1
|
Guo Q, Yang W, Shan W, Yao H, Shi X, Wang L, Sun J, Song L. CTSL-2 upon specifically recognizing Vibrio splendidus directly cleaves complement C3 to promote the bacterial phagocytosis and degradation in oyster. Cell Commun Signal 2025; 23:198. [PMID: 40275325 PMCID: PMC12023428 DOI: 10.1186/s12964-025-02205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Cathepsin L (CTSL) as a cysteine cathepsin protease mediates complement C3 cleavage and pathogen degradation. In the present study, a CTSL homolog was identified from Crassostrea gigas (designated as CgCTSL-2). Its mRNA expression increased significantly in hemocytes after Vibrio splendidus stimulation. The activity of rCgCTSL-2 was induced after incubation with LPS or V. splendidus in Ca2+-dependent manner. rCgCTSL-2 could specifically bound V. splendidus in Ca2+-dependent manner. The co-localization of rCgCTSL-2 and V. splendidus was observed in cell-free hemolymph. Upon binding V. splendidus, CgCTSL-2 interacted with CgC3 in cell-free hemolymph and hemocytes. CgC3 fragments in CgCTSL-2-RNAi oysters and full length CgC3 in rCgCTSL-2-treated oysters were both reduced in cell-free hemolymph, respectively. CgC3 fragments were accumulated in CgCTSL-2-RNAi or rCgCTSL-2-treated oysters. The co-localizations of V. splendidus, CgC3, CgCD18, CgCTSL-2 and lysosomes were observed in hemocytes. These results suggested that CgCTSL-2 upon binding V. splendidus directly interacted with CgC3 to lead to CgC3 cleavage and then CgC3 fragments coated on V. splendidus were mediated by CgCD18 into CTSL-2-lysosome pathway.
Collapse
Affiliation(s)
- Qiuyan Guo
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weishuai Shan
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hongsheng Yao
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiangqi Shi
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China.
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, 52 Heishijiao Street, Dalian, 116023, China.
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
3
|
Bond A, Morrissey MA. Biochemical and biophysical mechanisms macrophages use to tune phagocytic appetite. J Cell Sci 2025; 138:JCS263513. [PMID: 39749603 PMCID: PMC11828473 DOI: 10.1242/jcs.263513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Macrophages phagocytose, or eat, pathogens, dead cells and cancer cells. To activate phagocytosis, macrophages recognize 'eat me' signals like IgG and phosphatidylserine on the target cell surface. Macrophages must carefully adjust their phagocytic appetite to ignore non-specific or transient eat me signal exposure on healthy cells while still rapidly recognizing pathogens and debris. Depending on the context, macrophages can increase their appetite for phagocytosis, to prioritize an effective immune response, or decrease their appetite, to avoid damage to healthy tissue during homeostasis. In this Review, we discuss the biochemical and biophysical mechanisms that macrophages employ to increase or decrease their sensitivity or capacity for phagocytosis. We discuss evidence that macrophages tune their sensitivity via several mechanisms, including altering the balance of activating and inhibitory receptor expression, altering the availability of activating receptors, as well as influencing their clustering and mobility, and modulating inhibitory receptor location. We also highlight how membrane availability limits the capacity of macrophages for phagocytosis and discuss potential mechanisms to promote membrane recycling and increase phagocytic capacity. Overall, this Review highlights recent work detailing the molecular toolkit that macrophages use to alter their appetite.
Collapse
Affiliation(s)
- Annalise Bond
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Meghan A. Morrissey
- Molecular Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
4
|
Xu H, Wang X, Zhang Z, Hu J, Yu Y, Wang J, Liu Y, Liu J. Staphylococcus aureus promotes its intracellular survival by inhibiting Rab11-Rab11FIP4-mediated vesicle trafficking. Vet Microbiol 2024; 293:110091. [PMID: 38626624 DOI: 10.1016/j.vetmic.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
Mastitis in dairy cows is mainly caused by bacteria, in which Staphylococcus aureus appears frequently. Epithelial cells, as a major physical barrier of mammary gland, play an important role in preventing mastitis in dairy cows. Our previous study reported that Rab11fip4 (an effector of Rab11) was significantly changed in response to stimulation by S. aureus. So, in this study, the role of Rab11A in phagocytosis of bovine mammary epithelial cells (MAC-T) against S. aureus was evaluated. First, changes of Rab11A and Rab11fip4 were analyzed in response to S. aureus by immunofluorescence and western blotting. Subsequently, the effects of Rab11A and Rab11fip4 on proliferation of S. aureus, as well as formation and function of late endosomes (LEs) and lysosomes (LYSs) were investigated. The results showed that, after infection, Rab11A and Rab11fip4 were recruited to phagosomes containing S. aureus. Rab11A promoted bacterial clearance and rescues the destruction of LEs and LYSs by S. aureus, whereas Rab11fip4 did the opposite. These findings provide new insights into phagocytosis and control of S. aureus in host cells, thus lay the foundation to elucidate the pathogenesis of S. aureus in bovine mastitis.
Collapse
Affiliation(s)
- Huiling Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Zhizhong Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Jiaqing Hu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Yongtao Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750000, China
| | - Jiandong Wang
- Institute of Animal Science, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China; Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| |
Collapse
|
5
|
Gao X, Tian Y, Liu ZL, Li D, Liu JJ, Yu GX, Duan DY, Peng T, Cheng TY, Liu L. Tick salivary protein Cystatin: structure, anti-inflammation and molecular mechanism. Ticks Tick Borne Dis 2024; 15:102289. [PMID: 38070274 DOI: 10.1016/j.ttbdis.2023.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024]
Abstract
Ticks are blood-sucking ectoparasites that secrete immunomodulatory substances in saliva to hosts during engorging. Cystatins, a tick salivary protein and natural inhibitor of Cathepsins, are attracting growing interest globally because of the immunosuppressive activities and the feasibility as an antigen for developing anti-tick vaccines. This review outlines the classification and the structure of tick Cystatins, and focuses on the anti-inflammatory effects and molecular mechanisms. Tick Cystatins can be divided into four families based on structures and cystatin 1 and cystatin 2 are the most abundant. They are injected into hosts during blood feeding and effectively mitigate the host inflammatory response. Mechanically, tick Cystatins exert anti-inflammatory properties through the inhibition of TLR-NF-κb, JAK-STAT and p38 MAPK signaling pathways. Further investigations are crucial to confirm the reduction of inflammation in other cell types like neutrophils and mast cells, and fully elucidate the underlying mechanism (like the structural mechanism) to make Cystatin a potential candidate for the development of novel anti-inflammation agents.
Collapse
Affiliation(s)
- Xin Gao
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Tian
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Ling Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Dan Li
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jia-Jun Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Guang-Xu Yu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - De-Yong Duan
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tao Peng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Tian-Yin Cheng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lei Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
6
|
Yu H, Ge X, Huang D, Xue C, Ren M, Liang H. Dietary Supplementation of Chlorella vulgaris Effectively Enhanced the Intestinal Antioxidant Capacity and Immune Status of Micropterus salmoides. Antioxidants (Basel) 2023; 12:1565. [PMID: 37627560 PMCID: PMC10451200 DOI: 10.3390/antiox12081565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
An M. salmoides fish meal diet was supplemented with 0 (CHL0, Control), 38 (CHL38), 76 (CHL76), 114 (CHL114), and 152 (CHL152) mg/kg C. vulgaris for 60 days, and their serum and intestinal samples were analyzed. The results showed that the albumin (ALB) and total protein (TP) contents were observably enhanced in the CHL76 group compared with the Control group. The intestinal glutathione (GSH) and glutathione peroxidase (GSH-Px) contents were enhanced significantly in the CHL76 group, while the total antioxidant capacity (T-AOC) was enhanced in the CHL38 group, compared with the Control group. However, supplementation of >76 g/kg C. vulgaris significantly inhibited the superoxide dismutase (SOD) activity in the intestines of M. salmoides. Moreover, the malondialdehyde (MDA) content was observably dropped in the CHL-supplemented groups compared with the Control group. Transcriptome analysis of the CHL76 and Control groups displayed a total of 1384 differentially expressed genes (DEGs). KEGG analysis revealed that these DEGs were enriched in apoptosis, cytokine-cytokine receptor interaction, tight junction (TJ), and phagosome signaling pathways, which were associated with improved intestinal immunity in the CHL76 group. Additionally, the DEGs enriched in the above pathways were also correlated with the antioxidant parameters, such as catalase (CAT), GSH, GSH-Px, SOD, T-AOC, and MDA. Therefore, our study found that dietary supplementation of C. vulgaris effectively enhanced the intestinal antioxidant capacity of M. salmoides by increasing antioxidant enzyme activity and decreasing MDA content. Additionally, dietary supplementation of C. vulgaris improved the intestinal immune status of M. salmoides by reducing proapoptotic and proinflammatory factors, increasing intestinal TJs- and phagosome-related genes expressions, and increasing the serum ALB and TP contents. Lastly, quadratic regression analysis of the serum biochemical indices (ALB and TP) and intestinal antioxidant parameters (GSH-Px and GSH) revealed that the optimal supplemental level of C. vulgaris in the M. salmoides diet was 58.25-77.7 g/kg.
Collapse
Affiliation(s)
- Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (H.Y.); (X.G.); (C.X.)
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (H.Y.); (X.G.); (C.X.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Chunyu Xue
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (H.Y.); (X.G.); (C.X.)
| | - Mingchun Ren
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (H.Y.); (X.G.); (C.X.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| | - Hualiang Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (H.Y.); (X.G.); (C.X.)
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China;
| |
Collapse
|
7
|
Suzuki Y, Kami D, Taya T, Sano A, Ogata T, Matoba S, Gojo S. ZLN005 improves the survival of polymicrobial sepsis by increasing the bacterial killing via inducing lysosomal acidification and biogenesis in phagocytes. Front Immunol 2023; 14:1089905. [PMID: 36820088 PMCID: PMC9938763 DOI: 10.3389/fimmu.2023.1089905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Polymicrobial sepsis still has a high mortality rate despite the development of antimicrobial agents, elaborate strategies to protect major organs, and the investment of numerous medical resources. Mitochondrial dysfunction, which acts as the center of energy metabolism, is clearly the basis of pathogenesis. Drugs that act on PGC1α, the master regulator of mitochondrial biosynthesis, have shown useful effects in the treatment of sepsis; therefore, we investigated the efficacy of ZLN005, a PGC1α agonist, and found significant improvement in overall survival in an animal model. The mode of action of this effect was examined, and it was shown that the respiratory capacity of mitochondria was enhanced immediately after administration and that the function of TFEB, a transcriptional regulator that promotes lysosome biosynthesis and mutually enhances PGC1α, was enhanced, as was the physical contact between mitochondria and lysosomes. ZLN005 strongly supported immune defense in early sepsis by increasing lysosome volume and acidity and enhancing cargo degradation, resulting in a significant reduction in bacterial load. ZLN005 rapidly acted on two organelles, mitochondria and lysosomes, against sepsis and interactively linked the two to improve the pathogenesis. This is the first demonstration that acidification of lysosomes by a small molecule is a mechanism of action in the therapeutic strategy for sepsis, which will have a significant impact on future drug discovery.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Arata Sano
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pathology and Cell Regulation, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Ioannidis M, Mahata SK, van den Bogaart G. The immunomodulatory functions of chromogranin A-derived peptide pancreastatin. Peptides 2022; 158:170893. [PMID: 36244579 PMCID: PMC10760928 DOI: 10.1016/j.peptides.2022.170893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Chromogranin A (CgA) is a 439 amino acid protein secreted by neuroendocrine cells. Proteolytic processing of CgA results in the production of different bioactive peptides. These peptides have been associated with inflammatory bowel disease, diabetes, and cancer. One of the chromogranin A-derived peptides is ∼52 amino acid long Pancreastatin (PST: human (h)CgA250-301, murine (m)CgA263-314). PST is a glycogenolytic peptide that inhibits glucose-induced insulin secretion from pancreatic islet β-cells. In addition to this metabolic role, evidence is emerging that PST also has inflammatory properties. This review will discuss the immunomodulatory properties of PST and its possible mechanisms of action and regulation. Moreover, this review will discuss the potential translation to humans and how PST may be an interesting therapeutic target for treating inflammatory diseases.
Collapse
Affiliation(s)
- Melina Ioannidis
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands; Department of Medical Biology and Pathology, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
9
|
Herrera C, Olejniczak N, Noël-Romas L, Plummer F, Burgener A. Pre-clinical evaluation of antiproteases as potential candidates for HIV-1 pre-exposure prophylaxis. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:998913. [DOI: 10.3389/frph.2022.998913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
Previous studies on highly HIV-1-exposed, yet persistently seronegative women from the Punwami Sex Worker cohort in Kenya, have shed light on putative protective mechanisms, suggesting that mucosal immunological factors, such as antiproteases, could be mediating resistance to HIV-1 transmission in the female reproductive tract. Nine protease inhibitors were selected for this study: serpin B4, serpin A1, serpin A3, serpin C1, cystatin A, cystatin B, serpin B13, serpin B1 and α-2-macroglobulin-like-protein 1. We assessed in a pilot study, the activity of these antiproteases with cellular assays and an ex vivo HIV-1 challenge model of human ecto-cervical tissue explants. Preliminary findings with both models, cellular and tissue explants, established an order of inhibitory potency for the mucosal proteins as candidates for pre-exposure prophylaxis when mimicking pre-coital use. Combination of all antiproteases considered in this study was more active than any of the individual mucosal proteins. Furthermore, the migration of cells out of ecto-cervical explants was blocked indicating potential prevention of viral dissemination following amplification of the founder population. These findings constitute the base for further development of these mucosal protease inhibitors for prevention strategies.
Collapse
|
10
|
YAP promotes cell-autonomous immune responses to tackle intracellular Staphylococcus aureus in vitro. Nat Commun 2022; 13:6995. [PMID: 36384856 PMCID: PMC9669043 DOI: 10.1038/s41467-022-34432-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Transcriptional cofactors YAP/TAZ have recently been found to support autophagy and inflammation, which are part of cell-autonomous immunity and are critical in antibacterial defense. Here, we studied the role of YAP against Staphylococcus aureus using CRISPR/Cas9-mutated HEK293 cells and a primary cell-based organoid model. We found that S. aureus infection increases YAP transcriptional activity, which is required to reduce intracellular S. aureus replication. A 770-gene targeted transcriptomic analysis revealed that YAP upregulates genes involved in autophagy/lysosome and inflammation pathways in both infected and uninfected conditions. The YAP-TEAD transcriptional activity promotes autophagic flux and lysosomal acidification, which are then important for defense against intracellular S. aureus. Furthermore, the staphylococcal toxin C3 exoenzyme EDIN-B was found effective in preventing YAP-mediated cell-autonomous immune response. This study provides key insights on the anti-S. aureus activity of YAP, which could be conserved for defense against other intracellular bacteria.
Collapse
|
11
|
Abstract
Immune principles formulated by Jenner, Pasteur, and early immunologists served as fundamental propositions for vaccine discovery against many dreadful pathogens. However, decisive success in the form of an efficacious vaccine still eludes for diseases such as tuberculosis, leishmaniasis, and trypanosomiasis. Several antileishmanial vaccine trials have been undertaken in past decades incorporating live, attenuated, killed, or subunit vaccination, but the goal remains unmet. In light of the above facts, we have to reassess the principles of vaccination by dissecting factors associated with the hosts' immune response. This chapter discusses the pathogen-associated perturbations at various junctures during the generation of the immune response which inhibits antigenic processing, presentation, or remodels memory T cell repertoire. This can lead to ineffective priming or inappropriate activation of memory T cells during challenge infection. Thus, despite a protective primary response, vaccine failure can occur due to altered immune environments in the presence of pathogens.
Collapse
Affiliation(s)
| | - Sunil Kumar
- National Centre for Cell Science, Pune, Maharashtra, India
| | | | - Bhaskar Saha
- National Centre for Cell Science, Pune, Maharashtra, India.
- Trident Academy of Creative Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
12
|
Muntjewerff EM, Christoffersson G, Mahata SK, van den Bogaart G. Putative regulation of macrophage-mediated inflammation by catestatin. Trends Immunol 2022; 43:41-50. [PMID: 34844850 PMCID: PMC10843896 DOI: 10.1016/j.it.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/31/2023]
Abstract
Catestatin (CST) is a bioactive cleavage product of the neuroendocrine prohormone chromogranin A (CgA). Recent findings show that CST can exert anti-inflammatory and antiadrenergic effects by suppressing the inflammatory actions of mammalian macrophages. However, recent findings also suggest that macrophages themselves are major CST producers. Here, we hypothesize that macrophages produce CST in an inflammation-dependent manner and thereby might self-regulate inflammation in an autocrine fashion. CST is associated with pathological conditions hallmarked by chronic inflammation, including autoimmune, cardiovascular, and metabolic disorders. Since intraperitoneal injection of CST in mouse models of diabetes and inflammatory bowel disease has been reported to be beneficial for mitigating disease, we posit that CST should be further investigated as a candidate target for treating certain inflammatory diseases.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Gustaf Christoffersson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Sushil K Mahata
- VA San Diego Healthcare System, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
13
|
Liu Y, Wang W, Li C, Li M, Zhang C, Dong M, Wang L, Song L. CgRab1 regulates Cgcathepsin L1 expression and participates in the phagocytosis of haemocytes in oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2022; 120:536-546. [PMID: 34952195 DOI: 10.1016/j.fsi.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Rab protein plays an important role in a variety of cellular activities, especially the fusion process of the inner membrane during endocytosis. In the present study, a Rab1 protein (CgRab1) was identified from the Pacific oyster Crassostrea gigas. The full-length cDNA sequence of CgRab1 was of 2248 bp with an open reading frame of 618 bp, encoding a polypeptide of 205 amino acids containing a Rab domain. The deduced amino acid sequence of CgRab1 shared 94.2% and 89.3% identity with Rab1 from Pomacea canaliculata and Homo sapiens respectively. In the phylogenetic tree, CgRab1 was firstly clustered with the Rab1s from Aplysia californica and Pomacea canaliculata to form a sister group with Rab1 from invertebrates. The recombinant CgRab1 protein (rCgRab1) was able to bind GTP. The mRNA transcripts of CgRab1 were highly expressed in oyster haemocytes, and its expression level in oyster haemocytes was significantly up-regulated at 24 h after the stimulations with Vibro splendidus, which was 2.43-fold (p < 0.01) of that in the control group. After the expression of CgRab1 was knocked down (0.38-fold of that in EGFP-RNAi experimental group) by RNAi,the protein expression of Cgcathepsin L1 were reduced (0.63-fold, p < 0.01) compared with that in EGFP-RNAi experimental group. The phagocytic rate and phagocytic index of haemocytes in CgRab1-RNAi oysters decreased after V. splendidus stimulation, which was 0.50-fold (p < 0.01) and 0.58-fold (p < 0.01) of that in EGFP-RNAi experimental group. These results indicated that CgRab1 was involved in the process of haemocytes phagocytosis by regulating the expression of Cgcathepsin L1 in oyster C. gigas.
Collapse
Affiliation(s)
- Yu Liu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
14
|
Cathepsin X Activity Does Not Affect NK-Target Cell Synapse but Is Rather Distributed to Cytotoxic Granules. Int J Mol Sci 2021; 22:ijms222413495. [PMID: 34948293 PMCID: PMC8707301 DOI: 10.3390/ijms222413495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Cathepsin X is a lysosomal peptidase that is involved in tumour progression and represents a potential target for therapeutic interventions. In addition, it regulates important functions of immune cells and is implicated in the modulation of tumour cell–immune cell crosstalk. Selective cathepsin X inhibitors have been proposed as prospective antitumour agents to prevent cancer progression; however, their impact on the antitumour immune response has been overlooked. Previous studies indicate that the migration and adhesion of T cells and dendritic cells are affected by diminished cathepsin X activity. Meanwhile, the influence of cathepsin X inhibition on natural killer (NK) cell function has not yet been explored. Here, we examined the localization patterns of cathepsin X and the role of its inhibitors on the cytotoxicity of cell line NK-92, which is used for adoptive cellular immunotherapy in cancer patients. NK-92 cells depend on lymphocyte function-associated antigen 1 (LFA-1) to form stable immunoconjugates with target cells, providing, in this way, optimal cytotoxicity. Since LFA-1 is a substrate for cathepsin X activity in other types of cells, we hypothesized that cathepsin X could disturb the formation of NK-92 immunoconjugates. Thus, we employed cathepsin X reversible and irreversible inhibitors and evaluated their effects on the NK-92 cell interactions with target cells and on the NK-92 cell cytotoxicity. We show that cathepsin X inhibition does not impair stable conjugate formation or the lytic activity of NK-92 cells. Similarly, the conjugate formation between Jurkat T cells and target cells was not affected by cathepsin X activity. Unlike in previous migration and adhesion studies on T cells, in NK-92 cells cathepsin X was not co-localized with LFA-1 at the plasma membrane but was, rather, redistributed to the cytotoxic granules and secreted during degranulation.
Collapse
|
15
|
Geraghty S, Koutsouveli V, Hall C, Chang L, Sacristan-Soriano O, Hill M, Riesgo A, Hill A. Establishment of Host-Algal Endosymbioses: Genetic Response to Symbiont Versus Prey in a Sponge Host. Genome Biol Evol 2021; 13:6427630. [PMID: 34791195 PMCID: PMC8633732 DOI: 10.1093/gbe/evab252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The freshwater sponge Ephydatia muelleri and its Chlorella-like algal partner is an emerging model for studying animal: algal endosymbiosis. The sponge host is a tractable laboratory organism, and the symbiotic algae are easily cultured. We took advantage of these traits to interrogate questions about mechanisms that govern the establishment of durable intracellular partnerships between hosts and symbionts in facultative symbioses. We modified a classical experimental approach to discern the phagocytotic mechanisms that might be co-opted to permit persistent infections, and identified genes differentially expressed in sponges early in the establishment of endosymbiosis. We exposed algal-free E. muelleri to live native algal symbionts and potential food items (bacteria and native heat-killed algae), and performed RNA-Seq to compare patterns of gene expression among treatments. We found a relatively small but interesting suite of genes that are differentially expressed in the host exposed to live algal symbionts, and a larger number of genes triggered by host exposure to heat-killed algae. The upregulated genes in sponges exposed to live algal symbionts were mostly involved in endocytosis, ion transport, metabolic processes, vesicle-mediated transport, and oxidation–reduction. One of the host genes, an ATP-Binding Cassette transporter that is downregulated in response to live algal symbionts, was further evaluated for its possible role in the establishment of the symbiosis. We discuss the gene expression profiles associated with host responses to living algal cells in the context of conditions necessary for long-term residency within host cells by phototrophic symbionts as well as the genetic responses to sponge phagocytosis and immune-driven pathways.
Collapse
Affiliation(s)
- Sara Geraghty
- Department of Biology, University of Richmond, Virginia, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, New Jersey, USA
| | - Vasiliki Koutsouveli
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Chelsea Hall
- Department of Biology, University of Richmond, Virginia, USA.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Lillian Chang
- Department of Biology, Bates College, Lewiston, Maine, USA
| | - Oriol Sacristan-Soriano
- Department of Biology, University of Richmond, Virginia, USA.,Centro de Estudios Avanzados de Blanes (CEAB, CSIC), Blanes, Spain
| | - Malcolm Hill
- Department of Biology, University of Richmond, Virginia, USA.,Department of Biology, Bates College, Lewiston, Maine, USA
| | - Ana Riesgo
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Madrid, Spain
| | - April Hill
- Department of Biology, University of Richmond, Virginia, USA.,Department of Biology, Bates College, Lewiston, Maine, USA
| |
Collapse
|
16
|
McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. Proteases, Mucus, and Mucosal Immunity in Chronic Lung Disease. Int J Mol Sci 2021; 22:5018. [PMID: 34065111 PMCID: PMC8125985 DOI: 10.3390/ijms22095018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Sinéad Ryan
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (M.C.M.); (R.B.); (S.R.); (S.W.)
| |
Collapse
|
17
|
Zheng DJ, Abou Taka M, Heit B. Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. Pathogens 2021; 10:134. [PMID: 33572846 PMCID: PMC7912081 DOI: 10.3390/pathogens10020134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia and inflammatory diseases of the pulmonary system such as chronic obstructive pulmonary disease and asthma continue to cause significant morbidity and mortality globally. While the etiology of these diseases is highly different, they share a number of similarities in the underlying inflammatory processes driving disease pathology. Multiple recent studies have identified failures in efferocytosis-the phagocytic clearance of apoptotic cells-as a common driver of inflammation and tissue destruction in these diseases. Effective efferocytosis has been shown to be important for resolving inflammatory diseases of the lung and the subsequent restoration of normal lung function, while many pneumonia-causing pathogens manipulate the efferocytic system to enhance their growth and avoid immunity. Moreover, some treatments used to manage these patients, such as inhaled corticosteroids for chronic obstructive pulmonary disease and the prevalent use of statins for cardiovascular disease, have been found to beneficially alter efferocytic activity in these patients. In this review, we provide an overview of the efferocytic process and its role in the pathophysiology and resolution of pneumonia and other inflammatory diseases of the lungs, and discuss the utility of existing and emerging therapies for modulating efferocytosis as potential treatments for these diseases.
Collapse
Affiliation(s)
- David Jiao Zheng
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Maria Abou Taka
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
18
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Szulc-Dąbrowska L, Bossowska-Nowicka M, Struzik J, Toka FN. Cathepsins in Bacteria-Macrophage Interaction: Defenders or Victims of Circumstance? Front Cell Infect Microbiol 2020; 10:601072. [PMID: 33344265 PMCID: PMC7746538 DOI: 10.3389/fcimb.2020.601072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages are the first encounters of invading bacteria and are responsible for engulfing and digesting pathogens through phagocytosis leading to initiation of the innate inflammatory response. Intracellular digestion occurs through a close relationship between phagocytic/endocytic and lysosomal pathways, in which proteolytic enzymes, such as cathepsins, are involved. The presence of cathepsins in the endo-lysosomal compartment permits direct interaction with and killing of bacteria, and may contribute to processing of bacterial antigens for presentation, an event necessary for the induction of antibacterial adaptive immune response. Therefore, it is not surprising that bacteria can control the expression and proteolytic activity of cathepsins, including their inhibitors – cystatins, to favor their own intracellular survival in macrophages. In this review, we summarize recent developments in defining the role of cathepsins in bacteria-macrophage interaction and describe important strategies engaged by bacteria to manipulate cathepsin expression and activity in macrophages. Particularly, we focus on specific bacterial species due to their clinical relevance to humans and animal health, i.e., Mycobacterium, Mycoplasma, Staphylococcus, Streptococcus, Salmonella, Shigella, Francisella, Chlamydia, Listeria, Brucella, Helicobacter, Neisseria, and other genera.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Justyna Struzik
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-Szkoła Główna Gospodarstwa Wejskiego, Warsaw, Poland.,Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
20
|
Wang F, Song Z, Chen J, Wu Q, Zhou X, Ni X, Dai J. The immunosuppressive functions of two novel tick serpins, HlSerpin-a and HlSerpin-b, from Haemaphysalis longicornis. Immunology 2019; 159:109-120. [PMID: 31606893 DOI: 10.1111/imm.13130] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Serpins are evolutionarily conserved serine protease inhibitors that are widely distributed in animals, plants and microbes. In this study, we reported the cloning and functional characterizations of two novel serpin genes, HlSerpin-a and HlSerpin-b, from the hard tick Haemaphysalis longicornis of China. Recombinant HlSerpin-a and HlSerpin-b displayed protease inhibitory activities against multiple mammalian proteases. Similar to other tick serpins, HlSerpin-a and HlSerpin-b suppressed the expression of inflammatory cytokines such as TNF-α, interleukin (IL)-6 and IL-1β from lipopolysaccharide-stimulated mouse bone-marrow-derived macrophages (BMDMs) or mouse bone-marrow-derived dendritic cells (BMDCs). The minimum active region (reaction centre loop) of HlSerpin-a, named SA-RCL, showed similar biological activities as HlSerpin-a in the protease inhibition and immune suppression assays. The immunosuppressive activities of full-length HlSerpin-a and SA-RCL are impaired in Cathepsin G or Cathepsin B knockout mouse macrophages, suggesting that the immunomodulation functions of SA and SA-RCL are dependent on their protease inhibitory activity. Finally, we showed that both full-length HlSerpins and SA-RCL can relieve the joint swelling and inflammatory response in collagen-induced mouse arthritis models. These results suggested that HlSerpin-a and HlSerpin-b are two functional arthropod serpins, and the minimal reactive peptide SA-RCL is a potential candidate for drug development against inflammatory diseases.
Collapse
Affiliation(s)
- Fanqi Wang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Zhenyu Song
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Jing Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Qihan Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Xia Zhou
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiaohua Ni
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Jianfeng Dai
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Jakoš T, Pišlar A, Jewett A, Kos J. Cysteine Cathepsins in Tumor-Associated Immune Cells. Front Immunol 2019; 10:2037. [PMID: 31555270 PMCID: PMC6724555 DOI: 10.3389/fimmu.2019.02037] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/23/2022] Open
Abstract
Cysteine cathepsins are key regulators of the innate and adaptive arms of the immune system. Their expression, activity, and subcellular localization are associated with the distinct development and differentiation stages of immune cells. They promote the activation of innate myeloid immune cells since they contribute to toll-like receptor signaling and to cytokine secretion. Furthermore, they control lysosomal biogenesis and autophagic flux, thus affecting innate immune cell survival and polarization. They also regulate bidirectional communication between the cell exterior and the cytoskeleton, thus influencing cell interactions, morphology, and motility. Importantly, cysteine cathepsins contribute to the priming of adaptive immune cells by controlling antigen presentation and are involved in cytotoxic granule mediated killing in cytotoxic T lymphocytes and natural killer cells. Cathepins'aberrant activity can be prevented by their endogenous inhibitors, cystatins. However, dysregulated proteolysis contributes significantly to tumor progression also by modulation of the antitumor immune response. Especially tumor-associated myeloid cells, such as tumor-associated macrophages and myeloid-derived suppressor cells, which are known for their tumor promoting and immunosuppressive functions, constitute the major source of excessive cysteine cathepsin activity in cancer. Since they are enriched in the tumor microenvironment, cysteine cathepsins represent exciting targets for development of new diagnostic and therapeutic moieties.
Collapse
Affiliation(s)
- Tanja Jakoš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anahid Jewett
- UCLA School of Dentistry and Medicine, Los Angeles, CA, United States
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
22
|
Cathepsin L promotes secretory IgA response by participating in antigen presentation pathways during Mycoplasma Hyopneumoniae infection. PLoS One 2019; 14:e0215408. [PMID: 30986254 PMCID: PMC6464228 DOI: 10.1371/journal.pone.0215408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Cathepsin L (CTSL) has been proved to help contain leishmaniasis and mycoplasma infection in mice by supporting cellular immune responses, but the regulatory functions of CTSL on mucosal immune responses haven't been tested and remain undefined. Here, we investigated the effects of CTSL on SIgA responses and invariant chain (Ii) degradations in the co-cultured swine dendritic cells (DCs) and B cells system in vitro. When the cells system were transfected with vector CTSL-GFP or incubated with recombinant CTSL (rCTSL) before they were infected with Mycoplasma hyopneumoniae (M.hp), SIgA significantly increased and Ii chain was degraded into smaller intermediates, while SIgA decreased when CTSL was knockdown or inhibited with E64. To confirm the SIgA responses promoted by CTSL contribute to the resistance to mycoplasma pneumonia, pigs injected with rCTSL before they were challenged with M.hp, showed milder clinical symptoms and histopathological damage of lungs, less mycoplasma burden together with higher secretion of SIgA, percentages of CD4+ T cells and level of MHC II molecules comparing with the group without rCTSL. Collectively, these results suggested that rCTSL could provide effective protection for piglets against mycoplasma pneumonia by enhancing M.hp-specific mucosal immune responses through its role in antigen presentation by processing the invariant chain.
Collapse
|
23
|
Lv Z, Qiu L, Liu Z, Wang W, Chen H, Jia Y, Jia Z, Jiang S, Wang L, Song L. Molecular characterization of a cathepsin L1 highly expressed in phagocytes of pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:152-162. [PMID: 30144489 DOI: 10.1016/j.dci.2018.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Cathepsin L1 (CTSL1) is a lysosomal cysteine protease with a papain-like structure. It is known to be implicated in multiple processes of immune response against pathogen infection based on the proteolytic activity. In the present study, a CTSL1 homologue (designated as CgCTSL1) was identified from Crassostrea gigas. It contained a typically single Pept_C1 domain with three conserved catalytically essential residues (Gln25, His135 and Asn178). The mRNA of CgCTSL1 was ubiquitously expressed in oyster tissues with the highest expression level in important immune tissues such as gill and hemocytes. CgCTSL1 proteins were mainly detected in gill and hepatopancreas by immunohistochemistry. Recombinant CgCTSL1 (rCgCTSL1) exhibited proteolytic activity to cleave the substrate Ac-FR-amino-4-trifluoromethyl coumarin (AFC) in a dose-dependent manner, and the inhibitor could reduce its proteolytic activity. After the interference of CgCTSL1 mRNA, the proteolytic activity of oyster hemocytes was significantly down-regulated with the released AFC fluorescence value decreasing from 375.84 to 179.21 (p < 0.05). Flow cytometry analysis revealed that the expression of CgCTSL1 protein was higher in phagocytes with the mean fluorescence intensity (MFI) value of 21,187 (4.13-fold, p < 0.01) compared to the MFI value of 5,130 in non-phagocytic hemocytes. The further confocal analysis demonstrated that the actively phagocytic hemocytes with green bead signals were co-localized with stronger CgCTSL1 positive signals. The mRNA expression levels of CgCTSL1 in phagocyte-like sub-populations of granulocytes and semi-granulocytes were 298.12-fold (p < 0.01) and 2.75-fold (p < 0.01) of that in agranulocytes, respectively. Western blotting analysis of the hemocyte proteins revealed that CgCTSL1 was relatively abundant in granulocytes and semi-granulocytes compared to that in agranulocytes. These results collectively suggested that CgCTSL1, a CTSL1 homologue highly expressed in phagocyte-like hemocytes, was possibly involved in cellular immune response dependent on its conserved proteolytic activity, which might provide clues for the divergence between phagocytes and non-phagocytic hemocytes as well as the identification of promising molecular markers for phagocytes in oyster C. gigas.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoqun Liu
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunke Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
24
|
Sun T, Wang F, Pan W, Wu Q, Wang J, Dai J. An Immunosuppressive Tick Salivary Gland Protein DsCystatin Interferes With Toll-Like Receptor Signaling by Downregulating TRAF6. Front Immunol 2018; 9:1245. [PMID: 29922290 PMCID: PMC5996936 DOI: 10.3389/fimmu.2018.01245] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/17/2018] [Indexed: 11/13/2022] Open
Abstract
Ticks, blood-feeding arthropods, and secrete immunosuppressive molecules that inhibit host immune responses and provide survival advantages to pathogens. In this study, we characterized the immunosuppressive function of a novel tick salivary protein, DsCystatin, from Dermacentor silvarum of China. DsCystatin directly interacted with human Cathepsins L and B and inhibited their enzymatic activities. DsCystatin impaired the expression of inflammatory cytokines such as IL1β, IFNγ, TNFα, and IL6 from mouse bone marrow-derived macrophages (BMDMs) that had been stimulated with LPS or Borrelia burgdorferi. Consistently, DsCystatin inhibited the activation of mouse BMDMs and bone marrow-derived dendritic cells by downregulating the surface expression of CD80 and CD86. Mechanically, DsCystatin inhibited LPS- or B. burgdorferi-induced NFκB activation. For the first time, we identified that DsCystatin-attenuated TLR4 signaling by targeting TRAF6. DsCystatin enhanced LPS-induced autophagy, mediated TRAF6 degradation via an autophagy dependent manner, thereby impeded the downstream phosphorylation of IκBα and the nuclear transport of NFκB. Finally, DsCystatin relieved the joint inflammation in B. burgdorferi or complete Freund's adjuvant induced mouse arthritis models. These data suggested that DsCystatin is a novel immunosuppressive protein and can potentially be used in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ta Sun
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Fanqi Wang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Wen Pan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Qihan Wu
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, RID, Fudan Unversity, Shanghai, China
| | - Jingwen Wang
- School of Life Science, Fudan University, Shanghai, China
| | - Jianfeng Dai
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Kędzior M, Pawlak A, Seredyński R, Bania J, Platt-Samoraj A, Czemplik M, Klausa E, Bugla-Płoskońska G, Gutowicz J. Revealing the inhibitory potential of Yersinia enterocolitica on cysteine proteases of the papain family. Microbiol Res 2018; 207:211-225. [DOI: 10.1016/j.micres.2017.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 11/27/2022]
|
26
|
Subramanian Vignesh K, Landero Figueroa JA, Porollo A, Divanovic S, Caruso JA, Deepe GS. IL-4 Induces Metallothionein 3- and SLC30A4-Dependent Increase in Intracellular Zn(2+) that Promotes Pathogen Persistence in Macrophages. Cell Rep 2018; 16:3232-3246. [PMID: 27653687 PMCID: PMC5603080 DOI: 10.1016/j.celrep.2016.08.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/18/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
Alternative activation of macrophages promotes wound healing but weakens antimicrobial defenses against intracellular pathogens. The mechanisms that suppress macrophage function to create a favorable environment for pathogen growth remain elusive. We show that interleukin (IL)-4 triggers a metallothionein 3 (MT3)- and Zn exporter SLC30A4- dependent increase in the labile Zn2+ stores in macrophages and that intracellular pathogens can exploit this increase in Zn to survive. IL-4 regulates this pathway by shuttling extracellular Zn into macrophages and by activating cathepsins that act on MT3 to release bound Zn. We show that IL-4 can modulate Zn homeostasis in both human monocytes and mice. In vivo, MT3 can repress macrophage function in an M2-polarizing environment to promote pathogen persistence. Thus, MT3 and SLC30A4 dictate the size of the labile Zn2+ pool and promote the survival of a prototypical intracellular pathogen in M2 macrophages.
Collapse
Affiliation(s)
| | - Julio A Landero Figueroa
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology and Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph A Caruso
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - George S Deepe
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; Veterans Affairs Hospital, Cincinnati, OH 45220, USA.
| |
Collapse
|
27
|
Kordon AO, Abdelhamed H, Ahmed H, Park JY, Karsi A, Pinchuk LM. Phagocytic and Bactericidal Properties of Channel Catfish Peritoneal Macrophages Exposed to Edwardsiella ictaluri Live Attenuated Vaccine and Wild-Type Strains. Front Microbiol 2018; 8:2638. [PMID: 29375507 PMCID: PMC5767262 DOI: 10.3389/fmicb.2017.02638] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Edwardsiella ictaluri (E. ictaluri), a Gram-negative, intracellular, facultative bacterium, is the causative agent of enteric septicemia of catfish (ESC), which is one of the most significant diseases of farmed channel catfish. Macrophages have a critical role in major defense mechanisms against bacterial infections by migrating to the site of infection, engulfing and killing pathogens, and priming adaptive immune responses. Vaccination of catfish with E. ictaluri live attenuated vaccine (LAV) strains increased the efficiency of phagocytosis and bacterial killing in catfish peritoneal macrophages compared in vitro with macrophages from non-vaccinated fish. Recently, our group developed several protective LAV strains from E. ictaluri. However, their effects on the antigen uptake and bacterial killing in catfish macrophages have not been evaluated. In this study, we assessed the phagocytic and bactericidal activity of peritoneal macrophages in the uptake of E. ictaluri wild-type (WT) and two LAV strains. We found that phagocytosis of LAV strains was significantly higher compared to their WT counterpart in peritoneal macrophages. Moreover, the uptake of E. ictaluri opsonized with sera from vaccinated catfish was more efficient than when opsonized with sera from sham-vaccinated fish. Notably, catfish macrophages did not lose their phagocytic properties at 4°C, as described previously in mammalian and zebrafish models. Also, opsonization of E. ictaluri with inactivated sera from vaccinated and sham-vaccinated catfish decreased significantly phagocytic uptake of bacteria at 32°C, and virtually suppressed endocytosis at 4°C, suggesting the important role of complement-dependent mechanisms in catfish macrophage phagocytosis. In conclusion, our data on enhanced phagocytic capacity and effective killing ability in macrophages of vaccine strains suggested the LAVs’ advantage if processed and presented in the form of peptides to specific lymphocytes of an adaptive immune system and emphasize the importance of macrophage-mediated immunity against ESC. Furthermore, we showed the role of complement-dependent mechanisms in the phagocytic uptakes of E. ictaluri in catfish peritoneal macrophages at 4 and 32°C. Finally, LAV vaccine-induced bacterial phagocytosis and killing properties of peritoneal macrophages emphasized the importance of the innate immune responses in ESC.
Collapse
Affiliation(s)
- Adef O Kordon
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Hamada Ahmed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States.,Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Joo Y Park
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Lesya M Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
28
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
29
|
Role of Cathepsin S in Periodontal Inflammation and Infection. Mediators Inflamm 2017; 2017:4786170. [PMID: 29362520 PMCID: PMC5736933 DOI: 10.1155/2017/4786170] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/29/2017] [Indexed: 12/19/2022] Open
Abstract
Cathepsin S is a cysteine protease and regulator of autophagy with possible involvement in periodontitis. The objective of this study was to investigate whether cathepsin S is involved in the pathogenesis of periodontal diseases. Human periodontal fibroblasts were cultured under inflammatory and infectious conditions elicited by interleukin-1β and Fusobacterium nucleatum, respectively. An array-based approach was used to analyze differential expression of autophagy-associated genes. Cathepsin S was upregulated most strongly and thus further studied in vitro at gene and protein levels. In vivo, gingival tissue biopsies from rats with ligature-induced periodontitis and from periodontitis patients were also analyzed at transcriptional and protein levels. Multiple gene expression changes due to interleukin-1β and F. nucleatum were observed in vitro. Both stimulants caused a significant cathepsin S upregulation. A significantly elevated cathepsin S expression in gingival biopsies from rats with experimental periodontitis was found in vivo, as compared to that from control. Gingival biopsies from periodontitis patients showed a significantly higher cathepsin S expression than those from healthy gingiva. Our findings provide original evidence that cathepsin S is increased in periodontal cells and tissues under inflammatory and infectious conditions, suggesting a critical role of this autophagy-associated molecule in the pathogenesis of periodontitis.
Collapse
|
30
|
Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol 2017; 8:1368. [PMID: 29114249 PMCID: PMC5660709 DOI: 10.3389/fimmu.2017.01368] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. Small unicellular organisms such as free-living amoeba use this process to acquire food. In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells (such as neutrophils and macrophages) perform this very efficiently and were therefore named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular debris. Phagocytosis involves a series of steps from recognition of the target particle, ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial environment of the phagolysosome. For the most part, phagocytosis is an efficient process that eliminates invading pathogens and helps maintaining homeostasis. However, several pathogens have also evolved different strategies to prevent phagocytosis from proceeding in a normal way. These pathogens have a clear advantage to perpetuate the infection and continue their replication. Here, we present an overview of the phagocytic process with emphasis on the antimicrobial elements professional phagocytes use. We also summarize the current knowledge on the microbial strategies different pathogens use to prevent phagocytosis either at the level of ingestion, phagosome formation, and maturation, and even complete escape from phagosomes.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
31
|
Kissing S, Saftig P, Haas A. Vacuolar ATPase in phago(lyso)some biology. Int J Med Microbiol 2017; 308:58-67. [PMID: 28867521 DOI: 10.1016/j.ijmm.2017.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Many eukaryotic cells ingest extracellular particles in a process termed phagocytosis which entails the generation of a new intracellular compartment, the phagosome. Phagosomes change their composition over time and this maturation process culminates in their fusion with acidic, hydrolase-rich lysosomes. During the maturation process, degradation and, when applicable, killing of the cargo may ensue. Many of the events that are pathologically relevant depend on strong acidification of phagosomes by the 'vacuolar' ATPase (V-ATPase). This protein complex acidifies the lumen of some intracellular compartments at the expense of ATP hydrolysis. We discuss here the roles and importance of V-ATPase in intracellular trafficking, its distribution, inhibition and activities, its role in the defense against microorganisms and the counteractivities of pathogens.
Collapse
Affiliation(s)
- Sandra Kissing
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| | - Albert Haas
- Institut für Zellbiologie, Friedrich-Wilhelms-Universität Bonn, Ulrich-Haberland-Str. 61A, D-53121 Bonn, Germany.
| |
Collapse
|
32
|
Ketterer S, Gomez-Auli A, Hillebrand LE, Petrera A, Ketscher A, Reinheckel T. Inherited diseases caused by mutations in cathepsin protease genes. FEBS J 2017; 284:1437-1454. [PMID: 27926992 DOI: 10.1111/febs.13980] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
Lysosomal cathepsins are proteolytic enzymes increasingly recognized as prognostic markers and potential therapeutic targets in a variety of diseases. In those conditions, the cathepsins are mostly overexpressed, thereby driving the respective pathogenic processes. Although less known, there are also diseases with a genetic deficiency of cathepsins. In fact, nowadays 6 of the 15 human proteases called 'cathepsins' have been linked to inherited syndromes. However, only three of these syndromes are typical lysosomal storage diseases, while the others are apparently caused by defective cleavage of specific protein substrates. Here, we will provide an introduction on lysosomal cathepsins, followed by a brief description of the clinical symptoms of the various genetic diseases. For each disease, we focus on the known mutations of which many have been only recently identified by modern genome sequencing approaches. We further discuss the effect of the respective mutation on protease structure and activity, the resulting pathogenesis, and possible therapeutic strategies.
Collapse
Affiliation(s)
- Stephanie Ketterer
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Germany
| | - Alejandro Gomez-Auli
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Germany
| | - Larissa E Hillebrand
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Agnese Petrera
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany
| | - Anett Ketscher
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany
| | - Thomas Reinheckel
- Medical Faculty, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| |
Collapse
|
33
|
Müller S, Wolf AJ, Iliev ID, Berg BL, Underhill DM, Liu GY. Poorly Cross-Linked Peptidoglycan in MRSA Due to mecA Induction Activates the Inflammasome and Exacerbates Immunopathology. Cell Host Microbe 2016; 18:604-12. [PMID: 26567511 DOI: 10.1016/j.chom.2015.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/23/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Methicillin-resistant S. aureus (MRSA) is a leading health problem. Compared to methicillin-sensitive S. aureus, MRSA infections are associated with greater morbidity and mortality, but the mechanisms underlying MRSA pathogenicity are unclear. Here we show that the protein conferring β-lactam antibiotic resistance, penicillin-binding protein 2A (encoded by the mecA gene), directly contributes to pathogenicity during MRSA infection. MecA induction leads to a reduction in peptidoglycan cross-linking that allows for enhanced degradation and detection by phagocytes, resulting in robust IL-1β production. Peptidoglycan isolated from β-lactam-challenged MRSA strongly induces the NLRP3 inflammasome in macrophages, but these effects are lost upon peptidoglycan solubilization. Mutant MRSA bacteria with naturally occurring reduced peptidoglycan cross-links induce high IL-1β levels in vitro and cause increased pathology in vivo. β-lactam treatment of MRSA skin infection exacerbates immunopathology, which is IL-1 dependent. Thus, antibiotic-induced expression of mecA during MRSA skin infection contributes to immunopathology by altering peptidoglycan structure.
Collapse
Affiliation(s)
- Sabrina Müller
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrea J Wolf
- Division of Biomedical Sciences and the F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Iliyan D Iliev
- Division of Biomedical Sciences and the F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bethany L Berg
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Underhill
- Division of Biomedical Sciences and the F. Widjaja Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - George Y Liu
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
34
|
Kędzior M, Seredyński R, Gutowicz J. Microbial inhibitors of cysteine proteases. Med Microbiol Immunol 2016; 205:275-96. [PMID: 27048482 DOI: 10.1007/s00430-016-0454-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
Abstract
Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted.
Collapse
Affiliation(s)
- Mateusz Kędzior
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Rafał Seredyński
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Jan Gutowicz
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|
35
|
Li H, Juan L, Xia L, Wang Y, Bao Y, Sun G. Thioridazine Sensitizes Esophageal Carcinoma Cell Lines to Radiotherapy-Induced Apoptosis In Vitro and In Vivo. Med Sci Monit 2016; 22:2624-34. [PMID: 27453171 PMCID: PMC4970441 DOI: 10.12659/msm.899950] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Radiotherapy is one of the primary treatments for esophageal squamous cell carcinoma (ESCC). Identification of novel radio-sensitizing agents will improve the therapeutic outcome of radiotherapy. This study aimed to determine the radio-sensitizing effect of the antipsychotic agent thioridazine in ESCC and explored the underlying mechanisms. Material/Methods ECA-109 and TE-1 ESCC cells were treated with thioridazine and radiotherapy alone and in combination. Cell survival was measured by MTT assay. Cell cycle and apoptosis were monitored by flow cytometry. Western blot analysis was used to analyze the expression of phospho-PI3K, phosphor-AKT, phospho-mTOR, Caspase-3, Caspase-9, Bax, Bcl-2, Bal-xl, Bak, and p53. The xenograft mouse model was used to study the in vivo anticancer effect of thioridazine and irradiation. Results Combined treatment with thioridazine and irradiation significantly reduced viability of ESCC cells compared with thioridazine or irradiation treatment alone. Thioridazine and irradiation treatment induced G0/G1 phases cell cycle arrest through down-regulation of CDK4 and cyclinD1. In addition, thioridazine and irradiation treatment induced apoptosis through up-regulation of cleaved capase-3 and 9, as well as an increase in the expression of Bax and Bak and a decrease in the expression of Bcl-2 and Bcl-xl. Furthermore, thioridazine and irradiation treatment inhibited the PI3K-AKT-mTOR pathway and up-regulated the expression of p53. In xenograft mice, thioridazine and irradiation reduced ESCC tumor growth. Conclusions Thioridazine sensitizes ESCC cells to radiotherapy. Thioridazine may play a role in ESCC radiation therapy as a promising radiosensitizer.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Li Juan
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Leiming Xia
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yi Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Yangyi Bao
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| |
Collapse
|
36
|
Kaufmann SH, Dorhoi A. Molecular Determinants in Phagocyte-Bacteria Interactions. Immunity 2016; 44:476-491. [DOI: 10.1016/j.immuni.2016.02.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 12/24/2022]
|
37
|
Blair HC, Soboloff J, Robinson LJ, Tourkova IL, Larrouture QC, Witt MR, Holaskova I, Schafer R, Elliott M, Hirsch R, Barnett JB. Suppression of arthritis-induced bone erosion by a CRAC channel antagonist. RMD Open 2016; 2:e000093. [PMID: 26819750 PMCID: PMC4716559 DOI: 10.1136/rmdopen-2015-000093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 11/10/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE We have shown in vitro and in vivo that osteoclast maturation requires calcium-release activated calcium (CRAC) channels. In inflammatory arthritis, osteoclasts mediate severe and debilitating bone erosion. In the current study, we assess the value of CRAC channels as a therapeutic target to suppress bone erosion in acute inflammatory arthritis. METHODS Collagen-induced arthritis (CIA) was induced in mice. The CRAC channel inhibitor 3,4-dichloropropionaniline (DCPA) and a placebo was administered 1 day prior to collagen II booster to induce arthritis. Effects on swelling, inflammatory cell invasion in joints, serum cytokines and bone erosion were measured. RESULTS Assays, by blinded observers, of arthritis severity showed that DCPA, 21 mg/kg/day, suppressed arthritis development over 3 weeks. Bone and cartilage damage in sections of animal feet was reduced approximately 50%; overall swelling of joints was reduced by a similar amount. Effects on bone density by µCT showed clear separation in DCPA-treated CIA animals from CIA without treatment, while differences between controls without CIA and CIA treated with DCPA differed by small amounts and in most cases were not statistically different. Response was not related to anticollagen titres. There were no adverse effects in the treated group on animal weight or activity, consistent with low toxicity. The effect was maximal 12-17 days after collagen booster, during the rapid appearance of arthritis in untreated CIA. At 20 days after treatment (day 40), differences in arthritis score were reduced and tumour necrosis factor α, interleukin (IL)-1, or IL-6 in the serum of the animals were similar in treated and untreated animals. CONCLUSIONS DCPA, a novel inhibitor of CRAC channels, suppresses bone erosion associated with acute arthritis in mice and might represent a new treatment modality for acute arthrits.
Collapse
Affiliation(s)
- Harry C Blair
- Departments of Pathology and of Cell Biology, The Pittsburgh VA Medical Center and the University of Pittsburgh, Pittsburgh, USA
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology and the Department of Medical Genetics & Molecular Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisa J Robinson
- Departments of Pathology and of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Irina L Tourkova
- Departments of Pathology and of Cell Biology, The Pittsburgh VA Medical Center and the University of Pittsburgh, Pittsburgh, USA
| | - Quitterie C Larrouture
- Departments of Pathology and of Cell Biology, The Pittsburgh VA Medical Center and the University of Pittsburgh, Pittsburgh, USA
| | - Michelle R Witt
- Departments of Pathology and of Cell Biology, The Pittsburgh VA Medical Center and the University of Pittsburgh, Pittsburgh, USA
| | - Ida Holaskova
- Department of Microbiology, Immunology & Cell Biology, and the Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Rosana Schafer
- Department of Microbiology, Immunology & Cell Biology, and the Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Meenal Elliott
- Department of Microbiology, Immunology & Cell Biology, and the Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Raphael Hirsch
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City,
| | - John B Barnett
- Department of Microbiology, Immunology & Cell Biology, and the Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|
38
|
Flannagan RS, Heit B, Heinrichs DE. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens 2015; 4:826-68. [PMID: 26633519 PMCID: PMC4693167 DOI: 10.3390/pathogens4040826] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Bryan Heit
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David E Heinrichs
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
39
|
Flannagan RS, Heit B, Heinrichs DE. Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cell Microbiol 2015; 18:514-35. [PMID: 26408990 DOI: 10.1111/cmi.12527] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023]
Abstract
The success of Staphylococcus aureus as a pathogen is partly attributable to its ability to thwart host innate immune responses, which includes resisting the antimicrobial functions of phagocytes. Here, we have studied the interaction of methicillin-resistant S. aureus (MRSA) strain USA300 with murine RAW 264.7 and primary human macrophages using molecular imaging and single cell analysis to obtain an unprecedented understanding of the interaction between the macrophage and MRSA. Herein we demonstrate that macrophages fail to control intracellular infection by MRSA USA300 despite trafficking the bacteria into mature phagolysosomes. Using fluorescence-based proliferation assays we also show that intracellular staphylococci proliferate and that replication commences while the bacteria are residing in mature phagolysosomes hours after initial phagocytosis. Finally, live-cell fluorescence video microscopy allowed for unprecedented visual insight into the escape of MRSA from macrophages, demonstrating that the macrophages die through a pathway characterized by membrane blebbing and activation of caspase-3 followed by acquisition of the vital dye propidium iodide. Moreover, cell death precedes the emergence of MRSA from infected macrophages, and these events can be ablated by prolonged exposure of infected phagocytes to gentamicin.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada, N6A 5C1.,Centre for Human Immunology, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - David E Heinrichs
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada, N6A 5C1.,Centre for Human Immunology, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
40
|
Brix K, McInnes J, Al-Hashimi A, Rehders M, Tamhane T, Haugen MH. Proteolysis mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges. PROTOPLASMA 2015; 252:755-774. [PMID: 25398648 DOI: 10.1007/s00709-014-0730-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/04/2014] [Indexed: 06/04/2023]
Abstract
Proteases play essential roles in protein degradation, protein processing, and extracellular matrix remodeling in all cell types and tissues. They are also involved in protein turnover for maintenance of homeostasis and protein activation or inactivation for cell signaling. Proteases range in function and specificity, with some performing distinct substrate cleavages, while others accomplish proteolysis of a wide range of substrates. As such, different cell types use specialized molecular mechanisms to regulate the localization of proteases and their function within the compartments to which they are destined. Here, we focus on the cysteine family of cathepsin proteases and legumain, which act predominately within the endo-lysosomal pathway. In particular, recent knowledge on cysteine cathepsins and their primary regulator legumain is scrutinized in terms of their trafficking to endo-lysosomal compartments and other less recognized cellular locations. We further explore the mechanisms that regulate these processes and point to pathological cases which arise from detours taken by these proteases. Moreover, the emerging biological roles of specific forms and variants of cysteine cathepsins and legumain are discussed. These may be decisive, pathogenic, or even deadly when localizing to unusual cellular compartments in their enzymatically active form, because they may exert unexpected effects by alternative substrate cleavage. Hence, we propose future perspectives for addressing the actions of cysteine cathepsins and legumain as well as their specific forms and variants. The increasing knowledge in non-canonical aspects of cysteine cathepsin- and legumain-mediated proteolysis may prove valuable for developing new strategies to utilize these versatile proteases in therapeutic approaches.
Collapse
Affiliation(s)
- Klaudia Brix
- Research Area HEALTH, Research Center MOLIFE-Molecular Life Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany,
| | | | | | | | | | | |
Collapse
|
41
|
Feuerstein R, Seidl M, Prinz M, Henneke P. MyD88 in macrophages is critical for abscess resolution in staphylococcal skin infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:2735-45. [PMID: 25681348 DOI: 10.4049/jimmunol.1402566] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
When Staphylococcus aureus penetrates the epidermis and reaches the dermis, polymorphonuclear leukocytes (PMLs) accumulate and an abscess is formed. However, the molecular mechanisms that orchestrate initiation and termination of inflammation in skin infection are incompletely understood. In human myeloid differentiation primary response gene 88 (MyD88) deficiency, staphylococcal skin and soft tissue infections are a leading and potentially life-threatening problem. In this study, we found that MyD88-dependent sensing of S. aureus by dermal macrophages (Mϕ) contributes to both timely escalation and termination of PML-mediated inflammation in a mouse model of staphylococcal skin infection. Mϕs were key to recruit PML within hours in response to staphylococci, irrespective of bacterial viability. In contrast with bone marrow-derived Mϕs, dermal Mϕs did not require UNC-93B or TLR2 for activation. Moreover, PMLs, once recruited, were highly activated in an MyD88-independent fashion, yet failed to clear the infection if Mϕs were missing or functionally impaired. In normal mice, clearance of the infection and contraction of the PML infiltrate were accompanied by expansion of resident Mϕs in a CCR2-dependent fashion. Thus, whereas monocytes were dispensable for the early immune response to staphylococci, they contributed to Mϕ renewal after the infection was overcome. Taken together, MyD88-dependent sensing of staphylococci by resident dermal Mϕs is key for a rapid and balanced immune response, and PMLs are dependent on intact Mϕ for full function. Renewal of resident Mϕs requires both local control of bacteria and inflammatory monocytes entering the skin.
Collapse
Affiliation(s)
- Reinhild Feuerstein
- Center for Chronic Immunodeficiency, University Medical Center, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Maximilian Seidl
- Center for Chronic Immunodeficiency, University Medical Center, University of Freiburg, 79106 Freiburg, Germany; Institute of Pathology, University Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University Medical Center, University of Freiburg, 79106 Freiburg, Germany; Centre of Biological Signalling Studies, University of Freiburg, 79106 Freiburg, Germany; and
| | - Philipp Henneke
- Center for Chronic Immunodeficiency, University Medical Center, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
42
|
Cole J, Aberdein J, Jubrail J, Dockrell DH. The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus: mechanisms and contrasts. Adv Microb Physiol 2014; 65:125-202. [PMID: 25476766 DOI: 10.1016/bs.ampbs.2014.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages are critical mediators of innate immune responses against bacteria. The Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus express a range of virulence factors, which challenge macrophages' immune competence. We review how macrophages respond to this challenge. Macrophages employ a range of strategies to phagocytose and kill each pathogen. When the macrophages capacity to clear bacteria is overwhelmed macrophages play important roles in orchestrating the inflammatory response through pattern recognition receptor-mediated responses. Macrophages also ensure the inflammatory response is tightly constrained, to avoid tissue damage, and play an important role in downregulating the inflammatory response once initial bacterial replication is controlled.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jody Aberdein
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jamil Jubrail
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom.
| |
Collapse
|