1
|
Lee EJ, Shaikh S, Lee JH, Hur SJ, Choi I. Glycyrrhiza uralensis crude water extract and licochalcone A and B to enhance chicken muscle satellite cell differentiation for cultured meat production. Sci Rep 2025; 15:14350. [PMID: 40274983 PMCID: PMC12022269 DOI: 10.1038/s41598-025-98386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Muscle satellite cells (MSCs) are the most commonly used cells in cultured meat research and development. Enhancing MSC proliferation and differentiation while reducing cell culture costs is requisite to commercializing cultured meat. This study explored the effects of Glycyrrhiza uralensis crude water extract (GU-CWE) and licochalcone A and B (Lic A or B) on the proliferation and differentiation of chicken, bovine, and porcine MSCs. While GU-CWE and Lic A and B had negligible effects on bovine and porcine MSCs, GU-CWE significantly enhanced chicken MSC differentiation, and Lic A and B promoted both the proliferation and differentiation of chicken MSCs. Furthermore, GU-CWE was found to mitigate reactive oxygen species activity during chicken MSC differentiation and promote cell proliferation and adhesion in spheroid culture, thereby maintaining a spherical shape. Collectively, this study suggests that GU-CWE and Lic A and B can significantly reduce costs and safely increase the productivity of chicken MSCs in cultured meat production processes.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jin Hee Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
2
|
Lim JH, Ahmad SS, Hwang YC, Baral A, Hur SJ, Lee EJ, Choi I. The Effects of Laxogenin and 5-Alpha-hydroxy-laxogenin on Myotube Formation and Maturation During Cultured Meat Production. Int J Mol Sci 2025; 26:345. [PMID: 39796200 PMCID: PMC11720223 DOI: 10.3390/ijms26010345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Cultured meat (CM) is derived from the in vitro myogenesis of muscle satellite (stem) cells (MSCs) and offers a promising alternative protein source. However, the development of a cost-effective media formulation that promotes cell growth has yet to be achieved. In this study, laxogenin (LAX) and 5-alpha-hydroxy-laxogenin (5HLAX) were computationally screened against myostatin (MSTN), a negative regulator of muscle mass, because of their antioxidant properties and dual roles as MSTN inhibitors and enhancers of myogenesis regulatory factors. In silico analysis showed LXG and 5HLXG bound to MSTN with binding free energies of -7.90 and -8.50 kcal/mol, respectively. At a concentration of 10 nM, LAX and 5HLAX effectively inhibited the mRNA and protein expressions of MSTN, promoted myogenesis, and enhanced myotube formation and maturation. In addition, by acting as agonists of ROS downregulating factors, they exhibited antioxidative effects. This study shows that supplementation with LAX or 5HLAX at 10 nM in CM production improves texture, quality, and nutritional value. We believe this study fills a research gap on media development for myotube formation and maturation, which are important factors for large-scale in vitro CM production that improve product quality, nutritional value, and efficacy.
Collapse
Affiliation(s)
- Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.H.L.); (S.S.A.); (Y.C.H.); (A.B.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.H.L.); (S.S.A.); (Y.C.H.); (A.B.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.H.L.); (S.S.A.); (Y.C.H.); (A.B.); (E.J.L.)
| | - Ananda Baral
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.H.L.); (S.S.A.); (Y.C.H.); (A.B.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.H.L.); (S.S.A.); (Y.C.H.); (A.B.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.H.L.); (S.S.A.); (Y.C.H.); (A.B.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Ahmad SS, Lim JH, Choi I, Lee EJ. Biocomputational screening of natural compounds targeting 15-hydroxyprostaglandin dehydrogenase to improve skeletal muscle during aging. Mol Divers 2024; 28:4425-4439. [PMID: 38904907 DOI: 10.1007/s11030-024-10825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/18/2024] [Indexed: 06/22/2024]
Abstract
Skeletal muscle (SM) contains a diverse population of muscle stem (or satellite) cells, which are essential for the maintenance of muscle tissue and positively regulated by prostaglandin E2 (PGE2). However, in aged SM, PGE2 levels are reduced due to increased prostaglandin catabolism by 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a negative regulator of SM tissue repair and regeneration. Screening of a library of 80,617 natural compounds in the ZINC database against 15-PGDH was conducted from PyRx. Further, drug-likeness rules, including those of Lipinski, Ghose, Veber, Egan, and Muegge were performed. The selected complex was forwarded for MD simulations up to 100ns. Based on free energy of binding obtained from docking revealed that ZINC14557836 and ZINC14638400 more potently inhibiting to 15-PGDH than SW033291 (the control and high-affinity inhibitor of 15-PGDH). The free energies of binding obtained from PyRx for 15-PGDH-ZINC14557836, 15-PGDH-ZINC14638400, and 15-PGDH-SW033291 complexes were - 10.30, -9.80, and - 8.0 kcal/mol, respectively. Root mean square deviations (RMSDs), root mean square fluctuations (RMSFs), radii of gyration (Rg), solvent-accessible surface areas (SASAs), and H-bond parameters obtained by 100 ns MD simulations predicted ZINC14557836 and ZINC14638400 more stably complexed with 15-PGDH than SW033291. The several parameters, including physicochemical properties and drug-likenesses, were within acceptable limits, and ZINC14557836 and ZINC14638400 also satisfied other drug-likeness rules, including those of Lipinski, Ghose, Veber, Egan, and Muegge. These findings suggest that ZINC14557836 and ZINC14638400 provide starting points for the development of medications that increase SM regeneration and muscle stem (or satellite) cell numbers by inhibiting 15-PGDH.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
4
|
Choi S, Lee MJ, Kim M, Bae Y, Park JU, Cho SW. Durable Muscle Extracellular Matrix Engineered with Adhesive Phenolic Moieties for Effective Skeletal Muscle Regeneration in Muscle Atrophy. Adv Healthc Mater 2024; 13:e2401826. [PMID: 39420690 DOI: 10.1002/adhm.202401826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Muscle atrophy detrimentally impacts health and exacerbates physical disability, leading to increased mortality. In particular, sarcopenia, aging-related degenerative muscle loss, necessitates urgent remedies. Current approaches for treating muscle atrophy include exercise and nutrition, while drug exploration remains in its early stages. Cell therapy, focusing on satellite cells, faces significant challenge due to poor engraftment, safety issue, and high cost. Cell-free approach using extracellular matrix (ECM) shows a regenerative potential, but a lack of mechanical and adhesive properties hinders prolonged efficacy of ECM therapy. Here, durable muscle ECM (MEM) hydrogels for muscle atrophy by fortifying MEM with adhesive phenolic moieties including catechol and pyrogallol are demonstrated. The resultant phenolic MEM hydrogels exhibit enhanced mechanical and adhesive properties and provide sustained muscle-like microenvironments to address muscle atrophy. No local and systemic toxicities are observed after phenolic MEM injection into tibialis anterior muscle. Notably, these engineered MEM hydrogels, devoid of cells or drugs, induce tissue rejuvenation by promoting muscle protein synthesis and facilitating functional muscle recovery in mouse models of disuse- and age-induced atrophy. This study introduces cell-free, ECM-based therapeutics with translational potential for muscle atrophy by reversing muscle loss and restoring function.
Collapse
Affiliation(s)
- Soojeong Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Moohyun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yunsu Bae
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Sheet S, Jang SS, Lim JA, Park W, Kim D. Molecular signatures diversity unveiled through a comparative transcriptome analysis of longissimus dorsi and psoas major muscles in Hanwoo cattle. Anim Biotechnol 2024; 35:2379883. [PMID: 39051919 DOI: 10.1080/10495398.2024.2379883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
This study investigates the transcriptome-level alterations that influence production traits and early fattening stage myogenesis in Hanwoo cattle, specifically focusing on the highly prized Longissimus dorsi (LD) and Psoas major (PM) skeletal muscles, which hold significant commercial value. We conducted RNA sequencing analysis on LD and PM muscles from 14 Hanwoo steers (n = 7, each group) at the age of 10 months, all fed the same diet. Our results unveiled a total of 374 and 206 up-regulated differentially expressed genes (DEGs) in LD and PM muscles, respectively, with statistical significance (p < 0.05) and a log2fold change ≥ 1. Genes governing muscle development processes, such as PAX3, MYL3, COL11A1, and MYL6B, were found to be expressed at higher levels in both tissues. Conversely, genes regulating lipid metabolism, including FABP3, FABP4, LEP, ADIPOQ, and PLIN1, exhibited higher expression in the PM muscle. Functional enrichment analysis revealed a tissue-specific response, as PM muscle showed increased lipid metabolism allied pathways, including the PPAR signaling pathway and regulation of lipolysis in adipocytes, while LD was characterized by growth and proliferative processes. Our findings validate the presence of a muscle-dependent transcription and co-expression pattern that elucidates the transcriptional landscape of bovine skeletal muscle.
Collapse
Affiliation(s)
- Sunirmal Sheet
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Sun Sik Jang
- Hanwoo Research Institute, National Institute of Animal Science, RDA, Pyeongchang, South Korea
| | - Jin-A Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, South Korea
| |
Collapse
|
6
|
Yuan Y, Duan W, Yang N, Sun C, Nie Q, Li J, Lian L. Transcriptome analysis of long non-coding RNA associated with embryonic muscle development in chickens. Br Poult Sci 2024; 65:394-402. [PMID: 38738875 DOI: 10.1080/00071668.2024.2335935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/08/2024] [Indexed: 05/14/2024]
Abstract
1. Skeletal muscle is an important component of chicken carcass. In chickens, the number of muscle fibres is fixed during the embryonic period, and muscle development during the embryonic period determines the muscle development potential after hatching.2. Beijing-You (BY) and Cornish (CN) chickens show completely different growth rates and body types, and two breeds were used in this study to explore the role of lncRNAs in muscle development during different chicken embryonic periods. A systematic analysis of lncRNAs and mRNAs were conducted in the pectoral muscle tissues of BY and CN chickens at embryonic days 11 (ED11), 13 (ED13), 15 (ED15), 17 (ED17), and 1-day-old (D1) using RNA-seq. A total of 4,104 differentially expressed transcripts (DETs) were identified among the five stages, including 2,359 lncRNAs and 1,745 mRNAs.3. The number of DETs between the two breeds at ED17 (1,658 lncRNAs and 1,016 mRNAs) was much higher than the total number of DET at all the other stages (692 lncRNAs and 729 mRNAs), indicating that the two breeds show the largest difference in gene regulation at ED17.4. Correlation analysis was performed for all differentially expressed lncRNAs and mRNAs during the five periods. Forty-three, cis interaction pairs of lncRNA-mRNA related to chicken muscle development were predicted. The expression of four pairs was verified, and the results showed MSTRG.12395.2-FGFBP2 and MSTRG.18590.6-FMOD were significantly up-regulated in CN at ED11 compared to BY and might be important candidate genes for embryonic muscle development.
Collapse
Affiliation(s)
- Y Yuan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - W Duan
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - N Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - C Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Q Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - J Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - L Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Wang K, Zhou M, Zhang Y, Jin Y, Xue Y, Mao D, Rui Y. Fibromodulin facilitates the osteogenic effect of Masquelet's induced membrane by inhibiting the TGF-β/SMAD signaling pathway. Biomater Sci 2024; 12:1898-1913. [PMID: 38426394 DOI: 10.1039/d3bm01665j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Masquelet's induced membrane (IM) technique is a promising treatment strategy for the repair of substantial bone defects. The formation of an IM around polymethylmethacrylate bone cement plays a crucial role in this technique. Several studies have indicated that IMs have bioactivity because they contain abundant blood vessels, a variety of cells, and biological factors. The bioactivity of an IM increases during the initial stages of formation, thereby facilitating bone regeneration and remodeling. Nevertheless, the precise mechanisms underlying the enhancement of IM bioactivity and the promotion of bone regeneration necessitate further investigation. In this study, we successfully developed a Masquelet IM model of critical femur defects in rats. By employing proteomics analysis and biological detection techniques, we identified fibromodulin (FMOD) as a pivotal factor contributing to angiogenesis and the enhanced bioactivity of the IM. A significant increase in angiogenesis and the expression of bioactive factors in the IM was also observed with the upregulation of FMOD expression. Furthermore, this effect is mediated through the inhibition of the transforming growth factor beta (TGF-β)/SMAD signaling pathway. We also demonstrated that administering recombinant human FMOD enhanced osteogenesis in rat bone marrow mesenchymal stem cells and angiogenesis in human umbilical vein endothelial cells in vitro. Furthermore, the negative regulatory effect of the TGF-β signaling pathway was verified. In conclusion, this study provides a novel theoretical basis for the application of IMs in bone-defect reconstruction and explores possible new mechanisms that may play an important role in promoting the bioactivity and osteogenic potential of IMs.
Collapse
Affiliation(s)
- Kai Wang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Ming Zhou
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Yuanshu Zhang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Yesheng Jin
- Suzhou Medical College of Soochow University, Suzhou, 215031, China
| | - Yuan Xue
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Yongjun Rui
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| |
Collapse
|
8
|
Ahmad SS, Choi I. Current situation and publication trends of skeletal muscle related research: A bibliometric analysis. Heliyon 2024; 10:e24942. [PMID: 38317977 PMCID: PMC10838779 DOI: 10.1016/j.heliyon.2024.e24942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Skeletal muscle (SM) is a highly plastic and dynamic tissue of the body and is largely responsible for body maintenance. SM is primarily responsible for body balance, movement, postural support, thermogenesis, and blood glucose homeostasis. SM regeneration depends on the activation of muscle satellite (stem) cells (MSCs) under the regulation of several muscle regulatory factors that regulate myogenesis. Bibliometric analysis involves the quantitative and qualitative assessments of research and scientific progress that provides researchers access to recent publications, research directions, and thus generates ideas that can be implemented to guide future research. In this analysis, the Web of Science database was searched for articles using the search term "skeletal muscle AND myogenesis AND muscle satellite cell", and 1777 articles (original research/review articles) published from the year 1997 to June 2023 were retrieved. After applying several other exclusion and inclusion criteria, 129 articles were considered for analysis. Types of research, keywords, journals, authors, years, institutions, funding agencies, and average annual citations were analyzed. Muscle regeneration, satellite cell, and myogenesis were often used keywords and exhibited increasing trends in research articles over the decades. Some journals were found to strongly support research publications with high impact factors and citation scores. This study aimed to examine research ideas and growth in the skeletal muscle related field for atrophy and aging improvement.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
9
|
Zheng Y, Yu Y, Feng J, Ling M, Wang X. Unveiling the Potential of Nelumbo nucifera-Derived Liensinine to Target The Myostatin Protein and to Counteract Muscle Atrophy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2240-2249. [PMID: 38258624 DOI: 10.1021/acs.jafc.3c09002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Muscle atrophy refers to a decline in muscle mass and function, which has become a global concern due to the aging population. Various clinical trials have investigated the inhibitors of myostatin (MSTN). They have shown promising improvements in muscle function and quality of life. However, there are no drugs specifically targeting MSTN that have been approved for clinical use. In this study, we virtually screened liensinine (LIE), a food (Nelumbo nucifera)-derived compound, with low toxicity, from over 1.1 million compounds. We subsequently identified it as a potential candidate that targets MSTN by a cellular thermal shift assay (CETSA) and drug affinity response target stability (DARTS) assay. Further validation through cellular and in vivo studies demonstrated its promising potential in combating muscle atrophy. The mechanism of action may involve hindering the interaction between MSTN and the activin receptor type IIB (ActRIIB) and downregulating the expression of downstream proteins, including the muscle RING-finger protein-1 (MuRF-1) and muscle atrophy F-box (MAFbx)/Atrogin-1, ultimately promoting muscle regeneration. These results provide a strong foundation for future studies to explore the therapeutic potential of LIE in clinical settings.
Collapse
Affiliation(s)
- Youle Zheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Yu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Min Ling
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
10
|
Ahmad K, Shaikh S, Lim JH, Ahmad SS, Chun HJ, Lee EJ, Choi I. Therapeutic application of natural compounds for skeletal muscle-associated metabolic disorders: A review on diabetes perspective. Biomed Pharmacother 2023; 168:115642. [PMID: 37812896 DOI: 10.1016/j.biopha.2023.115642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
Skeletal muscle (SM) plays a vital role in energy and glucose metabolism by regulating insulin sensitivity, glucose uptake, and blood glucose homeostasis. Impaired SM metabolism is strongly linked to several diseases, particularly type 2 diabetes (T2D). Insulin resistance in SM may result from the impaired activities of insulin receptor tyrosine kinase, insulin receptor substrate 1, phosphoinositide 3-kinase, and AKT pathways. This review briefly discusses SM myogenesis and the critical roles that SM plays in insulin resistance and T2D. The pharmacological targets of T2D which are associated with SM metabolism, such as DPP4, PTB1B, SGLT, PPARγ, and GLP-1R, and their potential modulators/inhibitors, especially natural compounds, are discussed in detail. This review highlights the significance of SM in metabolic disorders and the therapeutic potential of natural compounds in targeting SM-associated T2D targets. It may provide novel insights for the future development of anti-diabetic drug therapies. We believe that scientists working on T2D therapies will benefit from this review by enhancing their knowledge and updating their understanding of the subject.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| |
Collapse
|
11
|
Ahmad K, Shaikh S, Chun HJ, Ali S, Lim JH, Ahmad SS, Lee EJ, Choi I. Extracellular matrix: the critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm Regen 2023; 43:58. [PMID: 38008778 PMCID: PMC10680355 DOI: 10.1186/s41232-023-00308-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/28/2023] Open
Abstract
The regenerative ability of skeletal muscle (SM) in response to damage, injury, or disease is a highly intricate process that involves the coordinated activities of multiple cell types and biomolecular factors. Of these, extracellular matrix (ECM) is considered a fundamental component of SM regenerative ability. This review briefly discusses SM myogenesis and regeneration, the roles played by muscle satellite cells (MSCs), other cells, and ECM components, and the effects of their dysregulations on these processes. In addition, we review the various types of ECM scaffolds and biomaterials used for SM regeneration, their applications, recent advances in ECM scaffold research, and their impacts on tissue engineering and SM regeneration, especially in the context of severe muscle injury, which frequently results in substantial muscle loss and impaired regenerative capacity. This review was undertaken to provide a comprehensive overview of SM myogenesis and regeneration, the stem cells used for muscle regeneration, the significance of ECM in SM regeneration, and to enhance understanding of the essential role of the ECM scaffold during SM regeneration.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
12
|
Buras ED, Woo MS, Verma RK, Kondisetti SH, Davis CS, Claflin DR, Baran KC, Michele DE, Brooks SV, Chun TH. Thrombospondin-1 promotes fibro-adipogenic stromal expansion and contractile dysfunction of the diaphragm in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553733. [PMID: 37645822 PMCID: PMC10462153 DOI: 10.1101/2023.08.17.553733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pulmonary disorders impact 40-80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragmatic weakness. Increased intra-diaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs)-mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1 knockout ( Thbs1 -/- ) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGFβ-related expression signatures, and augmentation of a Thy1 -expressing sub-population previously linked to type 2 diabetes. Despite similar weight gain, Thbs1 -/- mice were protected from these transcriptomic changes, and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1 -/- diaphragms maintained normal contractile force and motion after DIO challenge. These findings establish THBS1 as a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition, and potential therapeutic target in obesity-associated respiratory dysfunction.
Collapse
|
13
|
Yang X, Zhu R, Song Z, Shi D, Huang J. Diversity in Cell Morphology, Composition, and Function among Adipose Depots in River Buffaloes. Int J Mol Sci 2023; 24:ijms24098410. [PMID: 37176117 PMCID: PMC10179058 DOI: 10.3390/ijms24098410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Fat deposition is a significant economic trait in livestock animals. Adipose tissues (ATs) developed in subcutaneous and visceral depots are considered waste whereas those within muscle are highly valued. In river buffaloes, lipogenesis is highly active in subcutaneous (especially in the sternum subcutaneous) and visceral depots but not in muscle tissue. Revealing the features and functions of ATs in different depots is significant for the regulation of their development. Here, we characterize the cell size, composition, and function of six AT depots in river buffaloes. Our data support that the subcutaneous AT depots have a larger cell size than visceral AT depots, and the subcutaneous AT depots, especially the sternum subcutaneous AT, are mainly associated with the extracellular matrix whereas the visceral AT depots are mainly associated with immunity. We found that sternum subcutaneous AT is significantly different from ATs in other depots, due to the high unsaturated fatty acid content and the significant association with metabolic protection. The perirenal AT is more active in FA oxidation for energy supply. In addition, the expression of HOX paralogs supports the variable origins of ATs in different depots, indicating that the development of ATs in different depots is mediated by their progenitor cells. The present study enhances our understanding of the cellular and molecular features, metabolism, and origin of AT depots in buffaloes, which is significant for the regulation of fat deposition and provides new insights into the features of AT depots in multiple discrete locations.
Collapse
Affiliation(s)
- Xintong Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530005, China
| | - Ruirui Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530005, China
| | - Ziyi Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530005, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530005, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning 530005, China
| |
Collapse
|
14
|
Abstract
Fibromodulin (FMOD) is an archetypal member of the class II small leucine-rich proteoglycan family. By directly binding to extracellular matrix structural components, such as collagen and lysyl oxidase, FMOD regulates collagen cross-linking, packing, assembly, and fibril architecture via a multivalent interaction. Meanwhile, as a pluripotent molecule, FMOD acts as a ligand of various cytokines and growth factors, especially those belonging to the transforming growth factor (TGF) β superfamily, by interacting with the corresponding signaling molecules involved in cell adhesion, spreading, proliferation, migration, invasion, differentiation, and metastasis. Consequently, FMOD exhibits promigratory, proangiogenic, anti-inflammatory, and antifibrogenic properties and plays essential roles in cell fate determination and maturation, progenitor cell recruitment, and tissue regeneration. The multifunctional nature of FMOD thus enables it to be a promising therapeutic agent for a broad repertoire of diseases, including but not limited to arthritis, temporomandibular joint disorders, caries, and fibrotic diseases among different organs, as well as to be a regenerative medicine candidate for skin, muscle, and tendon injuries. Moreover, FMOD is also considered a marker for tumor diagnosis and prognosis prediction and a potential target for cancer treatment. Furthermore, FMOD itself is sufficient to reprogram somatic cells into a multipotent state, creating a safe and efficient cell source for various tissue reconstructions and thus opening a new avenue for regenerative medicine. This review focuses on the recent preclinical efforts bringing FMOD research and therapies to the forefront. In addition, a contemporary understanding of the mechanism underlying FMOD's function, particularly its interaction with TGFβ superfamily members, is also discussed at the molecular level to aid the discovery of novel FMOD-based treatments.
Collapse
Affiliation(s)
- Z. Zheng
- David Geffen School of Medicine,
University of California, Los Angeles, CA, USA
- School of Dentistry, University of
California, Los Angeles, CA, USA
| | - H.S. Granado
- Department of Orthodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - C. Li
- Department of Orthodontics, School of
Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Ahmad SS, Chun HJ, Ahmad K, Shaikh S, Lim JH, Ali S, Han SS, Hur SJ, Sohn JH, Lee EJ, Choi I. The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:16-31. [PMID: 37093925 PMCID: PMC10119461 DOI: 10.5187/jast.2022.e114] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Shahid Ali
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Sung Soo Han
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
- School of Chemical Engineering, Yeungnam
University, Gyeongsan 38541, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jung Hoon Sohn
- Synthetic Biology and Bioengineering
Research Center, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Inho Choi
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
16
|
Schüler SC, Liu Y, Dumontier S, Grandbois M, Le Moal E, Cornelison DDW, Bentzinger CF. Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche. Front Cell Dev Biol 2022; 10:1056523. [PMID: 36523505 PMCID: PMC9745096 DOI: 10.3389/fcell.2022.1056523] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) is an interconnected macromolecular scaffold occupying the space between cells. Amongst other functions, the ECM provides structural support to tissues and serves as a microenvironmental niche that conveys regulatory signals to cells. Cell-matrix adhesions, which link the ECM to the cytoskeleton, are dynamic multi-protein complexes containing surface receptors and intracellular effectors that control various downstream pathways. In skeletal muscle, the most abundant tissue of the body, each individual muscle fiber and its associated muscle stem cells (MuSCs) are surrounded by a layer of ECM referred to as the basal lamina. The core scaffold of the basal lamina consists of self-assembling polymeric laminins and a network of collagens that tether proteoglycans, which provide lateral crosslinking, establish collateral associations with cell surface receptors, and serve as a sink and reservoir for growth factors. Skeletal muscle also contains the fibrillar collagenous interstitial ECM that plays an important role in determining tissue elasticity, connects the basal laminae to each other, and contains matrix secreting mesenchymal fibroblast-like cell types and blood vessels. During skeletal muscle regeneration fibroblast-like cell populations expand and contribute to the transitional fibronectin-rich regenerative matrix that instructs angiogenesis and MuSC function. Here, we provide a comprehensive overview of the role of the skeletal muscle ECM in health and disease and outline its role in orchestrating tissue regeneration and MuSC function.
Collapse
Affiliation(s)
- Svenja C. Schüler
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Grandbois
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - DDW Cornelison
- Division of Biological Sciences Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - C. Florian Bentzinger
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
17
|
Halasi M, Grinstein M, Adini A, Adini I. Fibromodulin Ablation Exacerbates the Severity of Acute Colitis. J Inflamm Res 2022; 15:4515-4526. [PMID: 35966006 PMCID: PMC9374093 DOI: 10.2147/jir.s366290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Epidemiological studies have associated pigment production with protection against certain human diseases. In contrast to African Americans, European descendants are more likely to suffer from angiogenesis-dependent and inflammatory diseases, such as wet age-related macular degeneration (ARMD) and ulcerative colitis (UC), respectively. Methods In a mouse model of dextran sulfate sodium (DSS)-induced acute colitis, the effect of fibromodulin (FMOD) depletion was examined on colitis severity. Results In this study, albino mice that produce high levels of FMOD developed less severe acute colitis compared with mice lacking in FMOD as assessed by clinical symptoms and histopathological changes. FMOD depletion affected the expression of tight junction proteins, contributing to the destruction of the epithelial barrier. Furthermore, this study revealed a stronger inflammatory response after DSS treatment in the absence of FMOD, where FMOD depletion led to an increase in activated T cells, plasmacytoid dendritic cells (pDCs), and type I interferon (IFN) production. Discussion These findings point to FMOD as a potential biomarker of disease severity in UC among light-skinned individuals of European descent.
Collapse
Affiliation(s)
- Marianna Halasi
- Department of Surgery, Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mor Grinstein
- Department of Medicine, Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Avner Adini
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Irit Adini
- Department of Surgery, Center for Engineering in Medicine & Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Dungan CM, Figueiredo VC, Wen Y, VonLehmden GL, Zdunek CJ, Thomas NT, Mobley CB, Murach KA, Brightwell CR, Long DE, Fry CS, Kern PA, McCarthy JJ, Peterson CA. Senolytic treatment rescues blunted muscle hypertrophy in old mice. GeroScience 2022; 44:1925-1940. [PMID: 35325353 PMCID: PMC9616988 DOI: 10.1007/s11357-022-00542-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/06/2022] [Indexed: 01/07/2023] Open
Abstract
With aging, skeletal muscle plasticity is attenuated in response to exercise. Here, we report that senescent cells, identified using senescence-associated β-galactosidase (SA β-Gal) activity and p21 immunohistochemistry, are very infrequent in resting muscle, but emerge approximately 2 weeks after a bout of resistance exercise in humans. We hypothesized that these cells contribute to blunted hypertrophic potential in old age. Using synergist ablation-induced mechanical overload (MOV) of the plantaris muscle to model resistance training in adult (5-6-month) and old (23-24-month) male C57BL/6 J mice, we found increased senescent cells in both age groups during hypertrophy. Consistent with the human data, there were negligible senescent cells in plantaris muscle from adult and old sham controls, but old mice had significantly more senescent cells 7 and 14 days following MOV relative to young. Old mice had blunted whole-muscle hypertrophy when compared to adult mice, along with smaller muscle fibers, specifically glycolytic type 2x + 2b fibers. To ablate senescent cells using a hit-and-run approach, old mice were treated with vehicle or a senolytic cocktail consisting of 5 mg/kg dasatinib and 50 mg/kg quercetin (D + Q) on days 7 and 10 during 14 days of MOV; control mice underwent sham surgery with or without senolytic treatment. Old mice given D + Q had larger muscles and muscle fibers after 14 days of MOV, fewer senescent cells when compared to vehicle-treated old mice, and changes in the expression of genes (i.e., Igf1, Ddit4, Mmp14) that are associated with hypertrophic growth. Our data collectively show that senescent cells emerge in human and mouse skeletal muscle following a hypertrophic stimulus and that D + Q improves muscle growth in old mice.
Collapse
Affiliation(s)
- Cory M Dungan
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- College of Health Sciences, University of Kentucky, 900 S. Limestone, CTW 445, Lexington, KY, 40536, USA.
| | | | - Yuan Wen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | | | | | - Nicholas T Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - C Brooks Mobley
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Kevin A Murach
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Camille R Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Douglas E Long
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Philip A Kern
- Department of Internal Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
19
|
Ali S, Ahmad K, Shaikh S, Lim JH, Chun HJ, Ahmad SS, Lee EJ, Choi I. Identification and Evaluation of Traditional Chinese Medicine Natural Compounds as Potential Myostatin Inhibitors: An In Silico Approach. Molecules 2022; 27:molecules27134303. [PMID: 35807547 PMCID: PMC9268423 DOI: 10.3390/molecules27134303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Myostatin (MSTN), a negative regulator of muscle mass, is reported to be increased in conditions linked with muscle atrophy, sarcopenia, and other muscle-related diseases. Most pharmacologic approaches that treat muscle disorders are ineffective, emphasizing the emergence of MSTN inhibition. In this study, we used computational screening to uncover natural small bioactive inhibitors from the Traditional Chinese Medicine database (~38,000 compounds) for the MSTN protein. Potential ligands were screened, based on binding affinity (150), physicochemical (53) and ADMET properties (17). We found two hits (ZINC85592908 and ZINC85511481) with high binding affinity and specificity, and their binding patterns with MSTN protein. In addition, molecular dynamic simulations were run on each complex to better understand the interaction mechanism of MSTN with the control (curcumin) and the hit compounds (ZINC85592908 and ZINC85511481). We determined that the hits bind to the active pocket site (Helix region) and trigger conformational changes in the MSTN protein. Since the stability of the ZINC85592908 compound was greater than the MSTN control, we believe that ZINC85592908 has therapeutic potential against the MSTN protein and may hinder downstream singling by inhibiting the MSTN protein and increasing myogenesis in the skeletal muscle tissues.
Collapse
Affiliation(s)
- Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.A.); (K.A.); (S.S.); (J.H.L.); (H.J.C.); (S.S.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.A.); (K.A.); (S.S.); (J.H.L.); (H.J.C.); (S.S.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.A.); (K.A.); (S.S.); (J.H.L.); (H.J.C.); (S.S.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.A.); (K.A.); (S.S.); (J.H.L.); (H.J.C.); (S.S.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.A.); (K.A.); (S.S.); (J.H.L.); (H.J.C.); (S.S.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.A.); (K.A.); (S.S.); (J.H.L.); (H.J.C.); (S.S.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.A.); (K.A.); (S.S.); (J.H.L.); (H.J.C.); (S.S.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.A.); (K.A.); (S.S.); (J.H.L.); (H.J.C.); (S.S.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence:
| |
Collapse
|
20
|
Baig MH, Ahmad K, Moon JS, Park SY, Ho Lim J, Chun HJ, Qadri AF, Hwang YC, Jan AT, Ahmad SS, Ali S, Shaikh S, Lee EJ, Choi I. Myostatin and its Regulation: A Comprehensive Review of Myostatin Inhibiting Strategies. Front Physiol 2022; 13:876078. [PMID: 35812316 PMCID: PMC9259834 DOI: 10.3389/fphys.2022.876078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Myostatin (MSTN) is a well-reported negative regulator of muscle growth and a member of the transforming growth factor (TGF) family. MSTN has important functions in skeletal muscle (SM), and its crucial involvement in several disorders has made it an important therapeutic target. Several strategies based on the use of natural compounds to inhibitory peptides are being used to inhibit the activity of MSTN. This review delivers an overview of the current state of knowledge about SM and myogenesis with particular emphasis on the structural characteristics and regulatory functions of MSTN during myogenesis and its involvements in various muscle related disorders. In addition, we review the diverse approaches used to inhibit the activity of MSTN, especially in silico approaches to the screening of natural compounds and the design of novel short peptides derived from proteins that typically interact with MSTN.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Jun Sung Moon
- Department of Internal Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| | - Afsha Fatima Qadri
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ye Chan Hwang
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Eun Ju Lee, ; Inho Choi,
| |
Collapse
|
21
|
Xue J, Yang W, Wang X, Wang P, Meng X, Yu T, Fan C. A transcriptome sequencing study on the effect of macro-pores in hydrogel scaffolds on global gene expression of laden human cartilage chondrocytes. Biomed Mater 2022; 17. [PMID: 35609582 DOI: 10.1088/1748-605x/ac7304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
The macro-porous hydrogel scaffolds can not only enhance the proliferation of laden chondrocytes but also favor the deposition of hyaline cartilaginous extracellular matrix, however, the underlying molecular mechanism is still unclear. Herein, the global gene expression of human cartilage chondrocytes (HCCs) encapsulated in traditional hydrogel (Gel) constructs and micro-cavitary gel (MCG) constructs are investigated by using high-throughput RNA sequencing (RNA-seq). The differentially expressed genes (DEGs) between the HCCs cultured in Gel and MCG constructs have been identified via bioinformatics analysis. Significantly, the DEGs that promote cell proliferation (e.g. POSTN, MKI67, KIF20A) or neo-cartilage formation (e.g. COL2, ASPN, COMP, FMOD, FN1), are more highly expressed in MCG constructs than in Gel constructs, while the expressions of the DEGs associated with chondrocyte hypertrophy (e.g. EGR1, IBSP) are upregulated in Gel constructs. The expression of representative DEGs is verified at both mRNA and protein levels. Besides, cellular viability and morphology as well as the enriched signaling pathway of DEGs are studied in detail. These results of this work may provide data for functional tissue engineering of cartilage.
Collapse
Affiliation(s)
- Junqiang Xue
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, People's Republic of China.,Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xinping Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Peiyan Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| |
Collapse
|
22
|
Lee EJ, Shaikh S, Baig MH, Park SY, Lim JH, Ahmad SS, Ali S, Ahmad K, Choi I. MIF1 and MIF2 Myostatin Peptide Inhibitors as Potent Muscle Mass Regulators. Int J Mol Sci 2022; 23:ijms23084222. [PMID: 35457038 PMCID: PMC9031736 DOI: 10.3390/ijms23084222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
The use of peptides as drugs has progressed over time and continues to evolve as treatment paradigms change and new drugs are developed. Myostatin (MSTN) inhibition therapy has shown great promise for the treatment of muscle wasting diseases. Here, we report the MSTN-derived novel peptides MIF1 (10-mer) and MIF2 (10-mer) not only enhance myogenesis by inhibiting MSTN and inducing myogenic-related markers but also reduce adipogenic proliferation and differentiation by suppressing the expression of adipogenic markers. MIF1 and MIF2 were designed based on in silico interaction studies between MSTN and its receptor, activin type IIB receptor (ACVRIIB), and fibromodulin (FMOD). Of the different modifications of MIF1 and MIF2 examined, Ac-MIF1 and Ac-MIF2-NH2 significantly enhanced cell proliferation and differentiation as compared with non-modified peptides. Mice pretreated with Ac-MIF1 or Ac-MIF2-NH2 prior to cardiotoxin-induced muscle injury showed more muscle regeneration than non-pretreated controls, which was attributed to the induction of myogenic genes and reduced MSTN expression. These findings imply that Ac-MIF1 and Ac-MIF2-NH2 might be valuable therapeutic agents for the treatment of muscle-related diseases.
Collapse
Affiliation(s)
- Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu 42415, Korea;
| | - Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (K.A.); (I.C.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (E.J.L.); (S.S.); (J.H.L.); (S.S.A.); (S.A.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (K.A.); (I.C.)
| |
Collapse
|
23
|
Oh M, Ha DI, Son C, Kang JG, Hwang H, Moon SB, Kim M, Nam J, Kim JS, Song SY, Kim YS, Park S, Yoo JS, Ko JH, Park K. Defect in cytosolic Neu2 sialidase abrogates lipid metabolism and impairs muscle function in vivo. Sci Rep 2022; 12:3216. [PMID: 35217678 PMCID: PMC8881595 DOI: 10.1038/s41598-022-07033-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Sialic acid (SA) is present in glycoconjugates and important in cell-cell recognition, cell adhesion, and cell growth and as a receptor. Among the four mammalian sialidases, cytosolic NEU2 has a pivotal role in muscle and neuronal differentiation in vitro. However, its biological functions in vivo remain unclear due to its very low expression in humans. However, the presence of cytoplasmic glycoproteins, gangliosides, and lectins involved in cellular metabolism and glycan recognition has suggested the functional importance of cytosolic Neu2 sialidases. We generated a Neu2 knockout mouse model via CRISPR/Cas9-mediated genome engineering and analyzed the offspring littermates at different ages to investigate the in vivo function of cytosolic Neu2 sialidase. Surprisingly, knocking out the Neu2 gene in vivo abrogated overall lipid metabolism, impairing motor function and leading to diabetes. Consistent with these results, Neu2 knockout led to alterations in sialylated glycoproteins involved in lipid metabolism and muscle function, as shown by glycoproteomics analysis.
Collapse
Affiliation(s)
- Mijung Oh
- Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Dae-In Ha
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Chaeyeon Son
- Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jeong Gu Kang
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Su Bin Moon
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Minjeong Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Jihae Nam
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jung Soo Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Sang Yong Song
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea
| | - Sangwoo Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 34141, Daejeon, Republic of Korea.
- Department of Bio-Molecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| | - Kyoungsook Park
- Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
24
|
Ahmad K, Lim JH, Lee EJ, Chun HJ, Ali S, Ahmad SS, Shaikh S, Choi I. Extracellular Matrix and the Production of Cultured Meat. Foods 2021; 10:foods10123116. [PMID: 34945667 PMCID: PMC8700801 DOI: 10.3390/foods10123116] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Cultured meat production is an evolving method of producing animal meat using tissue engineering techniques. Cells, chemical factors, and suitable biomaterials that serve as scaffolds are all essential for the cultivation of muscle tissue. Scaffolding is essential for the development of organized meat products resembling steaks because it provides the mechanical stability needed by cells to attach, differentiate, and mature. In in vivo settings, extracellular matrix (ECM) ensures substrates and scaffolds are provided for cells. The ECM of skeletal muscle (SM) maintains tissue elasticity, creates adhesion points for cells, provides a three-dimensional (3D) environment, and regulates biological processes. Consequently, creating mimics of native ECM is a difficult task. Animal-derived polymers like collagen are often regarded as the gold standard for producing scaffolds with ECM-like properties. Animal-free scaffolds are being investigated as a potential source of stable, chemically defined, low-cost materials for cultured meat production. In this review, we explore the influence of ECM on myogenesis and its role as a scaffold and vital component to improve the efficacy of the culture media used to produce cultured meat.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Jeong-Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Eun-Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Hee-Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Shahid Ali
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (J.-H.L.); (E.-J.L.); (H.-J.C.); (S.A.); (S.S.A.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence:
| |
Collapse
|
25
|
Han S, Wang J, Cui C, Yu C, Zhang Y, Li D, Ma M, Du H, Jiang X, Zhu Q, Yang C, Yin H. Fibromodulin is involved in autophagy and apoptosis of granulosa cells affecting the follicular atresia in chicken. Poult Sci 2021; 101:101524. [PMID: 34784514 PMCID: PMC8591502 DOI: 10.1016/j.psj.2021.101524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022] Open
Abstract
Follicular atresia is an important cause of reproductive decline in egg-laying hens. Therefore, a better understanding of the regulation mechanism of follicle atresia in poultry is an important measure to maintain persistent high egg performance. However, how the role of the regulatory relationship between autophagy and apoptosis in the intrafollicular environment affects the follicular atresia of chickens is remain unclear. The objective of this study was to explore the regulatory molecular mechanisms in regard to follicular atresia. 20 white leghorn layers (32-wk-old) were equally divided into 2 groups. The control group was fed freely, and the experimental group induced follicular atretic by fasting for 5 d. The results showed that the expression of prolactin (PRL) levels was significantly higher in the fasted hens, while the levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were lower. Most importantly, RNA sequencing, qPCR, and Western blotting detected significantly elevated levels of autophagy and apoptosis markers in atresia follicles. Interestingly, we found that fibromodulin (FMOD) levels was significantly lower in follicles from fasted hens and that this molecule had an important regulatory role in autophagy. FMOD silencing significantly promoted autophagy and apoptosis in granulosa cells, resulting in hormonal imbalance. FMOD was found to regulate autophagy via the transforming growth factor beta (TGF-β) signaling pathway. Our results suggest that the increase in autophagy and the imbalance in internal homeostasis cause granulosa cell apoptosis, leading to follicular atresia in the chicken ovary. This finding could provide further insight into broodiness in chicken and provide avenues for further improvements in poultry production.
Collapse
Affiliation(s)
- Shunshun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jianping Wang
- Key Laboratory for Animal Disease Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Can Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chunlin Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Huarui Du
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Chaowu Yang
- Animal Breeding and Genetics key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
26
|
Cell Types Used for Cultured Meat Production and the Importance of Myokines. Foods 2021; 10:foods10102318. [PMID: 34681367 PMCID: PMC8534705 DOI: 10.3390/foods10102318] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
The world’s population continues to increase, meaning we require more consistent protein supply to meet demand. Despite the availability of plant-based protein alternatives, animal meat remains a popular, high-quality protein source. Research studies have focused on cultured meat (meat grown in vitro) as a safe and more efficient alternative to traditional meat. Cultured meat is produced by in vitro myogenesis, which involves the processing of muscle satellite and mature muscle cells. Meat culture efficiency is largely determined by the culture conditions, such as the cell type and cell culture medium used and the biomolecular composition. Protein production can be enhanced by providing the optimum biochemical and physical conditions for skeletal muscle cell growth, while myoblasts play important roles in skeletal muscle formation and growth. This review describes the cell types used to produce cultured meat and the biological effects of various myokines and cytokines, such as interleukin-6, leukemia inhibitory factor, interleukin-4, interleukin-15, and interleukin-1β, on skeletal muscle and myogenesis and their potential roles in cultured meat production.
Collapse
|
27
|
Ahmad SS, Ahmad K, Lee EJ, Shaikh S, Choi I. Computational Identification of Dithymoquinone as a Potential Inhibitor of Myostatin and Regulator of Muscle Mass. Molecules 2021; 26:molecules26175407. [PMID: 34500839 PMCID: PMC8434277 DOI: 10.3390/molecules26175407] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The skeletal muscle (SM) is the largest organ in the body and has tremendous regenerative power due to its myogenic stem cell population. Myostatin (MSTN), a protein produced by SM, is released into the bloodstream and is responsible for age-related reduced muscle fiber development. The objective of this study was to identify the natural compounds that inhibit MSTN with therapeutic potential for the management of age-related disorders, specifically muscle atrophy and sarcopenia. Sequential screening of 2000 natural compounds was performed, and dithymoquinone (DTQ) was found to inhibit MSTN with a binding free energy of −7.40 kcal/mol. Furthermore, the docking results showed that DTQ reduced the binding interaction between MSTN and its receptor, activin receptor type-2B (ActR2B). The global energy of MSTN-ActR2B was found to be reduced from −47.75 to −40.45 by DTQ. The stability of the DTQ–MSTN complex was subjected to a molecular dynamics analysis for up to 100 ns to check the stability of the complex using RMSD, RMSF, Rg, SASA, and H-bond number. The complex was found to be stable after 10 ns to the end of the simulation. These results suggest that DTQ blocks MSTN signaling through ActR2B and that it has potential use as a muscle growth-promoting agent during the aging process.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.); (S.S.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: ; Fax: +82-538104769
| |
Collapse
|
28
|
Interaction of Fibromodulin and Myostatin to Regulate Skeletal Muscle Aging: An Opposite Regulation in Muscle Aging, Diabetes, and Intracellular Lipid Accumulation. Cells 2021; 10:cells10082083. [PMID: 34440852 PMCID: PMC8393414 DOI: 10.3390/cells10082083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 01/14/2023] Open
Abstract
The objective of this study was to investigate fibromodulin (FMOD) and myostatin (MSTN) gene expressions during skeletal muscle aging and to understand their involvements in this process. The expressions of genes related to muscle aging (Atrogin 1 and Glb1), diabetes (RAGE and CD163), and lipid accumulation (CD36 and PPARγ) and those of FMOD and MSTN were examined in CTX-injected, aged, MSTN−/−, and high-fat diet (HFD) mice and in C2C12 myoblasts treated with ceramide or grown under adipogenic conditions. Results from CTX-injected mice and gene knockdown experiments in C2C12 cells suggested the involvement of FMOD during muscle regeneration and myoblast proliferation and differentiation. Downregulation of the FMOD gene in MSTN−/− mice, and MSTN upregulation and FMOD downregulation in FMOD and MSTN knockdown C2C12 cells, respectively, during their differentiation, suggested FMOD negatively regulates MSTN gene expression, and MSTN positively regulates FMOD gene expression. The results of our in vivo and in vitro experiments indicate FMOD inhibits muscle aging by negatively regulating MSTN gene expression or by suppressing the action of MSTN protein, and that MSTN promotes muscle aging by positively regulating the expressions of Atrogin1, CD36, and PPARγ genes in muscle.
Collapse
|
29
|
Robbins JM, Peterson B, Schranner D, Tahir UA, Rienmüller T, Deng S, Keyes MJ, Katz DH, Beltran PMJ, Barber JL, Baumgartner C, Carr SA, Ghosh S, Shen C, Jennings LL, Ross R, Sarzynski MA, Bouchard C, Gerszten RE. Human plasma proteomic profiles indicative of cardiorespiratory fitness. Nat Metab 2021; 3:786-797. [PMID: 34045743 PMCID: PMC9216203 DOI: 10.1038/s42255-021-00400-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022]
Abstract
Maximal oxygen uptake (VO2max) is a direct measure of human cardiorespiratory fitness and is associated with health. However, the molecular determinants of interindividual differences in baseline (intrinsic) VO2max, and of increases of VO2max in response to exercise training (ΔVO2max), are largely unknown. Here, we measure ~5,000 plasma proteins using an affinity-based platform in over 650 sedentary adults before and after a 20-week endurance-exercise intervention and identify 147 proteins and 102 proteins whose plasma levels are associated with baseline VO2max and ΔVO2max, respectively. Addition of a protein biomarker score derived from these proteins to a score based on clinical traits improves the prediction of an individual's ΔVO2max. We validate findings in a separate exercise cohort, further link 21 proteins to incident all-cause mortality in a community-based cohort and reproduce the specificity of ~75% of our key findings using antibody-based assays. Taken together, our data shed light on biological pathways relevant to cardiorespiratory fitness and highlight the potential additive value of protein biomarkers in identifying exercise responsiveness in humans.
Collapse
Affiliation(s)
- Jeremy M Robbins
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bennet Peterson
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniela Schranner
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Exercise Biology Group, Faculty of Sports and Health Sciences, Technical University of Munich, Munich, Germany
| | - Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Theresa Rienmüller
- Institute of Health Care Engineering with Testing Center of Medical Devices, Graz University of Technology, Graz, Austria
| | - Shuliang Deng
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michelle J Keyes
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Daniel H Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Jacob L Barber
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Christian Baumgartner
- Institute of Health Care Engineering with Testing Center of Medical Devices, Graz University of Technology, Graz, Austria
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sujoy Ghosh
- Cardiovascular & Metabolic Disorders Program and Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Changyu Shen
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lori L Jennings
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Robert Ross
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Mark A Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
30
|
Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci 2021; 11:65. [PMID: 33789727 PMCID: PMC8011170 DOI: 10.1186/s13578-021-00579-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Extracellular matrix (ECM) is a kind of connective tissue in the cell microenvironment, which is of great significance to tissue development. ECM in muscle fiber niche consists of three layers: the epimysium, the perimysium, and the endomysium (basal lamina). These three layers of connective tissue structure can not only maintain the morphology of skeletal muscle, but also play an important role in the physiological functions of muscle cells, such as the transmission of mechanical force, the regeneration of muscle fiber, and the formation of neuromuscular junction. In this paper, detailed discussions are made for the structure and key components of ECM in skeletal muscle tissue, the role of ECM in skeletal muscle development, and the application of ECM in biomedical engineering. This review will provide the reader with a comprehensive overview of ECM, as well as a comprehensive understanding of the structure, physiological function, and application of ECM in skeletal muscle tissue.
Collapse
|
31
|
Individual Limb Muscle Bundles Are Formed through Progressive Steps Orchestrated by Adjacent Connective Tissue Cells during Primary Myogenesis. Cell Rep 2021; 30:3552-3565.e6. [PMID: 32160556 PMCID: PMC7068676 DOI: 10.1016/j.celrep.2020.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/15/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
Although the factors regulating muscle cell differentiation are well described, we know very little about how differentiating muscle fibers are organized into individual muscle tissue bundles. Disruption of these processes leads to muscle hypoplasia or dysplasia, and replicating these events is vital in tissue engineering approaches. We describe the progressive cellular events that orchestrate the formation of individual limb muscle bundles and directly demonstrate the role of the connective tissue cells that surround muscle precursors in controlling these events. We show how disruption of gene activity within or genetic ablation of connective tissue cells impacts muscle precursors causing disruption of muscle bundle formation and subsequent muscle dysplasia and hypoplasia. We identify several markers of the populations of connective tissue cells that surround muscle precursors and provide a model for how matrix-modifying proteoglycans secreted by these cells may influence muscle bundle formation by effects on the local extracellular matrix (ECM) environment. Characterization of the events that prefigure the formation of individual muscle bundles Direct demonstration of the role of connective tissue cells in muscle morphogenesis Identification of markers of limb irregular connective tissue (ICT) Demonstration of molecularly distinct ICT subdomains in the limb
Collapse
|
32
|
Lim JH, Beg MMA, Ahmad K, Shaikh S, Ahmad SS, Chun HJ, Choi D, Lee WJ, Jin JO, Kim J, Jan AT, Lee EJ, Choi I. IgLON5 Regulates the Adhesion and Differentiation of Myoblasts. Cells 2021; 10:417. [PMID: 33671182 PMCID: PMC7922608 DOI: 10.3390/cells10020417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
IgLON5 is a cell adhesion protein belonging to the immunoglobulin superfamily and has important cellular functions. The objective of this study was to determine the role played by IgLON5 during myogenesis. We found IgLON5 expression progressively increased in C2C12 myoblasts during transition from the adhesion to differentiation stage. IgLON5 knockdown (IgLON5kd) cells exhibited reduced cell adhesion, myotube formation, and maturation and reduced expressions of different types of genes, including those coding for extracellular matrix (ECM) components (COL1a1, FMOD, DPT, THBS1), cell membrane proteins (ITM2a, CDH15), and cytoskeletal protein (WASP). Furthermore, decreased IgLON5 expression in FMODkd, DPTkd, COL1a1kd, and ITM2akd cells suggested that IgLON5 and these genes mutually control gene expression during myogenesis. IgLON5 immunoneutralization resulted in significant reduction in the protein level of myogenic markers (MYOD, MYOG, MYL2). IgLON5 expression was higher in the CTX-treated gastrocnemius mice muscles (day 7), which confirmed increase expression of IgLON5 during muscle. Collectively, these results suggest IgLON5 plays an important role in myogenesis, muscle regeneration, and that proteins in ECM and myoblast membranes form an interactive network that establishes an essential microenvironment that ensures muscle stem cell survival.
Collapse
Affiliation(s)
- Jeong Ho Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
| | - Mirza Masroor Ali Beg
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
| | - Khurshid Ahmad
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Hee Jin Chun
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
| | - Dukhwan Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
| | - Woo-Jong Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Korea;
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India;
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (J.H.L.); (M.M.A.B.); (S.S.); (S.S.A.); (H.J.C.); (D.C.); (J.-O.J.); (J.K.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
33
|
Isolation and Characterization of Compounds from Glycyrrhiza uralensis as Therapeutic Agents for the Muscle Disorders. Int J Mol Sci 2021; 22:ijms22020876. [PMID: 33467209 PMCID: PMC7830955 DOI: 10.3390/ijms22020876] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is the most abundant tissue and constitutes about 40% of total body mass. Herein, we report that crude water extract (CWE) of G. uralensis enhanced myoblast proliferation and differentiation. Pretreatment of mice with the CWE of G. uralensis prior to cardiotoxin-induced muscle injury was found to enhance muscle regeneration by inducing myogenic gene expression and downregulating myostatin expression. Furthermore, this extract reduced nitrotyrosine protein levels and atrophy-related gene expression. Of the five different fractions of the CWE of G. uralensis obtained, the ethyl acetate (EtOAc) fraction more significantly enhanced myoblast proliferation and differentiation than the other fractions. Ten bioactive compounds were isolated from the EtOAc fraction and characterized by GC-MS and NMR. Of these compounds (4-hydroxybenzoic acid, liquiritigenin, (R)-(-)-vestitol, isoliquiritigenin, medicarpin, tetrahydroxymethoxychalcone, licochalcone B, liquiritin, liquiritinapioside, and ononin), liquiritigenin, tetrahydroxymethoxychalcone, and licochalcone B were found to enhance myoblast proliferation and differentiation, and myofiber diameters in injured muscles were wider with the liquiritigenin than the non-treated one. Computational analysis showed these compounds are non-toxic and possess good drug-likeness properties. These findings suggest that G. uralensis-extracted components might be useful therapeutic agents for the management of muscle-associated diseases.
Collapse
|
34
|
Narayanan N, Calve S. Extracellular matrix at the muscle - tendon interface: functional roles, techniques to explore and implications for regenerative medicine. Connect Tissue Res 2021; 62:53-71. [PMID: 32856502 PMCID: PMC7718290 DOI: 10.1080/03008207.2020.1814263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The muscle-tendon interface is an anatomically specialized region that is involved in the efficient transmission of force from muscle to tendon. Due to constant exposure to loading, the interface is susceptible to injury. Current treatment methods do not meet the socioeconomic demands of reduced recovery time without compromising the risk of reinjury, requiring the need for developing alternative strategies. The extracellular matrix (ECM) present in muscle, tendon, and at the interface of these tissues consists of unique molecules that play significant roles in homeostasis and repair. Better, understanding the function of the ECM during development, injury, and aging has the potential to unearth critical missing information that is essential for accelerating the repair at the muscle-tendon interface. Recently, advanced techniques have emerged to explore the ECM for identifying specific roles in musculoskeletal biology. Simultaneously, there is a tremendous increase in the scope for regenerative medicine strategies to address the current clinical deficiencies. Advancements in ECM research can be coupled with the latest regenerative medicine techniques to develop next generation therapies that harness ECM for treating defects at the muscle-tendon interface. The current work provides a comprehensive review on the role of muscle and tendon ECM to provide insights about the role of ECM in the muscle-tendon interface and discusses the latest research techniques to explore the ECM to gathered information for developing regenerative medicine strategies.
Collapse
Affiliation(s)
- Naagarajan Narayanan
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| |
Collapse
|
35
|
Zeng-Brouwers J, Pandey S, Trebicka J, Wygrecka M, Schaefer L. Communications via the Small Leucine-rich Proteoglycans: Molecular Specificity in Inflammation and Autoimmune Diseases. J Histochem Cytochem 2020; 68:887-906. [PMID: 32623933 PMCID: PMC7708667 DOI: 10.1369/0022155420930303] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a highly regulated biological response of the immune system that is triggered by assaulting pathogens or endogenous alarmins. It is now well established that some soluble extracellular matrix constituents, such as small leucine-rich proteoglycans (SLRPs), can act as danger signals and trigger aseptic inflammation by interacting with innate immune receptors. SLRP inflammatory signaling cascade goes far beyond its canonical function. By choosing specific innate immune receptors, coreceptors, and adaptor molecules, SLRPs promote a switch between pro- and anti-inflammatory signaling, thereby determining disease resolution or chronification. Moreover, by orchestrating signaling through various receptors, SLRPs fine-tune inflammation and, despite their structural homology, regulate inflammatory processes in a molecule-specific manner. Hence, the overarching theme of this review is to highlight the molecular and functional specificity of biglycan-, decorin-, lumican-, and fibromodulin-mediated signaling in inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Jinyang Zeng-Brouwers
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Sony Pandey
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Jonel Trebicka
- Translational Hepatology, Department of Internal Medicine I, University Clinic Frankfurt, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Faculty of Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
- German Center for Lung Research, Giessen, Germany
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
36
|
Ciecierska A, Motyl T, Sadkowski T. Transcriptomic profile of semitendinosus muscle of bulls of different breed and performance. J Appl Genet 2020; 61:581-592. [PMID: 32851594 PMCID: PMC7652804 DOI: 10.1007/s13353-020-00577-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The aim of the study was to compare the transcriptomic profiles of fully differentiated skeletal muscle derived from bulls belonging to different breeds of varying performance. Microarray analyses were performed to determine the differences in the expression profiles of genes between semitendinosus muscles of 15-month-old beef-breed bulls (Limousin—LIM and Hereford—HER) and dairy-breed bulls (Holstein Friesian—HF). These analyses allowed for the identification of those genes the expression of which is similar and characteristic of fully differentiated muscle in beef breeds, but differs in skeletal muscle of a typical dairy breed. The analysis revealed 463 transcripts showing similar expression in the semitendinosus muscle of beef breeds (LIM/HER), in comparison with the dairy breed (HF). Among the identified genes, 227 were upregulated and 236 were downregulated in beef breeds. The ontological analyses revealed that the largest group of genes similarly expressed in LIM and HER was involved in the processes of protein metabolism and development of muscle organ. In beef breeds, some genes involved in protein synthesis and proteolysis showed an upregulation, including ctsd, ctsf, fhl2, fhl3, fst, sirt1, and trim63, whereas some were downregulated, including bmpr1a, bmpr2, mstn, smad2, hspa8, gsk3β, and tgfβ2. The expression of the chosen genes was confirmed by RT-qPCR technique. Thus, it can be assumed that the identified genes involved in the regulation of growth and development of muscle tissue and the processes of protein metabolism in the examined cattle breeds may be responsible for the greater gain of muscle mass in beef-breed bulls.
Collapse
Affiliation(s)
- Anna Ciecierska
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Tomasz Motyl
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Sadkowski
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
37
|
Yin H, Cui C, Han S, Chen Y, Zhao J, He H, Li D, Zhu Q. Fibromodulin Modulates Chicken Skeletal Muscle Development via the Transforming Growth Factor-β Signaling Pathway. Animals (Basel) 2020; 10:ani10091477. [PMID: 32842630 PMCID: PMC7552301 DOI: 10.3390/ani10091477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Fibromodulin (Fmod) plays critical roles in skeletal muscle development and maintenance, but the roles of Fmod in skeletal muscle atrophy and development in chickens are unclear. Here, we demonstrate that Fmod plays important roles in the differentiation and atrophy of chicken skeletal muscle by regulating the transforming growth factor-β signaling pathway. These results suggest that Fmod plays important roles in skeletal muscle growth and development in chickens. Abstract Fibromodulin (Fmod), which is an extracellular matrix protein, belongs to the extracellular matrix small-leucine-rich proteoglycan family. Fmod is abundantly expressed in muscles and connective tissues and is involved in biological regulation processes, including cell apoptosis, cell adhesion, and modulation of cytokine activity. Fmod is the main regulator of myostatin, which controls the development of muscle cells, but its regulatory path is unknown. Chicken models are ideal for studying embryonic skeletal muscle development; therefore, to investigate the mechanism of Fmod in muscle development, Fmod-silenced and Fmod-overexpressed chicken myoblasts were constructed. The results showed that Fmod plays a positive role in differentiation by detecting the expression of myogenic differentiation markers, immunofluorescence of MyHC protein, and myotube formation in myoblasts. Fmod regulates expression of atrophy-related genes to alleviate muscle atrophy, which was confirmed by histological analysis of breast muscles in Fmod-modulated chicks in vivo. Additionally, genes differentially expressed between Fmod knockdown and normal myoblasts were enriched in the signaling pathway of transforming growth factor β (TGF-β). Both Fmod-silenced and Fmod-overexpressed myoblasts regulated the expression of TGFBR1 and p-Smad3. Thus, Fmod can promote differentiation but not proliferation of myoblasts by regulating the TGF-β signaling pathway, which may serve a function in muscular atrophy.
Collapse
|
38
|
Rønning SB, Carlson CR, Aronsen JM, Pisconti A, Høst V, Lunde M, Liland KH, Sjaastad I, Kolset SO, Christensen G, Pedersen ME. Syndecan-4 -/- Mice Have Smaller Muscle Fibers, Increased Akt/mTOR/S6K1 and Notch/HES-1 Pathways, and Alterations in Extracellular Matrix Components. Front Cell Dev Biol 2020; 8:730. [PMID: 32850844 PMCID: PMC7411008 DOI: 10.3389/fcell.2020.00730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Extracellular matrix (ECM) remodeling is essential for skeletal muscle development and adaption in response to environmental cues such as exercise and injury. The cell surface proteoglycan syndecan-4 has been reported to be essential for muscle differentiation, but few molecular mechanisms are known. Syndecan-4–/– mice are unable to regenerate damaged muscle, and display deficient satellite cell activation, proliferation, and differentiation. A reduced myofiber basal lamina has also been reported in syndecan-4–/– muscle, indicating possible defects in ECM production. To get a better understanding of the underlying molecular mechanisms, we have here investigated the effects of syndecan-4 genetic ablation on molecules involved in ECM remodeling and muscle growth, both under steady state conditions and in response to exercise. Methods Tibialis anterior (TA) muscles from sedentary and exercised syndecan-4–/– and WT mice were analyzed by immunohistochemistry, real-time PCR and western blotting. Results Compared to WT, we found that syndecan-4–/– mice had reduced body weight, reduced muscle weight, muscle fibers with a smaller cross-sectional area, and reduced expression of myogenic regulatory transcription factors. Sedentary syndecan-4–/– had also increased mRNA levels of syndecan-2, decorin, collagens, fibromodulin, biglycan, and LOX. Some of these latter ECM components were reduced at protein level, suggesting them to be more susceptible to degradation or less efficiently translated when syndecan-4 is absent. At the protein level, TRPC7 was reduced, whereas activation of the Akt/mTOR/S6K1 and Notch/HES-1 pathways were increased. Finally, although exercise induced upregulation of several of these components in WT, a further upregulation of these molecules was not observed in exercised syndecan-4–/– mice. Conclusion Altogether our data suggest an important role of syndecan-4 in muscle development.
Collapse
Affiliation(s)
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Bjørknes College, Oslo, Norway
| | - Addolorata Pisconti
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | | | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Kristian Hovde Liland
- Nofima AS, Ås, Norway.,Faculty of Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Svein Olav Kolset
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G. Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | | |
Collapse
|
39
|
Ahmad SS, Ahmad K, Lee EJ, Lee YH, Choi I. Implications of Insulin-Like Growth Factor-1 in Skeletal Muscle and Various Diseases. Cells 2020; 9:cells9081773. [PMID: 32722232 PMCID: PMC7465464 DOI: 10.3390/cells9081773] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is an essential tissue that attaches to bones and facilitates body movements. Insulin-like growth factor-1 (IGF-1) is a hormone found in blood that plays an important role in skeletal myogenesis and is importantly associated with muscle mass entity, strength development, and degeneration and increases the proliferative capacity of muscle satellite cells (MSCs). IGF-1R is an IGF-1 receptor with a transmembrane location that activates PI3K/Akt signaling and possesses tyrosine kinase activity, and its expression is significant in terms of myoblast proliferation and normal muscle mass maintenance. IGF-1 synthesis is elevated in MSCs of injured muscles and stimulates MSCs proliferation and myogenic differentiation. Mechanical loading also affects skeletal muscle production by IGF-1, and low IGF-1 levels are associated with low handgrip strength and poor physical performance. IGF-1 is potentially useful in the management of Duchenne muscular dystrophy, muscle atrophy, and promotes neurite development. This review highlights the role of IGF-1 in skeletal muscle, its importance during myogenesis, and its involvement in different disease conditions.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| | - Yong-Ho Lee
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan 38430, Korea
- Correspondence: (Y.-H.L.); (I.C.); Fax: +82-53-810-4769
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (S.S.A.); (K.A.); (E.J.L.)
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (Y.-H.L.); (I.C.); Fax: +82-53-810-4769
| |
Collapse
|
40
|
Kim J, Park K, Lee J. Myostatin A55T Genotype is Associated with Strength Recovery Following Exercise-Induced Muscle Damage. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134900. [PMID: 32645967 PMCID: PMC7369921 DOI: 10.3390/ijerph17134900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
Abstract
Myostatin A55T genotype is one of the candidates showing inter-individual variation in skeletal muscle phenotypes. The aim of this study was to investigate the effect of the myostatin A55T genotype on markers of muscle damage after eccentric exercise. Forty-eight young, healthy male college students (age = 24.8 ± 2.2 years, height = 176.7 ± 5.3 cm, weight = 73.7 ± 8.3 kg) were enrolled in this study, and muscle damage was induced through 50 reps of maximal eccentric muscle contraction. As markers of muscle damage, maximal isometric strength (MIS), muscle soreness, creatine kinase (CK), and aspartate transaminase (AST) were measured. Myostatin A55T genotypes were classified into homozygous myostatin A55T allele (AA, n = 34, 72%), heterozygous myostatin A55T allele (AT, n = 13, 26%), and homozygous mutant carriers (TT, n = 1, 2%). After eccentric exercise, the subjects with heterozygous for AT showed markedly quicker MIS recovery compared to the AA group (p = 0.042). However, there were no significant variations in muscle soreness (p = 0.379), CK (p = 0.955), and AST (p = 0.706) among the groups. These results suggest that AT in myostatin A55T genotype may be associated with quicker strength recovery following exercise-induced muscle damage.
Collapse
Affiliation(s)
- Jooyoung Kim
- Office of Academic Affairs, Konkuk University, Chungju-si 27478, Korea;
| | - Kwanghoon Park
- Department of Sport, Health and Rehabilitation, College of Physical Education, Kookmin University, Seoul 02707, Korea;
| | - Joohyung Lee
- Department of Sport, Health and Rehabilitation, College of Physical Education, Kookmin University, Seoul 02707, Korea;
- Correspondence:
| |
Collapse
|
41
|
Implications of Skeletal Muscle Extracellular Matrix Remodeling in Metabolic Disorders: Diabetes Perspective. Int J Mol Sci 2020; 21:ijms21113845. [PMID: 32481704 PMCID: PMC7312063 DOI: 10.3390/ijms21113845] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) provides a scaffold for cells, controlling biological processes and providing structural as well as mechanical support to surrounding cells. Disruption of ECM homeostasis results in several pathological conditions. Skeletal muscle ECM is a complex network comprising collagens, proteoglycans, glycoproteins, and elastin. Recent therapeutic approaches targeting ECM remodeling have been extensively deliberated. Various ECM components are typically found to be augmented in the skeletal muscle of obese and/or diabetic humans. Skeletal muscle ECM remodeling is thought to be a feature of the pathogenic milieu allied with metabolic dysregulation, obesity, and eventual diabetes. This narrative review explores the current understanding of key components of skeletal muscle ECM and their specific roles in the regulation of metabolic diseases. Additionally, we discuss muscle-specific integrins and their role in the regulation of insulin sensitivity. A better understanding of the importance of skeletal muscle ECM remodeling, integrin signaling, and other factors that regulate insulin activity may help in the development of novel therapeutics for managing diabetes and other metabolic disorders.
Collapse
|
42
|
The Histone Variant MacroH2A1 Regulates Key Genes for Myogenic Cell Fusion in a Splice-Isoform Dependent Manner. Cells 2020; 9:cells9051109. [PMID: 32365743 PMCID: PMC7290658 DOI: 10.3390/cells9051109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
MacroH2A histone variants have functions in differentiation, somatic cell reprogramming and cancer. However, at present, it is not clear how macroH2As affect gene regulation to exert these functions. We have parted from the initial observation that loss of total macroH2A1 led to a change in the morphology of murine myotubes differentiated ex vivo. The fusion of myoblasts to myotubes is a key process in embryonic myogenesis and highly relevant for muscle regeneration after acute or chronic injury. We have focused on this physiological process, to investigate the functions of the two splice isoforms of macroH2A1. Individual perturbation of the two isoforms in myotubes forming in vitro from myogenic C2C12 cells showed an opposing phenotype, with macroH2A1.1 enhancing, and macroH2A1.2 reducing, fusion. Differential regulation of a subset of fusion-related genes encoding components of the extracellular matrix and cell surface receptors for adhesion correlated with these phenotypes. We describe, for the first time, splice isoform-specific phenotypes for the histone variant macroH2A1 in a physiologic process and provide evidence for a novel underlying molecular mechanism of gene regulation.
Collapse
|
43
|
Xu K, Han CX, Zhou H, Ding JM, Xu Z, Yang LY, He C, Akinyemi F, Zheng YM, Qin C, Luo HX, Meng H. Effective MSTN Gene Knockout by AdV-Delivered CRISPR/Cas9 in Postnatal Chick Leg Muscle. Int J Mol Sci 2020; 21:ijms21072584. [PMID: 32276422 PMCID: PMC7177447 DOI: 10.3390/ijms21072584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Muscle growth and development are important aspects of chicken meat production, but the underlying regulatory mechanisms remain unclear and need further exploration. CRISPR has been used for gene editing to study gene function in mice, but less has been done in chick muscles. To verify whether postnatal gene editing could be achieved in chick muscles and determine the transcriptomic changes, we knocked out Myostatin (MSTN), a potential inhibitor of muscle growth and development, in chicks and performed transcriptome analysis on knock-out (KO) muscles and wild-type (WT) muscles at two post-natal days: 3d (3-day-old) and 14d (14-day-old). Large fragment deletions of MSTN (>5 kb) were achieved in all KO muscles, and the MSTN gene expression was significantly downregulated at 14d. The transcriptomic results indicated the presence of 1339 differentially expressed genes (DEGs) between the 3d KO and 3d WT muscles, as well as 597 DEGs between 14d KO and 14d WT muscles. Many DEGs were found to be related to cell differentiation and proliferation, muscle growth and energy metabolism. This method provides a potential means of postnatal gene editing in chicks, and the results presented here could provide a basis for further investigation of the mechanisms involved in muscle growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - He Meng
- Correspondence: ; Tel.: +86-021-34206146
| |
Collapse
|
44
|
Ahmad K, Shaikh S, Ahmad SS, Lee EJ, Choi I. Cross-Talk Between Extracellular Matrix and Skeletal Muscle: Implications for Myopathies. Front Pharmacol 2020; 11:142. [PMID: 32184725 PMCID: PMC7058629 DOI: 10.3389/fphar.2020.00142] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle (SM) comprises around 40% of total body weight and is among the most important plastic tissues, as it supports skeletal development, controls body temperature, and manages glucose levels. Extracellular matrix (ECM) maintains the integrity of SM, enables biochemical signaling, provides structural support, and plays a vital role during myogenesis. Several human diseases are coupled with dysfunctions of the ECM, and several ECM components are involved in disease pathologies that affect almost all organ systems. Thus, mutations in ECM genes that encode proteins and their transmembrane receptors can result in diverse SM diseases, a large proportion of which are types of fibrosis and muscular dystrophy. In this review, we present major ECM components of SMs related to muscle-associated diseases, and discuss two major ECM myopathies, namely, collagen myopathy and laminin myopathies, and their therapeutic managements. A comprehensive understanding of the mechanisms underlying these ECM-related myopathies would undoubtedly aid the discovery of novel treatments for these devastating diseases.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Syed Sayeed Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
45
|
Chaturvedi N, Ahmad K, Yadav BS, Lee EJ, Sonkar SC, Marina N, Choi I. Understanding Calcium-Dependent Conformational Changes in S100A1 Protein: A Combination of Molecular Dynamics and Gene Expression Study in Skeletal Muscle. Cells 2020; 9:181. [PMID: 31936886 PMCID: PMC7016722 DOI: 10.3390/cells9010181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
The S100A1 protein, involved in various physiological activities through the binding of calcium ions (Ca2+), participates in several protein-protein interaction (PPI) events after Ca2+-dependent activation. The present work investigates Ca2+-dependent conformational changes in the helix-EF hand-helix using the molecular dynamics (MD) simulation approach that facilitates the understanding of Ca2+-dependent structural and dynamic distinctions between the apo and holo forms of the protein. Furthermore, the process of ion binding by inserting Ca2+ into the bulk of the apo structure was simulated by molecular dynamics. Expectations of the simulation were demonstrated using cluster analysis and a variety of structural metrics, such as interhelical angle estimation, solvent accessible surface area, hydrogen bond analysis, and contact analysis. Ca2+ triggered a rise in the interhelical angles of S100A1 on the binding site and solvent accessible surface area. Significant configurational regulations were observed in the holo protein. The findings would contribute to understanding the molecular basis of the association of Ca2+ with the S100A1 protein, which may be an appropriate study to understand the Ca2+-mediated conformational changes in the protein target. In addition, we investigated the expression profile of S100A1 in myoblast differentiation and muscle regeneration. These data showed that S100A1 is expressed in skeletal muscles. However, the expression decreases with time during the process of myoblast differentiation.
Collapse
Affiliation(s)
- Navaneet Chaturvedi
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| | - Brijesh Singh Yadav
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| | - Subash Chandra Sonkar
- Department of Obstetrics and Gynaecology, Vardhman Mahavir Medical College and Safdarjang Hospital, New Delhi-110029, India;
| | - Ninoslav Marina
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| |
Collapse
|
46
|
Transthyretin Maintains Muscle Homeostasis Through the Novel Shuttle Pathway of Thyroid Hormones During Myoblast Differentiation. Cells 2019; 8:cells8121565. [PMID: 31817149 PMCID: PMC6952784 DOI: 10.3390/cells8121565] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle, the largest part of the total body mass, influences energy and protein metabolism as well as maintaining homeostasis. Herein, we demonstrate that during murine muscle satellite cell and myoblast differentiation, transthyretin (TTR) can exocytose via exosomes and enter cells as TTR- thyroxine (T4) complex, which consecutively induces the intracellular triiodothyronine (T3) level, followed by T3 secretion out of the cell through the exosomes. The decrease in T3 with the TTR level in 26-week-old mouse muscle, compared to that in 16-week-old muscle, suggests an association of TTR with old muscle. Subsequent studies, including microarray analysis, demonstrated that T3-regulated genes, such as FNDC5 (Fibronectin type III domain containing 5, irisin) and RXRγ (Retinoid X receptor gamma), are influenced by TTR knockdown, implying that thyroid hormones and TTR coordinate with each other with respect to muscle growth and development. These results suggest that, in addition to utilizing T4, skeletal muscle also distributes generated T3 to other tissues and has a vital role in sensing the intracellular T4 level. Furthermore, the results of TTR function with T4 in differentiation will be highly useful in the strategic development of novel therapeutics related to muscle homeostasis and regeneration.
Collapse
|
47
|
Damanti S, Azzolino D, Roncaglione C, Arosio B, Rossi P, Cesari M. Efficacy of Nutritional Interventions as Stand-Alone or Synergistic Treatments with Exercise for the Management of Sarcopenia. Nutrients 2019; 11:E1991. [PMID: 31443594 PMCID: PMC6770476 DOI: 10.3390/nu11091991] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is an age-related and accelerated process characterized by a progressive loss of muscle mass and strength/function. It is a multifactorial process associated with several adverse outcomes including falls, frailty, functional decline, hospitalization, and mortality. Hence, sarcopenia represents a major public health problem and has become the focus of intense research. Unfortunately, no pharmacological treatments are yet available to prevent or treat this age-related condition. At present, the only strategies for the management of sarcopenia are mainly based on nutritional and physical exercise interventions. The purpose of this review is, thus, to provide an overview on the role of proteins and other key nutrients, alone or in combination with physical exercise, on muscle parameters.
Collapse
Affiliation(s)
- Sarah Damanti
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Phd Course in Nutritional Sciences, University of Milan, 20122 Milan, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
- Phd Course in Nutritional Sciences, University of Milan, 20122 Milan, Italy.
| | - Carlotta Roncaglione
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Paolo Rossi
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
48
|
Kim T, Ahmad K, Shaikh S, Jan AT, Seo MG, Lee EJ, Choi I. Dermatopontin in Skeletal Muscle Extracellular Matrix Regulates Myogenesis. Cells 2019; 8:cells8040332. [PMID: 30970625 PMCID: PMC6523808 DOI: 10.3390/cells8040332] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/06/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Dermatopontin (DPT) is an extensively distributed non-collagenous component of the extracellular matrix predominantly found in the dermis of the skin, and consequently expressed in several tissues. In this study, we explored the role of DPT in myogenesis and perceived that it enhances the cell adhesion, reduces the cell proliferation and promotes the myoblast differentiation in C2C12 cells. Our results reveal an inhibitory effect with fibronectin (FN) in myoblast differentiation. We also observed that DPT and fibromodulin (FMOD) regulate positively to each other and promote myogenic differentiation. We further predicted the 3D structure of DPT, which is as yet unknown, and validated it using state-of-the-art in silico tools. Furthermore, we explored the in-silico protein-protein interaction between DPT-FMOD, DPT-FN, and FMOD-FN, and perceived that the interaction between FMOD-FN is more robust than DPT-FMOD and DPT-FN. Taken together, our findings have determined the role of DPT at different stages of the myogenic process.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185236, India.
| | - Myung-Gi Seo
- Department of Veterinary Histology, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
49
|
Baig MH, Rashid I, Srivastava P, Ahmad K, Jan AT, Rabbani G, Choi D, Barreto GE, Ashraf GM, Lee EJ, Choi I. NeuroMuscleDB: a Database of Genes Associated with Muscle Development, Neuromuscular Diseases, Ageing, and Neurodegeneration. Mol Neurobiol 2019; 56:5835-5843. [PMID: 30684219 DOI: 10.1007/s12035-019-1478-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022]
Abstract
Skeletal muscle is a highly complex, heterogeneous tissue that serves a multitude of biological functions in living organisms. With the advent of methods, such as microarrays, transcriptome analysis, and proteomics, studies have been performed at the genome level to gain insight of changes in the expression profiles of genes during different stages of muscle development and of associated diseases. In the present study, a database was conceived for the straightforward retrieval of information on genes involved in skeletal muscle formation, neuromuscular diseases (NMDs), ageing, and neurodegenerative disorders (NDs). The resulting database named NeuroMuscleDB ( http://yu-mbl-muscledb.com/NeuroMuscleDB ) is the result of a wide literature survey, database searches, and data curation. NeuroMuscleDB contains information of genes in Homo sapiens, Mus musculus, and Bos Taurus, and their promoter sequences and specified roles at different stages of muscle development and in associated myopathies. The database contains information on ~ 1102 genes, 6030 mRNAs, and 5687 proteins, and embedded analytical tools that can be used to perform tasks related to gene sequence usage. The authors believe NeuroMuscleDB provides a platform for obtaining desired information on genes related to myogenesis and their associations with various diseases (NMDs, ageing, and NDs). NeuroMuscleDB is freely available on the web at http://yu-mbl-muscledb.com/NeuroMuscleDB and supports all major browsers.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Iliyas Rashid
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, 226 028, India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, 226 028, India
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185236, India
| | - Gulam Rabbani
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Dukhwan Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
50
|
Li XJ, Pan HT, Chen JJ, Fu YB, Fang M, He GH, Zhang T, Ding HG, Yu B, Cheng Y, Tan YJ, Zhao FL, Morse AN, Huang HF. Proteomics of Uterosacral Ligament Connective Tissue from Women with and without Pelvic Organ Prolapse. Proteomics Clin Appl 2018; 13:e1800086. [PMID: 30516354 DOI: 10.1002/prca.201800086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/04/2018] [Indexed: 11/06/2022]
Abstract
PURPOSE Damage to the uterosacral ligaments is an important contributor to uterine and vaginal prolapse. The aim of this study is to identify differentially expressed proteins (DEPs) in the uterosacral ligaments of women with and without pelvic organ prolapse (POP) and analyze their relationships to cellular mechanisms involved in the pathogenesis of POP. EXPERIMENTAL DESIGN Uterosacral ligament connective tissue from four patients with POP and four control women undergo iTRAQ analysis followed by ingenuity pathway analysis (IPA) of DEPs. DEPs are validated using Western blot analysis. RESULTS A total of 1789 unique protein sequences are identified in the uterosacral ligament connective tissues. The expression levels of 88 proteins are significantly different between prolapse and control groups (≥1.2-fold, p < 0.05). IPA demonstrates the association of 14 DEPs with "Connective Tissue Function." Among them, fibromodulin, collagen alpha-1 (XIV) chain, calponin-1, tenascin, and galectin-1 appear most likely to play a role in the etiology of POP. CONCLUSIONS AND CLINICAL RELEVANCE At least six proteins not previously associated with the pathogenesis of POP with biologic functions that suggest a plausible relationship to the disorder are identified. These results may be helpful for furthering the understanding of the pathophysiological mechanisms of POP.
Collapse
Affiliation(s)
- Xiang-Juan Li
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Women's Hospital, Hangzhou, 310008, China
| | - Hai-Tao Pan
- Shaoxing Women and Children's Hospital, Shaoxing, 312000, China
| | | | - Yi-Bin Fu
- Shaoxing Women and Children's Hospital, Shaoxing, 312000, China
| | - Min Fang
- Shaoxing Women and Children's Hospital, Shaoxing, 312000, China
| | - Guo-Hua He
- Shaoxing Women and Children's Hospital, Shaoxing, 312000, China
| | - Tao Zhang
- Shaoxing Women and Children's Hospital, Shaoxing, 312000, China
| | - Hai-Gang Ding
- Shaoxing Women and Children's Hospital, Shaoxing, 312000, China
| | - Bin Yu
- Shaoxing Women and Children's Hospital, Shaoxing, 312000, China
| | - Yi Cheng
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.,Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Jing Tan
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fa-Lin Zhao
- Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Abraham N Morse
- Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - He-Feng Huang
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|