1
|
Yamakawa Y, Tsurudome Y, Tamada M, Tsuchimochi Y, Umeda Y, Yoshida Y, Kobayashi D, Kawashiri T, Kubota T, Matsunaga N, Shimazoe T. Cholecystokinin receptor type A are involved in the circadian rhythm of the mouse retina. Heliyon 2024; 10:e32653. [PMID: 39183886 PMCID: PMC11341299 DOI: 10.1016/j.heliyon.2024.e32653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 08/27/2024] Open
Abstract
The retina is the only organ projecting external light to the suprachiasmatic nucleus. Cholecystokinin receptor type A (Cckar/Cckar) is one of the essential factors for light reception in retinal cells. As there was a lack of literature on the matter, we aimed to elucidate the cause of the time-dependent phase change in clock gene expression. We found that Cckar mRNA expression in retinal cells exhibited diurnal variations. The rhythm of expression of the clock gene Per1/Per2 in retinal cells was altered in Cckar -/- mice. The light sensitivity of retinal cells was evaluated in wild-type mice, which showed c-Fos was activated in the ganglion cell layer more than in the inner granular layer. This increase in the number of c-Fos-positive cells was suppressed by lorglumide, a Cckar antagonist. Treatment of rat retina primary cells with lorglumide suppressed Per2 transcription, which was altered in a time-dependent manner relative to the Per2 expression. Light irradiation studies in Cckar -/- mice did not exhibit an increase in Period expression in the suprachiasmatic nucleus. These results indicate that Cckar is among the factors that regulate the cycle of clock genes on the retina. Cckar knockout attenuates the light responsiveness of suprachiasmatic nucleus and reduces the expression amplitude of Period genes in the retina. Thus, Cckar may contribute to entrainment of the light environment and maintenance of the expression cycle of Period gene, which is one of the core clock genes.
Collapse
Affiliation(s)
- Yusuke Yamakawa
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Yuya Tsurudome
- Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi, Japan
| | - Masaki Tamada
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Yuki Tsuchimochi
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Yuya Umeda
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Yuya Yoshida
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Kobayashi
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Takehiro Kawashiri
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| | - Toshio Kubota
- Center of Pharmaceutical Care for Community Health, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Clinical Pharmacokinetics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Shimazoe
- Department of Clinical Pharmacy and Pharmaceutical Care, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Dafne VJ, Manuel MA, Rocio CV. Chronobiotics, satiety signaling, and clock gene expression interplay. J Nutr Biochem 2024; 126:109564. [PMID: 38176625 DOI: 10.1016/j.jnutbio.2023.109564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/21/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
The biological clock regulates the way our body works throughout the day, including releasing hormones and food intake. Disruption of the biological clock (chronodisruption) may deregulate satiety, which is strictly regulated by hormones and neurotransmitters, leading to health problems like obesity. Nowadays, using bioactive compounds as a coadjutant for several pathologies is a common practice. Phenolic compounds and short-chain fatty acids, called "chronobiotics," can modulate diverse mechanisms along the body to exert beneficial effects, including satiety regulation and circadian clock resynchronization; however, the evidence of the interplay between those processes is limited. This review compiles the evidence of natural chronobiotics, mainly polyphenols and short-chain fatty acids that affect the circadian clock mechanism and process modifications in genes or proteins resulting in a signaling chain that modulates satiety hormones or hunger pathways.
Collapse
Affiliation(s)
- Velásquez-Jiménez Dafne
- Research and Graduate Studies in Food Science, School of Chemistry, Autonomous University of Queretaro, Queretaro, Mexico
| | - Miranda-Anaya Manuel
- Multidisciplinary Unit for Teaching and Research (UMDI), School of Sciences, Autonomous National University of Mexico, Queretaro, Mexico
| | - Campos-Vega Rocio
- Research and Graduate Studies in Food Science, School of Chemistry, Autonomous University of Queretaro, Queretaro, Mexico.
| |
Collapse
|
3
|
Thompson S, Blodi FR, Larson DR, Anderson MG, Stasheff SF. The Efemp1R345W Macular Dystrophy Mutation Causes Amplified Circadian and Photophobic Responses to Light in Mice. Invest Ophthalmol Vis Sci 2019; 60:2110-2117. [PMID: 31095679 PMCID: PMC6735810 DOI: 10.1167/iovs.19-26881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose The R345W mutation in EFEMP1 causes malattia leventinese, an autosomal dominant eye disease with pathogenesis similar to an early-onset age-related macular degeneration. In mice, Efemp1R345W does not cause detectable degeneration but small subretinal deposits do accumulate. The purpose of this study was to determine whether there were abnormal responses to light at this presymptomatic stage in Efemp1R345W mice. Methods Responses to light were assessed by visual water task, circadian phase shifting, and negative masking behavior. The mechanism of abnormal responses was investigated by anterior eye exam, electroretinogram, melanopsin cell quantification, and multielectrode recording of retinal ganglion cell activity. Results Visual acuity was not different in Efemp1R345W mice. However, amplitudes of circadian phase shifting (P = 0.016) and negative masking (P < 0.0001) were increased in Efemp1R345W mice. This phenotype was not explained by anterior eye defects or amplified outer retina responses. Instead, we identified increased melanopsin-generated responses to light in the ganglion cell layer of the retina (P < 0.01). Conclusions Efemp1R345W increases the sensitivity to light of behavioral responses driven by detection of irradiance. An amplified response to light in melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) is consistent with this phenotype. The major concern with this effect of the malattia leventinese mutation is the potential for abnormal regulation of physiology by light to negatively affect health.
Collapse
Affiliation(s)
- Stewart Thompson
- Department of Psychology, New Mexico Tech, Socorro, New Mexico, United States.,Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Frederick R Blodi
- Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Ophthalmology and Visual Sciences, University of Louisville, Louisville, Kentucky, United States
| | - Demelza R Larson
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States.,Biology Department, College of St. Benedict & St. John's University, Collegeville, Minnesota, United States
| | - Michael G Anderson
- Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States.,Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States.,VA Center for Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Steven F Stasheff
- Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States.,Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Unit on Retinal Neurophysiology, National Eye Institute, Bethesda, Maryland, United States.,Center for Neurosciences and Behavioral Medicine, Children's National Medical Center, Washington, DC, United States.,George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
4
|
Guerrera M, Abbate F, Di Caro G, Germanà G, Levanti M, Micale V, Montalbano G, Laurà R, Germanà A, Muglia U. Localization of cholecystokinin in the zebrafish retina from larval to adult stage. Ann Anat 2018; 218:175-181. [DOI: 10.1016/j.aanat.2018.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
|
5
|
Landgraf D, Neumann AM, Oster H. Circadian clock-gastrointestinal peptide interaction in peripheral tissues and the brain. Best Pract Res Clin Endocrinol Metab 2017; 31:561-571. [PMID: 29224668 DOI: 10.1016/j.beem.2017.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Food intake and sleep are two mutually exclusive behaviors and both are normally confined to opposing phases of the diurnal cycle. The temporal coordination of behavior and physiology along the 24-h day-night cycle is organized by a network of circadian clocks that orchestrate transcriptional programs controlling cellular physiology. Many of the peptide hormones of the gastrointestinal tract are not only secreted in a circadian fashion, they can also affect circadian clock function in peripheral metabolic tissues and the brain, thus providing metabolic feedback to metabolic and neurobehavioral circuits. In this review, we summarize the current knowledge on this gastrointestinal peptide crosstalk and its potential role in the coordination of nutrition and the maintenance of metabolic homeostasis.
Collapse
Affiliation(s)
- Dominic Landgraf
- Department of Psychiatry, Ludwig Maximilian University of Munich, Germany
| | - Anne-Marie Neumann
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior & Metabolism, University of Lübeck, Germany.
| |
Collapse
|
6
|
Ikarashi R, Akechi H, Kanda Y, Ahmad A, Takeuchi K, Morioka E, Sugiyama T, Ebisawa T, Ikeda M, Ikeda M. Regulation of molecular clock oscillations and phagocytic activity via muscarinic Ca 2+ signaling in human retinal pigment epithelial cells. Sci Rep 2017; 7:44175. [PMID: 28276525 PMCID: PMC5343479 DOI: 10.1038/srep44175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Vertebrate eyes are known to contain circadian clocks, however, the intracellular mechanisms regulating the retinal clockwork remain largely unknown. To address this, we generated a cell line (hRPE-YC) from human retinal pigmental epithelium, which stably co-expressed reporters for molecular clock oscillations (Bmal1-luciferase) and intracellular Ca2+ concentrations (YC3.6). The hRPE-YC cells demonstrated circadian rhythms in Bmal1 transcription. Also, these cells represented circadian rhythms in Ca2+-spiking frequencies, which were canceled by dominant-negative Bmal1 transfections. The muscarinic agonist carbachol, but not photic stimulation, phase-shifted Bmal1 transcriptional rhythms with a type-1 phase response curve. This is consistent with significant M3 muscarinic receptor expression and little photo-sensor (Cry2 and Opn4) expression in these cells. Moreover, forskolin phase-shifted Bmal1 transcriptional rhythm with a type-0 phase response curve, in accordance with long-lasting CREB phosphorylation levels after forskolin exposure. Interestingly, the hRPE-YC cells demonstrated apparent circadian rhythms in phagocytic activities, which were abolished by carbachol or dominant-negative Bmal1 transfection. Because phagocytosis in RPE cells determines photoreceptor disc shedding, molecular clock oscillations and cytosolic Ca2+ signaling may be the driving forces for disc-shedding rhythms known in various vertebrates. In conclusion, the present study provides a cellular model to understand molecular and intracellular signaling mechanisms underlying human retinal circadian clocks.
Collapse
Affiliation(s)
- Rina Ikarashi
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Honami Akechi
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Yuzuki Kanda
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Alsawaf Ahmad
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Kouhei Takeuchi
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Eri Morioka
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| | - Takashi Sugiyama
- Advanced Core Technology Department, Research and Development Division, Olympus Co. Ltd., 2-3 Kuboyama, Hachioji, Tokyo 192-8512, Japan
| | - Takashi Ebisawa
- Department of Psychiatry, Tokyo Metropolitan Police Hospital, 4-22-1 Nakano, Nakano-ku, Tokyo 164-8541, Japan
| | - Masaaki Ikeda
- Department of Physiology, Saitama Medical University, 38 Morohongo, Moroyama, Iruma-gun, Saitama 350-0495, Japan.,Molecular Clock Project, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka city, Saitama, 350-1241, Japan
| | - Masayuki Ikeda
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan.,Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama city, Toyama 930-8555, Japan
| |
Collapse
|
7
|
Zhou Y, Ru Y, Shi H, Wang Y, Wu B, Upur H, Zhang Y. Cholecystokinin receptors regulate sperm protein tyrosine phosphorylation via uptake of HCO3-. Reproduction 2015; 150:257-68. [PMID: 26175429 DOI: 10.1530/rep-15-0138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/14/2015] [Indexed: 11/08/2022]
Abstract
Cholecystokinin (CCK), a peptide hormone and a neurotransmitter, was detected in mature sperm two decades ago. However, the exact role of CCK and the types of CCK receptors (now termed CCK1 and CCK2) in sperm have not been identified. Here, we find that CCK1 and CCK2 receptors are immunolocalized to the acrosomal region of mature sperm. The antagonist of CCK1 or CCK2 receptor strongly activated the soluble adenylyl cyclase/cAMP/protein kinase A signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation in dose- and time-dependent manners. But these actions of stimulation were abolished when sperm were incubated in the medium in the absence of HCO3-. Further investigation demonstrated that the inhibitor of CCK1 or CCK2 receptor could accelerate the uptake of HCO3- and significantly elevate the intracellular pH of sperm. Interestingly, the synthetic octapeptide of CCK (CCK8) showed the same action and mechanism as antagonists of CCK receptors. Moreover, CCK8 and the antagonist of CCK1 or CCK2 receptor were also able to accelerate human sperm capacitation-associated protein tyrosine phosphorylation by stimulating the influx of HCO3-. Thus, the present results suggest that CCK and its receptors may regulate sperm capacitation-associated protein tyrosine phosphorylation by modulating the uptake of HCO3-.
Collapse
Affiliation(s)
- Yuchuan Zhou
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Yanfei Ru
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Huijuan Shi
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Yanjiao Wang
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Bin Wu
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Halmurat Upur
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| | - Yonglian Zhang
- State Key Laboratory of Molecular BiologyShanghai Key Laboratory for Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of ChinaShanghai institute of Planned Parenthood ResearchShanghai, ChinaCollege of Basic MedicalXinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, Shanghai, China
| |
Collapse
|
8
|
Furutani A, Ikeda Y, Itokawa M, Nagahama H, Ohtsu T, Furutani N, Kamagata M, Yang ZH, Hirasawa A, Tahara Y, Shibata S. Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120. PLoS One 2015; 10:e0132472. [PMID: 26161796 PMCID: PMC4498928 DOI: 10.1371/journal.pone.0132472] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/15/2015] [Indexed: 12/29/2022] Open
Abstract
The circadian peripheral clock is entrained by restricted feeding (RF) at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). Tuna oil (high DHA/EPA), menhaden oil (standard), and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock.
Collapse
Affiliation(s)
- Akiko Furutani
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Misa Itokawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Nagahama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Teiji Ohtsu
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Naoki Furutani
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Zhi-Hong Yang
- Central Research Laboratory, Nippon Suisan Kaisha Ltd., Nanakuni 1-32-3, Hachioji, Tokyo, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Sciences, Kyoto University, 46–29, Yoshida, Sakyo-ku, Kyoto, Japan
- Institute for Integrated Medical Sciences, Tokyo Women’s Medical University, Kawada-cho 8–1, Shinjuku-ku, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Lunsford-Avery JR, Mittal VA. Sleep dysfunction prior to the onset of schizophrenia: A review and neurodevelopmental diathesis–stress conceptualization. ACTA ACUST UNITED AC 2013. [DOI: 10.1111/cpsp.12041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ozaki T, Mohammad S, Morioka E, Takiguchi S, Ikeda M. Infant satiety depends on transient expression of cholecystokinin-1 receptors on ependymal cells lining the third ventricle in mice. J Physiol 2012; 591:1295-312. [PMID: 23266937 DOI: 10.1113/jphysiol.2012.247676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cholecystokinin (CCK) is a hypothetical controller for suckling and infancy body weight, although the underlying mechanisms remain unclear. Therefore, the present study analysed the mechanisms using mice lacking the CCK-1 receptor (CCK1R-/-). Although CCK1R-/- mice displayed normal weights at birth and adulthood, CCK1R-/- pups had enlarged adipocytes and were overweight from the first to second week after birth, regardless of maternal genotype. The lacZ reporter gene assay and/or calcium imaging analysis demonstrated that CCK-1 receptors were abundant in satiety-controlling regions such as the hypothalamus, brainstem, nodose ganglion and pylorus in adults, whereas these signals were few to lacking at pre-weanling stages. At postnatal day (PD) 6, the increase in cFos expression in the medullary nucleus tractus solitarius was similarly triggered by gastrointestinal milk- or saline filling in both genotypes, further indicating immature CCK-1 receptor function in an ascending satiety-controlling system during infancy. Conversely, third ventricle ependymal tanycyte-like cells expressed CCK-1 receptors with expression peaking at PD6. At PD6, wild-type but not CCK1R-/- mice had increased cFos immunoreactivity in ependymal cells following gastrointestinal milk filling whereas the response became negligible at PD12. In addition, ependymal cFos was not increased by saline filling, indicating that these responses are dependent on CCK-1 receptors, developmental stage and nutrients. Furthermore, body weights of wild-type pups were transiently increased by blocking ependymal CCK receptor function with microinjection of a CCK-1 antagonist, but not a CCK-2 antagonist. Hence, we demonstrate de novo functions of ependymal CCK-1 receptors and reveal a new aspect of infant satiety-controlling mechanisms.
Collapse
Affiliation(s)
- Tomoya Ozaki
- 1Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | | | | | | | | |
Collapse
|
11
|
Mohammad S, Ozaki T, Takeuchi K, Unno K, Yamoto K, Morioka E, Takiguchi S, Ikeda M. Functional compensation between cholecystokinin-1 and -2 receptors in murine paraventricular nucleus neurons. J Biol Chem 2012; 287:39391-401. [PMID: 23038256 PMCID: PMC3501058 DOI: 10.1074/jbc.m112.416214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/02/2012] [Indexed: 01/11/2023] Open
Abstract
Cholecystokinin (CCK) and its receptor subtypes CCK-1 and -2 have diverse homeostatic functions. CCK-1 and -2 receptors share a common phosphatidylinositol signaling pathway, yet little is known regarding their possible functional coupling. We focused on CCK-mediated Ca(2+) signaling in parvocellular paraventricular nucleus (PVN) cells, which control satiety and other autonomic functions. Analysis of mouse hypothalamic slices demonstrated that the general CCK receptor agonist CCK-8s (10 nM) triggered Ca(2+) transients most significantly in the posterior subregion of the PVN (PaPo). This 10 nM CCK-8s-induced response was absent in CCK-1 receptor knock-out (CCK1R(-/-)) slices, showing that the response is mediated by CCK-1 receptors. CCK-8s concentrations higher than 30 nM triggered a Ca(2+) rise similarly in wild-type and CCK1R(-/-) slices. The large CCK-8s (100 nM)-induced Ca(2+) responses in CCK1R(-/-) slices were blocked by a CCK-2 receptor antagonist (CI-988), whereas those in wild-type slices required a mixture of CI-988 and lorglumide (a CCK-1 receptor antagonist) for complete antagonism. Therefore, CCK-1 and -2 receptors may function synergistically in single PaPo neurons and deletion of CCK-1 receptors may facilitate CCK-2 receptor signaling. This hypothesis was supported by results of real-time RT-PCR, immunofluorescence double labeling and Western blotting assays, which indicated CCK-2 receptor overexpression in PaPo neurons of CCK1R(-/-) mice. Furthermore, behavioral studies showed that intraperitoneal injections of lorglumide up-regulated food accesses in wild-type but not in CCK1R(-/-) mice, whereas CI-988 injections up-regulated food accesses in CCK1R(-/-) but not in wild-type mice. Compensatory CCK signaling via CCK-2 receptors in CCK1R(-/-) mice shed light on currently controversial satiety-controlling mechanisms.
Collapse
Affiliation(s)
| | - Tomoya Ozaki
- From the Graduate School of Innovative Life Science and
| | - Kouhei Takeuchi
- the Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-city, Toyama 930-8555 and
| | - Katsuya Unno
- the Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-city, Toyama 930-8555 and
| | - Kurumi Yamoto
- the Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-city, Toyama 930-8555 and
| | - Eri Morioka
- From the Graduate School of Innovative Life Science and
| | - Soichi Takiguchi
- the Institute for Clinical Research, National Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka 811-1395, Japan
| | - Masayuki Ikeda
- From the Graduate School of Innovative Life Science and
- the Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama-city, Toyama 930-8555 and
| |
Collapse
|
12
|
Pritchett D, Wulff K, Oliver PL, Bannerman DM, Davies KE, Harrison PJ, Peirson SN, Foster RG. Evaluating the links between schizophrenia and sleep and circadian rhythm disruption. J Neural Transm (Vienna) 2012; 119:1061-75. [PMID: 22569850 DOI: 10.1007/s00702-012-0817-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/20/2012] [Indexed: 12/22/2022]
Abstract
Sleep and circadian rhythm disruption (SCRD) and schizophrenia are often co-morbid. Here, we propose that the co-morbidity of these disorders stems from the involvement of common brain mechanisms. We summarise recent clinical evidence that supports this hypothesis, including the observation that the treatment of SCRD leads to improvements in both the sleep quality and psychiatric symptoms of schizophrenia patients. Moreover, many SCRD-associated pathologies, such as impaired cognitive performance, are routinely observed in schizophrenia. We suggest that these associations can be explored at a mechanistic level by using animal models. Specifically, we predict that SCRD should be observed in schizophrenia-relevant mouse models. There is a rapidly accumulating body of evidence which supports this prediction, as summarised in this review. In light of these emerging data, we highlight other models which warrant investigation, and address the potential challenges associated with modelling schizophrenia and SCRD in rodents. Our view is that an understanding of the mechanistic overlap between SCRD and schizophrenia will ultimately lead to novel treatment approaches, which will not only ameliorate SCRD in schizophrenia patients, but also will improve their broader health problems and overall quality of life.
Collapse
Affiliation(s)
- David Pritchett
- Nuffield Department of Clinical Neurosciences-Nuffield Laboratory of Ophthalmology, University of Oxford, John Radcliffe Hospital, Level 5-6 West Wing, Headley Way, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hannibal J, Hundahl C, Fahrenkrug J, Rehfeld JF, Friis-Hansen L. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice. Eur J Neurosci 2010; 32:1006-17. [PMID: 20731710 DOI: 10.1111/j.1460-9568.2010.07385.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the principal pacemaker driving circadian rhythms of physiology and behaviour. Neurons within the SCN express both classical and neuropeptide transmitters which regulate clock functions. Cholecyctokinin (CCK) is a potent neurotransmitter expressed in neurons of the mammalian SCN, but its role in circadian timing is not known. In the present study, CCK was demonstrated in a distinct population of neurons located in the shell region of the SCN and in a few cells in the core region. The CCK neurons did not express vasopressin or vasoactive intestinal peptide. However, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of cFOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar τ, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting of the clock or in regulating core clock function. The expression of CCK in a subpopulation of neurons, which do not belonging to either the VIP or AVP cells but which have synaptic contacts to both cell types and reverse innervation of CCK neurons from VIP neurons, suggests that the CCK neurons may act in non-photic regulation within the clock and/or, via CCK projections, mediate clock information to hypothalamic nuclei.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
14
|
The adjustment and manipulation of biological rhythms by light, nutrition, and abused drugs. Adv Drug Deliv Rev 2010; 62:918-27. [PMID: 20600408 DOI: 10.1016/j.addr.2010.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/28/2010] [Accepted: 06/15/2010] [Indexed: 11/20/2022]
Abstract
Daily restricted feeding entrains the circadian rhythm of mouse clock gene expression in the central nervous system, excluding the suprachiasmatic nucleus (SCN), as well as in the peripheral tissues such as the liver, lung, and heart. In addition to entrainment of the clock genes, daily restricted feeding induces a locomotor activity increase 2-3h before the restricted feeding time initiates. The increase in activity is called the food-anticipatory activity (FAA). In addition to FAA, daily restricted feeding can also entrain peripheral circadian clocks in other organs such as liver, lung, and heart. This type of oscillator is called the food-entrainable peripheral oscillator (FEPO). At present, the mechanisms for restricted feeding-induced entrainment of locomotor activity (FAA) and/or peripheral clock (FEPO) are still unknown. In this review, we describe the role of the central nervous system and peripheral tissues in FAA performance and also in the entrainment of clock gene expression. In addition, the mechanism for entrainment of circadian oscillators by the abuse of drugs, such as methamphetamine, is discussed.
Collapse
|
15
|
Herbison AE, de Tassigny XD, Doran J, Colledge WH. Distribution and postnatal development of Gpr54 gene expression in mouse brain and gonadotropin-releasing hormone neurons. Endocrinology 2010; 151:312-21. [PMID: 19966188 DOI: 10.1210/en.2009-0552] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptin and G protein-coupled receptor 54 (GPR54) are now acknowledged to play essential roles in the neural regulation of fertility. Using a transgenic Gpr54 LacZ knock-in mouse model, this study aimed to provide 1) a detailed map of cells expressing Gpr54 in the mouse brain and 2) an analysis of Gpr54 expression in GnRH neurons across postnatal development. The highest density of Gpr54-expressing cells in the mouse central nervous system was found in the dentate gyrus of the hippocampus beginning on postnatal d 6 (P6). Abundant Gpr54 expression was also noted in the septum, rostral preoptic area (rPOA), anteroventral nucleus of the thalamus, posterior hypothalamus, periaqueductal grey, supramammillary and pontine nuclei, and dorsal cochlear nucleus. No Gpr54 expression was detected in the arcuate and rostral periventricular nuclei of the hypothalamus. Dual-labeling experiments showed that essentially all Gpr54-expressing cells in the rPOA were GnRH neurons. Analyses of mice at birth, P1, P5, P20, and P30 and as adults revealed a gradual increase in the percentage of GnRH neurons expressing Gpr54 from approximately 40% at birth through to approximately 70% from P20 onward. Whereas GnRH neurons located in the septum displayed a consistent increase across this time, GnRH neurons in the rPOA showed a sharp reduction in Gpr54 expression after birth (to approximately 10% at P5) before increasing to the 70% expression levels by P20. Together these findings provide an anatomical basis for the exploration of Gpr54 actions outside the reproductive axis and reveal a complex temporal and spatial pattern of Gpr54 gene expression in developing GnRH neurons.
Collapse
Affiliation(s)
- Allan E Herbison
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
16
|
Hirao A, Tahara Y, Kimura I, Shibata S. A balanced diet is necessary for proper entrainment signals of the mouse liver clock. PLoS One 2009; 4:e6909. [PMID: 19738906 PMCID: PMC2734168 DOI: 10.1371/journal.pone.0006909] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 07/02/2009] [Indexed: 12/15/2022] Open
Abstract
Background The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. Principal Finding To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3–4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6–0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.]), for 2 days. When each nutrient was tested alone (100% nutrient), an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. Conclusions Our results strongly suggest the following: (1) balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2) a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary recommendations for on-board meals served to air travelers and shift workers to reduce jet lag-like symptoms.
Collapse
Affiliation(s)
- Akiko Hirao
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Laboratory of Developmental Biology, School of Human Sciences, Waseda University, Saitama, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Ichiro Kimura
- Laboratory of Developmental Biology, School of Human Sciences, Waseda University, Saitama, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|