(s)
- Pablo Fonda-Pascual
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Oscar M Moreno-Arrones
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Adrian Alegre-Sanchez
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - David Saceda-Corralo
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | | | - Kyra Velazquez-Kennedy
- Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - María I Calvo-Sánchez
- Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | | | | | - Lorea Bagazgoitia
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Sergio Vaño-Galvan
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain; Grupo de Dermatología Experimental y Biología Cutánea, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Jesus Espada
- Laboratorio de Bionanotecnolgía, Universidad Bernardo ÓHiggins, Santiago, Chile.
| | - Pedro Jaen-Olasolo
- Servicio de Dermatología, Hospital Universitario Ramón y Cajal, Madrid, Spain.
| |
Collapse
|
46
|
Prabitha VG, Suchetha S, Jayanthi JL, Baiju KV, Rema P, Anuraj K, Mathews A, Sebastian P, Subhash N. Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study. Lasers Med Sci 2015; 31:67-75. [PMID: 26521184 DOI: 10.1007/s10103-015-1829-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/21/2015] [Indexed: 11/28/2022]
Abstract
Diffuse reflectance (DR) spectroscopy is a non-invasive, real-time, and cost-effective tool for early detection of malignant changes in squamous epithelial tissues. The present study aims to evaluate the diagnostic power of diffuse reflectance spectroscopy for non-invasive discrimination of cervical lesions in vivo. A clinical trial was carried out on 48 sites in 34 patients by recording DR spectra using a point-monitoring device with white light illumination. The acquired data were analyzed and classified using multivariate statistical analysis based on principal component analysis (PCA) and linear discriminant analysis (LDA). Diagnostic accuracies were validated using random number generators. The receiver operating characteristic (ROC) curves were plotted for evaluating the discriminating power of the proposed statistical technique. An algorithm was developed and used to classify non-diseased (normal) from diseased sites (abnormal) with a sensitivity of 72 % and specificity of 87 %. While low-grade squamous intraepithelial lesion (LSIL) could be discriminated from normal with a sensitivity of 56 % and specificity of 80 %, and high-grade squamous intraepithelial lesion (HSIL) from normal with a sensitivity of 89 % and specificity of 97 %, LSIL could be discriminated from HSIL with 100 % sensitivity and specificity. The areas under the ROC curves were 0.993 (95 % confidence interval (CI) 0.0 to 1) and 1 (95 % CI 1) for the discrimination of HSIL from normal and HSIL from LSIL, respectively. The results of the study show that DR spectroscopy could be used along with multivariate analytical techniques as a non-invasive technique to monitor cervical disease status in real time.
Collapse
Affiliation(s)
- Vasumathi Gopala Prabitha
- Biophotonics Laboratory, Centre for Earth Science Studies, Akkulam, Thiruvananthapuram, 695 031, Kerala, India
| | - Sambasivan Suchetha
- Regional Cancer Centre, Medical College P.O., Thiruvananthapuram, 695 011, Kerala, India
| | | | | | - Prabhakaran Rema
- Regional Cancer Centre, Medical College P.O., Thiruvananthapuram, 695 011, Kerala, India
| | - Koyippurath Anuraj
- Biophotonics Laboratory, Centre for Earth Science Studies, Akkulam, Thiruvananthapuram, 695 031, Kerala, India
| | - Anita Mathews
- Regional Cancer Centre, Medical College P.O., Thiruvananthapuram, 695 011, Kerala, India
| | - Paul Sebastian
- Regional Cancer Centre, Medical College P.O., Thiruvananthapuram, 695 011, Kerala, India
| | - Narayanan Subhash
- Biophotonics Laboratory, Centre for Earth Science Studies, Akkulam, Thiruvananthapuram, 695 031, Kerala, India. .,Sascan Meditech Pvt Ltd., CIME, BMS College of Engineering, Basavanagudi, Bull Temple Road, Bangalore, 560019, India.
| |
Collapse
|
47
|
Yang X, Palasuberniam P, Kraus D, Chen B. Aminolevulinic Acid-Based Tumor Detection and Therapy: Molecular Mechanisms and Strategies for Enhancement. Int J Mol Sci 2015; 16:25865-80. [PMID: 26516850 PMCID: PMC4632830 DOI: 10.3390/ijms161025865] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/11/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022] Open
Abstract
Aminolevulinic acid (ALA) is the first metabolite in the heme biosynthesis pathway in humans. In addition to the end product heme, this pathway also produces other porphyrin metabolites. Protoporphyrin (PpIX) is one heme precursor porphyrin with good fluorescence and photosensitizing activity. Because tumors and other proliferating cells tend to exhibit a higher level of PpIX than normal cells after ALA incubation, ALA has been used as a prodrug to enable PpIX fluorescence detection and photodynamic therapy (PDT) of lesion tissues. Extensive studies have been carried out in the past twenty years to explore why some tumors exhibit elevated ALA-mediated PpIX and how to enhance PpIX levels to achieve better tumor detection and treatment. Here we would like to summarize previous research in order to stimulate future studies on these important topics. In this review, we focus on summarizing tumor-associated alterations in heme biosynthesis enzymes, mitochondrial functions and porphyrin transporters that contribute to ALA-PpIX increase in tumors. Mechanism-based therapeutic strategies for enhancing ALA-based modalities including iron chelators, differentiation agents and PpIX transporter inhibitors are also discussed.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA 19104, USA.
| | - Pratheeba Palasuberniam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA 19104, USA.
| | - Daniel Kraus
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA 19104, USA.
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Palasuberniam P, Yang X, Kraus D, Jones P, Myers KA, Chen B. ABCG2 transporter inhibitor restores the sensitivity of triple negative breast cancer cells to aminolevulinic acid-mediated photodynamic therapy. Sci Rep 2015; 5:13298. [PMID: 26282350 PMCID: PMC4539603 DOI: 10.1038/srep13298] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/27/2015] [Indexed: 01/08/2023] Open
Abstract
Photosensitizer protoporphyrin IX (PpIX) fluorescence, intracellular localization and cell response to photodynamic therapy (PDT) were analyzed in MCF10A normal breast epithelial cells and a panel of human breast cancer cells including estrogen receptor (ER) positive, human epidermal growth factor receptor 2 (HER2) positive and triple negative breast cancer (TNBC) cells after treatment with PpIX precursor aminolevulinic acid (ALA). Although PpIX fluorescence was heterogeneous in different cells, TNBC cells showed significantly lower PpIX level than MCF10A and ER- or HER2-positive cells. PpIX fluorescence in TNBC cells also had much less mitochondrial localization than other cells. There was an inverse correlation between PpIX fluorescence and cell viability after PDT. Breast cancer cells with the highest PpIX fluorescence were the most sensitive to ALA-PDT and TNBC cells with the lowest PpIX level were resistant to PDT. Treatment of TNBC cells with ABCG2 transporter inhibitor Ko143 significantly increased ALA-PpIX fluorescence, enhanced PpIX mitochondrial accumulation and sensitized cancer cells to ALA-PDT. Ko143 treatment had little effect on PpIX production and ALA-PDT in normal and ER- or HER2-positive cells. These results demonstrate that enhanced ABCG2 activity renders TNBC cell resistance to ALA-PDT and inhibiting ABCG2 transporter is a promising approach for targeting TNBC with ALA-based modality.
Collapse
Affiliation(s)
- Pratheeba Palasuberniam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania, USA
| | - Xue Yang
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania, USA
| | - Daniel Kraus
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania, USA
| | - Patrick Jones
- Department of Biological Sciences, Misher College of Arts &Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| | - Kenneth A Myers
- Department of Biological Sciences, Misher College of Arts &Sciences, University of the Sciences, Philadelphia, Pennsylvania, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Expression of Genes Involved in Porphyrin Biosynthesis Pathway in the Human Renal Cell Carcinoma. J Fluoresc 2015; 25:1363-9. [PMID: 26245452 DOI: 10.1007/s10895-015-1626-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/26/2015] [Indexed: 01/10/2023]
Abstract
Renal cell carcinoma (RCC) remains one of the greatest challenges of urological oncology and is the third leading cause of death in genitourinary cancers. Surgery may be curative when patients present with localized disease. Our previous results demonstrated the autofluorescence of blood PpIX in primary RCC mouse model and an increase in fluorescence intensity as a function of growth of the subcutaneous tumor mass. In another work, a nice correlation between the growth of the tumor mass and tissue fluorescence intensity was found. The aim of this study was to evaluate the expression profile of porphyrin biosynthesis pathway-related genes of human kidney cells. We used two kidney cell lines, one normal (HK2) and another malignant (Caki-1). Endogenous and 5-aminolevolinic acid (ALA) induced protoporphyrin IX (PpIX) HK2 and Caki-1 cells were analyzed by fluorescence spectroscopy. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to measure mRNA of those genes. Emission spectra were obtained by exciting the samples at 405 nm. For ALA untreated cells the maximum fluorescence intensity was detected at 635 nm. The mean peak area of emission spectra in both cells types increased linearly in function of cell number. Besides, basal levels of PpIX autofluorescence of each cell concentration of HK2 samples were significantly lower than those of Caki-1 samples. For ALA-treated cells the mean PpIX spectra shows PpIX emission peak at 635 nm with a shoulder at 700 nm. Analysis of PpIX fluorescence intensity ratio between tumor cells and HK2 cells showed that fluorescence intensity was, on average, 26 times greater in tumor cells than in healthy cells. qRT-PCR revealed that in Caki-1 ALA-treated cells, PEPT gene was significantly up-regulated and FECH and HO-1 genes were significantly down regulated in comparison with HK2 ALA-treated cells. In conclusion, our results demonstrate the preferential accumulation of ALA-induced PpIX in human RCC and also indicate that PEPT1, FECH and HO-1 genes are major contributors to this accumulation.
Collapse
|
50
|
Tibbetts KM, Tan M. Role of Advanced Laryngeal Imaging in Glottic Cancer. Otolaryngol Clin North Am 2015; 48:565-84. [DOI: 10.1016/j.otc.2015.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|