1
|
Keshri AK, Rawat SS, Chaudhary A, Sharma S, Kapoor A, Mehra P, Kaur R, Mishra A, Prasad A. LL-37, the master antimicrobial peptide, its multifaceted role from combating infections to cancer immunity. Int J Antimicrob Agents 2025; 65:107398. [PMID: 39643165 DOI: 10.1016/j.ijantimicag.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Antimicrobial peptides (AMPs) represent a unique group of naturally occurring molecules having diverse biological activities, including potent antimicrobial properties. Among them, LL-37 has emerged as a significant player, demonstrating its multifaceted roles during bacterial, fungal, and viral infections, as well as exhibiting intriguing implications in cancer. This review delves into the versatile functions of LL-37, elucidating its mechanisms of action against microbial pathogens and its potential to modulate immune responses. We explored the efficacy of LL-37 in disrupting bacterial membranes, inhibiting fungal growth, and interfering with viral replication, highlighting its potential as a therapeutic agent against a wide array of infectious diseases. Furthermore, we discussed the emerging role of LL-37 in cancer immunity, where its immunomodulatory effects and direct cytotoxicity towards cancer cells offer novel avenues for cancer therapy in the near future. We provided a comprehensive overview of the activities of LL-37 across various diseases and underscored the importance of further research into harnessing the therapeutic potential of this potential antimicrobial peptide along with other suitable candidates.
Collapse
Affiliation(s)
- Anand K Keshri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Suraj S Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Anubha Chaudhary
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Swati Sharma
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Ananya Kapoor
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Parul Mehra
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rimanpreet Kaur
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India; Indian Knowledge System and Mental Health Application Centre, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
2
|
Roy S, Roy S, Banerjee M, Madbhagat P, Chande A, Ukil A. Antileishmanial Activity of Cathelicidin and its Modulation by Leishmania donovani in a cAMP Response Element Modulator-Dependent Manner in Infection. J Infect Dis 2024; 230:172-182. [PMID: 39052704 DOI: 10.1093/infdis/jiae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/19/2024] [Accepted: 03/26/2024] [Indexed: 07/27/2024] Open
Abstract
Concerns regarding toxicity and resistance of current drugs in visceral leishmaniasis have been reported. Antimicrobial peptides are considered to be promising candidates and among them human cathelicidin hCAP18/LL-37 showed significant parasite killing on drug-sensitive and resistant Leishmania promastigotes, in addition to its apoptosis-inducing role. Administration of hCAP18/LL-37 to infected macrophages also decreased parasite survival and increased the host favorable cytokine interleukin 12. However, 1,25-dihydroxyvitamin D3 (vitamin D3)-induced endogenous hCAP18/LL-37 production was hampered in infected THP-1 cells. Infection also suppressed the vitamin D3 receptor (VDR), transcription factor of hCAP18/LL-37. cAMP response element modulator (CREM), the repressor of VDR, was induced in infection, resulting in suppression of both VDR and cathelicidin expression. PGE2/cAMP/PKA axis was found to regulate CREM induction during infection and silencing CREM in infected cells and BALB/c mice led to decreased parasite survival. This study documents the antileishmanial potential of cathelicidin and further identifies CREM as a repressor of cathelicidin in Leishmania infection.
Collapse
Affiliation(s)
- Shalini Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | - Souravi Roy
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | | | - Pratibha Madbhagat
- Molecular Virology Laboratory, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata, India
| |
Collapse
|
3
|
Nore KG, Louet C, Bugge M, Gidon A, Jørgensen MJ, Jenum S, Dyrhol-Riise AM, Tonby K, Flo TH. The Cyclooxygenase 2 Inhibitor Etoricoxib as Adjunctive Therapy in Tuberculosis Impairs Macrophage Control of Mycobacterial Growth. J Infect Dis 2024; 229:888-897. [PMID: 37721470 PMCID: PMC10938220 DOI: 10.1093/infdis/jiad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/26/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Current tuberculosis treatment regimens could be improved by adjunct host-directed therapies (HDT) targeting host responses. We investigated the antimycobacterial capacity of macrophages from patients with tuberculosis in a phase 1/2 randomized clinical trial (TBCOX2) of the cyclooxygenase-2 inhibitor etoricoxib. METHODS Peripheral blood mononuclear cells from 15 patients with tuberculosis treated with adjunctive COX-2i and 18 controls (standard therapy) were collected on day 56 after treatment initiation. The ex vivo capacity of macrophages to control mycobacterial infection was assessed by challenge with Mycobacterium avium, using an in vitro culture model. Macrophage inflammatory responses were analyzed by gene expression signatures, and concentrations of cytokines were analyzed in supernatants by multiplex. RESULTS Macrophages from patients receiving adjunctive COX-2i treatment had higher M. avium loads than controls after 6 days, suggesting an impaired capacity to control mycobacterial infection compared to macrophages from the control group. Macrophages from the COX-2i group had lower gene expression of TNF, IL-1B, CCL4, CXCL9, and CXCL10 and lowered production of cytokines IFN-β and S100A8/A9 than controls. CONCLUSIONS Our data suggest potential unfavorable effects with impaired macrophage capacity to control mycobacterial growth in patients with tuberculosis receiving COX-2i treatment. Larger clinical trials are required to analyze the safety of COX-2i as HDT in patients with tuberculosis. CLINICAL TRIALS REGISTRATION NCT02503839.
Collapse
Affiliation(s)
- Kristin G Nore
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Claire Louet
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marit Bugge
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexandre Gidon
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Anne Ma Dyrhol-Riise
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Kristian Tonby
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infection, St Olav's Hospital, Trondheim, Norway
| |
Collapse
|
4
|
Hu X, Zhen W, Bai D, Zhong J, Zhang R, Zhang H, Zhang Y, Ito K, Zhang B, Ma Y. Effects of dietary chlorogenic acid on cecal microbiota and metabolites in broilers during lipopolysaccharide-induced immune stress. Front Microbiol 2024; 15:1347053. [PMID: 38525083 PMCID: PMC10957784 DOI: 10.3389/fmicb.2024.1347053] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/19/2024] [Indexed: 03/26/2024] Open
Abstract
Aims The aim of this study was to investigate the effects of chlorogenic acid (CGA) on the intestinal microorganisms and metabolites in broilers during lipopolysaccharide (LPS)-induced immune stress. Methods A total of 312 one-day-old Arbor Acres (AA) broilers were randomly allocated to four groups with six replicates per group and 13 broilers per replicate: (1) MS group (injected with saline and fed the basal diet); (2) ML group (injected with 0.5 mg LPS/kg and fed the basal diet); (3) MA group (injected with 0.5 mg LPS/kg and fed the basal diet supplemented with 1,000 mg/kg CGA); and (4) MB group (injected with saline and fed the basal diet supplemented with 1,000 mg/kg CGA). Results The results showed that the abundance of beneficial bacteria such as Bacteroidetes in the MB group was significantly higher than that in MS group, while the abundance of pathogenic bacteria such as Streptococcaceae was significantly decreased in the MB group. The addition of CGA significantly inhibited the increase of the abundance of harmful bacteria such as Streptococcaceae, Proteobacteria and Pseudomonas caused by LPS stress. The population of butyric acid-producing bacteria such as Lachnospiraceae and Coprococcus and beneficial bacteria such as Coriobacteriaceae in the MA group increased significantly. Non-targeted metabonomic analysis showed that LPS stress significantly upregulated the 12-keto-tetrahydroleukotriene B4, riboflavin and mannitol. Indole-3-acetate, xanthurenic acid, L-formylkynurenine, pyrrole-2-carboxylic acid and L-glutamic acid were significantly down-regulated, indicating that LPS activated inflammation and oxidation in broilers, resulting in intestinal barrier damage. The addition of CGA to the diet of LPS-stimulated broilers significantly decreased 12-keto-tetrahydro-leukotriene B4 and leukotriene F4 in arachidonic acid metabolism and riboflavin and mannitol in ABC transporters, and significantly increased N-acetyl-L-glutamate 5-semialdehyde in the biosynthesis of amino acids and arginine, The presence of pyrrole-2-carboxylic acid in D-amino acid metabolism and the cecal metabolites, indolelactic acid, xanthurenic acid and L-kynurenine, indicated that CGA could reduce the inflammatory response induced by immune stress, enhance intestinal barrier function, and boost antioxidant capacity. Conclusion We conclude that CGA can have a beneficial effect on broilers by positively altering the balance of intestinal microorganisms and their metabolites to inhibit intestinal inflammation and barrier damage caused by immune stress.
Collapse
Affiliation(s)
- Xiaodi Hu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenrui Zhen
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jiale Zhong
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Ruilin Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haojie Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Science & Technology Innovation Center for Completed Set Equipment, Luoyang, China
| |
Collapse
|
5
|
Roy T, Seth A, Shafi H, Reddy DVS, Raman SK, Chakradhar JVUS, Verma S, Bharti R, Azmi L, Ray L, Misra A. Transcriptional regulation of suppressors of cytokine signaling during infection with Mycobacterium tuberculosis in human THP-1-derived macrophages and in mice. Microbes Infect 2024; 26:105282. [PMID: 38135025 DOI: 10.1016/j.micinf.2023.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Mycobacterium tuberculosis (Mtb) infection leads to upregulation of Suppressors of Cytokine signaling (SOCS) expression in host macrophages (Mϕ). SOCS proteins inhibit cytokine signaling by negatively regulating JAK/STAT. We investigated this host-pathogen dialectic at the level of transcription. We used phorbol-differentiated THP-1 Mϕ infected with Mtb to investigate preferential upregulation of some SOCS isoforms that are known to inhibit signaling by IFN-γ, IL-12, and IL-6. We examined time kinetics of likely transcription factors and signaling molecules upstream of SOCS transcription, and survival of intracellular Mtb following SOCS upregulation. Our results suggest a plausible mechanism that involves PGE2 secretion during infection to induce the PKA/CREB axis, culminating in nuclear translocation of C/EBPβ to induce expression of SOCS1. Mtb-infected Mϕ secreted IL-10, suggesting a mechanism of induction of STAT3, which may subsequently induce SOCS3. We provide evidence of temporal variation in SOCS isoform exspression and decay. Small-interfering RNA-mediated knockdown of SOCS1 and SOCS3 restored the pro-inflammatory milieu and reduced Mtb viability. In mice infected with Mtb, SOCS isoforms persisted across Days 28-85 post infection. Our results suggest that differential temporal regulation of SOCS isoforms by Mtb drives the host immune response towards a phenotype that facilitates the pathogen's survival.
Collapse
Affiliation(s)
- Trisha Roy
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India
| | - Anuradha Seth
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India
| | - Hasham Shafi
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India
| | - D V Siva Reddy
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India
| | | | | | - Sonia Verma
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India
| | - Reena Bharti
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India
| | - Lubna Azmi
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India
| | - Lipika Ray
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India
| | - Amit Misra
- CSIR- Central Drug Research Institute, Lucknow 226031, U.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 200102, India.
| |
Collapse
|
6
|
Gonçalves LED, Andrade-Silva M, Basso PJ, Câmara NOS. Vitamin D and chronic kidney disease: Insights on lipid metabolism of tubular epithelial cell and macrophages in tubulointerstitial fibrosis. Front Physiol 2023; 14:1145233. [PMID: 37064892 PMCID: PMC10090472 DOI: 10.3389/fphys.2023.1145233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Chronic kidney disease (CKD) has been recognized as a significant global health problem due to being an important contributor to morbidity and mortality. Inflammation is the critical event that leads to CKD development orchestrated by a complex interaction between renal parenchyma and immune cells. Particularly, the crosstalk between tubular epithelial cells (TECs) and macrophages is an example of the critical cell communication in the kidney that drives kidney fibrosis, a pathological feature in CKD. Metabolism dysregulation of TECs and macrophages can be a bridge that connects inflammation and fibrogenesis. Currently, some evidence has reported how cellular lipid disturbances can affect kidney disease and cause tubulointerstitial fibrosis highlighting the importance of investigating potential molecules that can restore metabolic parameters. Vitamin D (VitD) is a hormone naturally produced by mammalian cells in a coordinated manner by the skin, liver, and kidneys. VitD deficiency or insufficiency is prevalent in patients with CKD, and serum levels of VitD are inversely correlated with the degree of kidney inflammation and renal function. Proximal TECs and macrophages produce the active form of VitD, and both express the VitD receptor (VDR) that evidence the importance of this nutrient in regulating their functions. However, whether VitD signaling drives physiological and metabolism improvement of TECs and macrophages during kidney injury is an open issue to be debated. In this review, we brought to light VitD as an important metabolic modulator of lipid metabolism in TECs and macrophages. New scientific approaches targeting VitD e VDR signaling at the cellular metabolic level can provide a better comprehension of its role in renal physiology and CKD progression.
Collapse
Affiliation(s)
- Luís Eduardo D. Gonçalves
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Magaiver Andrade-Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Paulo José Basso
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| | - Niels O. S. Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Experimental e Clinical Immunology, Department of Clinical Medicine, Faculty of Medicine, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Paulo José Basso, ; Niels O. S. Câmara,
| |
Collapse
|
7
|
Tateosian NL, Morelli MP, Pellegrini JM, García VE. Beyond the Clinic: The Activation of Diverse Cellular and Humoral Factors Shapes the Immunological Status of Patients with Active Tuberculosis. Int J Mol Sci 2023; 24:5033. [PMID: 36902461 PMCID: PMC10002939 DOI: 10.3390/ijms24055033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), has killed nearly one billion people in the last two centuries. Nowadays, TB remains a major global health problem, ranking among the thirteen leading causes of death worldwide. Human TB infection spans different levels of stages: incipient, subclinical, latent and active TB, all of them with varying symptoms, microbiological characteristics, immune responses and pathologies profiles. After infection, Mtb interacts with diverse cells of both innate and adaptive immune compartments, playing a crucial role in the modulation and development of the pathology. Underlying TB clinical manifestations, individual immunological profiles can be identified in patients with active TB according to the strength of their immune responses to Mtb infection, defining diverse endotypes. Those different endotypes are regulated by a complex interaction of the patient's cellular metabolism, genetic background, epigenetics, and gene transcriptional regulation. Here, we review immunological categorizations of TB patients based on the activation of different cellular populations (both myeloid and lymphocytic subsets) and humoral mediators (such as cytokines and lipid mediators). The analysis of the participating factors that operate during active Mtb infection shaping the immunological status or immune endotypes of TB patients could contribute to the development of Host Directed Therapy.
Collapse
Affiliation(s)
- Nancy Liliana Tateosian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - María Paula Morelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Joaquín Miguel Pellegrini
- Centre d’Immunologie de Marseille Luminy, INSERM, CNRS, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, Case 906, CEDEX 09, 13288 Marseille, France
| | - Verónica Edith García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
8
|
Zhang K, Jia Y, Qian Y, Jiang X, Zhang S, Liu B, Cao J, Song Y, Mao W. Staphylococcus aureus increases Prostaglandin E 2 secretion in cow neutrophils by activating TLR2, TLR4, and NLRP3 inflammasome signaling pathways. Front Microbiol 2023; 14:1163261. [PMID: 37168122 PMCID: PMC10165004 DOI: 10.3389/fmicb.2023.1163261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction In clinical settings, dairy cows are often attacked by pathogenic bacteria after delivery, especially Staphylococcus aureus (S. aureus). Neutrophils have long been regarded as essential for host defense against S. aureus. Prostaglandin E2 (PGE2) can additionally be used as an inflammatory mediator in pathological conditions to promote the repair of inflammatory injuries. However, whether S. aureus can promote the accumulation of PGE2 after the infection of neutrophils in cows and its mechanism remain unclear. Lipoprotein is an important immune bioactive ingredient of S. aureus. Methods In this study, the changes in neutrophils were monitored in dairy cows infected with wild-type S. aureus (SA113) and an S. aureus lipoprotein-deficient strain (Δlgt); meanwhile, we established whether pattern recognition receptors mediate this process and whether S. aureus lipoproteins are necessary for causing the release of PGE2 from cow neutrophils. Results The results showed that Δlgt was less effective than SA113 in inducing the production of IL-1β, IL-6, IL-8, IL-10, and PGE2 within neutrophils; furthermore, TLR2, TLR4, and NLRP3 receptors were found to mediate the inducible effect of lipoprotein on the above inflammation mediators and cytokines, which depended on MAPK and Caspase-1 signaling pathways. In addition, TLR2, TLR4, and NLRP3 inhibitors significantly inhibited PGE2 and cytokine secretion, and PGE2 was involved in the interaction of S. aureus and neutrophils in dairy cows, which could be regulated by TLR2, TLR4, and NLRP3 receptors. We also found that S. aureus was more likely to be killed by neutrophils when it lacked lipoprotein and TLR2, TLR4, and NLRP3 were involved, but PGE2 seemed to have no effect. Discussion Taken together, these results suggest that lipoprotein is a crucial component of S. aureus in inducing cytokine secretion by neutrophils as well as killing within neutrophils, which could be accomplished by the accumulation of PGE2 by activating MAPK and the Caspase-1 signaling pathways through TLR2, TLR4, and NLRP3 receptors. These results will contribute to a better understanding of the interaction between S. aureus and host immune cells in dairy cows.
Collapse
Affiliation(s)
- Kai Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, China
| | - Yan Jia
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, China
| | - Yinghong Qian
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot, China
| | - Xueying Jiang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, China
| | - Shuangyi Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, China
| | - Bo Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, China
| | - Jinshan Cao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, China
| | - Yongli Song
- Stem Cell and Microbiology, Inner Mongolia University, Huhhot, China
| | - Wei Mao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Animal Clinical Treatment Technology, Ministry of Agriculture, Huhhot, China
- *Correspondence: Wei Mao
| |
Collapse
|
9
|
Shao R, Liu J, Lan Y, Liao X, Zhang J, Xu W, Mai K, Ai Q, Wan M. Vitamin D impacts on the intestinal health, immune status and metabolism in turbot ( Scophthalmus maximus L.). Br J Nutr 2022; 128:2083-2096. [PMID: 35057874 DOI: 10.1017/s0007114522000125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vitamin D (VD) plays a vital role in various physiological processes in addition to its classic functions on maintaining the balance of Ca and P metabolism. However, there still are gaps to understand in depth the issues on the precise requirement, metabolic processes and physiological functions of VD in fish. In this study, we investigated the effects of VD on the growth, intestinal health, host immunity and metabolism in turbot (Scophthalmus maximus L.), one important commercial carnivorous fish in aquaculture, through the supplementation of different doses of dietary VD3 (0, 200, 400, 800 and 1600 μg VD3/kg diet). According to our results, the optimal VD3 level in the feed for turbot growth was estimated to be around 400 IU/kg, whereas VD3 deficiency or overdose in diets induced the intestinal inflammation, lowered the diversity of gut microbiota and impaired the host resistance to bacterial infection in turbot. Moreover, the level of 1α,25(OH)2D3, the active metabolite of VD3, reached a peak value in the turbot serum in the 400 μg group, although the concentrations of Ca and phosphate in the turbot were stable in all groups. Finally, the deficiency of dietary VD3 disturbed the nutritional metabolism in turbot, especially the metabolism of lipids and glucose. In conclusion, this study evaluated the optimal dose of dietary VD3 for turbot and provided the evidence that VD has a significant impact on intestinal health, host immunity and nutritional metabolism in fish, which deepened our understanding on the physiological functions and metabolism of VD3 in fish.
Collapse
Affiliation(s)
- Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao266003, People's Republic of China
| | - Jiayu Liu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao266003, People's Republic of China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao266003, People's Republic of China
| | - Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao266003, People's Republic of China
| | - Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao266003, People's Republic of China
| | - Weiqi Xu
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao266003, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao266003, People's Republic of China
- Pilot National Laboratory of Marine Science and Technology, Qingdao266237, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao266003, People's Republic of China
- Pilot National Laboratory of Marine Science and Technology, Qingdao266237, People's Republic of China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao266003, People's Republic of China
- Pilot National Laboratory of Marine Science and Technology, Qingdao266237, People's Republic of China
| |
Collapse
|
10
|
Meng X, Yang Y, Wu Y, Zhang Y, Zhang H, Zhou W, Guo M, Li L. Inflammatory factor expression in HaCaT cells and melanin synthesis in melanocytes: Effects of Ganoderma lucidum fermentation broth containing Chinese medicine. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2096067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xianyao Meng
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yunli Yang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yuehang Wu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Ying Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Hongyan Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Weiqiang Zhou
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, China
| | - Miaomiao Guo
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
11
|
Zhou Y, Dang L, Ruan C, Cai H, Jin Q, Kang L, Guo Z. Identification of potential genes in endobronchial tuberculosis after bronchoscopic cryotherapy by transcriptome sequencing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105269. [PMID: 35301169 DOI: 10.1016/j.meegid.2022.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bronchoscopic cryotherapy facilitates the treatment of endobronchial tuberculosis (EBTB) and helps suppress progressive bronchial stenosis. However, the molecular mechanism of bronchoscopic cryotherapy in EBTB patients has not been reported. METHODS Transcriptome sequencing was performed to explore differentially expressed mRNAs (DEGs) in EBTB patients before and after bronchoscopic cryotherapy. Gene Ontology (GO) and KEGG analyses were carried out. Five genes (MKLN1, HIGD1A, PTGES, SKIL, and MCEMP1) were selected and validated using real-time qPCR (RT- qPCR). RESULTS In transcriptome analysis, 448 DEGs with p < 0.05 and|logFC| > 1 were identified; of these, 171 and 277 DEGs were significantly up- and down-regulated after bronchoscopic cryotherapy, respectively. Results displayed 337 biological process (GO-BP), 48 cellular component (GO-CC) and 62 molecular function (GO-MF) terms and 20 KEGG pathways. RT- qPCR results were consistent with the sequencing data. CONCLUSION These data provide informative evidence and recommendations for further scientific research on bronchoscopic cryotherapy for EBTB.
Collapse
Affiliation(s)
- Yong Zhou
- Endoscopy Clinic Center, Xi'an Chest Hospital, Xi'an 710100, Shaanxi, China
| | - Liyun Dang
- Department of Tuberculosis, Xi'an Chest Hospital, Xi'an 710100, Shaanxi, China
| | - Chao Ruan
- Endoscopy Clinic Center, Xi'an Chest Hospital, Xi'an 710100, Shaanxi, China
| | - Huafeng Cai
- Endoscopy Clinic Center, Xi'an Chest Hospital, Xi'an 710100, Shaanxi, China
| | - Qian Jin
- Endoscopy Clinic Center, Xi'an Chest Hospital, Xi'an 710100, Shaanxi, China
| | - Lei Kang
- Department of Laboratory Medicine, Xi'an Chest Hospital, Xi'an 710100, Shaanxi, China
| | - Zhaolei Guo
- Endoscopy Clinic Center, Xi'an Chest Hospital, Xi'an 710100, Shaanxi, China.
| |
Collapse
|
12
|
Zaczyńska E, Kaczmarek K, Zabrocki J, Artym J, Zimecki M. Antiviral Activity of a Cyclic Pro-Pro- β3-HoPhe-Phe Tetrapeptide against HSV-1 and HAdV-5. Molecules 2022; 27:3552. [PMID: 35684487 PMCID: PMC9182219 DOI: 10.3390/molecules27113552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
The core of Cyclolinopeptide A (CLA, cyclo(LIILVPPFF)), responsible for its high immunosuppressive activity, contains a Pro-Pro-Phe-Phe sequence. A newly synthesized cyclic tetrapeptide, cyclo(Pro-Pro-β3-HoPhe-Phe) (denoted as 4B8M) bearing the active sequence of CLA, was recently shown to exhibit a wide array of anti-inflammatory properties in mouse models. In this investigation, we demonstrate that the peptide significantly inhibits the replication of human adenovirus C serotype 5 (HAdV-5) and Herpes simplex virus type-1 (HSV-1) in epithelial lung cell line A-549, applying Cidofovir and Acyclovir as reference drugs. Based on a previously established mechanism of its action, we propose that the peptide may inhibit virus replication by the induction of PGE2 acting via EP2/EP4 receptors in epithelial cells. In summary, we reveal a new, antiviral property of this anti-inflammatory peptide.
Collapse
Affiliation(s)
- Ewa Zaczyńska
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland; (E.Z.); (J.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Lodz University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland; (K.K.); (J.Z.)
| | - Janusz Zabrocki
- Institute of Organic Chemistry, Lodz University of Technology, S. Żeromskiego Str. 116, 90-924 Łódź, Poland; (K.K.); (J.Z.)
| | - Jolanta Artym
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland; (E.Z.); (J.A.)
| | - Michał Zimecki
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Immunobiology, R. Weigla Str. 12, 53-114 Wrocław, Poland; (E.Z.); (J.A.)
| |
Collapse
|
13
|
Khan A, Zhang K, Singh VK, Mishra A, Kachroo P, Bing T, Won JH, Mani A, Papanna R, Mann LK, Ledezma-Campos E, Aguillon-Duran G, Canaday DH, David SA, Restrepo BI, Viet NN, Phan H, Graviss EA, Musser JM, Kaushal D, Gauduin MC, Jagannath C. Human M1 macrophages express unique innate immune response genes after mycobacterial infection to defend against tuberculosis. Commun Biol 2022; 5:480. [PMID: 35590096 PMCID: PMC9119986 DOI: 10.1038/s42003-022-03387-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/21/2022] [Indexed: 12/23/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is responsible for approximately 1.5 million deaths each year. Though 10% of patients develop tuberculosis (TB) after infection, 90% of these infections are latent. Further, mice are nearly uniformly susceptible to Mtb but their M1-polarized macrophages (M1-MΦs) can inhibit Mtb in vitro, suggesting that M1-MΦs may be able to regulate anti-TB immunity. We sought to determine whether human MΦ heterogeneity contributes to TB immunity. Here we show that IFN-γ-programmed M1-MΦs degrade Mtb through increased expression of innate immunity regulatory genes (Inregs). In contrast, IL-4-programmed M2-polarized MΦs (M2-MΦs) are permissive for Mtb proliferation and exhibit reduced Inregs expression. M1-MΦs and M2-MΦs express pro- and anti-inflammatory cytokine-chemokines, respectively, and M1-MΦs show nitric oxide and autophagy-dependent degradation of Mtb, leading to increased antigen presentation to T cells through an ATG-RAB7-cathepsin pathway. Despite Mtb infection, M1-MΦs show increased histone acetylation at the ATG5 promoter and pro-autophagy phenotypes, while increased histone deacetylases lead to decreased autophagy in M2-MΦs. Finally, Mtb-infected neonatal macaques express human Inregs in their lymph nodes and macrophages, suggesting that M1 and M2 phenotypes can mediate immunity to TB in both humans and macaques. We conclude that human MФ subsets show unique patterns of gene expression that enable differential control of TB after infection. These genes could serve as targets for diagnosis and immunotherapy of TB.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vipul K Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Priyanka Kachroo
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Tian Bing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jong Hak Won
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | - Arunmani Mani
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | - Ramesha Papanna
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | - Lovepreet K Mann
- Department of Obstetrics, Gynecology and Reproductive Sciences, UTHSC, Houston, TX, USA
| | | | | | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University Cleveland VA, Cleveland, OH, USA
| | - Sunil A David
- Virovax, LLC, Adjuvant Division, Lawrence, Kansas, USA
| | - Blanca I Restrepo
- UT School of Public Health, Brownsville, and STDOI, UT Rio Grande Valley, Brownsville, TX, USA
| | | | - Ha Phan
- Center for Promotion of Advancement of Society, Ha Noi, Vietnam
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - James M Musser
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marie Claire Gauduin
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, USA.
| |
Collapse
|
14
|
Tang X, Teder T, Samuelsson B, Haeggström JZ. The IRE1α Inhibitor KIRA6 Blocks Leukotriene Biosynthesis in Human Phagocytes. Front Pharmacol 2022; 13:806240. [PMID: 35392553 PMCID: PMC8980214 DOI: 10.3389/fphar.2022.806240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
The ER stress and Unfolded Protein Response (UPR) component inositol-requiring enzyme 1α (IRE1α) has been linked to inflammation and lipid mediator production. Here we report that the potent IRE1α inhibitor, KIRA6, blocks leukotriene biosynthesis in human phagocytes activated with lipopolysaccharide (LPS) plus N-formyl-methionyl-leucyl-phenylalanine (fMLP) or thapsigargin (Tg). The inhibition affects both leukotriene B4 (LTB4) and cysteinyl leukotriene (cys-LTs) production at submicromolar concentration. Macrophages made deficient of IRE1α were still sensitive to KIRA6 thus demonstrating that the compound’s effect on leukotriene production is IRE1α-independent. KIRA6 did not exhibit any direct inhibitory effect on key enzymes in the leukotriene pathway, as assessed by phospholipase A2 (PLA2), 5-lipoxygenase (5-LOX), LTA4 hydrolase (LTA4H), and LTC4 synthase (LTC4S) enzyme activity measurements in cell lysates. However, we find that KIRA6 dose-dependently blocks phosphorylation of p38 and ERK, mitogen-activated protein kinases (MAPKs) that have established roles in activating cytosolic PLA2α (cPLA2α) and 5-LOX. The reduction of p38 and ERK phosphorylation is associated with a decrease in cPLA2α phosphorylation and attenuated leukotriene production. Furthermore, KIRA6 inhibits p38 activity, and molecular modelling indicates that it can directly interact with the ATP-binding pocket of p38. This potent and unexpected, non-canonical effect of KIRA6 on p38 and ERK MAPKs and leukotriene biosynthesis may account for some of the immune-modulating properties of this widely used IRE1α inhibitor.
Collapse
Affiliation(s)
- Xiao Tang
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tarvi Teder
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Samuelsson
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Yang Q, Burkardt AC, Sunkara LT, Xiao K, Zhang G. Natural Cyclooxygenase-2 Inhibitors Synergize With Butyrate to Augment Chicken Host Defense Peptide Gene Expression. Front Immunol 2022; 13:819222. [PMID: 35273602 PMCID: PMC8902166 DOI: 10.3389/fimmu.2022.819222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/31/2022] [Indexed: 01/15/2023] Open
Abstract
Enhancing the synthesis of microbicidal and immunomodulatory host defense peptides (HDP) is a promising host-directed antimicrobial strategy to combat a growing threat of antimicrobial resistance. Here we investigated the effect of several natural cyclooxygenase-2 (COX-2) inhibitors on chicken HDP gene regulation. Our results indicated that phenolic COX-2 inhibitors such as quercetin, resveratrol, epigallocatechin gallate, anacardic acid, and garcinol enhanced HDP gene expression in chicken HTC macrophage cell line and peripheral blood mononuclear cells (PBMCs). Moreover, these natural COX-2 inhibitors showed a strong synergy with butyrate in augmenting the expressions of multiple HDP genes in HTC cells and PBMCs. Additionally, quercetin and butyrate synergistically promoted the expressions of mucin-2 and claudin-1, two major genes involved in barrier function, while suppressing lipopolysaccharide-triggered interleukin-1β expression in HTC macrophages. Mechanistically, we revealed that NF-κB, p38 mitogen-activated protein kinase, and cyclic adenosine monophosphate signaling pathways were all involved in the avian β-defensin 9 gene induction, but histone H4 was not hyperacetylated in response to a combination of butyrate and quercetin. Because of their HDP-inducing, barrier-protective, and antiinflammatory activities, these natural COX-2 inhibitors, when combined with butyrate, may be developed as novel host-directed antimicrobial therapeutics.
Collapse
Affiliation(s)
- Qing Yang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda C Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Lakshimi T Sunkara
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.,Veterinary Diagnostic Center, Clemson University, Clemson, SC, United States
| | - Kan Xiao
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.,Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
16
|
Pellegrini JM, Tateosian NL, Morelli MP, García VE. Shedding Light on Autophagy During Human Tuberculosis. A Long Way to Go. Front Cell Infect Microbiol 2022; 11:820095. [PMID: 35071056 PMCID: PMC8769280 DOI: 10.3389/fcimb.2021.820095] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/13/2021] [Indexed: 01/15/2023] Open
Abstract
Immunity against Mycobacterium tuberculosis (Mtb) is highly complex, and the outcome of the infection depends on the role of several immune mediators with particular temporal dynamics on the host microenvironment. Autophagy is a central homeostatic mechanism that plays a role on immunity against intracellular pathogens, including Mtb. Enhanced autophagy in macrophages mediates elimination of intracellular Mtb through lytic and antimicrobial properties only found in autolysosomes. Additionally, it has been demonstrated that standard anti-tuberculosis chemotherapy depends on host autophagy to coordinate successful antimicrobial responses to mycobacteria. Notably, autophagy constitutes an anti-inflammatory mechanism that protects against endomembrane damage triggered by several endogenous components or infectious agents and precludes excessive inflammation. It has also been reported that autophagy can be modulated by cytokines and other immunological signals. Most of the studies on autophagy as a defense mechanism against Mycobacterium have been performed using murine models or human cell lines. However, very limited information exists about the autophagic response in cells from tuberculosis patients. Herein, we review studies that face the autophagy process in tuberculosis patients as a component of the immune response of the human host against an intracellular microorganism such as Mtb. Interestingly, these findings might contribute to recognize new targets for the development of novel therapeutic tools to combat Mtb. Actually, either as a potential successful vaccine or a complementary immunotherapy, efforts are needed to further elucidate the role of autophagy during the immune response of the human host, which will allow to achieve protective and therapeutic benefits in human tuberculosis.
Collapse
Affiliation(s)
| | - Nancy Liliana Tateosian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María Paula Morelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Verónica Edith García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
17
|
The antimicrobial peptide LL-37 triggers release of apoptosis-inducing factor and shows direct effects on mitochondria. Biochem Biophys Rep 2022; 29:101192. [PMID: 34988298 PMCID: PMC8695256 DOI: 10.1016/j.bbrep.2021.101192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
The human antimicrobial peptide LL-37 permeabilizes the plasma membrane of host cells, but LL-37-induced direct effects on mitochondrial membrane permeability and function has not been reported. Here, we demonstrate that LL-37 is rapidly (within 20 min) internalized by human osteoblast-like MG63 cells, and that the peptide co-localizes with MitoTracker arguing for accumulation in mitochondria. Subcellular fractionation and Western blot disclose that stimulation with LL-37 (8 μM) for 2 h triggers release of the mitochondrial protein apoptosis-inducing factor (AIF) to the cytosol, whereas LL-37 causes no release of cytochrome C oxidase subunit IV of the inner mitochondrial membrane, suggesting that LL-37 affects mitochondrial membrane permeability in a specific manner. Next, we investigated release of AIF and cytochrome C from isolated mitochondria by measuring immunoreactivity by dot blot. The media of mitochondria treated with LL-37 (8 μM) for 2 h contained 50% more AIF and three times more cytochrome C than that of control mitochondria, showing that LL-37 promotes release of both AIF and cytochrome C. Moreover, in vesicles reflecting mitochondrial membrane lipid composition, LL-37 stimulates membrane permeabilization and release of tracer molecules. We conclude that LL-37 is rapidly internalized by MG63 cells and accumulates in mitochondria, and that the peptide triggers release of pro-apoptotic AIF and directly affects mitochondrial membrane structural properties. LL-37 is internalized by osteoblast-like MG63 cells LL-37 accumulates in mitochondria LL-37 triggers release of apoptosis-inducing factor from mitochondria LL-37 permeabilizes mitochondrial membranes
Collapse
|
18
|
Gubatan J, Holman DR, Puntasecca CJ, Polevoi D, Rubin SJS, Rogalla S. Antimicrobial peptides and the gut microbiome in inflammatory bowel disease. World J Gastroenterol 2021; 27:7402-7422. [PMID: 34887639 PMCID: PMC8613745 DOI: 10.3748/wjg.v27.i43.7402] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMP) are highly diverse and dynamic molecules that are expressed by specific intestinal epithelial cells, Paneth cells, as well as immune cells in the gastrointestinal (GI) tract. They play critical roles in maintaining tolerance to gut microbiota and protecting against enteric infections. Given that disruptions in tolerance to commensal microbiota and loss of barrier function play major roles in the pathogenesis of inflammatory bowel disease (IBD) and converge on the function of AMP, the significance of AMP as potential biomarkers and novel therapeutic targets in IBD have been increasingly recognized in recent years. In this frontier article, we discuss the function and mechanisms of AMP in the GI tract, examine the interaction of AMP with the gut microbiome, explore the role of AMP in the pathogenesis of IBD, and review translational applications of AMP in patients with IBD.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Derek R Holman
- Department of Radiology, Molecular Imaging Program at Stanford , Stanford University, Stanford , CA 94305, United States
| | | | - Danielle Polevoi
- Stanford University School of Medicine, Stanford University, Stanford, CA 94063, United States
| | - Samuel JS Rubin
- Stanford University School of Medicine, Stanford University, Stanford, CA 94063, United States
| | - Stephan Rogalla
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| |
Collapse
|
19
|
Bhutia SK. Vitamin D in autophagy signaling for health and diseases: Insights on potential mechanisms and future perspectives. J Nutr Biochem 2021; 99:108841. [PMID: 34403722 DOI: 10.1016/j.jnutbio.2021.108841] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Vitamin D regulates the pleiotropic effect to maintain cellular homeostasis and epidemiological evidence establishes an association between vitamin D deficiency and various human diseases. Here, the role of autophagy, the cellular self-degradation process, in vitamin D-dependent function is documented in different cellular settings and discussed the molecular aspects for treating chronic inflammatory, infectious diseases, and cancer. Vitamin D activates autophagy through a genomic and non-genomic signaling pathway to influence a wide variety of physiological functions of different body organs along with bone health and calcium metabolism. Moreover, it induces autophagy as a protective mechanism to inhibit oxidative stress and apoptosis to regulate cell proliferation, differentiation, and immune modulation. Furthermore, vitamin D and its receptor regulate autophagy signaling to control inflammation and host immunity by activating antimicrobial defense mechanisms. Vitamin D has been revealed as a potent anticancer agent and induces autophagy to increase the response to radiation and chemotherapeutic drugs for potential cancer therapy. Increasing vitamin D levels in the human body through timely exposure to sunlight or vitamin D supplements could activate autophagy as part of the homeostasis mechanism to prevent multiple human diseases and aging-associated dysfunctions.
Collapse
Affiliation(s)
- Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India.
| |
Collapse
|
20
|
Pellegrini JM, Martin C, Morelli MP, Schander JA, Tateosian NL, Amiano NO, Rolandelli A, Palmero DJ, Levi A, Ciallella L, Colombo MI, García VE. PGE2 displays immunosuppressive effects during human active tuberculosis. Sci Rep 2021; 11:13559. [PMID: 34193890 PMCID: PMC8245456 DOI: 10.1038/s41598-021-92667-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023] Open
Abstract
Prostaglandin E2 (PGE2), an active lipid compound derived from arachidonic acid, regulates different stages of the immune response of the host during several pathologies such as chronic infections or cancer. In fact, manipulation of PGE2 levels was proposed as an approach for countering the Type I IFN signature of tuberculosis (TB). However, very limited information regarding the PGE2 pathway in patients with active TB is currently available. In the present work, we demonstrated that PGE2 exerts a potent immunosuppressive action during the immune response of the human host against Mycobacterium tuberculosis (Mtb) infection. Actually, we showed that PGE2 significantly reduced the surface expression of several immunological receptors, the lymphoproliferation and the production of proinflammatory cytokines. In addition, PGE2 promoted autophagy in monocytes and neutrophils cultured with Mtb antigens. These results suggest that PGE2 might be attenuating the excessive inflammatory immune response caused by Mtb, emerging as an attractive therapeutic target. Taken together, our findings contribute to the knowledge of the role of PGE2 in the human host resistance to Mtb and highlight the potential of this lipid mediator as a tool to improve anti-TB treatment.
Collapse
Affiliation(s)
- Joaquín Miguel Pellegrini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Candela Martin
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - María Paula Morelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Julieta Aylen Schander
- Laboratorio de Fisiopatología de La Preñez y El Parto, Centro de Estudios Farmacológicos Y Botánicos , CONICET-UBA, Buenos Aires, Argentina
| | - Nancy Liliana Tateosian
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Nicolás Oscar Amiano
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Agustín Rolandelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Domingo Juan Palmero
- División Tisioneumonología, Hospital F.J. Muñiz, Uspallata 2272, (C1282AEN), Buenos Aires, Argentina
| | - Alberto Levi
- División Tisioneumonología, Hospital F.J. Muñiz, Uspallata 2272, (C1282AEN), Buenos Aires, Argentina
| | - Lorena Ciallella
- División Tisioneumonología, Hospital F.J. Muñiz, Uspallata 2272, (C1282AEN), Buenos Aires, Argentina
| | - María Isabel Colombo
- Instituto de Histología y Embriología de Mendoza, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, CP 5500, Mendoza, Argentina
| | - Verónica Edith García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Intendente Güiraldes 2160, Pabellón II, 4°piso, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina.
| |
Collapse
|
21
|
Silwal P, Paik S, Kim JK, Yoshimori T, Jo EK. Regulatory Mechanisms of Autophagy-Targeted Antimicrobial Therapeutics Against Mycobacterial Infection. Front Cell Infect Microbiol 2021; 11:633360. [PMID: 33828998 PMCID: PMC8019938 DOI: 10.3389/fcimb.2021.633360] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen causing human tuberculosis, an infectious disease that still remains as a global health problem. Autophagy, a lysosomal degradative process, has emerged as a critical pathway to restrict intracellular Mtb growth through enhancement of phagosomal maturation. Indeed, several autophagy-modulating agents show promise as host-directed therapeutics for Mtb infection. In this Review, we discuss recent progress in our understanding the molecular mechanisms underlying the action of autophagy-modulating agents to overcome the immune escape strategies mediated by Mtb. The factors and pathways that govern such mechanisms include adenosine 5'-monophosphate-activated protein kinase, Akt/mammalian TOR kinase, Wnt signaling, transcription factor EB, cathelicidins, inflammation, endoplasmic reticulum stress, and autophagy-related genes. A further understanding of these mechanisms will facilitate the development of host-directed therapies against tuberculosis as well as infections with other intracellular bacteria targeted by autophagic degradation.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Eun-Kyeong Jo,
| |
Collapse
|
22
|
Yang X, Niu L, Pan Y, Feng X, Liu J, Guo Y, Pan C, Geng F, Tang X. LL-37-Induced Autophagy Contributed to the Elimination of Live Porphyromonas gingivalis Internalized in Keratinocytes. Front Cell Infect Microbiol 2020; 10:561761. [PMID: 33178622 PMCID: PMC7593823 DOI: 10.3389/fcimb.2020.561761] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), one of the most important pathogens of periodontitis, is closely associated with the aggravation and recurrence of periodontitis and systemic diseases. Antibacterial peptide LL-37, transcribed from the cathelicidin antimicrobial peptide (CAMP) gene, exhibits a broad spectrum of antibacterial activity and regulates the immune system. In this study, we demonstrated that LL-37 reduced the number of live P. gingivalis (ATCC 33277) in HaCaT cells in a dose-dependent manner via an antibiotic-protection assay. LL-37 promoted autophagy of HaCaT cells internalized with P. gingivalis. Inhibition of autophagy with 3-methyladenine (3-MA) weakened the inhibitory effect of LL-37 on the number of intracellular P. gingivalis. A cluster of orthologous groups (COGs) and a gene ontology (GO) functional analysis were used to individually assign 65 (10%) differentially expressed genes (DEGs) to an "Intracellular trafficking, secretion, and vesicular transport" cluster and 306 (47.08%) DEGs to metabolic processes including autophagy. Autophagy-related genes, a tripartite motif-containing 22 (TRIM22), and lysosomal-associated membrane protein 3 (LAMP3) were identified as potentially involved in LL-37-induced autophagy. Finally, bioinformatics software was utilized to construct and predict the protein-protein interaction (PPI) network of CAMP-TRIM22/LAMP3-Autophagy. The findings indicated that LL-37 can reduce the quantity of live P. gingivalis internalized in HaCaT cells by promoting autophagy in these cells. The transcriptome sequencing and analysis also revealed the potential molecular pathway of LL-37-induced autophagy.
Collapse
Affiliation(s)
- Xue Yang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, China
| | - Li Niu
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, China
| | - Xianghui Feng
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jie Liu
- Center of Science Experiment, China Medical University, Shenyang, China
| | - Yan Guo
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, China.,Department of Oral Biology, School of Stomatology, China Medical University, Shenyang, China
| | - Chunling Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, China
| | - Xiaolin Tang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
23
|
Naz F, Arish M. GPCRs as an emerging host-directed therapeutic target against mycobacterial infection: From notion to reality. Br J Pharmacol 2020; 179:4899-4909. [PMID: 33150959 DOI: 10.1111/bph.15315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) is one of the successful pathogens and claim millions of deaths across the globe. The emergence of drug resistance in M. tb has created new hurdles in the tuberculosis elimination programme worldwide. Hence, there is an unmet medical need for alternative therapy, which could be achieved by targeting the host's critical signalling pathways that are compromised during M. tb infection. In this review, we have summarized some of the findings involving the modulation of host GPCRs in the regulation of the mycobacterial infection. Understanding the role of these GPCRs not only unravels signalling pathways during infection but also provides clues for targeting critical signalling intermediates for the development of GPCR-based host-directive therapy.
Collapse
Affiliation(s)
- Farha Naz
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Arish
- JH-Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.,Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
24
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
25
|
Nuclear Receptors as Autophagy-Based Antimicrobial Therapeutics. Cells 2020; 9:cells9091979. [PMID: 32867365 PMCID: PMC7563212 DOI: 10.3390/cells9091979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an intracellular process that targets intracellular pathogens for lysosomal degradation. Autophagy is tightly controlled at transcriptional and post-translational levels. Nuclear receptors (NRs) are a family of transcriptional factors that regulate the expression of gene sets involved in, for example, metabolic and immune homeostasis. Several NRs show promise as host-directed anti-infectives through the modulation of autophagy activities by their natural ligands or small molecules (agonists/antagonists). Here, we review the roles and mechanisms of NRs (vitamin D receptors, estrogen receptors, estrogen-related receptors, and peroxisome proliferator-activated receptors) in linking immunity and autophagy during infection. We also discuss the potential of emerging NRs (REV-ERBs, retinoic acid receptors, retinoic acid-related orphan receptors, liver X receptors, farnesoid X receptors, and thyroid hormone receptors) as candidate antimicrobials. The identification of novel roles and mechanisms for NRs will enable the development of autophagy-adjunctive therapeutics for emerging and re-emerging infectious diseases.
Collapse
|
26
|
Chung C, Silwal P, Kim I, Modlin RL, Jo EK. Vitamin D-Cathelicidin Axis: at the Crossroads between Protective Immunity and Pathological Inflammation during Infection. Immune Netw 2020; 20:e12. [PMID: 32395364 PMCID: PMC7192829 DOI: 10.4110/in.2020.20.e12] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D signaling plays an essential role in innate defense against intracellular microorganisms via the generation of the antimicrobial protein cathelicidin. In addition to directly binding to and killing a range of pathogens, cathelicidin acts as a secondary messenger driving vitamin D-mediated inflammation during infection. Recent studies have elucidated the biological and clinical functions of cathelicidin in the context of vitamin D signaling. The vitamin D-cathelicidin axis is involved in the activation of autophagy, which enhances antimicrobial effects against diverse pathogens. Vitamin D studies have also revealed positive and negative regulatory effects of cathelicidin on inflammatory responses to pathogenic stimuli. Diverse innate and adaptive immune signals crosstalk with functional vitamin D receptor signals to enhance the role of cathelicidin action in cell-autonomous effector systems. In this review, we discuss recent findings that demonstrate how the vitamin D-cathelicidin pathway regulates autophagy machinery, protective immune defenses, and inflammation, and contributes to immune cooperation between innate and adaptive immunity. Understanding how the vitamin D-cathelicidin axis operates in the host response to infection will create opportunities for the development of new therapeutic approaches against a variety of infectious diseases.
Collapse
Affiliation(s)
- Chaeuk Chung
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Insoo Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
27
|
Osei Sekyere J, Maningi NE, Fourie PB. Mycobacterium tuberculosis, antimicrobials, immunity, and lung-gut microbiota crosstalk: current updates and emerging advances. Ann N Y Acad Sci 2020; 1467:21-47. [PMID: 31989644 DOI: 10.1111/nyas.14300] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022]
Abstract
Increasingly, gut microbiota distortions are being implicated in the pathogenesis of several infectious and noninfectious diseases. Specifically, in the absence of an eubiotic microbiota, mice are more prone to colonization and infection by Mycobacterium tuberculosis (Mtb). In this qualitative analysis, the following were observed: (1) antimicrobials cause long-term gut microbiota perturbations; (2) Mtb causes limited and transient disturbances to the lung-gut microbiota; (3) pathogens (e.g., Helicobacter hepaticus) affect microbiota integrity and reduce resistance to Mtb; (4) dysbiosis depletes bacterial species regulating proper immune functioning, reducing resistance to Mtb; (5) dysregulated immune cells fail to express important pathogen-recognition receptors (e.g., macrophage-inducible C-type lectin; MINCLE) and Mtb-killing cytokines (e.g., IFN-γ, TNF-α, and IL-17), with hampered phagocytic capability; (6) autophagy is central to the immune system's clearance of Mtb, control of inflammation, and immunity-microbiome balance; (7) microbiota-produced short-chain fatty acids, which are reduced by dysbiosis, affect immune cells and increase Mtb proliferation; (8) commensal species (e.g., Lactobacillus plantarum) and microbiota metabolites (e.g., indole propionic acid) reduce tuberculosis progression; and (9) fecal transplants mostly restored eubiosis, increased immune resistance to Mtb, restricted dissemination of Mtb, and reduced tuberculosis-associated organ pathologies. Overuse of antimicrobials, as shown in mice, is a risk factor for reactivating latent or treated tuberculosis.
Collapse
Affiliation(s)
- John Osei Sekyere
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Nontuthuko E Maningi
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Petrus B Fourie
- Molecular Mycobacteriology Laboratory, Department of Medical Microbiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
28
|
Chiang N, Libreros S, Norris PC, de la Rosa X, Serhan CN. Maresin 1 activates LGR6 receptor promoting phagocyte immunoresolvent functions. J Clin Invest 2019; 129:5294-5311. [PMID: 31657786 PMCID: PMC6877300 DOI: 10.1172/jci129448] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Resolution of acute inflammation is an active process orchestrated by endogenous mediators and mechanisms pivotal in host defense and homeostasis. The macrophage mediator in resolving inflammation, maresin 1 (MaR1), is a potent immunoresolvent, stimulating resolution of acute inflammation and organ protection. Using an unbiased screening of greater than 200 GPCRs, we identified MaR1 as a stereoselective activator for human leucine-rich repeat containing G protein-coupled receptor 6 (LGR6), expressed in phagocytes. MaR1 specificity for recombinant human LGR6 activation was established using reporter cells expressing LGR6 and functional impedance sensing. MaR1-specific binding to LGR6 was confirmed using 3H-labeled MaR1. With human and mouse phagocytes, MaR1 (0.01-10 nM) enhanced phagocytosis, efferocytosis, and phosphorylation of a panel of proteins including the ERK and cAMP response element-binding protein. These MaR1 actions were significantly amplified with LGR6 overexpression and diminished by gene silencing in phagocytes. Thus, we provide evidence for MaR1 as an endogenous activator of human LGR6 and a novel role of LGR6 in stimulating MaR1's key proresolving functions of phagocytes.
Collapse
|
29
|
Li T, Liu B, Mao W, Gao R, Wu J, Deng Y, Shen Y, Liu K, Cao J. Prostaglandin E 2 promotes nitric oxide synthase 2, platelet-activating factor receptor, and matrix metalloproteinase-2 expression in Escherichia coli-challenged ex vivo endometrial explants via the prostaglandin E 2 receptor 4/protein kinase a signaling pathway. Theriogenology 2019; 134:65-73. [PMID: 31136957 DOI: 10.1016/j.theriogenology.2019.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 12/27/2022]
Abstract
Prostaglandin E2 (PGE2) is an inflammatory mediator involved in the pathogenesis of several chronic inflammatory conditions, including endometritis. Previous studies have shown that PGE2 accumulates in Escherichia coli-challenged ex vivo endometrial explants, increasing the expression of pro-inflammatory factors and aggravating tissue damage; these alterations are linked to key enzymes involved in the synthesis of PGE2, including cyclooxygenases-2 (COX-2) and microsomal PGES-1 (mPGES-1). In this study, we aimed to investigate whether administration of PGE2 modulated the activities of nitric oxide synthase 2 (NOS2), platelet-activating factor receptor (PAFR), and matrix metalloproteinase (MMP)-2 in E. coli-challenged ex vivo bovine endometrial explants. Our findings showed that COX-2 and mPGES-1 inhibitors significantly reduced NOS2, PAFR, and MMP-2 expression in the E. coli-challenged ex vivo endometrial explants. In addition, NOS2, PAFR, and MMP-2 expression levels were strongly increased in response to treatment with 15-prostaglandin dehydrogenase inhibitors in the E. coli-challenged ex vivo endometrial explants. However, these stimulatory effects could be blocked by PGE2 receptor 4 (EP4) and protein kinase A (PKA) inhibitors. Overall, these findings show that pathogenic PGE2 upregulated NOS2, PAFR, and MMP-2 expression, which may enhance inflammatory damage via the EP4/PKA signaling pathway in E. coli-challenged ex vivo endometrial explants.
Collapse
Affiliation(s)
- Tingting Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Ruifeng Gao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jindi Wu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Yang Deng
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Yuan Shen
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Kun Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China; Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, China.
| |
Collapse
|
30
|
Leopold Wager CM, Arnett E, Schlesinger LS. Mycobacterium tuberculosis and macrophage nuclear receptors: What we do and don't know. Tuberculosis (Edinb) 2019; 116S:S98-S106. [PMID: 31060958 DOI: 10.1016/j.tube.2019.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 01/08/2023]
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that are expressed in a wide variety of cells and play a major role in lipid signaling. NRs are key regulators of immune and metabolic functions in macrophages and are linked to macrophage responses to microbial pathogens. Pathogens are also known to induce the expression of specific NRs to promote their own survival. In this review, we focus on the NRs recently shown to influence macrophage responses to Mycobacterium tuberculosis (M.tb), a significant cause of morbidity and mortality worldwide. We provide an overview of NR-controlled transcriptional activity and regulation of macrophage activation. We also discuss in detail the contribution of specific NRs to macrophage responses to M.tb, including influence on macrophage phenotype, cell signaling, and cellular metabolism. We pay particular attention to PPARγ since it is required for differentiation of alveolar macrophages, an important niche for M.tb, and its role during M.tb infection is becoming increasingly appreciated. Research into NRs and M.tb is still in its early stages, therefore continuing to advance our understanding of the complex interactions between M.tb and macrophage NRs may reveal the potential of NRs as pharmacological targets for the treatment of tuberculosis.
Collapse
|
31
|
|