1
|
Zhu M, Zhong W, Wong S, Luo X, Hong Z, Lin J, Wu J, Zhou Y, Qi Z, Chen S. E3 ubiquitin ligase ITCH-mediated proteasomal degradation of WBP2 sensitizes breast cancer cells to chemotherapy through restraining AMOTL2/c-JUN axis. Biochem Pharmacol 2025; 232:116720. [PMID: 39709035 DOI: 10.1016/j.bcp.2024.116720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/27/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Our study had demonstrated that WW domain-binding protein 2 (WBP2) conferred chemoresistance in breast cancer (BC). However, the underlying mechanism remains unclear. Herein, a decreased expression of itchy E3 ubiquitin protein ligase (ITCH) was observed in drug-resistant BC tissues which negatively regulated the expression of WBP2. However, ligase-deficient ITCH C830A mutant missed this function. WBP2 upregulation-initiated the chemoresistance to doxorubicin was reversed by exogenous ITCH, which was not affected by ITCH C830A mutant. In in vivo model, exogenous ITCH obstructed WBP2-mediated chemoresistance, which was destroyed by the proteasome inhibitor (MG132). Upon RNA sequencing, the excessive activations of angiomotin-like 2 (AMOTL2) and c-JUN (Jun proto-oncogene, AP-1 transcription factor subunit) were screened in WBP2-overexpressed BC cells. Additionally, AMOTL2 and endonuclear phosphorylated c-JUN were at a high level in chemoresistant BC tumors and WBP2-overexpressed BC cells. Mechanistically, exogenous ITCH transfection prevented the activation of AMOTL2/c-JUN induced by WBP2 overexpression, which was restored by MG132-mediated inhibition on ITCH activation. The increase of multiple drug-resistant proteins caused by WBP2 upregulation were restrained by AMOTL2 knockdown or c-JUN antagonist, respectively. Our findings present how ITCH/WBP2 signaling functions to link the intricate AMOTL2/c-JUN signaling networks in chemoresistant BC cells. Targeting WBP2 combined with c-JUN inhibitors may be a potential option to overcome chemoresistance in breast cancer patients.
Collapse
Affiliation(s)
- Maoshu Zhu
- School of Medicine, Guangxi University, Nanning, 530004, China; The Fifth Hospital of Xiamen, Xiamen 361101, Fujian, China
| | - Weimin Zhong
- The Fifth Hospital of Xiamen, Xiamen 361101, Fujian, China
| | - Solomon Wong
- School of Medicine, Guangxi University, Nanning, 530004, China
| | - Xianyang Luo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China
| | - Zhicong Hong
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China
| | - Juli Lin
- Department of Breast Surgery, Women and Children's Hospital, School of Medicine, Xiamen University, No.10, Zhenhai Road, Xiamen 361003, Fujian Province, China
| | - Junhua Wu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China.
| | - Yi Zhou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China.
| | - Zhongquan Qi
- School of Medicine, Guangxi University, Nanning, 530004, China.
| | - Shuai Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China; Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen 361005, Fujian, China.
| |
Collapse
|
2
|
Sun Q, Gao R, Lin Y, Zhou X, Wang T, He J. Leveraging single-cell RNA-seq for uncovering naïve B cells associated with better prognosis of hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e563. [PMID: 39252823 PMCID: PMC11381656 DOI: 10.1002/mco2.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 09/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical highly heterogeneous solid tumor with high morbidity and mortality worldwide, especially in China; however, the immune microenvironment of HCC has not been clarified so far. Here, we employed single-cell RNA sequencing (scRNA-seq) on diethylnitrosamine (DEN)-induced mouse HCC model to dissect the immune cell dynamics during tumorigenesis. Our findings reveal distinct immune profiles in both precancerous and cancerous lesions, indicating early tumor-associated immunological alterations. Notably, specific T and B cell subpopulations are preferentially enriched in the HCC tumor microenvironment (TME). Furthermore, we identified a subpopulation of naïve B cells with high CD83 expression, correlating with improved prognosis in human HCC. These signature genes were validated in The Cancer Genome Atlas HCC RNA-seq dataset. Moreover, cell interaction analysis revealed that subpopulations of B cells in both mouse and human samples are activated and may potentially contribute to oncogenic processes. In summary, our study provides insights into the dynamic immune microenvironment and cellular networks in HCC pathogenesis, with a specific emphasis on naïve B cells. These findings emphasize the significance of targeting TME in HCC patients to prevent HCC pathological progression, which may give a new perspective on the therapeutics for HCC.
Collapse
Affiliation(s)
- Qingjia Sun
- Department of Otorhinolaryngology Head and Neck Surgery The China-Japan Union Hospital of Jilin University Changchun China
| | - Rui Gao
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yingxin Lin
- School of Mathematics and Statistics The University of Sydney Sydney Australia
| | - Xianchao Zhou
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Tao Wang
- Univ Lyon, Univ Jean Monnet Saint-Etienne, INSA Lyon, Univ Lyon 2 Université Claude Roanne France
| | - Jian He
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
- Key Laboratory of Systems Biomedicine Ministry of Education and Collaborative Innovation Center of Systems Biomedicine Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
3
|
Gao X, Long R, Qin M, Zhu W, Wei L, Dong P, Chen J, Luo J, Feng J. Gab2 promotes the growth of colorectal cancer by regulating the M2 polarization of tumor‑associated macrophages. Int J Mol Med 2024; 53:3. [PMID: 37937666 PMCID: PMC10688767 DOI: 10.3892/ijmm.2023.5327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are pivotal components in colorectal cancer (CRC) progression, markedly influencing the tumor microenvironment through their polarization into the pro‑inflammatory M1 or pro‑tumorigenic M2 phenotypes. Recent studies have highlighted that the Grb2‑associated binder 2 (Gab2) is a critical gene involved in the development of various types of tumor, including CRC. However, the precise role of Gab2 in mediating TAM polarization remains incompletely elucidated. In the present study, it was discovered that Gab2 was highly expressed within CRC tissue TAMs, and was associated with a poor prognosis of patients with CRC. Functionally, it was identified that the tumor‑conditioned medium (TCM) induced Gab2 expression, facilitating the TAMs towards an M2‑like phenotype polarization. Of note, the suppression of Gab2 expression using shRNA markedly inhibited the TCM‑induced expression of M2‑associated molecules, without affecting M1‑type markers. Furthermore, the xenotransplantation model demonstrated that Gab2 deficiency in TAMs inhibited tumor growth in the mouse model of CRC. Mechanistically, Gab2 induced the M2 polarization of TAMs by regulating the AKT and ERK signaling pathways, promoting CRC growth and metastasis. In summary, the present study study elucidates that decreasing Gab2 expression hinders the transition of TAMs towards the M2 phenotype, thereby suppressing the growth of CRC. The exploration of the regulatory mechanisms of Gab2 in TAM polarization may enhance the current understanding of the core molecular pathways of CRC development and may thus provide a foundation for the development of novel immunotherapeutic strategies targeted against TAMs.
Collapse
Affiliation(s)
- Xuehan Gao
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Runying Long
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR 999077, P.R. China
| | - Ming Qin
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Wenfang Zhu
- Department of Oncology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| | - Linna Wei
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Pinzhi Dong
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jin Chen
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Junmin Luo
- Special Key Laboratory of Gene Detection and Therapy and Base for Talents in Biotherapy of Guizhou Province, P.R. China
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jihong Feng
- Department of Oncology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang 323000, P.R. China
| |
Collapse
|
4
|
Zhu F, Zhang Q, Feng J, Zhang X, Li T, Liu S, Chen Y, Li X, Wu Q, Xue Y, Alitongbieke G, Pan Y. β-Glucan produced by Lentinus edodes suppresses breast cancer progression via the inhibition of macrophage M2 polarization by integrating autophagy and inflammatory signals. Immun Inflamm Dis 2023; 11:e876. [PMID: 37249285 PMCID: PMC10214582 DOI: 10.1002/iid3.876] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND β-Glucan from Lentinus edodes (LNT), an edible mushroom, possesses strong anticancer activity. However, the therapeutic effects of LNT during the occurrence and progression of breast cancer and their underlying molecular mechanisms have not been elucidated. METHODS Mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT) transgenic mice were used as a breast cancer mouse model. Hematoxylin and eosin, immunohistochemical, and immunofluorescence staining were performed for histopathological analysis. Moreover, we developed an inflammatory cell model using tumor necrosis factor-α (TNF-α). Macrophage polarization was assessed using western blot analysis and immunofluorescence. RESULTS Orphan nuclear receptor 77 (Nur77) and sequestosome-1 (p62) were highly expressed and positively correlated with each other in breast cancer tissues. LNT significantly inhibited tumor growth, ameliorated inflammatory cell infiltration, and induced tumor cell apoptosis in PyMT transgenic mice. Moreover, LNT attenuated the ability of tumors to metastasize to lung tissue. Mechanistically, LNT treatment restrained macrophage polarization from M1 to M2 phenotype and promoted autophagic cell death by inhibiting Nur77 expression, AKT/mTOR signaling, and inflammatory signals in breast tumor cells. However, LNT did not exhibit a direct pro-autophagic effect on tumor cell death, except for its inhibitory effect on Nur77 expression. LNT-mediated autophagic tumor cell death depends on M1 macrophage polarization. In in vitro experiments, LNT inhibited the upregulation of p62, autophagy activation, and inflammatory signaling pathways in Nur77 cells. CONCLUSION LNT inhibited macrophage M2 polarization and subsequently blocked the AKT/mTOR and inflammatory signaling axes in breast cancer cells, thereby promoting autophagic tumor cell death. Thus, LNT may be a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Fukai Zhu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Qianru Zhang
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Jiexin Feng
- Breast Surgery DepartmentZhangzhou Hospital of Fujian Medical UniversityZhangzhouFujianPeople's Republic of China
| | - Xiuru Zhang
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Tingting Li
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Shuwen Liu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yanling Chen
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Xiumin Li
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Qici Wu
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yu Xue
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Gulimiran Alitongbieke
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| | - Yutian Pan
- Engineering Technological Center of Mushroom Industry, School of Biological Science and BiotechnologyMinnan Normal UniversityZhangzhouFujianPeople's Republic of China
| |
Collapse
|
5
|
Yin Y, Zhang L, Li Y, Zhang C, He A. Gab2 plays a carcinogenic role in ovarian cancer by regulating CrkII. J Ovarian Res 2023; 16:79. [PMID: 37085900 PMCID: PMC10120224 DOI: 10.1186/s13048-023-01152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 03/29/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE To detect the expression of Growth factor binding protein 2 associated binding protein 2 (Gab2) and CT10 regulator of kinase II (CrkII) in ovarian cancer and analyze their clinical significance. To explore the effects of Gab2 and CrkII on the biological behavior of ovarian cancer cells. To analyze the possible molecular mechanism of Gab2 in the development of ovarian cancer. METHODS Immunohistochemistry was used to detect the expression of Gab2 and CrkII in ovarian cancer. Chi square test was used to analyze the correlation between Gab2, CrkII and clinical parameters. Using Cox regression model to evaluate the risk factors affecting the prognosis. To analyze the correlation between Gab2, CrkII and survival rate by Kaplan-Meier. Cell experiments were preformed to explore the effects of Gab2 and CrkII on the biological behavior of cells. The interaction between Gab2 and CrkII was explored by immunoprecipitation. RESULTS Immunohistochemistry revealed that high expression of Gab2 and CrkII in ovarian cancer. Patients with high expression of Gab2 or CrkII had higher International Federation of Gynecology and Obstetrics (FIGO) stage, grade and platinum-resistance recurrence. Multivariate analysis showed that Gab2 and CrkII were independent prognostic factors. Kaplan-Meier curve showed that the higher Gab2 and CrkII were, the poor prognosis the patients had. We observed that the overexpression of Gab2 and CrkII promoted the proliferation, metastasis and reduced chemosensitivity of cells. Conversely, the knockdown of Gab2 and CrkII resulted in the opposite results. In CrkII-knockdown cells, we found that Gab2 mediates biological behavior through CrkII. CONCLUSIONS The expression of Gab2 and CrkII increase in ovarian cancer. The higher expression of Gab2 and CrkII predict the poor prognosis of patients. Gab2 and CrkII promote the proliferation and migration and reduce the chemosensitivity of cells. Gab2 regulates the biological behaviors of ovarian cancer cells through CrkII.
Collapse
Affiliation(s)
- Yi Yin
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Li Zhang
- Department of Cancer Research Center, The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Yong Li
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Can Zhang
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Aiqin He
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| |
Collapse
|
6
|
Seo E, Jang H, Kwon S, Kwon Y, Kim S, Lee S, Jeong AJ, Shin HM, Kim Y, Ma S, Kim H, Lee Y, Suh P, Ye S. Loss of phospholipase Cγ1 suppresses hepatocellular carcinogenesis through blockade of STAT3-mediated cancer development. Hepatol Commun 2022; 6:3234-3246. [PMID: 36153805 PMCID: PMC9592768 DOI: 10.1002/hep4.2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022] Open
Abstract
Phospholipase C gamma 1 (PLCγ1) plays an oncogenic role in several cancers, alongside its usual physiological roles. Despite studies aimed at identifying the effect of PLCγ1 on tumors, the pathogenic role of PLCγ1 in the tumorigenesis and development of hepatocellular carcinoma (HCC) remains unknown. To investigate the function of PLCγ1 in HCC, we generated hepatocyte-specific PLCγ1 conditional knockout (PLCγ1f/f ; Alb-Cre) mice and induced HCC with diethylnitrosamine (DEN). Here, we identified that hepatocyte-specific PLCγ1 deletion effectively prevented DEN-induced HCC in mice. PLCγ1f/f ; Alb-Cre mice showed reduced tumor burden and tumor progression, as well as a decreased incidence of HCC and less marked proliferative and inflammatory responses. We also showed that oncogenic phenotypes such as repressed apoptosis, and promoted proliferation, cell cycle progression and migration, were induced by PLCγ1. In terms of molecular mechanism, PLCγ1 regulated the activation of signal transducer and activator of transcription 3 (STAT3) signaling. Moreover, PLCγ1 expression is elevated in human HCC and correlates with a poor prognosis in patients with HCC. Our results suggest that PLCγ1 promotes the pathogenic progression of HCC, and PLCγ1/STAT3 axis was identified as a potential therapeutic target pathway for HCC.
Collapse
Affiliation(s)
- Eun‐Bi Seo
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21PLUS)Seoul National University College of MedicineSeoulRepublic of Korea
| | - Hyun‐Jun Jang
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Sun‐Ho Kwon
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Yong‐Jin Kwon
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21PLUS)Seoul National University College of MedicineSeoulRepublic of Korea
| | - Seul‐Ki Kim
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Song‐Hee Lee
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Ae Jin Jeong
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
| | - Hyun Mu Shin
- Wide River Institute of ImmunologySeoul National UniversityHongcheonRepublic of Korea
| | - Yong‐Nyun Kim
- Division of Translational ScienceNational Cancer CenterGoyangRepublic of Korea
| | - Stephanie Ma
- State Key Laboratory of Liver ResearchLi Ka Shing Faculty of Medicine, The University of Hong KongHong Kong
| | - Haeryoung Kim
- Department of PathologySeoul National University College of MedicineSeoulRepublic of Korea
| | - Yun‐Han Lee
- Department of Molecular MedicineKeimyung University School of MedicineDaeguRepublic of Korea
| | - Pann‐Ghill Suh
- School of Life SciencesUlsan National Institute of Science and TechnologyUlsanRepublic of Korea
- Korea Brain Research Institute (KBRI)DaeguRepublic of Korea
| | - Sang‐Kyu Ye
- Department of Pharmacology and Biomedical SciencesSeoul National University College of MedicineSeoulRepublic of Korea
- Biomedical Science Project (BK21PLUS)Seoul National University College of MedicineSeoulRepublic of Korea
- Wide River Institute of ImmunologySeoul National UniversityHongcheonRepublic of Korea
- Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Neuro‐Immune Information Storage Network Research CenterSeoul National University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
7
|
Mo H, Yang S, Chen AM. Inhibition of GAB2 expression has a protective effect on osteoarthritis:An in vitro and in vivo study. Biochem Biophys Res Commun 2022; 626:229-235. [PMID: 36007472 DOI: 10.1016/j.bbrc.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Osteoarthritis is a chronic age-related degenerative disease associated with varying degrees of pain and joint mobility disorders. Grb2-associated-Binding protein-2 (GAB2) is an intermediate molecule that plays a role downstream in a variety of signaling pathways, such as inflammatory signaling pathways. The role of GAB2 in the pathogenesis of OA has not been fully studied. In this study, we found that GAB2 expression was elevated in chondrocytes after constructing in vivo and in vitro models of OA. Inhibition of GAB2 by siRNA decreased the expression of MMP3, MMP13, iNOS, COX2, p62, and increased the expression of COL2, SOX9, ATG7, Beclin-1 and LC3II/LC3I. Furthermore, inhibition of GAB2 expression inhibited interleukin-1β (IL-1β) -induced mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling. In vivo studies, we found that reduced GAB2 expression effectively delayed cartilage destruction in a mouse model of OA induced by destabilisation of the medial meniscus (DMM). In conclusion, our study demonstrates that GAB2 is a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Haokun Mo
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siying Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-Min Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Liu R, Sun Y, Chen S, Hong Y, Lu Z. FOXD3 and GAB2 as a pair of rivals antagonistically control hepatocellular carcinogenesis. FEBS J 2022; 289:4536-4548. [DOI: 10.1111/febs.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/05/2021] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Affiliation(s)
- Ruimin Liu
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Yan Sun
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Shuai Chen
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Yun Hong
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences State Key Laboratory of Cellular Stress Biology Xiamen University Xiamen China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research School of Pharmaceutical Sciences Xiamen China
| |
Collapse
|
9
|
Liver-specific overexpression of Gab2 accelerates hepatocellular carcinoma progression by activating immunosuppression of myeloid-derived suppressor cells. Oncogene 2022; 41:3316-3327. [DOI: 10.1038/s41388-022-02298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/09/2022]
|
10
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
11
|
Wang J, Wei B, Thakur K, Wang CY, Li KX, Wei ZJ. Transcriptome Analysis Reveals the Anti-cancerous Mechanism of Licochalcone A on Human Hepatoma Cell HepG2. Front Nutr 2022; 8:807574. [PMID: 34988109 PMCID: PMC8720858 DOI: 10.3389/fnut.2021.807574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma is a malignancy with a low survival rate globally, and there is imperative to unearth novel natural phytochemicals as effective therapeutic strategies. Licochalcone A is a chalcone from Glycyrrhiza that displayed various pharmacological efficacy. A globally transcriptome analysis was carried out to reveal the gene expression profiling to explore Licochalcone A's function as an anti-cancer phytochemical on HepG2 cells and investigate its potential mechanisms. Altogether, 6,061 dysregulated genes were detected (3,414 up-regulated and 2,647 down-regulated). SP1 was expected as the transcription factor that regulates the functions of most screened genes. GO and KEGG analysis was conducted, and the MAPK signaling pathway and the FoxO signaling pathway were two critical signal pathways. Protein-protein interaction (PPI) network analysis based on STRING platform to discover the hub genes (MAPK1, ATF4, BDNF, CASP3, etc.) in the MAPK signaling pathway and (AKT3, GADD45A, IL6, CDK2, CDKN1A, etc.) the FoxO signaling pathway. The protein level of essential genes that participated in significant pathways was consistent with the transcriptome data. This study will provide an inclusive understanding of the potential anti-cancer mechanism of Licochalcone A on hepatocellular, signifying Licochalcone A as a promising candidate for cancer therapy.
Collapse
Affiliation(s)
- Jun Wang
- School of Biological Food and Environment, Hefei University, Hefei, China
| | - Bo Wei
- School of Biological Food and Environment, Hefei University, Hefei, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Chu-Yan Wang
- School of Biological Food and Environment, Hefei University, Hefei, China
| | - Ke-Xin Li
- School of Biological Food and Environment, Hefei University, Hefei, China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,School of Biological Science and Engineering, North Minzu University, Yinchuan, China
| |
Collapse
|
12
|
Wu N, Yuan F, Yue S, Jiang F, Ren D, Liu L, Bi Y, Guo Z, Ji L, Han K, Yang X, Feng M, Su K, Yang F, Wu X, Lu Q, Li X, Wang R, Liu B, Le S, Shi Y, He G. Effect of exercise and diet intervention in NAFLD and NASH via GAB2 methylation. Cell Biosci 2021; 11:189. [PMID: 34736535 PMCID: PMC8569968 DOI: 10.1186/s13578-021-00701-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a disorder that extends from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), which is effectively alleviated by lifestyle intervention. Nevertheless, DNA methylation mechanism underling the effect of environmental factors on NAFLD and NASH is still obscure. The aim of this study was to investigate the effect of exercise and diet intervention in NAFLD and NASH via DNA methylation of GAB2. METHODS Methylation of genomic DNA in human NAFLD was quantified using Infinium Methylation EPIC BeadChip assay after exercise (Ex), low carbohydrate diet (LCD) and exercise plus low carbohydrate diet (ELCD) intervention. The output Idat files were processed using ChAMP package. False discovery rate on genome-wide analysis of DNA methylation (q < 0.05), and cytosine-guanine dinucleotides (CpGs) which are located in promoters were used for subsequent analysis (|Δβ|≥ 0.1). K-means clustering was used to cluster differentially methylated genes according to 3D genome information from Human embryonic stem cell. To quantify DNA methylation and mRNA expression of GRB2 associated binding protein 2 (GAB2) in NASH mice after Ex, low fat diet (LFD) and exercise plus low fat diet (ELFD), MassARRAY EpiTYPER and quantitative reverse transcription polymerase chain reaction were used. RESULTS Both LCD and ELCD intervention on human NAFLD can induce same DNA methylation alterations at critical genes in blood, e.g., GAB2, which was also validated in liver and adipose of NASH mice after LFD and ELFD intervention. Moreover, methylation of CpG units (i.e., CpG_10.11.12) inversely correlated with mRNA expression GAB2 in adipose tissue of NASH mice after ELFD intervention. CONCLUSIONS We highlighted the susceptibility of DNA methylation in GAB2 to ELFD intervention, through which exercise and diet can protect against the progression of NAFLD and NASH on the genome level, and demonstrated that the DNA methylation variation in blood could mirror epigenetic signatures in target tissues of important biological function, i.e., liver and adipose tissue. Trial registration International Standard Randomized Controlled Trial Number Register (ISRCTN 42622771).
Collapse
Affiliation(s)
- Na Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Siran Yue
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengyan Jiang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mofan Feng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Su
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ruirui Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baocheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenglong Le
- Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Liu Z, Zhang X, Dong M, Liu Z, Wang Y, Yu H, Yu K, Xu N, Liu W, Song H. Analysis of the microRNA and mRNA expression profile of ricin toxin-treated RAW264.7 cells reveals that miR-155-3p suppresses cell inflammation by targeting GAB2. Toxicol Lett 2021; 347:67-77. [PMID: 33865919 DOI: 10.1016/j.toxlet.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Ricin toxin (RT) is one of the most lethal toxins derived from the seed of castor beans. In addition to its main toxic mechanism of inhibiting the synthesis of cellular proteins, RT can induce the production of inflammatory cytokines. MicroRNAs (miRNAs) play a key role in regulating both innate and adaptive immunity. To elucidate the regulation of miRNAs in RT-induced inflammation injury, the RNA high-throughput sequencing (RNA-Seq) technology was used to analyze the expression profile of miRNAs and mRNAs in RT-treated RAW264.7 cells. Results showed that a total of 323 mRNAs and 19 miRNAs differentially expressed after RT treated. Meanwhile, 713 miRNA-mRNA interaction pairs were identified by bioinformatics analysis. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that those interaction pairs were mainly involved in JAK-STAT, T cell receptor, and MAPK signaling pathways. Moreover, we further predicted and determined the targeting relationship between miR-155-3p and GAB2 through TargetScan and dual-luciferase reporter assay. Mechanically, overexpression of miR-155-3p can reduce the secretion of TNF-α in RAW264.7 cells, revealing a possible mechanism of miR-155-3p regulating RT-induced inflammatory injury. This study provides a new perspective for clarifying the mechanism of RT-induced inflammatory injury and reveals the potential role of miRNAs in innate immune regulation.
Collapse
Affiliation(s)
- Zhongliang Liu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China
| | - Xiaohao Zhang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Mingxin Dong
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, PR China
| | - Ziwei Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yan Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, PR China
| | - Haotian Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, PR China
| | - Kaikai Yu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, PR China
| | - Na Xu
- Jilin Medical University, Jilin, 132013, PR China.
| | - Wensen Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, PR China.
| | - Hui Song
- College of Life Science, Jilin Agricultural University, Changchun, 130118, PR China.
| |
Collapse
|
14
|
Wang X, Zhao Y, Zhou D, Tian Y, Feng G, Lu Z. Gab2 deficiency suppresses high-fat diet-induced obesity by reducing adipose tissue inflammation and increasing brown adipose function in mice. Cell Death Dis 2021; 12:212. [PMID: 33637697 PMCID: PMC7910586 DOI: 10.1038/s41419-021-03519-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
Obesity is caused by a long-term imbalance between energy intake and consumption and is regulated by multiple signals. This study investigated the effect of signaling scaffolding protein Gab2 on obesity and its relevant regulation mechanism. Gab2 knockout (KO) and wild-type (WT) mice were fed with a standard diet (SD) or high-fat diet (HFD) for 12 weeks. The results showed that the a high-fat diet-induced Gab2 expression in adipose tissues, but deletion of Gab2 attenuated weight gain and improved glucose tolerance in mice fed with a high-fat diet. White adipose tissue and systemic inflammations were reduced in HFD-fed Gab2 deficiency mice. Gab2 deficiency increased the expression of Ucp1 and other thermogenic genes in brown adipose tissue. Furthermore, the regulation of Gab2 on the mature differentiation and function of adipocytes was investigated in vitro using primary or immortalized brown preadipocytes. The expression of brown fat-selective genes was found to be elevated in differentiated adipocytes without Gab2. The mechanism of Gab2 regulating Ucp1 expression in brown adipocytes involved with its downstream PI3K (p85)-Akt-FoxO1 signaling pathway. Our research suggests that deletion of Gab2 suppresses diet-induced obesity by multiple pathways and Gab2 may be a novel therapeutic target for the treatment of obesity and associated complications.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/deficiency
- Adaptor Proteins, Signal Transducing/genetics
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/physiopathology
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/physiopathology
- Adiposity
- Animals
- Blood Glucose/metabolism
- Cell Line
- Class Ia Phosphatidylinositol 3-Kinase/metabolism
- Diet, High-Fat
- Disease Models, Animal
- Energy Metabolism
- Forkhead Box Protein O1/metabolism
- Insulin Resistance
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/genetics
- Obesity/metabolism
- Obesity/physiopathology
- Obesity/prevention & control
- Panniculitis/genetics
- Panniculitis/metabolism
- Panniculitis/physiopathology
- Panniculitis/prevention & control
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Uncoupling Protein 1/metabolism
- Weight Gain
- Mice
Collapse
Affiliation(s)
- Xinhui Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, 361005, Xiamen, Fujian, China
| | - Yinan Zhao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, 361005, Xiamen, Fujian, China
| | - Dekun Zhou
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, 361005, Xiamen, Fujian, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, 361005, Xiamen, Fujian, China
| | - Gensheng Feng
- Department of Pathology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, 361005, Xiamen, Fujian, China.
| |
Collapse
|
15
|
Zhang Y, Zheng Y, Pan E, Zhao C, Zhang H, Liu R, Wang S, Pu Y, Yin L. Synergism of HPV and MNNG repress miR-218 promoting Het-1A cell malignant transformation by targeting GAB2. Toxicology 2020; 447:152635. [PMID: 33189795 DOI: 10.1016/j.tox.2020.152635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Dysregulation of microRNAs (miRNAs) is induced during tumorigenesis. Our previous research suggested that HPV and MNNG led to malignant transformation of esophageal epithelial cells. To investigate the regulation and function of miR-218(miR-218-5p) during the malignant transformation of esophageal epithelial cells, we found miR-218 was inhibited synergistically by HPV and MNNG, suppressing cell proliferation, migration and invasion by up-regulating 3' untranslated region (3'UTR) GAB2 in Het-1A-HPV-MNNG cells (malignant Het-1A cells induced by HPV and MNNG). A negative correlation was found between miR-218 and GAB2 mRNA expression in esophageal cancer patients and control people. GAB2 was up-regulated in Het-1A-HPV-MNNG cells. Further, down-expression of GAB2 reversed HPV&MNNG-mediated activation of migration and invasion and repressed SHP2/ERK and Akt/mTOR pathway signaling. In conclusion, miR-218 partially accounts for the prevention effect during malignant transformation of normal esophageal epithelial cells, which targets GAB2, which supplies the potential treatment in cancer therapy.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuhong Zheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Enchun Pan
- Huai'an Center for Disease Control and Prevention, Huai'an, 223001, Jiangsu, China.
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
16
|
Zhu J, Deng L, Chen B, Huang W, Lin X, Chen G, Tzeng CM, Ying M, Lu Z. Magnesium-dependent Phosphatase (MDP) 1 is a Potential Suppressor of Gastric Cancer. Curr Cancer Drug Targets 2020; 19:817-827. [PMID: 31218958 DOI: 10.2174/1568009619666190620112546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recurrence is the leading cause of treatment failure and death in patients with gastric cancer (GC). However, the mechanism underlying GC recurrence remains unclear, and prognostic markers are still lacking. METHODS We analyzed DNA methylation profiles in gastric cancer cases with shorter survival (<1 year) or longer survival (> 3 years), and identified candidate genes associated with GC recurrence. Then, the biological effects of these genes on gastric cancer were studied. RESULTS A novel gene, magnesium-dependent phosphatase 1 (mdp1), was identified as a candidate gene whose DNA methylation was higher in GC samples from patients with shorter survival and lower in patients with longer survival. MDP1 protein was highly expressed in GC tissues with longer survival time, and also had a tendency to be expressed in highly differentiated GC samples. Forced expression of MDP1 in GC cell line BGC-823 inhibited cell proliferation, whereas the knockdown of MDP1 protein promoted cell growth. Overexpression of MDP1 in BGC-823 cells also enhanced cell senescence and apoptosis. Cytoplasmic kinase protein c-Jun N-terminal kinase (JNK) and signal transducer and activator of transcription 3 (Stat3) were found to mediate the biological function of MDP1. CONCLUSION These results suggest that MDP1 protein suppresses the survival of gastric cancer cells and loss of MDP expression may benefit the recurrence of gastric cancer.
Collapse
Affiliation(s)
- Jianbo Zhu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Lijuan Deng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Baozhen Chen
- Department of Pathology, Fujian Provincial Tumor Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China
| | - Wenqing Huang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiandong Lin
- Department of Pathology, Fujian Provincial Tumor Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China
| | - Gang Chen
- Department of Pathology, Fujian Provincial Tumor Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China
| | - Chi-Meng Tzeng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen, Fujian 361005, China
| | - Mingang Ying
- Department of Pathology, Fujian Provincial Tumor Hospital, 420 Fuma Road, Fuzhou, Fujian 350014, China
| | - Zhongxian Lu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen, Fujian 361005, China
| |
Collapse
|
17
|
Zhao X, Kawano SI, Masuda J, Murakami H. G-CSF-dependent neutrophil differentiation requires downregulation of MAPK activities through the Gab2 signaling pathway. Cell Biol Int 2020; 44:1919-1933. [PMID: 32437087 DOI: 10.1002/cbin.11398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/26/2020] [Accepted: 05/18/2020] [Indexed: 11/08/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) stimulation of myeloid cells induced tyrosine-phosphorylation of cellular proteins. One of the tyrosine-phosphorylated proteins was found to be a scaffold protein, Grb2-associated binding protein 2 (Gab2). Another member of Gab family protein, Gab3, was exogenously overexpressed in neutrophil progenitor cells to make the Gab3 protein to compete with the endogenous Gab2 for the G-CSF-dependent signaling. In Gab3-overexpressed cells, the level of tyrosine phosphorylation of endogenous Gab2 by G-CSF stimulation was markedly downregulated, while the phosphorylation of Gab3 was significantly enhanced. The Gab3-overexpressed cells continuously proliferated in the medium containing G-CSF and lost the ability to differentiate to the mature neutrophil, characterized by the lobulated nucleus. The G-CSF stimulation-dependent tyrosine phosphorylation of Gab3, the association of SHP2 to Gab3 and the following mitogen-activated protein kinase (MAPK) activation were prolonged in the Gab3-overexpressed cells, compared to the parental cells, where the binding of SHP2 to Gab2 protein and thereby the activation of MAPK were not sustained after G-CSF stimulation. Inhibition of MAPK by pharmaceutical inhibitor restored the Gab3-overexpressed cells to the ability to differentiate to mature neutrophil. Therefore, G-CSF-dependent Gab2 phosphorylation and following its downregulation led the short-term MAPK activation. The downregulation of MAPK after transient Gab2 phosphorylation was necessary for the consequent neutrophil differentiation induced by G-CSF stimulation.
Collapse
Affiliation(s)
- Xianglin Zhao
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Shun-Ichiro Kawano
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Junko Masuda
- Department of Interdisciplinary Science and Engineering in Health Systems, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hiroshi Murakami
- Department of Interdisciplinary Science and Engineering in Health Systems, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
18
|
Li S, Xue F, Zheng Y, Yang P, Lin S, Deng Y, Xu P, Zhou L, Hao Q, Zhai Z, Wu Y, Dai Z, Chen S. GSTM1 and GSTT1 null genotype increase the risk of hepatocellular carcinoma: evidence based on 46 studies. Cancer Cell Int 2019; 19:76. [PMID: 30976200 PMCID: PMC6441207 DOI: 10.1186/s12935-019-0792-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is well known that hepatocellular carcinoma (HCC) has been one of the most life-threatening diseases all over the world. Plenty of internal and extrinsic factors have been proven to be related to HCC, such as gene mutation, viral hepatitis, and Nitrosamines. Though previous studies demonstrated that glutathione S-transferase (GST) genotypes are associated with HCC, the conclusions are inconsistent. Therefore, we carried on a renewed meta-analysis to expound the connection between the null GSTM1, GSTT1 polymorphisms and the risk of HCC. METHODS We searched PubMed, Web of Science, Embase, and CNKI databases to select qualified researches which satisfied the inclusion criteria up to July 31, 2018. Finally, we selected 41 articles with 6124 cases and 9781 controls in this meta-analysis. We use ORs and 95% confidence interval (CI) to evaluate the correlation intension between the GSTM1 and GSTT1 null genes and the risk of HCC. All the statistical processes were executed by Stata (version 12.0). RESULTS The pooled analysis showed that both GSTM1 null genotypes (OR = 1.37, 95% CI = 1.18-1.59) and GSTT1 null genotypes (OR = 1.43, 95% CI = 1.23-1.66) increased the risk of HCC. And GSTM1-GSTT1 dual-null genotypes also increased the risk of HCC (OR = 1.58, 95% CI = 1.22-2.05). In the subgroup analysis, we obtained significant results among Asians when stratified by race, and the results are GSTM1 null OR = 1.44, 95% CI = (1.22-1.71), GSTT1 null OR = 1.48, 95% CI = (1.25-1.77), GSTM1-GSTT1 null OR = 1.58, 95% CI = (1.19-2.09), while we didn't obtain significant results among Caucasians or Africans. Stratified analyses on the type of control indicated a higher risk of HCC associated with GSTM1, GSTT1 single null genotypes and GSTM1-GSTT1 dual-null genotypes in healthy people. No evidence of significant connection was discovered in chronic liver disease (CLD) except in GSTT1 single null. CONCLUSIONS Our study indicated that an individual who carries the GSTM1, GSTT1 single null genotypes and GSTT1-GSTM1 dual-null genotypes is more likely to develop HCC.
Collapse
Affiliation(s)
- Shanli Li
- Department of Interventional Vascular Surgery, The Affiliated Bao ji Central Hospital of Xi’an Jiaotong University College of Medicine, Bao ji, 721008 Shaan xi China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Feng Xue
- Department of Hepatobiliary Surgery, The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Tumor Hospital), Urumqi, 830000 China
| | - Yi Zheng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Pengtao Yang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Ying Wu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Zhijun Dai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004 China
| | - Shu Chen
- Department of Interventional Vascular Surgery, The Affiliated Bao ji Central Hospital of Xi’an Jiaotong University College of Medicine, Bao ji, 721008 Shaan xi China
| |
Collapse
|
19
|
Guo L, Li B, Miao M, Yang J, Ji J. MicroRNA‑663b targets GAB2 to restrict cell proliferation and invasion in hepatocellular carcinoma. Mol Med Rep 2019; 19:2913-2920. [PMID: 30720118 DOI: 10.3892/mmr.2019.9934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 11/28/2018] [Indexed: 11/05/2022] Open
Abstract
Previous studies have demonstrated that numerous tumor‑specific microRNAs (miRNAs) are upregulated or downregulated in hepatocellular carcinoma (HCC), and that their dysregulation is implicated in HCC occurrence and development. Therefore, investigation of crucial miRNAs involved in HCC oncogenesis and progression may provide novel insights into the therapy of patients with this malignant tumor. In the present study, reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) assays were performed to detect tissue and cellular expression levels of miRNA‑663b (miR‑663b) in HCC. The effects of miR‑663b overexpression on the proliferation and invasion of HCC cells were examined using Cell Counting Kit‑8 and Transwell invasion assays, respectively. The direct target of miR‑663b in HCC cells was determined by bioinformatics analysis, luciferase reporter assay, RT‑qPCR and western blot analysis. It was observed that miR‑663b was expressed at low levels in HCC tissues and cell lines. miR‑663b upregulation suppressed the proliferative and invasive abilities of HCC cells. Additionally, Grb2‑associated binding 2 (GAB2) was regarded as a direct target gene of miR‑663b in HCC cells. Furthermore, GAB2 was overexpressed in HCC tissues, and overexpression of GAB2 was inversely correlated with levels of miR‑663b. GAB2 overexpression was able to rescue the suppressive effects of miR‑663b on HCC cells. These results demonstrated that this newly‑identified miR‑663b/GAB2 axis may be implicated in HCC occurrence and development.
Collapse
Affiliation(s)
- Liping Guo
- Department of Pathology, Medical College of Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Baoli Li
- Department of Pharmacology, Medical College of Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Meijing Miao
- Department of Nursing, Medical College of Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Jianjun Yang
- Department of Interventional Radiology, Affiliated Hospital of Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Jinshan Ji
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an, Shanxi 716000, P.R. China
| |
Collapse
|
20
|
Interaction of WBP2 with ERα increases doxorubicin resistance of breast cancer cells by modulating MDR1 transcription. Br J Cancer 2018; 119:182-192. [PMID: 29937544 PMCID: PMC6048156 DOI: 10.1038/s41416-018-0119-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Surgery combined with new adjuvant chemotherapy is the primary treatment for early stage invasive and advanced stage breast cancer. Growing evidence indicates that patients with ERα-positive breast cancer show poor response to chemotherapeutics. However, ERα-mediated drug-resistant mechanisms remain unclear. METHODS Levels of WW domain-binding protein 2 (WBP2) and drug-resistant gene were determined by western blotting and RT-PCR, respectively. Cell viability was measured by preforming MTT assay. CD243 expression and apoptosis rate were evaluated by flow cytometry. Interactions of WBP2/ERα and ERα/MDR1 were detected by co-immunoprecipitation and chromatin immunoprecipitation (ChIP) assay, respectively. RESULTS There was an intrinsic link between WBP2 and ERα in drug-resistant cancer cells. Upregulation of WBP2 in MCF7 cells increased the chemoresistance to doxorubicin, while RNAi-mediated knockdown of WBP2 in MCF7/ADR cells sensitised the cancer cells to doxorubicin. Further investigation in in vitro and in vivo models demonstrated that WBP2 expression was directly correlated with MDR1, and WBP2 could directly modulate MDR1 transcription through binding to ERα, resulting in increased chemotherapy drug resistance. CONCLUSIONS Our finding provides a new mechanism for the chemotherapy response of ERα-positive breast tumours, and WBP2 might be a key molecule for developing new therapeutic strategies to treat chemoresistance in breast cancer patients.
Collapse
|