1
|
Cansby E, Caputo M, Andersson E, Saghaleyni R, Henricsson M, Xia Y, Asiedu B, Blüher M, Svensson LT, Hoy AJ, Mahlapuu M. GCKIII kinases control hepatocellular lipid homeostasis via shared mode of action. J Lipid Res 2024; 65:100669. [PMID: 39395791 PMCID: PMC11602991 DOI: 10.1016/j.jlr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease has emerged as a leading global cause of chronic liver disease. Our recent translational investigations have shown that the STE20-type kinases comprising the GCKIII subfamily-MST3, STK25, and MST4-associate with hepatic lipid droplets and regulate ectopic fat storage in the liver; however, the mode of action of these proteins remains to be resolved. By comparing different combinations of the silencing of MST3, STK25, and/or MST4 in immortalized human hepatocytes, we found that their single knockdown results in a similar reduction in hepatocellular lipid content and metabolic stress, without any additive or synergistic effects observed when all three kinases are simultaneously depleted. A genome-wide yeast two-hybrid screen of the human hepatocyte library identified several interaction partners contributing to the GCKIII-mediated regulation of liver lipid homeostasis, that is, PDCD10 that protects MST3, STK25, and MST4 from degradation, MAP4K4 that regulates their activity via phosphorylation, and HSD17B11 that controls their action via a conformational change. Finally, using in vitro kinase assays on microfluidic microarrays, we pinpointed various downstream targets that are phosphorylated by the GCKIII kinases, with known functions in lipogenesis, lipolysis, and lipid secretion, as well as glucose uptake, glycolysis, hexosamine synthesis, and ubiquitination. Together, this study demonstrates that the members of the GCKIII kinase subfamily regulate hepatocyte lipid metabolism via common pathways. The results shed new light on the role of MST3, STK25, and MST4, as well as their interactions with PDCD10, MAP4K4, and HSD17B11, in the control of liver lipid homeostasis and metabolic dysfunction-associated steatotic liver disease susceptibility.
Collapse
Affiliation(s)
- Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rasool Saghaleyni
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Marcus Henricsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bernice Asiedu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - L Thomas Svensson
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
2
|
Reid MV, Fredickson G, Mashek DG. Mechanisms coupling lipid droplets to MASLD pathophysiology. Hepatology 2024:01515467-990000000-01067. [PMID: 39475114 DOI: 10.1097/hep.0000000000001141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 01/03/2025]
Abstract
Hepatic steatosis, the buildup of neutral lipids in lipid droplets (LDs), is commonly referred to as metabolic dysfunction-associated steatotic liver disease when alcohol or viral infections are not involved. Metabolic dysfunction-associated steatotic liver disease encompasses simple steatosis and the more severe metabolic dysfunction-associated steatohepatitis, characterized by inflammation, hepatocyte injury, and fibrosis. Previously viewed as inert markers of disease, LDs are now understood to play active roles in disease etiology and have significant nonpathological and pathological functions in cell signaling and function. These dynamic properties of LDs are tightly regulated by hundreds of proteins that coat the LD surface, controlling lipid metabolism, trafficking, and signaling. The following review highlights various facets of LD biology with the primary goal of discussing key mechanisms through which LDs promote the development of advanced liver diseases, including metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Mari V Reid
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gavin Fredickson
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Eichelmann F, Prada M, Sellem L, Jackson KG, Salas Salvadó J, Razquin Burillo C, Estruch R, Friedén M, Rosqvist F, Risérus U, Rexrode KM, Guasch-Ferré M, Sun Q, Willett WC, Martinez-Gonzalez MA, Lovegrove JA, Hu FB, Schulze MB, Wittenbecher C. Lipidome changes due to improved dietary fat quality inform cardiometabolic risk reduction and precision nutrition. Nat Med 2024; 30:2867-2877. [PMID: 38992128 PMCID: PMC11485259 DOI: 10.1038/s41591-024-03124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/11/2024] [Indexed: 07/13/2024]
Abstract
Current cardiometabolic disease prevention guidelines recommend increasing dietary unsaturated fat intake while reducing saturated fats. Here we use lipidomics data from a randomized controlled dietary intervention trial to construct a multilipid score (MLS), summarizing the effects of replacing saturated fat with unsaturated fat on 45 lipid metabolite concentrations. In the EPIC-Potsdam cohort, a difference in the MLS, reflecting better dietary fat quality, was associated with a significant reduction in the incidence of cardiovascular disease (-32%; 95% confidence interval (95% CI): -21% to -42%) and type 2 diabetes (-26%; 95% CI: -15% to -35%). We built a closely correlated simplified score, reduced MLS (rMLS), and observed that beneficial rMLS changes, suggesting improved dietary fat quality over 10 years, were associated with lower diabetes risk (odds ratio per standard deviation of 0.76; 95% CI: 0.59 to 0.98) in the Nurses' Health Study. Furthermore, in the PREDIMED trial, an olive oil-rich Mediterranean diet intervention primarily reduced diabetes incidence among participants with unfavorable preintervention rMLS levels, suggestive of disturbed lipid metabolism before intervention. Our findings indicate that the effects of dietary fat quality on the lipidome can contribute to a more precise understanding and possible prediction of the health outcomes of specific dietary fat modifications.
Collapse
Affiliation(s)
- Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Marcela Prada
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Laury Sellem
- Hugh Sinclair Unit of Human Nutrition, Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, Reading, UK
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition, Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, Reading, UK
| | - Jordi Salas Salvadó
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Cristina Razquin Burillo
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
- Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), University of Navarra, Pamplona, Spain
| | - Ramon Estruch
- Human Nutrition Unit, Department of Biochemistry and Biotechnology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Michael Friedén
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Frederik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Kathryn M Rexrode
- Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Marta Guasch-Ferré
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Miguel Angel Martinez-Gonzalez
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), University of Navarra, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Institute for Cardiovascular and Metabolic Research and Institute for Food, Nutrition and Health, Reading, UK
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Clemens Wittenbecher
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
- Department of Life Sciences, SciLifeLab, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
4
|
Ruiz M, Devkota R, Bergh PO, Nik AM, Blid Sköldheden S, Mondejar-Duran J, Tufvesson-Alm M, Bohlooly-Y M, Sanchez D, Carlsson P, Henricsson M, Jerlhag E, Borén J, Pilon M. Aging AdipoR2-deficient mice are hyperactive with enlarged brains excessively rich in saturated fatty acids. FASEB J 2024; 38:e23815. [PMID: 38989587 DOI: 10.1096/fj.202400293rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
To investigate how the fatty acid composition of brain phospholipids influences brain-specific processes, we leveraged the AdipoR2 (adiponectin receptor 2) knockout mouse model in which the brain is enlarged, and cellular membranes are excessively rich in saturated fatty acids. Lipidomics analysis of brains at 2, 7, and 18 months of age showed that phosphatidylcholines, which make up about two-thirds of all cerebrum membrane lipids, contain a gross excess of saturated fatty acids in AdipoR2 knockout mice, and that this is mostly attributed to an excess palmitic acid (C16:0) at the expense of oleic acid (C18:1), consistent with a defect in fatty acid desaturation and elongation in the mutant. Specifically, there was a ~12% increase in the overall saturated fatty acid content within phosphatidylcholines and a ~30% increase in phosphatidylcholines containing two palmitic acids. Phosphatidylethanolamines, sphingomyelins, ceramides, lactosylceramides, and dihydroceramides also showed an excess of saturated fatty acids in the AdipoR2 knockout mice while nervonic acid (C24:1) was enriched at the expense of shorter saturated fatty acids in glyceroceramides. Similar defects were found in the cerebellum and myelin sheaths. Histology showed that cell density is lower in the cerebrum of AdipoR2 knockout mice, but electron microscopy did not detect reproducible defects in the ultrastructure of cerebrum neurons, though proteomics analysis showed an enrichment of electron transport chain proteins in the cerebellum. Behavioral tests showed that older (33 weeks old) AdipoR2 knockout mice are hyperactive and anxious compared to control mice of a similar age. Also, in contrast to control mice, the AdipoR2 knockout mice do not gain weight in old age but do have normal lifespans. We conclude that an excess fatty acid saturation in brain phospholipids is accompanied by hyperactivity but seems otherwise well tolerated.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ali Moussavi Nik
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Blid Sköldheden
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jorge Mondejar-Duran
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Diego Sanchez
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and physiology, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
6
|
Zhang J, Ruiz M, Bergh PO, Henricsson M, Stojanović N, Devkota R, Henn M, Bohlooly-Y M, Hernández-Hernández A, Alsheimer M, Borén J, Pilon M, Shibuya H. Regulation of meiotic telomere dynamics through membrane fluidity promoted by AdipoR2-ELOVL2. Nat Commun 2024; 15:2315. [PMID: 38485951 PMCID: PMC10940294 DOI: 10.1038/s41467-024-46718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The cellular membrane in male meiotic germ cells contains a unique class of phospholipids and sphingolipids that is required for male reproduction. Here, we show that a conserved membrane fluidity sensor, AdipoR2, regulates the meiosis-specific lipidome in mouse testes by promoting the synthesis of sphingolipids containing very-long-chain polyunsaturated fatty acids (VLC-PUFAs). AdipoR2 upregulates the expression of a fatty acid elongase, ELOVL2, both transcriptionally and post-transcriptionally, to synthesize VLC-PUFA. The depletion of VLC-PUFAs and subsequent accumulation of palmitic acid in AdipoR2 knockout testes stiffens the cellular membrane and causes the invagination of the nuclear envelope. This condition impairs the nuclear peripheral distribution of meiotic telomeres, leading to errors in homologous synapsis and recombination. Further, the stiffened membrane impairs the formation of intercellular bridges and the germ cell syncytium, which disrupts the orderly arrangement of cell types within the seminiferous tubules. According to our findings we propose a framework in which the highly-fluid membrane microenvironment shaped by AdipoR2-ELOVL2 underpins meiosis-specific chromosome dynamics in testes.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Per-Olof Bergh
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Nena Stojanović
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden
| | - Marius Henn
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | | | - Abrahan Hernández-Hernández
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- National Genomics Infrastructure, Science for Life Laboratory, Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, 41467, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390, Gothenburg, Sweden.
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
7
|
Pagkali A, Makris A, Brofidi K, Agouridis AP, Filippatos TD. Pathophysiological Mechanisms and Clinical Associations of Non-Alcoholic Fatty Pancreas Disease. Diabetes Metab Syndr Obes 2024; 17:283-294. [PMID: 38283640 PMCID: PMC10813232 DOI: 10.2147/dmso.s397643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Non-Alcoholic Fatty Pancreas disease (NAFPD), characterized by fat accumulation in pancreatic tissue, is an emerging clinical entity. However, the clinical associations, the underlying molecular drivers, and the pathophysiological mechanisms of NAFPD have not yet been characterized in detail. The NAFPD spectrum not only includes infiltration and accumulation of fat within and between pancreatic cells but also involves several inflammatory processes, dysregulation of physiological metabolic pathways, and hormonal defects. A deeper understanding of the underlying molecular mechanisms is key to correlate NAFPD with clinical entities including non-alcoholic fatty liver disease, metabolic syndrome, diabetes mellitus, atherosclerosis, as well as pancreatic cancer and pancreatitis. The aim of this review is to examine the pathophysiological mechanisms of NAFPD and to assess the possible causative/predictive risk factors of NAFPD-related clinical syndromes.
Collapse
Affiliation(s)
- Antonia Pagkali
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios Makris
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi Brofidi
- Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Aris P Agouridis
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- Department of Internal Medicine, German Oncology Center, Limassol, Cyprus
| | | |
Collapse
|
8
|
Xia Y, Andersson E, Caputo M, Cansby E, Sedda F, Font-Gironès F, Ruud J, Kurhe Y, Hallberg B, Marschall HU, Asterholm IW, Romeo S, Blüher M, Mahlapuu M. Knockout of STE20-type kinase TAOK3 does not attenuate diet-induced NAFLD development in mice. Mol Med 2023; 29:138. [PMID: 37864157 PMCID: PMC10589923 DOI: 10.1186/s10020-023-00738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD), the primary hepatic consequence of obesity, is affecting about 25% of the global adult population. The aim of this study was to examine the in vivo role of STE20-type protein kinase TAOK3, which has been previously reported to regulate hepatocellular lipotoxicity in vitro, in the development of NAFLD and systemic insulin resistance in the context of obesity. METHODS Taok3 knockout mice and wild-type littermates were challenged with a high-fat diet. Various in vivo tests were performed to characterize the whole-body metabolism. NAFLD progression in the liver, and lipotoxic damage in adipose tissue, kidney, and skeletal muscle were compared between the genotypes by histological assessment, immunofluorescence microscopy, protein and gene expression profiling, and biochemical assays. Intracellular lipid accumulation and oxidative/ER stress were analyzed in cultured human and mouse hepatocytes where TAOK3 was knocked down by small interfering RNA. The expression of TAOK3-related STE20-type kinases was quantified in different organs from high-fat diet-fed Taok3-/- and wild-type mice. RESULTS TAOK3 deficiency had no impact on body weight or composition, food consumption, locomotor activity, or systemic glucose or insulin homeostasis in obese mice. Consistently, Taok3-/- mice and wild-type littermates developed a similar degree of high-fat diet-induced liver steatosis, inflammation, and fibrosis, and we detected no difference in lipotoxic damage of adipose tissue, kidney, or skeletal muscle when comparing the two genotypes. In contrast, the silencing of TAOK3 in vitro markedly suppressed ectopic lipid accumulation and metabolic stress in mouse and human hepatocytes. Interestingly, the hepatic mRNA abundance of several TAOK3-related kinases, which have been previously implicated to increase the risk of NAFLD susceptibility, was significantly elevated in Taok3-/- vs. wild-type mice. CONCLUSIONS In contrast to the in vitro observations, genetic deficiency of TAOK3 in mice failed to mitigate the detrimental metabolic consequences of chronic exposure to dietary lipids, which may be partly attributable to the activation of liver-specific compensation response for the genetic loss of TAOK3 by related STE20-type kinases.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Francesca Sedda
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ferran Font-Gironès
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Ruud
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
9
|
Chen KQ, Lei GL, Ke BY, Chen L, Wang ZB, Wang SZ. STK25: a viable therapeutic target for cancer treatments? Anticancer Drugs 2023; 34:995-1001. [PMID: 36728989 DOI: 10.1097/cad.0000000000001490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Serine/threonine protein kinase 25 (STK25) is a critical regulator of ectopic lipid storage, glucose and insulin homeostasis, fibrosis, and meta-inflammation. More and more studies have revealed a strong correlation between STK25 and human diseases. On the one hand, STK25 can affect glucose and fatty acid metabolism in normal cells or tumors. On the other hand, STK25 participates in autophagy, cell polarity, cell apoptosis, and cell migration by activating various signaling pathways. This article reviews the composition and function of STK25, the energy metabolism and potential drugs that may target STK25, and the research progress of STK25 in the occurrence and development of tumors, to provide a reference for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Department of Pharmacology, Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School
- Department of Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Guan-Lan Lei
- Department of Pharmacology, Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School
- Department of Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Bo-Yi Ke
- Department of Pharmacology, Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School
- Department of Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lu Chen
- Department of Pharmacology, Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School
- Department of Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zong-Bao Wang
- Department of Pharmacology, Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School
- Department of Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Shu-Zhi Wang
- Department of Pharmacology, Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, Hengyang Medical School
- Department of Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
10
|
Grander C, Grabherr F, Tilg H. Non-alcoholic fatty liver disease: pathophysiological concepts and treatment options. Cardiovasc Res 2023; 119:1787-1798. [PMID: 37364164 PMCID: PMC10405569 DOI: 10.1093/cvr/cvad095] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is continually increasing due to the global obesity epidemic. NAFLD comprises a systemic metabolic disease accompanied frequently by insulin resistance and hepatic and systemic inflammation. Whereas simple hepatic steatosis is the most common disease manifestation, a more progressive disease course characterized by liver fibrosis and inflammation (i.e. non-alcoholic steatohepatitis) is present in 10-20% of affected individuals. NAFLD furthermore progresses in a substantial number of patients towards liver cirrhosis and hepatocellular carcinoma. Whereas this disease now affects almost 25% of the world's population and is mainly observed in obesity and type 2 diabetes, NAFLD also affects lean individuals. Pathophysiology involves lipotoxicity, hepatic immune disturbances accompanied by hepatic insulin resistance, a gut dysbiosis, and commonly hepatic and systemic insulin resistance defining this disorder a prototypic systemic metabolic disorder. Not surprisingly many affected patients have other disease manifestations, and indeed cardiovascular disease, chronic kidney disease, and extrahepatic malignancies are all contributing substantially to patient outcome. Weight loss and lifestyle change reflect the cornerstone of treatment, and several medical treatment options are currently under investigation. The most promising treatment strategies include glucagon-like peptide 1 receptor antagonists, sodium-glucose transporter 2 inhibitors, Fibroblast Growth Factor analogues, Farnesoid X receptor agonists, and peroxisome proliferator-activated receptor agonists. Here, we review epidemiology, pathophysiology, and therapeutic options for NAFLD.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| |
Collapse
|
11
|
Cinato M, Mardani I, Miljanovic A, Drevinge C, Laudette M, Bollano E, Henricsson M, Tolö J, Bauza Thorbrügge M, Levin M, Lindbom M, Arif M, Pacher P, Andersson L, Olofsson CS, Borén J, Levin MC. Cardiac Plin5 interacts with SERCA2 and promotes calcium handling and cardiomyocyte contractility. Life Sci Alliance 2023; 6:e202201690. [PMID: 36717246 PMCID: PMC9887753 DOI: 10.26508/lsa.202201690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
The adult heart develops hypertrophy to reduce ventricular wall stress and maintain cardiac function in response to an increased workload. Although pathological hypertrophy generally progresses to heart failure, physiological hypertrophy may be cardioprotective. Cardiac-specific overexpression of the lipid-droplet protein perilipin 5 (Plin5) promotes cardiac hypertrophy, but it is unclear whether this response is beneficial. We analyzed RNA-sequencing data from human left ventricle and showed that cardiac PLIN5 expression correlates with up-regulation of cardiac contraction-related processes. To investigate how elevated cardiac Plin5 levels affect cardiac contractility, we generated mice with cardiac-specific overexpression of Plin5 (MHC-Plin5 mice). These mice displayed increased left ventricular mass and cardiomyocyte size but preserved heart function. Quantitative proteomics identified sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) as a Plin5-interacting protein. In situ proximity ligation assay further confirmed the Plin5/SERCA2 interaction. Live imaging showed increases in intracellular Ca2+ release during contraction, Ca2+ removal during relaxation, and SERCA2 function in MHC-Plin5 versus WT cardiomyocytes. These results identify a role of Plin5 in improving cardiac contractility through enhanced Ca2+ signaling.
Collapse
Affiliation(s)
- Mathieu Cinato
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ismena Mardani
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christina Drevinge
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marion Laudette
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Entela Bollano
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Tolö
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcos Bauza Thorbrügge
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Max Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Muhammad Arif
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda Andersson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin C Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
12
|
Xia Y, Andersson E, Anand SK, Cansby E, Caputo M, Kumari S, Porosk R, Kilk K, Nair S, Marschall HU, Blüher M, Mahlapuu M. Silencing of STE20-type kinase TAOK1 confers protection against hepatocellular lipotoxicity through metabolic rewiring. Hepatol Commun 2023; 7:02009842-202304010-00004. [PMID: 36930872 PMCID: PMC10027040 DOI: 10.1097/hc9.0000000000000037] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/19/2022] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND NAFLD has become the leading cause of chronic liver disease worldwide afflicting about one quarter of the adult population. NASH is a severe subtype of NAFLD, which in addition to hepatic steatosis connotes liver inflammation and hepatocyte ballooning. In light of the exponentially increasing prevalence of NAFLD, it is imperative to gain a better understanding of its molecular pathogenesis. The aim of this study was to examine the potential role of STE20-type kinase TAOK1 -a hepatocellular lipid droplet-associated protein-in the regulation of liver lipotoxicity and NAFLD etiology. METHODS The correlation between TAOK1 mRNA expression in liver biopsies and the severity of NAFLD was evaluated in a cohort of 62 participants. Immunofluorescence microscopy was applied to describe the subcellular localization of TAOK1 in human and mouse hepatocytes. Metabolic reprogramming and oxidative/endoplasmic reticulum stress were investigated in immortalized human hepatocytes, where TAOK1 was overexpressed or silenced by small interfering RNA, using functional assays, immunofluorescence microscopy, and colorimetric analysis. Migration, invasion, and epithelial-mesenchymal transition were examined in TAOK1-deficient human hepatoma-derived cells. Alterations in hepatocellular metabolic and pro-oncogenic signaling pathways were assessed by immunoblotting. RESULTS We observed a positive correlation between the TAOK1 mRNA abundance in human liver biopsies and key hallmarks of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Furthermore, we found that TAOK1 protein fully colocalized with intracellular lipid droplets in human and mouse hepatocytes. The silencing of TAOK1 alleviated lipotoxicity in cultured human hepatocytes by accelerating lipid catabolism (mitochondrial β-oxidation and triacylglycerol secretion), suppressing lipid anabolism (fatty acid influx and lipogenesis), and mitigating oxidative/endoplasmic reticulum stress, and the opposite changes were detected in TAOK1-overexpressing cells. We also found decreased proliferative, migratory, and invasive capacity, as well as lower epithelial-mesenchymal transition in TAOK1-deficient human hepatoma-derived cells. Mechanistic studies revealed that TAOK1 knockdown inhibited ERK and JNK activation and repressed acetyl-CoA carboxylase (ACC) protein abundance in human hepatocytes. CONCLUSIONS Together, we provide the first experimental evidence supporting the role of hepatic lipid droplet-decorating kinase TAOK1 in NAFLD development through mediating fatty acid partitioning between anabolic and catabolic pathways, regulating oxidative/endoplasmic reticulum stress, and modulating metabolic and pro-oncogenic signaling.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sumit K Anand
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Syam Nair
- Institute of Neuroscience and Physiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Wang GY, Zhang XY, Wang CJ, Guan YF. Emerging novel targets for nonalcoholic fatty liver disease treatment: Evidence from recent basic studies. World J Gastroenterol 2023; 29:75-95. [PMID: 36683713 PMCID: PMC9850950 DOI: 10.3748/wjg.v29.i1.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a leading chronic disease worldwide, affects approximately a quarter of the global population. Nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD and is more likely to progress to liver fibrosis than simple steatosis. NASH is also identified as the most rapidly growing cause of hepatocellular carcinoma. Although in the past decade, several phase II/III clinical trials have shown promising results in the use of novel drugs targeting lipid synthase, farnesoid X receptor signaling, peroxisome proliferator-activated receptor signaling, hepatocellular injury, and inflammatory signaling, proven pharmaceutical agents to treat NASH are still lacking. Thus, continuous exploration of the mechanism underlying the pathogenesis of NAFLD and the identification of novel therapeutic targets remain urgent tasks in the field. In the current review, we summarize studies reported in recent years that not only provide new insights into the mechanisms of NAFLD development but also explore the possibility of treating NAFLD by targeting newly identified signaling pathways. We also discuss evidence focusing on the intrahepatic targets involved in the pathogenesis of NAFLD as well as extrahepatic targets affecting liver metabolism and function.
Collapse
Affiliation(s)
- Guang-Yan Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin 300070, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Chun-Jiong Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin 300070, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning Province, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning Province, China
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian 116044, Liaoning Province, China
| |
Collapse
|
14
|
Ruiz M, Devkota R, Panagaki D, Bergh PO, Kaper D, Henricsson M, Nik A, Petkevicius K, Höög JL, Bohlooly-Y M, Carlsson P, Borén J, Pilon M. Sphingosine 1-phosphate mediates adiponectin receptor signaling essential for lipid homeostasis and embryogenesis. Nat Commun 2022; 13:7162. [PMID: 36418331 PMCID: PMC9684441 DOI: 10.1038/s41467-022-34931-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Cells and organisms require proper membrane composition to function and develop. Phospholipids are the major component of membranes and are primarily acquired through the diet. Given great variability in diet composition, cells must be able to deploy mechanisms that correct deviations from optimal membrane composition and properties. Here, using lipidomics and unbiased proteomics, we found that the embryonic lethality in mice lacking the fluidity regulators Adiponectin Receptors 1 and 2 (AdipoR1/2) is associated with aberrant high saturation of the membrane phospholipids. Using mouse embryonic fibroblasts (MEFs) derived from AdipoR1/2-KO embryos, human cell lines and the model organism C. elegans we found that, mechanistically, AdipoR1/2-derived sphingosine 1-phosphate (S1P) signals in parallel through S1PR3-SREBP1 and PPARγ to sustain the expression of the fatty acid desaturase SCD and maintain membrane properties. Thus, our work identifies an evolutionary conserved pathway by which cells and organisms achieve membrane homeostasis and adapt to a variable environment.
Collapse
Affiliation(s)
- Mario Ruiz
- Dept.Chemistry and Molecular Biology, Univ. Gothenburg, 405 30, Gothenburg, Sweden.
| | - Ranjan Devkota
- Dept.Chemistry and Molecular Biology, Univ. Gothenburg, 405 30, Gothenburg, Sweden
| | - Dimitra Panagaki
- Dept.Chemistry and Molecular Biology, Univ. Gothenburg, 405 30, Gothenburg, Sweden
| | - Per-Olof Bergh
- Dept. Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Univ. of Gothenburg, 414 67, Gothenburg, Sweden
| | - Delaney Kaper
- Dept.Chemistry and Molecular Biology, Univ. Gothenburg, 405 30, Gothenburg, Sweden
| | - Marcus Henricsson
- Dept. Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Univ. of Gothenburg, 414 67, Gothenburg, Sweden
| | - Ali Nik
- Dept.Chemistry and Molecular Biology, Univ. Gothenburg, 405 30, Gothenburg, Sweden
| | | | - Johanna L Höög
- Dept.Chemistry and Molecular Biology, Univ. Gothenburg, 405 30, Gothenburg, Sweden
| | | | - Peter Carlsson
- Dept.Chemistry and Molecular Biology, Univ. Gothenburg, 405 30, Gothenburg, Sweden
| | - Jan Borén
- Dept. Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Univ. of Gothenburg, 414 67, Gothenburg, Sweden
| | - Marc Pilon
- Dept.Chemistry and Molecular Biology, Univ. Gothenburg, 405 30, Gothenburg, Sweden.
| |
Collapse
|
15
|
Mahlapuu M, Caputo M, Xia Y, Cansby E. GCKIII kinases in lipotoxicity: Roles in NAFLD and beyond. Hepatol Commun 2022; 6:2613-2622. [PMID: 35641240 PMCID: PMC9512487 DOI: 10.1002/hep4.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined by excessive accumulation of lipid droplets within hepatocytes. The STE20-type kinases comprising the germinal center kinase III (GCKIII) subfamily - MST3, MST4, and STK25 - decorate intrahepatocellular lipid droplets and have recently emerged as critical regulators of the initiation and progression of NAFLD. While significant advancement has been made toward deciphering the role of GCKIII kinases in hepatic fat accumulation (i.e., steatosis) as well as the aggravation of NAFLD into its severe form nonalcoholic steatohepatitis (NASH), much remains to be resolved. This review provides a brief overview of the recent studies in patient cohorts, cultured human cells, and mouse models, which have characterized the function of MST3, MST4, and STK25 in the regulation of hepatic lipid accretion, meta-inflammation, and associated cell damage in the context of NAFLD/NASH. We also highlight the conflicting data and emphasize future research directions that are needed to advance our understanding of GCKIII kinases as potential targets in the therapy of NAFLD and its comorbidities. Conclusions: Several lines of evidence suggest that GCKIII proteins govern the susceptibility to hepatic lipotoxicity and that pharmacological inhibition of these kinases could mitigate NAFLD development and aggravation. Comprehensive characterization of the molecular mode-of-action of MST3, MST4, and STK25 in hepatocytes as well as extrahepatic tissues is important, especially in relation to their impact on carcinogenesis, to fully understand the efficacy as well as safety of GCKIII antagonism.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Mara Caputo
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Ying Xia
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
16
|
Kiyeleko S, Hocine S, Mautino G, Kuenemann M, Nawrotek A, Miallau L, Vuillard LM, Mirguet O, Kotschy A, Hanessian S. Tartgeting Non-alcoholic Fatty Liver Disease: Design, X-Ray co-crystal structure and synthesis of 'first-in-kind' inhibitors of Serine/Threonine Kinase25. Bioorg Med Chem Lett 2022; 75:128950. [PMID: 36030002 DOI: 10.1016/j.bmcl.2022.128950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
Abstract
We describe the synthesis of a series of 3-t-butyl 5-aminopyrazole p-substituted arylamides as inhibitors of serine-threonine25 (STK25), an enzyme implicated in the progression of non-alcoholic fatty liver disease (NAFLD). Appending a p-N-pyrrolidinosulphonamide group to the arylamide group led to a 'first-in kind' inhibitor with IC50=228nM. A co-crystal structure with STK 25 revealed productive interactions which were also reproduced using molecular docking. A new series of triazolo dihydro oxazine carboxamides of 3-t-butyl 5-aminopyrazole was not active against STK25.
Collapse
Affiliation(s)
- Scarlett Kiyeleko
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, QC, H3C 3J7, Canada
| | - Sofiane Hocine
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, QC, H3C 3J7, Canada
| | - Giséle Mautino
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy, France
| | - Mélaine Kuenemann
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy, France
| | - Agata Nawrotek
- NovAliX, Laboratoire de Biologie Structurale Servier au Synchrotron Soleil, LBS3 L'Orme des Merisiers 91190 St Aubin FRANCE
| | - Linda Miallau
- NovAliX, Laboratoire de Biologie Structurale Servier au Synchrotron Soleil, LBS3 L'Orme des Merisiers 91190 St Aubin FRANCE
| | | | - Olivier Mirguet
- Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy, France.
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry, Zahony u. 7., H-1031 Budapest, Hungary
| | - Stephen Hanessian
- Department of Chemistry, Université de Montréal, Station Centre-Ville, C.P. 6128, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
17
|
Zhang X, Wang BZ, Kim M, Nash TR, Liu B, Rao J, Lock R, Tamargo M, Soni RK, Belov J, Li E, Vunjak-Novakovic G, Fine B. STK25 inhibits PKA signaling by phosphorylating PRKAR1A. Cell Rep 2022; 40:111203. [PMID: 35977512 PMCID: PMC9446420 DOI: 10.1016/j.celrep.2022.111203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/10/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
In the heart, protein kinase A (PKA) is critical for activating calcium handling and sarcomeric proteins in response to beta-adrenergic stimulation leading to increased myocardial contractility and performance. The catalytic activity of PKA is tightly regulated by regulatory subunits that inhibit the catalytic subunit until released by cAMP binding. Phosphorylation of type II regulatory subunits promotes PKA activation; however, the role of phosphorylation in type I regulatory subunits remain uncertain. Here, we utilize human induced pluripotent stem cell cardiomyocytes (iPSC-CMs) to identify STK25 as a kinase of the type Iα regulatory subunit PRKAR1A. Phosphorylation of PRKAR1A leads to inhibition of PKA kinase activity and increased binding to the catalytic subunit in the presence of cAMP. Stk25 knockout in mice diminishes Prkar1a phosphorylation, increases Pka activity, and augments contractile response to beta-adrenergic stimulation. Together, these data support STK25 as a negative regulator of PKA signaling through phosphorylation of PRKAR1A.
Collapse
Affiliation(s)
- Xiaokan Zhang
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bryan Z Wang
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Michael Kim
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Trevor R Nash
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Bohao Liu
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jenny Rao
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Manuel Tamargo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - John Belov
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eric Li
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Barry Fine
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
18
|
Jiang J, Zheng Y, Chen F, Dong L, Guo X. Activation of YAP1 by STK25 contributes to the progression of hepatocellular carcinoma. Tissue Cell 2022; 76:101797. [DOI: 10.1016/j.tice.2022.101797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/24/2022]
|
19
|
Anand SK, Caputo M, Xia Y, Andersson E, Cansby E, Kumari S, Henricsson M, Porosk R, Keuenhof KS, Höög JL, Nair S, Marschall HU, Blüher M, Mahlapuu M. Inhibition of MAP4K4 Signaling Initiaties Metabolic Reprogramming to Protect Hepatocytes from Lipotoxic Damage. J Lipid Res 2022; 63:100238. [PMID: 35679904 PMCID: PMC9293639 DOI: 10.1016/j.jlr.2022.100238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022] Open
Abstract
The primary hepatic consequence of obesity is non-alcoholic fatty liver disease (NAFLD), affecting about 25% of the global adult population. Non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD characterized by liver lipid accumulation, inflammation, and hepatocyte ballooning, with a different degree of hepatic fibrosis. In the light of rapidly increasing prevalence of NAFLD and NASH, there is an urgent need for improved understanding of the molecular pathogenesis of these diseases. The aim of this study was to decipher the possible role of STE20-type kinase MAP4K4 in the regulation of hepatocellular lipotoxicity and susceptibility to NAFLD. We found that MAP4K4 mRNA expression in human liver biopsies was positively correlated with key hallmarks of NAFLD (i.e., liver steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis). We also found that the silencing of MAP4K4 suppressed lipid deposition in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion, while attenuating fatty acid influx and lipid synthesis. Furthermore, downregulation of MAP4K4 markedly reduced the glycolysis rate and lowered incidences of oxidative/endoplasmic reticulum stress. In parallel, we observed suppressed JNK and ERK and increased AKT phosphorylation in MAP4K4-deficient hepatocytes. Together, these results provide the first experimental evidence supporting the potential involvement of STE20-type kinase MAP4K4 as a component of the hepatocellular lipotoxic milieu promoting NAFLD susceptibility.
Collapse
Affiliation(s)
- Sumit Kumar Anand
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Henricsson
- Biomarker Discovery and Development, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katharina Susanne Keuenhof
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johanna Louise Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Syam Nair
- Institute of Neuroscience and Physiology, and Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
20
|
Boi R, Ebefors K, Henricsson M, Borén J, Nyström J. Modified lipid metabolism and cytosolic phospholipase A2 activation in mesangial cells under pro-inflammatory conditions. Sci Rep 2022; 12:7322. [PMID: 35513427 PMCID: PMC9072365 DOI: 10.1038/s41598-022-10907-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Diabetic kidney disease is a consequence of hyperglycemia and other complex events driven by early glomerular hemodynamic changes and a progressive expansion of the mesangium. The molecular mechanisms behind the pathophysiological alterations of the mesangium are yet to be elucidated. This study aimed at investigating whether lipid signaling might be the missing link. Stimulation of human mesangial cells with high glucose primed the inflammasome-driven interleukin 1 beta (IL-1β) secretion, which in turn stimulated platelet-derived growth factor (PDGF-BB) release. Finally, PDGF-BB increased IL-1β secretion synergistically. Both IL-1β and PDGF-BB stimulation triggered the formation of phosphorylated sphingoid bases, as shown by lipidomics, and activated cytosolic phospholipase cPLA2, sphingosine kinase 1, cyclooxygenase 2, and autotaxin. This led to the release of arachidonic acid and lysophosphatidylcholine, activating the secretion of vasodilatory prostaglandins and proliferative lysophosphatidic acids. Blocking cPLA2 release of arachidonic acid reduced mesangial cells proliferation and prostaglandin secretion. Validation was performed in silico using the Nephroseq database and a glomerular transcriptomic database. In conclusion, hyperglycemia primes glomerular inflammatory and proliferative stimuli triggering lipid metabolism modifications in human mesangial cells. The upregulation of cPLA2 was critical in this setting. Its inhibition reduced mesangial secretion of prostaglandins and proliferation, making it a potential therapeutical target.
Collapse
Affiliation(s)
- Roberto Boi
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden
| | - Kerstin Ebefors
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden
| | - Marcus Henricsson
- Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Box 432, 40530, Gothenburg, Sweden.
| |
Collapse
|
21
|
Cansby E, Kumari S, Caputo M, Xia Y, Porosk R, Robinson J, Wang H, Olsson BM, Vallin J, Grantham J, Soomets U, Svensson LT, Sihlbom C, Marschall HU, Edsfeldt A, Goncalves I, Mahlapuu M. Silencing of STE20-type kinase STK25 in human aortic endothelial and smooth muscle cells is atheroprotective. Commun Biol 2022; 5:379. [PMID: 35440683 PMCID: PMC9018782 DOI: 10.1038/s42003-022-03309-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Recent studies highlight the importance of lipotoxic damage in aortic cells as the major pathogenetic contributor to atherosclerotic disease. Since the STE20-type kinase STK25 has been shown to exacerbate ectopic lipid storage and associated cell injury in several metabolic organs, we here investigate its role in the main cell types of vasculature. We depleted STK25 by small interfering RNA in human aortic endothelial and smooth muscle cells exposed to oleic acid and oxidized LDL. In both cell types, the silencing of STK25 reduces lipid accumulation and suppresses activation of inflammatory and fibrotic pathways as well as lowering oxidative and endoplasmic reticulum stress. Notably, in smooth muscle cells, STK25 inactivation hinders the shift from a contractile to a synthetic phenotype. Together, we provide several lines of evidence that antagonizing STK25 signaling in human aortic endothelial and smooth muscle cells is atheroprotective, highlighting this kinase as a new potential therapeutic target for atherosclerotic disease. Silencing of STK25, an STE20-type kinase, in human aortic endothelial and smooth muscle cells reduces lipid accumulation and suppresses inflammation and fibrotic pathways, ultimately exerting atheroprotective effects.
Collapse
Affiliation(s)
- Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Jonathan Robinson
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Hao Wang
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ursel Soomets
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - L Thomas Svensson
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Malmö, Sweden
| | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Clinical Research Center, Lund University, Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, Lund/Malmö, Sweden
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
22
|
LIMK1 Interacts with STK25 to Regulate EMT and Promote the Proliferation and Metastasis of Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3963883. [PMID: 35265128 PMCID: PMC8901301 DOI: 10.1155/2022/3963883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022]
Abstract
Objective To investigate the interaction between LIMK1 and STK25 and its expression in colon cancer and its effect on the malignant evolution of colon cancer. Methods Fluorescence quantitative PCR and immunohistochemistry were used to detect the expression of the LIMK1 gene in cancer and adjacent tissues of 20 clinical colon cancer samples. The overexpression plasmids of LIMK1 and STK25 were constructed. An shRNA specific to LIMK1 was synthesized and transfected into colon cancer cell lines. The expression levels of EMT-related markers in cell lines were detected by real-time PCR. The effects of LIMK1 and STK25 on the proliferation and invasion of colon cancer cell lines were detected by CCK-8 assay, Transwell, and clonogenesis. Results LIMK1 interacted with STK25 and was highly expressed in colon cancer. High expression of LIMK1 and STK25 is associated with poor prognosis in colon cancer patients. LIMK silencing inhibits proliferation, invasion, and EMT of colon cancer. Cotransfection of LIMK1 and STK25 promotes the malignant progression and EMT of colon cancer. Conclusion Protein interaction between LIMK1 and STK25 occurs. Overexpression of LIMK1 and STK25 plays a role in promoting cell proliferation and invasion in colon cancer tissues and cells. They also play a role in promoting the occurrence and development of colon cancer.
Collapse
|
23
|
Zhou Z, Li H, Bai S, Xu Z, Jiao Y. Loss of serine/threonine protein kinase 25 in retinal ganglion cells ameliorates high glucose-elicited damage through regulation of the AKT-GSK-3β/Nrf2 pathway. Biochem Biophys Res Commun 2022; 600:87-93. [DOI: 10.1016/j.bbrc.2022.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 11/26/2022]
|
24
|
Zhang Y, Xu J, Qiu Z, Guan Y, Zhang X, Zhang X, Chai D, Chen C, Hu Q, Wang W. STK25 enhances hepatocellular carcinoma progression through the STRN/AMPK/ACC1 pathway. Cancer Cell Int 2022; 22:4. [PMID: 34986838 PMCID: PMC8734210 DOI: 10.1186/s12935-021-02421-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Serine/threonine protein kinase 25 (STK25) plays an important role in regulating glucose and insulin homeostasis and in ectopic lipid accumulation. It directly affects the progression and prognosis of nonalcoholic fatty liver disease (NAFLD). However, the effects of STK25 on lipid metabolism in hepatocellular carcinoma (HCC) remain unexplored. The aim of this study was to investigate the role of STK25 in HCC and to elucidate the underlying mechanisms. Methods Immunohistochemistry was used to measure the expression of STK25 in hepatic tissues of HCC patients, and public datasets were used as supplementary material for predicting the expression of STK25 and the prognosis of patients with HCC. The interaction between STK25 and striatin (STRN) was determined by the STRING database, immunohistochemistry and western blot analyses. The involved signaling pathway was detected by the KEGG database and western blot. Moreover, the biological behaviors of the HCC cells were detected by wound healing assays, Transwell invasion assays and oil red O staining. Finally, it was verified again by xenograft model. Results STK25 is highly expressed in HCC patients and is associated with poor prognosis. STK25 knockdown inhibited the HCC cell invasion and proliferation, promotes apoptosis. Consistently, STK25 knockdown inhibited tumor growth in xenograft mouse model. Besides, STK25 deficiency decreased lipid synthesis, energy reserve, epithelial-mesenchymal transition (EMT) by down-regulating lipid metabolism signaling pathway. STRN could reverse the change of lipid metabolism. Conclusions Our results demonstrated that STK25 interacted with STRN to regulates the energy reserve and EMT via lipid metabolism reprogramming. Accordingly, high expression of STK25 may be associated with HCC patients and poor prognosis, which implicates STK25 could be a potential target for lipid metabolism in cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02421-w.
Collapse
Affiliation(s)
- Yichao Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Junhui Xu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhendong Qiu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yongjun Guan
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - XiaoYi Zhang
- Intensive Care Unit, ZhongNan Hospital of Wuhan University, Wuhan, China
| | - Xin Zhang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dongqi Chai
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chen Chen
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qinyong Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Weixing Wang
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
25
|
Ruiz M, Henricsson M, Borén J, Pilon M. Palmitic acid causes increased dihydroceramide levels when desaturase expression is directly silenced or indirectly lowered by silencing AdipoR2. Lipids Health Dis 2021; 20:173. [PMID: 34839823 PMCID: PMC8627610 DOI: 10.1186/s12944-021-01600-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/13/2021] [Indexed: 11/10/2022] Open
Abstract
Background AdipoR1 and AdipoR2 (AdipoRs) are plasma membrane proteins often considered to act as adiponectin receptors with a ceramidase activity. Additionally, the AdipoRs and their yeast and C. elegans orthologs are emerging as membrane homeostasis regulators that counter membrane rigidification by promoting fatty acid desaturation and incorporation of unsaturated fatty acids into phospholipids, thus restoring fluidity. Methods Using cultured cells, the effects of AdipoR silencing or over-expression on the levels and composition of several sphingolipid classes were examined. Results AdipoR2 silencing in the presence of exogenous palmitic acid potently causes increased levels of dihydroceramides, a ceramide precursor in the de novo ceramide synthesis pathway. Conversely, AdipoR2 over-expression caused a depletion of dihydroceramides. Conclusions The results are consistent with AdipoR2 silencing leading to increased intracellular supply of palmitic acid that in turn leads to increased dihydroceramide synthesis via the rate-limiting serine palmitoyl transferase step. In agreement with this model, inhibiting the desaturase SCD or SREBF1/2 (positive regulators of SCD) also causes a strong increase in dihydroceramide levels. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01600-y.
Collapse
Affiliation(s)
- Mario Ruiz
- Department Chemistry and Molecular Biology, Univ. Gothenburg, Box 462, 405 30, Gothenburg, Sweden
| | - Marcus Henricsson
- Department Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Univ. of Gothenburg, 405 30, Gothenburg, Sweden
| | - Jan Borén
- Department Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Univ. of Gothenburg, 405 30, Gothenburg, Sweden
| | - Marc Pilon
- Department Chemistry and Molecular Biology, Univ. Gothenburg, Box 462, 405 30, Gothenburg, Sweden.
| |
Collapse
|
26
|
Wu Y, Chen Z, Fuda H, Tsukui T, Wu X, Shen N, Saito N, Chiba H, Hui SP. Oxidative Stress Linked Organ Lipid Hydroperoxidation and Dysregulation in Mouse Model of Nonalcoholic Steatohepatitis: Revealed by Lipidomic Profiling of Liver and Kidney. Antioxidants (Basel) 2021; 10:1602. [PMID: 34679736 PMCID: PMC8533338 DOI: 10.3390/antiox10101602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a prevalent disease related to lipid metabolism disorder and oxidative stress. Lipid hydroperoxidation is known to be a critical driving force of various disorders and diseases. However, the combination of both intact and hydroperoxidized lipids in NASH has not yet been studied. In this work, the liver and kidney samples from NASH-model mice were comprehensively investigated by using the LC/MS-based lipidomic analysis. As a result, triglycerides showed the amount accumulation and the profile alteration for the intact lipids in the NASH group, while phosphatidylethanolamines, lysophosphatidylethanolamines, plasmalogens, and cardiolipins largely depleted, suggesting biomembrane damage and mitochondria dysfunction. Notably, the lipid hydroperoxide species of triglyceride and phosphatidylcholine exhibited a significant elevation in both the liver and the kidney of the NASH group and showed considerable diagnostic ability. Furthermore, the relationship was revealed between the lipid metabolism disturbance and the lipid hydroperoxide accumulation, which played a key role in the vicious circle of NASH. The present study suggested that the omics approach to the lipid hydroperoxide profile might be the potential diagnostic marker of NASH and other oxidative stress-related diseases, as well as the evaluative treatment index of antioxidants.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Hirotoshi Fuda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Takayuki Tsukui
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Xunzhi Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Nianqiu Shen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Natsuki Saito
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| |
Collapse
|
27
|
Xia Y, Caputo M, Cansby E, Anand SK, Sütt S, Henricsson M, Porosk R, Marschall HU, Blüher M, Mahlapuu M. STE20-type kinase TAOK3 regulates hepatic lipid partitioning. Mol Metab 2021; 54:101353. [PMID: 34634521 PMCID: PMC8567304 DOI: 10.1016/j.molmet.2021.101353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD), defined by excessive lipid storage in hepatocytes, has recently emerged as a leading global cause of chronic liver disease. The aim of this study was to examine the role of STE20-type protein kinase TAOK3, which has previously been shown to associate with hepatic lipid droplets, in the initiation and aggravation of human NAFLD. METHODS The correlation between TAOK3 mRNA expression and the severity of NAFLD was investigated in liver biopsies from 62 individuals. In immortalized human hepatocytes, intracellular fat deposition, lipid metabolism, and oxidative and endoplasmic reticulum stress were analyzed when TAOK3 was overexpressed or knocked down by small interfering RNA. Subcellular localization of TAOK3 was characterized in human and mouse hepatocytes by immunofluorescence microscopy. RESULTS We found that the TAOK3 transcript levels in human liver biopsies were positively correlated with the key lesions of NAFLD (i.e., hepatic steatosis, inflammation, and ballooning). Overexpression of TAOK3 in cultured human hepatocytes exacerbated lipid storage by inhibiting β-oxidation and triacylglycerol secretion while enhancing lipid synthesis. Conversely, silencing of TAOK3 attenuated lipid deposition in human hepatocytes by stimulating mitochondrial fatty acid oxidation and triacylglycerol efflux while suppressing lipogenesis. We also found aggravated or decreased oxidative/endoplasmic reticulum stress in human hepatocytes with increased or reduced TAOK3 levels, respectively. The subcellular localization of TAOK3 in human and mouse hepatocytes was confined to intracellular lipid droplets. CONCLUSIONS This study provides the first evidence that hepatic lipid droplet-coating kinase TAOK3 is a critical regulatory node controlling liver lipotoxicity and susceptibility to NAFLD.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sumit Kumar Anand
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Silva Sütt
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Henricsson
- Biomarker Discovery and Development, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
28
|
Kurhe Y, Caputo M, Cansby E, Xia Y, Kumari S, Anand SK, Howell BW, Marschall HU, Mahlapuu M. Antagonizing STK25 Signaling Suppresses the Development of Hepatocellular Carcinoma Through Targeting Metabolic, Inflammatory, and Pro-Oncogenic Pathways. Cell Mol Gastroenterol Hepatol 2021; 13:405-423. [PMID: 34624527 PMCID: PMC8688184 DOI: 10.1016/j.jcmgh.2021.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is one of the most fatal and fastest-growing cancers. Recently, nonalcoholic steatohepatitis (NASH) has been recognized as a major catalyst for HCC. Thus, additional research is critically needed to identify mechanisms involved in NASH-induced hepatocarcinogenesis, to advance the prevention and treatment of NASH-driven HCC. Because the sterile 20-type kinase serine/threonine kinase 25 (STK25) exacerbates NASH-related phenotypes, we investigated its role in HCC development and aggravation in this study. METHODS Hepatocarcinogenesis was induced in the context of NASH in Stk25 knockout and wild-type mice by combining chemical procarcinogens and a dietary challenge. In the first cohort, a single injection of diethylnitrosamine was combined with a high-fat diet-feeding. In the second cohort, chronic administration of carbon tetrachloride was combined with a choline-deficient L-amino-acid-defined diet. To study the cell-autonomous mode of action of STK25, we silenced this target in the human hepatocarcinoma cell line HepG2 by small interfering RNA. RESULTS In both mouse models of NASH-driven HCC, the livers from Stk25-/- mice showed a markedly lower tumor burden compared with wild-type controls. We also found that genetic depletion of STK25 in mice suppressed liver tumor growth through reduced hepatocellular apoptosis and decreased compensatory proliferation, by a mechanism that involves protection against hepatic lipotoxicity and inactivation of STAT3, ERK1/2, and p38 signaling. Consistently, silencing of STK25 suppressed proliferation, apoptosis, migration, and invasion in HepG2 cells, which was accompanied by lower expression of the markers of epithelial-mesenchymal transition and autophagic flux. CONCLUSIONS This study provides evidence that antagonizing STK25 signaling hinders the development of NASH-related HCC and provides an impetus for further analysis of STK25 as a therapeutic target for NASH-induced HCC treatment in human beings.
Collapse
Affiliation(s)
- Yeshwant Kurhe
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sumit Kumar Anand
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Brian W Howell
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
29
|
Caputo M, Kurhe Y, Kumari S, Cansby E, Amrutkar M, Scandalis E, Booten SL, Ståhlman M, Borén J, Marschall HU, Aghajan M, Mahlapuu M. Silencing of STE20-type kinase MST3 in mice with antisense oligonucleotide treatment ameliorates diet-induced nonalcoholic fatty liver disease. FASEB J 2021; 35:e21567. [PMID: 33891332 DOI: 10.1096/fj.202002671rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is emerging as a leading cause of chronic liver disease worldwide. Despite intensive nonclinical and clinical research in this field, no specific pharmacological therapy is currently approved to treat NAFLD, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies have identified STE20-type kinase MST3, which localizes to intracellular lipid droplets, as a critical regulator of ectopic fat accumulation in human hepatocytes. Here, we explored whether treatment with Mst3-targeting antisense oligonucleotides (ASOs) can promote hepatic lipid clearance and mitigate NAFLD progression in mice in the context of obesity. We found that administration of Mst3-targeting ASOs in mice effectively ameliorated the full spectrum of high-fat diet-induced NAFLD including liver steatosis, inflammation, fibrosis, and hepatocellular damage. Mechanistically, Mst3 ASOs suppressed lipogenic gene expression, as well as acetyl-CoA carboxylase (ACC) protein abundance, and substantially reduced lipotoxicity-mediated oxidative and endoplasmic reticulum stress in the livers of obese mice. Furthermore, we found that MST3 protein levels correlated positively with the severity of NAFLD in human liver biopsies. In summary, this study provides the first in vivo evidence that antagonizing MST3 signaling is sufficient to mitigate NAFLD progression in conditions of excess dietary fuels and warrants future investigations to assess whether MST3 inhibitors may provide a new strategy for the treatment of patients with NAFLD.
Collapse
Affiliation(s)
- Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sima Kumari
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Manoj Amrutkar
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
30
|
Caputo M, Cansby E, Kumari S, Kurhe Y, Nair S, Ståhlman M, Kulkarni NM, Borén J, Marschall HU, Blüher M, Mahlapuu M. STE20-Type Protein Kinase MST4 Controls NAFLD Progression by Regulating Lipid Droplet Dynamics and Metabolic Stress in Hepatocytes. Hepatol Commun 2021; 5:1183-1200. [PMID: 34278168 PMCID: PMC8279465 DOI: 10.1002/hep4.1702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide, primarily because of the massive global increase in obesity. Despite intense research efforts in this field, the factors that govern the initiation and subsequent progression of NAFLD are poorly understood, which hampers the development of diagnostic tools and effective therapies in this area of high unmet medical need. Here we describe a regulator in molecular pathogenesis of NAFLD: STE20-type protein kinase MST4. We found that MST4 expression in human liver biopsies was positively correlated with the key features of NAFLD (i.e., hepatic steatosis, lobular inflammation, and hepatocellular ballooning). Furthermore, the silencing of MST4 attenuated lipid accumulation in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion, while inhibiting fatty acid influx and lipid synthesis. Conversely, overexpression of MST4 in human hepatocytes exacerbated fat deposition by suppressing mitochondrial fatty acid oxidation and triacylglycerol efflux, while enhancing lipogenesis. In parallel to these reciprocal alterations in lipid storage, we detected substantially decreased or aggravated oxidative/endoplasmic reticulum stress in human hepatocytes with reduced or increased MST4 levels, respectively. Interestingly, MST4 protein was predominantly associated with intracellular lipid droplets in both human and rodent hepatocytes. Conclusion: Together, our results suggest that hepatic lipid droplet-decorating protein MST4 is a critical regulatory node governing susceptibility to NAFLD and warrant future investigations to address the therapeutic potential of MST4 antagonism as a strategy to prevent or mitigate the development and aggravation of this disease.
Collapse
Affiliation(s)
- Mara Caputo
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Sima Kumari
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Yeshwant Kurhe
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Syam Nair
- Institute of Neuroscience and Physiology, and Institute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Nagaraj M Kulkarni
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | | | - Margit Mahlapuu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
31
|
Cansby E, Caputo M, Gao L, Kulkarni NM, Nerstedt A, Ståhlman M, Borén J, Porosk R, Soomets U, Pedrelli M, Parini P, Marschall HU, Nyström J, Howell BW, Mahlapuu M. Depletion of protein kinase STK25 ameliorates renal lipotoxicity and protects against diabetic kidney disease. JCI Insight 2020; 5:140483. [PMID: 33170807 PMCID: PMC7819747 DOI: 10.1172/jci.insight.140483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase 25 (STK25) as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage. Here, we demonstrate that overexpression of STK25 aggravates renal lipid accumulation and exacerbates structural and functional kidney injury in a mouse model of DKD. Reciprocally, inhibiting STK25 signaling in mice ameliorates diet-induced renal steatosis and alleviates the development of DKD-associated pathologies. Furthermore, we find that STK25 silencing in human kidney cells protects against lipid deposition, as well as oxidative and endoplasmic reticulum stress. Together, our results suggest that STK25 regulates a critical node governing susceptibility to renal lipotoxicity and that STK25 antagonism could mitigate DKD progression.
Collapse
Affiliation(s)
| | - Mara Caputo
- Department of Chemistry and Molecular Biology and
| | - Lei Gao
- Department of Chemistry and Molecular Biology and
| | | | | | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia
| | - Ursel Soomets
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia
| | | | - Paolo Parini
- Department of Laboratory Medicine and.,Metabolism Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Theme Inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Brian W Howell
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | | |
Collapse
|
32
|
Björnson E, Östlund Y, Ståhlman M, Adiels M, Omerovic E, Jeppsson A, Borén J, Levin MC. Lipid profiling of human diabetic myocardium reveals differences in triglyceride fatty acyl chain length and degree of saturation. Int J Cardiol 2020; 320:106-111. [PMID: 32738258 DOI: 10.1016/j.ijcard.2020.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/23/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Type 2 diabetes is a major health problem in the world, and is strongly associated with impaired cardiac function and increased mortality. The causal relationship between type 2 diabetes and impaired cardiac function is still incompletely understood but changes in the cardiac lipid metabolism are believed to be a contributing factor. The objective of this study was to determine the lipid profile in human myocardial biopsies collected in vivo from patients with type 2 diabetes and compare to non-diabetic controls. METHOD We conducted full lipidomics analyses, using mass spectrometry, of 85 right atrial biopsies obtained from diabetic and non-diabetic patients undergoing elective cardiac surgery. The patients were characterized clinically and serum was analyzed for lipids and biochemical markers. RESULTS The groups did not differ in BMI and in circulating triglycerides. We demonstrate that type 2 diabetes is associated with alterations in the cardiac lipidome. Interestingly, the absolute amount of lipids is not altered in the diabetic myocardium. However, triglycerides with longer fatty acyl chains are more abundant and there is a higher degree of unsaturated fatty acid chains in triglycerides in diabetic myocardium. CONCLUSIONS Our study reveals that type 2 diabetes is a relatively strong determinant of the human cardiac lipidome (compared to other clinical variables). Although the total lipid content in the diabetic myocardium is not increased, the lipid composition is markedly affected.
Collapse
Affiliation(s)
- Elias Björnson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Ylva Östlund
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden; Department of Nephrology, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden; Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden
| | - Malin C Levin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Sweden.
| |
Collapse
|
33
|
Mashek DG. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol Metab 2020; 50:101115. [PMID: 33186758 PMCID: PMC8324678 DOI: 10.1016/j.molmet.2020.101115] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is defined by the abundance of lipid droplets (LDs) in hepatocytes. While historically considered simply depots for energy storage, LDs are increasingly recognized to impact a wide range of biological processes that influence cellular metabolism, signaling, and function. While progress has been made toward understanding the factors leading to LD accumulation (i.e. steatosis) and its progression to advanced stages of NAFLD and/or systemic metabolic dysfunction, much remains to be resolved. SCOPE OF REVIEW This review covers many facets of LD biology. We provide a brief overview of the major pathways of lipid accretion and degradation that contribute to steatosis and how they are altered in NAFLD. The major focus is on the relationship between LDs and cell function and the detailed mechanisms that couple or uncouple steatosis from the severity and progression of NAFLD and systemic comorbidities. The importance of specific lipids and proteins within or on LDs as key components that determine whether LD accumulation is linked to cellular and metabolic dysfunction is presented. We discuss emerging areas of LD biology and future research directions that are needed to advance our understanding of the role of LDs in NAFLD etiology. MAJOR CONCLUSIONS Impairments in LD breakdown appear to contribute to disease progression, but inefficient incorporation of fatty acids (FAs) into LD-containing triacylglycerol (TAG) and the consequential changes in FA partitioning also affect NAFLD etiology. Increased LD abundance in hepatocytes does not necessarily equate to cellular dysfunction. While LD accumulation is the prerequisite step for most NAFLD cases, the protein and lipid composition of LDs are critical factors in determining the progression from simple steatosis. Further defining the detailed molecular mechanisms linking LDs to metabolic dysfunction is important for designing effective therapeutic approaches targeting NAFLD and its comorbidities.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Minnesota, Suite 6-155, 321 Church St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
34
|
Rimkute I, Thorsteinsson K, Henricsson M, Tenge VR, Yu X, Lin SC, Haga K, Atmar RL, Lycke N, Nilsson J, Estes MK, Bally M, Larson G. Histo-blood group antigens of glycosphingolipids predict susceptibility of human intestinal enteroids to norovirus infection. J Biol Chem 2020; 295:15974-15987. [PMID: 32913124 DOI: 10.1074/jbc.ra120.014855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Indexed: 01/23/2023] Open
Abstract
The molecular mechanisms behind infection and propagation of human restricted pathogens such as human norovirus (HuNoV) have defied interrogation because they were previously unculturable. However, human intestinal enteroids (HIEs) have emerged to offer unique ex vivo models for targeted studies of intestinal biology, including inflammatory and infectious diseases. Carbohydrate-dependent histo-blood group antigens (HBGAs) are known to be critical for clinical infection. To explore whether HBGAs of glycosphingolipids contribute to HuNoV infection, we obtained HIE cultures established from stem cells isolated from jejunal biopsies of six individuals with different ABO, Lewis, and secretor genotypes. We analyzed their glycerolipid and sphingolipid compositions and quantified interaction kinetics and the affinity of HuNoV virus-like particles (VLPs) to lipid vesicles produced from the individual HIE-lipid extracts. All HIEs had a similar lipid and glycerolipid composition. Sphingolipids included HBGA-related type 1 chain glycosphingolipids (GSLs), with HBGA epitopes corresponding to the geno- and phenotypes of the different HIEs. As revealed by single-particle interaction studies of Sydney GII.4 VLPs with glycosphingolipid-containing HIE membranes, both binding kinetics and affinities explain the patterns of susceptibility toward GII.4 infection for individual HIEs. This is the first time norovirus VLPs have been shown to interact specifically with secretor gene-dependent GSLs embedded in lipid membranes of HIEs that propagate GII.4 HuNoV ex vivo, highlighting the potential of HIEs for advanced future studies of intestinal glycobiology and host-pathogen interactions.
Collapse
Affiliation(s)
- Inga Rimkute
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Konrad Thorsteinsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Marcus Henricsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Victoria R Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoming Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shih-Ching Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kei Haga
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
| | - Marta Bally
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
35
|
Whytock KL, Parry SA, Turner MC, Woods RM, James LJ, Ferguson RA, Ståhlman M, Borén J, Strauss JA, Cocks M, Wagenmakers AJM, Hulston CJ, Shepherd SO. A 7‐day high‐fat, high‐calorie diet induces fibre‐specific increases in intramuscular triglyceride and perilipin protein expression in human skeletal muscle. J Physiol 2020; 598:1151-1167. [DOI: 10.1113/jp279129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/24/2022] Open
Affiliation(s)
- K. L. Whytock
- Research Institute of Sport and Exercise Science, Tom Reilly Building LJMU Liverpool L3 3AF UK
| | - S. A. Parry
- School of Sport, Exercise and Health Sciences Loughborough University Loughborough LE11 3TU UK
| | - M. C. Turner
- School of Sport, Exercise and Health Sciences Loughborough University Loughborough LE11 3TU UK
| | - R. M. Woods
- School of Sport, Exercise and Health Sciences Loughborough University Loughborough LE11 3TU UK
| | - L. J. James
- School of Sport, Exercise and Health Sciences Loughborough University Loughborough LE11 3TU UK
| | - R. A. Ferguson
- School of Sport, Exercise and Health Sciences Loughborough University Loughborough LE11 3TU UK
| | - M. Ståhlman
- Wallenberg Laboratory, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - J. Borén
- Wallenberg Laboratory, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | - J. A. Strauss
- Research Institute of Sport and Exercise Science, Tom Reilly Building LJMU Liverpool L3 3AF UK
| | - M. Cocks
- Research Institute of Sport and Exercise Science, Tom Reilly Building LJMU Liverpool L3 3AF UK
| | - A. J. M. Wagenmakers
- Research Institute of Sport and Exercise Science, Tom Reilly Building LJMU Liverpool L3 3AF UK
| | - C. J. Hulston
- School of Sport, Exercise and Health Sciences Loughborough University Loughborough LE11 3TU UK
| | - S. O. Shepherd
- Research Institute of Sport and Exercise Science, Tom Reilly Building LJMU Liverpool L3 3AF UK
| |
Collapse
|
36
|
Abstract
One of the CCM genes, CCM3/PDCD10, binds to the protein kinase family GCKIII, which comprises MST3/STK24, SOK1/STK25, and MST4/STK26. These proteins have been shown to have the same effect as CCM3, both in endothelial cells and in animal models such as zebrafish and are most likely involved in CCM pathogenesis. We describe here an in vitro kinase assay of GCKIII proteins which can be used to study their regulation in endothelial and other cells under different circumstances.
Collapse
|
37
|
Nerstedt A, Kurhe Y, Cansby E, Caputo M, Gao L, Vorontsov E, Ståhlman M, Nuñez-Durán E, Borén J, Marschall HU, Mashek DG, Saunders DN, Sihlbom C, Hoy AJ, Mahlapuu M. Lipid droplet-associated kinase STK25 regulates peroxisomal activity and metabolic stress response in steatotic liver. J Lipid Res 2019; 61:178-191. [PMID: 31857389 DOI: 10.1194/jlr.ra119000316] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/05/2019] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed Stk25 knockout mice compared with their wild-type littermates. We observed a total of 131 proteins and 60 phosphoproteins that were differentially represented in STK25-deficient livers. Most notably, a number of proteins involved in peroxisomal function, ubiquitination-mediated proteolysis, and antioxidant defense were coordinately regulated in Stk25 -/- versus wild-type livers. We confirmed attenuated peroxisomal biogenesis and protection against oxidative and ER stress in STK25-deficient human liver cells, demonstrating the hepatocyte-autonomous manner of STK25's action. In summary, our results suggest that regulation of peroxisomal function and metabolic stress response may be important molecular mechanisms by which STK25 controls the development and progression of NAFLD/NASH.
Collapse
Affiliation(s)
- Annika Nerstedt
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lei Gao
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Egor Vorontsov
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Esther Nuñez-Durán
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN
| | - Darren N Saunders
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Andrew J Hoy
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Margit Mahlapuu
- Departments of Chemistry and Molecular Biology University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
38
|
Rosqvist F, Kullberg J, Ståhlman M, Cedernaes J, Heurling K, Johansson HE, Iggman D, Wilking H, Larsson A, Eriksson O, Johansson L, Straniero S, Rudling M, Antoni G, Lubberink M, Orho-Melander M, Borén J, Ahlström H, Risérus U. Overeating Saturated Fat Promotes Fatty Liver and Ceramides Compared With Polyunsaturated Fat: A Randomized Trial. J Clin Endocrinol Metab 2019; 104:6207-6219. [PMID: 31369090 PMCID: PMC6839433 DOI: 10.1210/jc.2019-00160] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
Abstract
CONTEXT Saturated fatty acid (SFA) vs polyunsaturated fatty acid (PUFA) may promote nonalcoholic fatty liver disease by yet unclear mechanisms. OBJECTIVE To investigate if overeating SFA- and PUFA-enriched diets lead to differential liver fat accumulation in overweight and obese humans. DESIGN Double-blind randomized trial (LIPOGAIN-2). Overfeeding SFA vs PUFA for 8 weeks, followed by 4 weeks of caloric restriction. SETTING General community. PARTICIPANTS Men and women who are overweight or have obesity (n = 61). INTERVENTION Muffins, high in either palm (SFA) or sunflower oil (PUFA), were added to the habitual diet. MAIN OUTCOME MEASURES Lean tissue mass (not reported here). Secondary and exploratory outcomes included liver and ectopic fat depots. RESULTS By design, body weight gain was similar in SFA (2.31 ± 1.38 kg) and PUFA (2.01 ± 1.90 kg) groups, P = 0.50. SFA markedly induced liver fat content (50% relative increase) along with liver enzymes and atherogenic serum lipids. In contrast, despite similar weight gain, PUFA did not increase liver fat or liver enzymes or cause any adverse effects on blood lipids. SFA had no differential effect on the accumulation of visceral fat, pancreas fat, or total body fat compared with PUFA. SFA consistently increased, whereas PUFA reduced circulating ceramides, changes that were moderately associated with liver fat changes and proposed markers of hepatic lipogenesis. The adverse metabolic effects of SFA were reversed by calorie restriction. CONCLUSIONS SFA markedly induces liver fat and serum ceramides, whereas dietary PUFA prevents liver fat accumulation and reduces ceramides and hyperlipidemia during excess energy intake and weight gain in overweight individuals.
Collapse
Affiliation(s)
- Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jonathan Cedernaes
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University, Chicago, Illinois
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kerstin Heurling
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine and Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Hans-Erik Johansson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - David Iggman
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
- Center for Clinical Research Dalarna, Falun, Sweden
| | - Helena Wilking
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Lars Johansson
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Sara Straniero
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated CardioMetabolic Center, Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Mats Rudling
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated CardioMetabolic Center, Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Ruiz M, Bodhicharla R, Ståhlman M, Svensk E, Busayavalasa K, Palmgren H, Ruhanen H, Boren J, Pilon M. Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity. eLife 2019; 8:47733. [PMID: 31769755 PMCID: PMC6901333 DOI: 10.7554/elife.47733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/23/2019] [Indexed: 12/19/2022] Open
Abstract
The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR-2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the mitochondrial membrane where it likely activates long chains fatty acids for import and degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the saturated fatty acid palmitate: silencing ACSL1 protects against the membrane rigidifying effects of palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings. We conclude that acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent lipotoxicity by promoting increased levels of polyunsaturated fatty acid-containing phospholipids.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Rakesh Bodhicharla
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Emma Svensk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Palmgren
- Metabolism BioScience, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit, Helsinki Institute for Life Science, Helsinki, Finland.,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jan Boren
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
40
|
Klevstig M, Arif M, Mannila M, Svedlund S, Mardani I, Ståhlman M, Andersson L, Lindbom M, Miljanovic A, Franco-Cereceda A, Eriksson P, Jeppsson A, Gan LM, Levin M, Mardinoglu A, Ehrenborg E, Borén J. Cardiac expression of the microsomal triglyceride transport protein protects the heart function during ischemia. J Mol Cell Cardiol 2019; 137:1-8. [PMID: 31533023 DOI: 10.1016/j.yjmcc.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022]
Abstract
AIMS The microsomal triglyceride transport protein (MTTP) is critical for assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins and is most abundant in the liver and intestine. Surprisingly, MTTP is also expressed in the heart. Here we tested the functional relevance of cardiac MTTP expression. MATERIALS AND METHODS We combined clinical studies, advanced expression analysis of human heart biopsies and analyses in genetically modified mice lacking cardiac expression of the MTTP-A isoform of MTTP. RESULTS Our results indicate that lower cardiac MTTP expression in humans is associated with structural and perfusion abnormalities in patients with ischemic heart disease. MTTP-A deficiency in mice heart does not affect total MTTP expression, activity or lipid concentration in the heart. Despite this, MTTP-A deficient mice displayed impaired cardiac function after a myocardial infarction. Expression analysis of MTTP indicates that MTTP expression is linked to cardiac function and responses in the heart. CONCLUSIONS Our results indicate that MTTP may play an important role for the heart function in conjunction to ischemic events.
Collapse
Affiliation(s)
- Martina Klevstig
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Maria Mannila
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sara Svedlund
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ismena Mardani
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Franco-Cereceda
- Department of Cardiothoracic Surgery and Anaesthesia, Karolinska University Hospital, Stockholm, Sweden
| | - Per Eriksson
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Li-Ming Gan
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden; Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Mölndal, Sweden
| | - Malin Levin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ewa Ehrenborg
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine at BioClinicum, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
41
|
Sackmann V, Sinha MS, Sackmann C, Civitelli L, Bergström J, Ansell-Schultz A, Hallbeck M. Inhibition of nSMase2 Reduces the Transfer of Oligomeric α-Synuclein Irrespective of Hypoxia. Front Mol Neurosci 2019; 12:200. [PMID: 31555088 PMCID: PMC6724746 DOI: 10.3389/fnmol.2019.00200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Recently, extracellular vesicles (EVs), such as exosomes, have been proposed to play an influential role in the cell-to-cell spread of neurodegenerative diseases, including the intercellular transmission of α-synuclein (α-syn). However, the regulation of EV biogenesis and its relation to Parkinson’s disease (PD) is only partially understood. The generation of EVs through the ESCRT-independent pathway depends on the hydrolysis of sphingomyelin by neutral sphingomyelinase 2 (nSMase2) to produce ceramide, which causes the membrane of endosomal multivesicular bodies to bud inward. nSMase2 is sensitive to oxidative stress, a common process in PD brains; however, little is known about the role of sphingomyelin metabolism in the pathogenesis of PD. This is the first study to show that inhibiting nSMase2 decreases the transfer of oligomeric aggregates of α-syn between neuron-like cells. Furthermore, it reduced the accumulation and aggregation of high-molecular-weight α-syn. Hypoxia, as a model of oxidative stress, reduced the levels of nSMase2, but not its enzymatic activity, and significantly altered the lipid composition of cells without affecting EV abundance or the transfer of α-syn. These data show that altering sphingolipids can mitigate the spread of α-syn, even under hypoxic conditions, potentially suppressing PD progression.
Collapse
Affiliation(s)
- Valerie Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maitrayee Sardar Sinha
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Christopher Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Livia Civitelli
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Ansell-Schultz
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
42
|
Cansby E, Magnusson E, Nuñez-Durán E, Amrutkar M, Pedrelli M, Parini P, Hoffmann J, Ståhlman M, Howell BW, Marschall HU, Borén J, Mahlapuu M. STK25 Regulates Cardiovascular Disease Progression in a Mouse Model of Hypercholesterolemia. Arterioscler Thromb Vasc Biol 2019; 38:1723-1737. [PMID: 29930001 DOI: 10.1161/atvbaha.118.311241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective- Recent cohort studies have shown that nonalcoholic fatty liver disease (NAFLD), and especially nonalcoholic steatohepatitis (NASH), associate with atherosclerosis and cardiovascular disease, independently of conventional cardiometabolic risk factors. However, the mechanisms underlying the pathophysiological link between NAFLD/NASH and cardiovascular disease still remain unclear. Our previous studies have identified STK25 (serine/threonine protein kinase 25) as a critical determinant in ectopic lipid storage, meta-inflammation, and progression of NAFLD/NASH. The aim of this study was to assess whether STK25 is also one of the mediators in the complex molecular network controlling the cardiovascular disease risk. Approach and Results- Atherosclerosis was induced in Stk25 knockout and transgenic mice, and their wild-type littermates, by gene transfer of gain-of-function mutant of PCSK9 (proprotein convertase subtilisin/kexin type 9), which induces the downregulation of hepatic LDLR (low-density lipoprotein receptor), combined with an atherogenic western-type diet. We found that Stk25-/- mice displayed reduced atherosclerosis lesion area as well as decreased lipid accumulation, macrophage infiltration, collagen formation, and oxidative stress in aortic lesions compared with wild-type littermates, independently from alterations in dyslipidemia. Reciprocally, Stk25 transgenic mice presented aggravated plaque formation and maturation compared with wild-type littermates despite similar levels of fasting plasma cholesterol. We also found that STK25 protein was expressed in all layers of the aorta, suggesting a possible direct role in cardiovascular disease. Conclusions- This study provides the first evidence that STK25 plays a critical role in regulation of cardiovascular disease risk and suggests that pharmacological inhibition of STK25 function may provide new possibilities for prevention/treatment of atherosclerosis.
Collapse
Affiliation(s)
- Emmelie Cansby
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Elin Magnusson
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Esther Nuñez-Durán
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | - Manoj Amrutkar
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Sweden; Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Norway (M.A.)
| | | | - Paolo Parini
- Department of Laboratory Medicine (M.P., P.P.).,Department of Medicine, Metabolism Unit (P.P.)
| | - Jenny Hoffmann
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| | | | - Brian W Howell
- Karolinska Institute, Stockholm, Sweden; and Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse (B.W.H.)
| | | | - Jan Borén
- Wallenberg Laboratory (M.S., H.-U.M., J.B.)
| | - Margit Mahlapuu
- From the Lundberg Laboratory for Diabetes Research (E.C., E.M., E.N.-D., J.H., M.M.)
| |
Collapse
|
43
|
Cansby E, Kulkarni NM, Magnusson E, Kurhe Y, Amrutkar M, Nerstedt A, Ståhlman M, Sihlbom C, Marschall HU, Borén J, Blüher M, Mahlapuu M. Protein kinase MST3 modulates lipid homeostasis in hepatocytes and correlates with nonalcoholic steatohepatitis in humans. FASEB J 2019; 33:9974-9989. [PMID: 31173506 DOI: 10.1096/fj.201900356rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ectopic lipid storage in the liver is considered the main risk factor for nonalcoholic steatohepatitis (NASH). Understanding the molecular networks controlling hepatocellular lipid deposition is therefore essential for developing new strategies to effectively prevent and treat this complex disease. Here, we describe a new regulator of lipid partitioning in human hepatocytes: mammalian sterile 20-like (MST) 3. We found that MST3 protein coats lipid droplets in mouse and human liver cells. Knockdown of MST3 attenuated lipid accumulation in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion while inhibiting fatty acid influx and lipid synthesis. We also observed that lipogenic gene expression and acetyl-coenzyme A carboxylase protein abundance were reduced in MST3-deficient hepatocytes, providing insight into the molecular mechanisms underlying the decreased lipid storage. Furthermore, MST3 expression was positively correlated with key features of NASH (i.e., hepatic lipid content, lobular inflammation, and hepatocellular ballooning) in human liver biopsies. In summary, our results reveal a role of MST3 in controlling the dynamic metabolic balance of liver lipid catabolism vs. lipid anabolism. Our findings highlight MST3 as a potential drug target for the prevention and treatment of NASH and related complex metabolic diseases.-Cansby, E., Kulkarni, N. M., Magnusson, E., Kurhe, Y., Amrutkar, M., Nerstedt, A., Ståhlman, M., Sihlbom, C., Marschall, H.-U., Borén, J., Blüher, M., Mahlapuu, M. Protein kinase MST3 modulates lipid homeostasis in hepatocytes and correlates with nonalcoholic steatohepatitis in humans.
Collapse
Affiliation(s)
- Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nagaraj M Kulkarni
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elin Magnusson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Manoj Amrutkar
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Annika Nerstedt
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
44
|
Mardani I, Tomas Dalen K, Drevinge C, Miljanovic A, Ståhlman M, Klevstig M, Scharin Täng M, Fogelstrand P, Levin M, Ekstrand M, Nair S, Redfors B, Omerovic E, Andersson L, Kimmel AR, Borén J, Levin MC. Plin2-deficiency reduces lipophagy and results in increased lipid accumulation in the heart. Sci Rep 2019; 9:6909. [PMID: 31061399 PMCID: PMC6502866 DOI: 10.1038/s41598-019-43335-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Myocardial dysfunction is commonly associated with accumulation of cardiac lipid droplets (LDs). Perilipin 2 (Plin2) is a LD protein that is involved in LD formation, stability and trafficking events within the cell. Even though Plin2 is highly expressed in the heart, little is known about its role in myocardial lipid storage. A recent report shows that cardiac overexpression of Plin2 result in massive myocardial steatosis suggesting that Plin2 stabilizes LDs. In this study, we hypothesized that deficiency in Plin2 would result in reduced myocardial lipid storage. In contrast to our hypothesis, we found increased accumulation of triglycerides in hearts, and specifically in cardiomyocytes, from Plin2−/− mice. Although Plin2−/− mice had markedly enhanced lipid levels in the heart, they had normal heart function under baseline conditions and under mild stress. However, after an induced myocardial infarction, stroke volume and cardiac output were reduced in Plin2−/− mice compared with Plin2+/+ mice. We further demonstrated that the increased triglyceride accumulation in Plin2-deficient hearts was caused by altered lipophagy. Together, our data show that Plin2 is important for proper hydrolysis of LDs.
Collapse
Affiliation(s)
- Ismena Mardani
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christina Drevinge
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martina Klevstig
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Margareta Scharin Täng
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Max Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matias Ekstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Björn Redfors
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin C Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
45
|
Ruiz M, Ståhlman M, Borén J, Pilon M. AdipoR1 and AdipoR2 maintain membrane fluidity in most human cell types and independently of adiponectin. J Lipid Res 2019; 60:995-1004. [PMID: 30890562 PMCID: PMC6495173 DOI: 10.1194/jlr.m092494] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
The FA composition of phospholipids must be tightly regulated to maintain optimal cell membrane properties and compensate for a highly variable supply of dietary FAs. Previous studies have shown that AdipoR2 and its homologue PAQR-2 are important regulators of phospholipid FA composition in HEK293 cells and Caenorhabditiselegans, respectively. Here we show that both AdipoR1 and AdipoR2 are essential for sustaining desaturase expression and high levels of unsaturated FAs in membrane phospholipids of many human cell types, including primary human umbilical vein endothelial cells, and for preventing membrane rigidification in cells challenged with exogenous palmitate, a saturated FA. Three independent methods confirm the role of the AdipoRs as regulators of membrane composition and fluidity: fluorescence recovery after photobleaching, measurements of Laurdan dye generalized polarization, and mass spectrometry to determine the FA composition of phospholipids. Furthermore, we show that the AdipoRs can prevent lipotoxicity in the complete absence of adiponectin, their putative ligand. We propose that the primary cellular function of AdipoR1 and AdipoR2 is to maintain membrane fluidity in most human cell types and that adiponectin is not required for this function.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology; University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology; University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
46
|
Pombo CM, Iglesias C, Sartages M, Zalvide JB. MST Kinases and Metabolism. Endocrinology 2019; 160:1111-1118. [PMID: 30882881 DOI: 10.1210/en.2018-00898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Since the discovery of the mammalian sterile twenty (MST) kinase family of proteins (MST1/STK4, MST2/STK3, MST3/STK24, and SOK1/STK25), much has been done that adds to our knowledge of their structure, regulation, and function. In the last few years, a series of articles has unveiled a previous unknown relation of these kinases with metabolic regulation and the homeostasis of metabolic tissues. The aim of this review is to bring together this body of data to provide a detailed picture of the current knowledge about these proteins, metabolism, and some of the associated diseases.
Collapse
Affiliation(s)
- Celia M Pombo
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS), Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, A Coruña, Spain
| | - Cristina Iglesias
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS), Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, A Coruña, Spain
| | - Miriam Sartages
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS), Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, A Coruña, Spain
| | - Juan B Zalvide
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular e Enfermidades Crónicas (CiMUS), Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
47
|
Cansby E, Nuñez-Durán E, Magnusson E, Amrutkar M, Booten SL, Kulkarni NM, Svensson LT, Borén J, Marschall HU, Aghajan M, Mahlapuu M. Targeted Delivery of Stk25 Antisense Oligonucleotides to Hepatocytes Protects Mice Against Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol 2018; 7:597-618. [PMID: 30576769 PMCID: PMC6411916 DOI: 10.1016/j.jcmgh.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide. Currently, no specific pharmacologic therapy is available for NAFLD/NASH, which has been recognized as one of the major unmet medical needs of the 21st century. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase (STK)25 as a critical regulator of hepatic lipid partitioning and NAFLD/NASH. Here, we studied the metabolic benefit of liver-specific STK25 inhibitors on NAFLD development and progression in a mouse model of diet-induced obesity. METHODS We developed a hepatocyte-specific triantennary N-acetylgalactosamine (GalNAc)-conjugated antisense oligonucleotide (ASO) targeting Stk25 and evaluated its effect on NAFLD features in mice after chronic exposure to dietary lipids. RESULTS We found that systemic administration of hepatocyte-targeting GalNAc-Stk25 ASO in obese mice effectively ameliorated steatosis, inflammatory infiltration, hepatic stellate cell activation, nutritional fibrosis, and hepatocellular damage in the liver compared with mice treated with GalNAc-conjugated nontargeting ASO, without any systemic toxicity or local tolerability concerns. We also observed protection against high-fat-diet-induced hepatic oxidative stress and improved mitochondrial function with Stk25 ASO treatment in mice. Moreover, GalNAc-Stk25 ASO suppressed lipogenic gene expression and acetyl-CoA carboxylase protein abundance in the liver, providing insight into the molecular mechanisms underlying repression of hepatic steatosis. CONCLUSIONS This study provides in vivo nonclinical proof-of-principle for the metabolic benefit of liver-specific inhibition of STK25 in the context of obesity and warrants future investigations to address the therapeutic potential of GalNAc-Stk25 ASO in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Emmelie Cansby
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Esther Nuñez-Durán
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elin Magnusson
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Manoj Amrutkar
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Nagaraj M. Kulkarni
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - L. Thomas Svensson
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Jan Borén
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Margit Mahlapuu
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden,Correspondence Address correspondence to: Margit Mahlapuu, PhD, Department of Chemistry & Molecular Biology, The Faculty of Science at University of Gothenburg, Medicinaregatan 9C, SE-413 90 Gothenburg, Sweden. fax: (46) 31 7862599.
| |
Collapse
|
48
|
Ruiz M, Bodhicharla R, Svensk E, Devkota R, Busayavalasa K, Palmgren H, Ståhlman M, Boren J, Pilon M. Membrane fluidity is regulated by the C. elegans transmembrane protein FLD-1 and its human homologs TLCD1/2. eLife 2018; 7:e40686. [PMID: 30509349 PMCID: PMC6279351 DOI: 10.7554/elife.40686] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/04/2018] [Indexed: 12/15/2022] Open
Abstract
Dietary fatty acids are the main building blocks for cell membranes in animals, and mechanisms must therefore exist that compensate for dietary variations. We isolated C. elegans mutants that improved tolerance to dietary saturated fat in a sensitized genetic background, including eight alleles of the novel gene fld-1 that encodes a homolog of the human TLCD1 and TLCD2 transmembrane proteins. FLD-1 is localized on plasma membranes and acts by limiting the levels of highly membrane-fluidizing long-chain polyunsaturated fatty acid-containing phospholipids. Human TLCD1/2 also regulate membrane fluidity by limiting the levels of polyunsaturated fatty acid-containing membrane phospholipids. FLD-1 and TLCD1/2 do not regulate the synthesis of long-chain polyunsaturated fatty acids but rather limit their incorporation into phospholipids. We conclude that inhibition of FLD-1 or TLCD1/2 prevents lipotoxicity by allowing increased levels of membrane phospholipids that contain fluidizing long-chain polyunsaturated fatty acids. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Rakesh Bodhicharla
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Emma Svensk
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Henrik Palmgren
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
- Diabetes Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech UnitAstraZenecaGothenburgSweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Marc Pilon
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
49
|
Glucosylceramide modifies the LPS-induced inflammatory response in macrophages and the orientation of the LPS/TLR4 complex in silico. Sci Rep 2018; 8:13600. [PMID: 30206272 PMCID: PMC6134110 DOI: 10.1038/s41598-018-31926-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is activated by bacterial lipopolysaccharide (LPS), which drives the production of proinflammatory cytokines. Earlier studies have indicated that cholesterol- and glycosphingolipid-rich subregions of the plasma membrane (lipid domains) are important for TLR4-mediated signaling. We report that inhibition of glucosylceramide (GluCer) synthase, which resulted in decreased concentrations of the glycosphingolipid GluCer in lipid domains, reduced the LPS-induced inflammatory response in both mouse and human macrophages. Atomistic molecular dynamics simulations of the TLR4 dimer complex (with and without LPS in its MD-2 binding pockets) in membranes (in the presence and absence of GluCer) showed that: (1) LPS induced a tilted orientation of TLR4 and increased dimer integrity; (2) GluCer did not affect the integrity of the LPS/TLR4 dimer but reduced the LPS-induced tilt; and (3) GluCer increased electrostatic interactions between the membrane and the TLR4 extracellular domain, which could potentially modulate the tilt. We also showed that GCS inhibition reduced the interaction between TLR4 and the intracellular adaptor protein Mal. We conclude that the GluCer-induced effects on LPS/TLR4 orientation may influence the signaling capabilities of the LPS/TLR4 complex by affecting its interaction with downstream signaling proteins.
Collapse
|
50
|
Sütt S, Cansby E, Paul A, Amrutkar M, Nuñez-Durán E, Kulkarni NM, Ståhlman M, Borén J, Laurencikiene J, Howell BW, Enerbäck S, Mahlapuu M. STK25 regulates oxidative capacity and metabolic efficiency in adipose tissue. J Endocrinol 2018; 238:187-202. [PMID: 29794231 DOI: 10.1530/joe-18-0182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
Abstract
Whole-body energy homeostasis at over-nutrition critically depends on how well adipose tissue remodels in response to excess calories. We recently identified serine/threonine protein kinase (STK)25 as a critical regulator of ectopic lipid storage in non-adipose tissue and systemic insulin resistance in the context of nutritional stress. Here, we investigated the role of STK25 in regulation of adipose tissue dysfunction in mice challenged with a high-fat diet. We found that overexpression of STK25 in high-fat-fed mice resulted in impaired mitochondrial function and aggravated hypertrophy, inflammatory infiltration and fibrosis in adipose depots. Reciprocally, Stk25-knockout mice displayed improved mitochondrial function and were protected against diet-induced excessive fat storage, meta-inflammation and fibrosis in brown and white adipose tissues. Furthermore, in rodent HIB-1B cell line, STK25 depletion resulted in enhanced mitochondrial activity and consequently, reduced lipid droplet size, demonstrating an autonomous action for STK25 within adipocytes. In summary, we provide the first evidence for a key function of STK25 in controlling the metabolic balance of lipid utilization vs lipid storage in brown and white adipose depots, suggesting that repression of STK25 activity offers a potential strategy for establishing healthier adipose tissue in the context of chronic exposure to dietary lipids.
Collapse
Affiliation(s)
- Silva Sütt
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alexandra Paul
- Department of Biology and Biological EngineeringDivision of Chemical Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - Manoj Amrutkar
- Department of Hepato-Pancreato-Biliary SurgeryInstitute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Esther Nuñez-Durán
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nagaraj M Kulkarni
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jurga Laurencikiene
- Lipid LaboratoryDepartment of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Brian W Howell
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical University, Syracuse, New York, USA
| | - Sven Enerbäck
- Department of Medical and Clinical GeneticsInstitute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margit Mahlapuu
- Lundberg Laboratory for Diabetes ResearchDepartment of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|