1
|
Makuru MH, Maruma F, Ngwenya E, Mponda K. Clinico-pathologic profile of skin cancers in oculocutaneous albinism at Universitas Academic Hospital. Health SA 2025; 30:2906. [PMID: 40357250 PMCID: PMC12067568 DOI: 10.4102/hsag.v30i0.2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/31/2025] [Indexed: 05/15/2025] Open
Abstract
Background Oculocutaneous albinism (OCA) is a genetic disorder found worldwide. Skin cancer is a significant risk for people with albinism, particularly in Africa, where it is a major cause of death. Many patients delay seeking medical care until their skin lesions are in advanced stages. Aim The aim of this study was to describe the clinico-pathological profile of skin cancers in patients with albinism at their initial presentation to our dermatology outpatient department. Setting This study was conducted at the dermatology department of Universitas Academic Hospital, Bloemfontein, South Africa. Methods A retrospective descriptive study covering June 2009 to July 2019 was conducted. Only records of oculo-cutaneous albinism patients diagnosed with skin cancer during their initial visit were included. Results Eighty-six patients with albinism were recorded, 37% (n = 32) of whom had skin cancer at their first visit. Females (81%) were more affected than males (19%). The majority of skin cancers were squamous cell carcinomas (SCCs) (54%) and basal cell carcinomas (BCCs) (46%). No melanomas were found. Most SCCs were classified as aggressive (80.4%), compared to 30.8% of BCCs. Conclusion Almost 40% of OCA patients presented with skin cancer at their initial visit, highlighting the need for strengthening primary healthcare systems' efficiency in ensuring early referrals for OCA patients. Contribution Education, socioeconomic support and awareness campaigns are sine qua non actionable factors that could help encourage early medical evaluation for all OCA patients.
Collapse
Affiliation(s)
- Molikuoa Harriet Makuru
- Department of Dermatology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Frans Maruma
- Department of Dermatology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Edward Ngwenya
- Department of Plastic and Reconstructive Surgery, Faculty of Health sciences, University of Pretoria, Pretoria, South Africa
| | - Kelvin Mponda
- Department of Dermatology, Queen Elizabeth Central Hospital, Blantyre, Malawi
| |
Collapse
|
2
|
Wu S, Zhou Q, Gao Z, Man J, He W, Feng J, Li X, Zhang D. Chlorogenic acid targets SIRT6 to relieve UVB - induced UV damage. Arch Dermatol Res 2025; 317:600. [PMID: 40105999 DOI: 10.1007/s00403-025-04134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Skin photoaging, one of the most critical types of exogenous skin aging, occurs when the skin is exposed to excessive ultraviolet radiation, leading to a series of skin-aging problems. The objective of this study was to utilize keratinocytes (HaCaT) treated with medium wave ultraviolet (UVB) as a photoaging model to investigate the anti-photoaging activity of chlorogenic acid (CGA) and preliminarily elucidate its underlying mechanism. The crystal violet assay shows that both 100 and 150 µM of CGA can significantly suppress the cell damage induced by 21.6 mJ/cm² UVB. Furthermore, the results of comet electrophoresis and Western Blot (WB) experiments demonstrate that CGA and OSS-128,167 (SIRT6 inhibitor) can effectively inhibit DNA damage caused by UVB, thereby alleviating cell apoptosis. The co-immunoprecipitation (CO-IP) and WB results suggest that CGA and OSS-128,167 can effectively suppress the activity and expression of the deacetylase of SIRT6, thus enhancing the expression of DDB2 and activating the nucleotide excision repair (NER) of cells to achieve the anti-photoaging effect. The aforementioned results imply that CGA activates NER repair and protects cells from UVB-induced damage by inhibiting the deacetylation activity of SIRT6 and subsequently decreasing the deacetylation modification of DDB2. The study elucidates the molecular mechanisms underlying the beneficial effects of CGA on skin photoaging and establishes a theoretical basis for the development of CGA based sunscreen formulations.
Collapse
Affiliation(s)
- Simin Wu
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
- Beijing Academy of TCM Beauty Supplements, Beijing, 102400, China
| | - Qixing Zhou
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Ziqi Gao
- Hunan Institute for Drug Control, Changsha, 410001, China
| | - Jiaxu Man
- Institute of Agricultural Products Processing, Yunnan Academy of Agricultural Sciences, Kunming, 650201, China
| | - Wei He
- College of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jingying Feng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyong Li
- Collage of Food and Biological Engineering, Hezhou University, Hezhou, 542899, China.
| | - Dongying Zhang
- College of Science, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
3
|
Kaltchenko MV, Chien AL. Photoaging: Current Concepts on Molecular Mechanisms, Prevention, and Treatment. Am J Clin Dermatol 2025:10.1007/s40257-025-00933-z. [PMID: 40072791 DOI: 10.1007/s40257-025-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Photoaging is the consequence of chronic exposure to solar irradiation, encompassing ultraviolet (UV), visible, and infrared wavelengths. Over time, this exposure causes cumulative damage, leading to both aesthetic changes and structural degradation of the skin. These effects manifest as rhytids, dyschromia, textural changes, elastosis, volume loss, telangiectasias, and hyperkeratosis, collectively contributing to a prematurely aged appearance that exceeds the skin's chronological age. The hallmarks of photoaging vary significantly by skin phototype. Skin of color tends to exhibit dyschromia and features associated with "intrinsic" aging, such as volume loss, while white skin is more prone to "extrinsic" aging characteristics, including rhytids and elastosis. Moreover, susceptibility to different wavelengths within the electromagnetic spectrum also differs by skin phototype, influencing the clinical presentation of photoaging, as well as prevention and treatment strategies. Fortunately, photoaging-and its associated adverse effects-is largely preventable and, to some extent, reversible. However, effective prevention and treatment strategies require careful tailoring to an individual's skin type. In this review, we summarize molecular mechanisms underlying photoaging, examine its clinical manifestations, outline risk factors and prevention strategies, and highlight recent advancements in its treatment.
Collapse
Affiliation(s)
- Maria V Kaltchenko
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Benito-Martínez S, Salavessa L, Macé AS, Lardier N, Fraisier V, Sirés-Campos J, Jani RA, Romao M, Gayrard C, Plessis M, Hurbain I, Nait-Meddour C, Morel E, Boniotto M, Manneville JB, Bernerd F, Duval C, Raposo G, Delevoye C. Keratin intermediate filaments mechanically position melanin pigments for genome photoprotection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.632531. [PMID: 39868182 PMCID: PMC11761041 DOI: 10.1101/2025.01.15.632531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Melanin pigments block genotoxic agents by positioning on the sun-exposed side of human skin keratinocytes' nucleus. How this position is regulated and its role in genome photoprotection remains unknown. By developing a model of human keratinocytes internalizing extracellular melanin into pigment organelles, we show that keratin 5/14 intermediate filaments mechanically control the 3D perinuclear position of pigments, shielding DNA from photodamage. Imaging and microrheology in human disease-related model identify structural keratin cages surrounding pigment organelles to stiffen their microenvironment and maintain their 3D position. Optimum pigment spatialization is required for DNA photoprotection and rely on the interplay between intermediate filaments and microtubules bridged by plectin cytolinkers. Thus, the mechanically-driven proximity of pigment organelles to the nucleus is a key photoprotective parameter. Uncovering how human skin counteracts solar radiation by positioning the melanin microparasol next to the genome anticipates that dynamic spatialization of organelles is a physiological UV stress response.
Collapse
Affiliation(s)
- Silvia Benito-Martínez
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
| | - Laura Salavessa
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Anne-Sophie Macé
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Nathan Lardier
- Institut Curie, PSL Research University, CNRS, UMR144, Molecular Mechanisms of Intracellular Transport, 75005 Paris, France
| | - Vincent Fraisier
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Julia Sirés-Campos
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
| | - Riddhi Atul Jani
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
| | - Maryse Romao
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | | | - Marion Plessis
- L’Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Ilse Hurbain
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Cécile Nait-Meddour
- Univ Paris Est Creteil, INSERM, IMRB, Translational Neuropsychiatry, F-94010 Creteil, France
| | - Etienne Morel
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Michele Boniotto
- Univ Paris Est Creteil, INSERM, IMRB, Translational Neuropsychiatry, F-94010 Creteil, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR144, Molecular Mechanisms of Intracellular Transport, 75005 Paris, France
- Laboratoire Matières et Systèmes Complexes (MSC), Université Paris Cité, CNRS, UMR7057, 10 rue Alice Domon et Léonie Duquet, F-75013, Paris, France
| | | | | | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| |
Collapse
|
5
|
Egriboz O, Fehrholz M, Tsutsumi M, Sousa M, Cheret J, Funk W, Kückelhaus M, Paus R, Kajiya K, Piccini I, Bertolini M. The Melanocyte and Nerve Fiber Cross-Talk, Facilitated Also by Semaphorin-4A, Enhances UV-B-Induced Melanogenesis. Pigment Cell Melanoma Res 2025; 38:e13217. [PMID: 39835739 DOI: 10.1111/pcmr.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture. Comparative transcriptomic analysis between laser-capture-microdissected melanocytes from freshly embedded human skin and published microarray data on in vitro primary melanocytes identified Semaphorin-4A (SEMA4A) as possible mediator of melanocyte-nerve fibers interactions. SEMA4A protein levels in Gp100+-epidermal melanocytes were significantly higher in re-innervated skin, and reduced by UV-B treatment. Analysis of melanocytes in vitro showed reduced SEMA4A protein expression 24 h after UV-B-irradiation while SEMA4A secretion into the medium was increased. Beta-tubulin expression and axon growth in sensory neurons were stimulated by conditioned media (CM) from UV-B irradiated melanocytes. When this neuronal-conditioned medium was transferred to fresh melanocytes, melanin content increased, but only if neurons had been treated with CM from UV-B irradiated melanocytes. These findings highlight the importance of melanocyte-neuron interactions for UV-B-induced melanogenesis and suggest that secreted proteins (e.g., SEMA4A) can function as a novel target to treat hypo- and hyperpigmentation disorders.
Collapse
Affiliation(s)
- Onur Egriboz
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
- DWI Labs, Deriworks A.S., Istanbul, Turkiye
| | | | - Moe Tsutsumi
- MIRAI Technology Institute, Shiseido Co. Ltd., Yokohama, Japan
| | - Marta Sousa
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
| | - Jeremy Cheret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations GmbH, Hamburg & Berlin, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery Dr. Dr. Med. Funk, Munich, Germany
| | | | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations GmbH, Hamburg & Berlin, Germany
| | - Kentaro Kajiya
- MIRAI Technology Institute, Shiseido Co. Ltd., Yokohama, Japan
| | - Ilaria Piccini
- QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany
| | | |
Collapse
|
6
|
Whiteman DC, Neale RE, Baade P, Olsen CM, Pandeya N. Changes in the incidence of melanoma in Australia, 2006-2021, by age group and ancestry: a modelling study. Med J Aust 2024; 221:251-257. [PMID: 39217597 DOI: 10.5694/mja2.52404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/20/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES To estimate the incidence of melanoma in Australia among people with ancestries associated with low, moderate, or high risk of melanoma, by sex and 5-year age group; to establish whether age-specific incidence rates by ancestry risk group have changed over time. STUDY DESIGN Modelling study; United States (SEER database) melanoma incidence rates for representative ancestral populations and Australian census data (2006, 2011, 2016, 2021) used to estimate Australian melanoma incidence rates by ancestry-based risk. SETTING, PARTICIPANTS Australia, 2006-2021. MAIN OUTCOME MEASURES Age-specific invasive melanoma incidence rates, and average annual percentage change (AAPC) in age-specific melanoma rates, by ancestry-based risk group, sex, and 5-year age group. RESULTS The proportion of people in Australia who reported high risk (European) ancestry declined from 85.3% in 2006 to 71.1% in 2021. The estimated age-standardised melanoma incidence rate was higher for people with high risk ancestry (2021: males, 82.2 [95% confidence interval {CI}, 80.5-83.8] cases per 100 000 population; females, 58.5 [95% CI, 57.0-59.9] cases per 100 000 population) than for all Australians (males, 67.8 [95% CI, 66.5-69.2] cases per 100 000 population; females, 45.4 [95% CI, 44.3-46.5] cases per 100 000 population). AAPCs were consistently positive for Australians aged 50 years or older, both overall and for people with high risk ancestry, but were statistically significant only for some age groups beyond 65 years. AAPCs were negative for people aged 34 years or younger, but were generally not statistically significant. CONCLUSIONS Melanoma incidence has declined in some younger age groups in Australia, including among people with high risk ancestry. Social and behavioural changes over the same period that lead to lower levels of ultraviolet radiation exposure probably contributed to these changes.
Collapse
Affiliation(s)
| | - Rachel E Neale
- QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | | | | | | |
Collapse
|
7
|
Chen Z, Cao P, Zhang Y, Hong N, Li P, Yao H. Establishment of an in vitro cell coculture model for investigating the whitening mechanism of Paeonia lactiflora Pall seeds oil. J Cosmet Dermatol 2024; 23:3030-3037. [PMID: 38864461 DOI: 10.1111/jocd.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND In vitro single-cell experiments may yield inconsistent results compared to clinical trials. To enhance the reliability of cosmetic active ingredient screening, a coculture model of B16F10-HaCaT cells was established in vitro based on the structural characteristics of human skin, thereby improving the credibility of experimental outcomes. Currently, most cosmetic whitening additives primarily target simple efficacy goals such as inhibiting tyrosinase activity or melanin transfer. Therefore, investigating novel and efficient whitening additives has become a prominent research focus. OBJECTIVES The aim is to establish an in vitro cell coculture model for more reliable experimental results and investigate the mechanism by which Paeonia lactiflora Pall seeds oil inhibits melanin production and transfer. METHODS The impact of different concentrations of Paeonia lactiflora Pall seeds oil on cocultured cell proliferation rate was assessed using cck8 assay. Tyrosinase inhibition ability in cocultured cells was tested using levodopa as a substrate. Melanin production inhibition ability in coculture cells was evaluated by lysing cells with sodium hydroxide. The effect of Paeonia lactiflora Pall seeds oil on dendrite-related gene expression levels was examined through qPCR analysis. Additionally, Western blotting was employed to study the effect of Paeonia lactiflora Pall seeds oil on dendrite-related protein expression levels. RESULTS Different concentrations of Paeonia lactiflora Pall seeds oil did not affect the proliferation activity of cocultured cells. A specific concentration of α-MSH increased cell tyrosinase activity, cellular melanin content, as well as Rac1, Cdc42, and PAR-2 gene and protein expression related to dendritic formation. Treatment with a certain concentration of Paeonia lactiflora Pall seeds oil resulted in decreased tyrosinase activity and melanin content in cells along with downregulated expression levels of Rac1, Cdc42, and PAR-2 genes and proteins associated with dendritic formation. CONCLUSIONS Paeonia lactiflora Pall seeds oil at specific concentrations exhibits the ability to inhibit tyrosinase activity, decrease melanin content, and possesses the potential to impede melanin transfer.
Collapse
Affiliation(s)
| | - Ping Cao
- Huzhou Jiaheng Industrial Co., Ltd, Huzhou, China
| | | | - Ni Hong
- Huzhou Jiaheng Industrial Co., Ltd, Huzhou, China
| | - Ping Li
- Huzhou Jiaheng Industrial Co., Ltd, Huzhou, China
| | - Hong Yao
- Huzhou Jiaheng Industrial Co., Ltd, Huzhou, China
| |
Collapse
|
8
|
Halai P, Kiss O, Wang R, Chien AL, Kang S, O'Connor C, Bell M, Griffiths CEM, Watson REB, Langton AK. Retinoids in the treatment of photoageing: A histological study of topical retinoid efficacy in black skin. J Eur Acad Dermatol Venereol 2024; 38:1618-1627. [PMID: 38682699 DOI: 10.1111/jdv.20043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Photoageing describes complex cutaneous changes that occur due to chronic exposure to solar ultraviolet radiation (UVR). The 'gold standard' for the treatment of photoaged white skin is all-trans retinoic acid (ATRA); however, cosmetic retinol (ROL) has also proven efficacious. Recent work has identified that black skin is susceptible to photoageing, characterized by disintegration of fibrillin-rich microfibrils (FRMs) at the dermal-epidermal junction (DEJ). However, the impact of topical retinoids for repair of black skin has not been well investigated. OBJECTIVES To determine the potential of retinoids to repair photoaged black skin. METHODS An exploratory intervention study was performed using an in vivo, short-term patch test protocol. Healthy but photoaged black volunteers (>45 years) were recruited to the study, and participant extensor forearms were occluded with either 0.025% ATRA (n = 6; 4-day application due to irritancy) or ROL (12-day treatment protocol for a cosmetic) at concentrations of 0.3% (n = 6) or 1% (n = 6). Punch biopsies from occluded but untreated control sites and retinoid-treated sites were processed for histological analyses of epidermal characteristics, melanin distribution and dermal remodelling. RESULTS Treatment with ATRA and ROL induced significant acanthosis (all p < 0.001) accompanied by a significant increase in keratinocyte proliferation (Ki67; all p < 0.01), dispersal of epidermal melanin and restoration of the FRMs at the DEJ (all p < 0.01), compared to untreated control. CONCLUSIONS This study confirms that topical ATRA has utility for the repair of photoaged black skin and that ROL induces comparable effects on epidermal and dermal remodelling, albeit over a longer timeframe. The effects of topical retinoids on black photoaged skin are similar to those reported for white photoaged skin and suggest conserved biology in relation to repair of UVR-induced damage. Further investigation of topical retinoid efficacy in daily use is warranted for black skin.
Collapse
Affiliation(s)
- P Halai
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - O Kiss
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - A L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - S Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C O'Connor
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - M Bell
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - C E M Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Department of Dermatology, King's College Hospital, King's College London, London, UK
| | - R E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - A K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
9
|
Yang Y, Wang C, Liu Y, Li G, Wang X, Wang H, He D. Comparative transcriptomic analyses reveal key genes underlying melanin distribution during embryonic development in geese ( Anser anser). Br Poult Sci 2024; 65:387-393. [PMID: 38748993 DOI: 10.1080/00071668.2024.2335943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/08/2024] [Indexed: 07/27/2024]
Abstract
1. Melanin distribution typically exhibits a gradient dilution along the dorsal-ventral axis of the body, including in domestic geese. However, the specific genes and molecular mechanisms responsible for this melanin distribution pattern remain incompletely understood.2. The transcriptomic comparisons were conducted at three embryonic stages, specifically on embryonic d 15 (E15), 22 (E22), and 29 (E29), between the pigmented dorsal skin and the depigmented distal foot.3. Differentially expressed genes (DEGs) associated with melanin synthesis were identified, particularly TYR, TYRP1, and EDNRB2, which exhibited significantly higher expression levels in the dorsal skin at E15 and E22. However, expression levels significantly decreased in later stages (E29).4. The ASIP gene showed remarkably high-expression levels in the distal feet compared to the dorsal skin post-E22 stage (log2FC: 5.31/6.88 at E22/E29). Gene Ontology (GO) enrichment analysis detected eight terms associated with melanin synthesis and melanosome formation (p < 0.05), including melanosome membrane (GO: 0033162) and melanin biosynthetic process (GO: 0042438). Additionally, KEGG pathway analysis showed significant enrichment of the melanogenesis pathway (hsa004916) at d 22 (E22).
Collapse
Affiliation(s)
- Y Yang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai, China
| | - C Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai, China
| | - Y Liu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai, China
| | - G Li
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai, China
| | - X Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai, China
| | - H Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai, China
| | - D He
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Science, Shanghai, China
| |
Collapse
|
10
|
Slominski RM, Kim TK, Janjetovic Z, Brożyna AA, Podgorska E, Dixon KM, Mason RS, Tuckey RC, Sharma R, Crossman DK, Elmets C, Raman C, Jetten AM, Indra AK, Slominski AT. Malignant Melanoma: An Overview, New Perspectives, and Vitamin D Signaling. Cancers (Basel) 2024; 16:2262. [PMID: 38927967 PMCID: PMC11201527 DOI: 10.3390/cancers16122262] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Melanoma, originating through malignant transformation of melanin-producing melanocytes, is a formidable malignancy, characterized by local invasiveness, recurrence, early metastasis, resistance to therapy, and a high mortality rate. This review discusses etiologic and risk factors for melanoma, diagnostic and prognostic tools, including recent advances in molecular biology, omics, and bioinformatics, and provides an overview of its therapy. Since the incidence of melanoma is rising and mortality remains unacceptably high, we discuss its inherent properties, including melanogenesis, that make this disease resilient to treatment and propose to use AI to solve the above complex and multidimensional problems. We provide an overview on vitamin D and its anticancerogenic properties, and report recent advances in this field that can provide solutions for the prevention and/or therapy of melanoma. Experimental papers and clinicopathological studies on the role of vitamin D status and signaling pathways initiated by its active metabolites in melanoma prognosis and therapy are reviewed. We conclude that vitamin D signaling, defined by specific nuclear receptors and selective activation by specific vitamin D hydroxyderivatives, can provide a benefit for new or existing therapeutic approaches. We propose to target vitamin D signaling with the use of computational biology and AI tools to provide a solution to the melanoma problem.
Collapse
Affiliation(s)
- Radomir M. Slominski
- Department of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Tae-Kang Kim
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Zorica Janjetovic
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anna A. Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | - Ewa Podgorska
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Katie M. Dixon
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Rebecca S. Mason
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; (K.M.D.); (R.S.M.)
| | - Robert C. Tuckey
- School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Rahul Sharma
- Department of Biomedical Informatics and Data Science, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - David K. Crossman
- Department of Genetics and Bioinformatics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Craig Elmets
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Chander Raman
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
| | - Anton M. Jetten
- Cell Biology Section, NIEHS—National Institutes of Health, Research Triangle Park, NC 27709, USA;
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrzej T. Slominski
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (T.-K.K.); (Z.J.); (E.P.); (C.E.); (C.R.)
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology and Laboratory Medicine Service, Veteran Administration Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
11
|
Xu X, Wang SY, Wang R, Wu LY, Yan M, Sun ZL, Sun QH. Association of antihypertensive drugs with psoriasis: A trans-ancestry and drug-target Mendelian randomization study. Vascul Pharmacol 2024; 154:107284. [PMID: 38360195 DOI: 10.1016/j.vph.2024.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Affiliation(s)
- Xiao Xu
- Department of Nursing, Nantong Health College of Jiangsu Province, Nantong, China.
| | - Shu-Yun Wang
- Academic Affair Office, Nantong Vocational University, Nantong, China; Department of Postgraduate, St. Paul University Philippines, Tuggegarau, Philippines.
| | - Rongyun Wang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Lin-Yun Wu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Yan
- Department of Epidemiology, School of Public Health, Changzhou University, Changzhou, China; Faculty of Health and Welfare, Satakunta University of Applied Sciences, Pori, Finland.
| | - Zhi-Ling Sun
- Department of Rheumatology, School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Qiu-Hua Sun
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
12
|
Zamudio Díaz DF, Busch L, Kröger M, Klein AL, Lohan SB, Mewes KR, Vierkotten L, Witzel C, Rohn S, Meinke MC. Significance of melanin distribution in the epidermis for the protective effect against UV light. Sci Rep 2024; 14:3488. [PMID: 38347037 PMCID: PMC10861496 DOI: 10.1038/s41598-024-53941-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
Melanin, the most abundant skin chromophore, is produced by melanocytes and is one of the key components responsible for mediating the skin's response to ultraviolet radiation (UVR). Because of its antioxidant, radical scavenging, and broadband UV absorbing properties, melanin reduces the penetration of UVR into the nuclei of keratinocytes. Despite its long-established photoprotective role, there is evidence that melanin may also induce oxidative DNA damage in keratinocytes after UV exposure and therefore be involved in the development of melanoma. The present work aimed at evaluating the dependence of UV-induced DNA damage on melanin content and distribution, using reconstructed human epidermis (RHE) models. Tanned and light RHE were irradiated with a 233 nm UV-C LED source at 60 mJ/cm2 and a UV lamp at 3 mJ/cm2. Higher UV-mediated free radicals and DNA damage were detected in tanned RHE with significantly higher melanin content than in light RHE. The melanin distribution in the individual models can explain the lack of photoprotection. Fluorescence lifetime-based analysis and Fontana-Masson staining revealed a non-homogeneous distribution and absence of perinuclear melanin in the tanned RHE compared to the in vivo situation in humans. Extracellularly dispersed epidermal melanin interferes with photoprotection of the keratinocytes.
Collapse
Affiliation(s)
- Daniela F Zamudio Díaz
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Loris Busch
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert-Koch-Str. 4, 35032, Marburg, Germany
| | - Marius Kröger
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anna Lena Klein
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Silke B Lohan
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Karsten R Mewes
- Henkel AG & Co. KGaA, Henkelstr. 67, 40589, Düsseldorf, Germany
| | - Lars Vierkotten
- Henkel AG & Co. KGaA, Henkelstr. 67, 40589, Düsseldorf, Germany
| | - Christian Witzel
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sascha Rohn
- Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
13
|
Neale RE, Beedle V, Ebeling PR, Elliott T, Francis D, Girgis CM, Gordon L, Janda M, Jones G, Lucas RM, Mason RS, Monnington PK, Morahan J, Paxton G, Sinclair C, Shumack S, Smith J, Webb AR, Whiteman DC. Balancing the risks and benefits of sun exposure: A revised position statement for Australian adults. Aust N Z J Public Health 2024; 48:100117. [PMID: 38350754 DOI: 10.1016/j.anzjph.2023.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE To describe the development of a new position statement regarding balancing the risks and benefits of sun exposure for Australian adults. METHODS We conducted a Sun Exposure Summit in March 2021, with presentations from invited experts and a workshop including representation from academic, clinical, policy, and patient stakeholder organisations. The group considered advice about balancing the risks and benefits of sun exposure for Australian adults and developed a revised consensus position statement. RESULTS The balance of risks and benefits of sun exposure is not the same for everybody. For people at very high risk of skin cancer, the risks of exposure likely outweigh the benefits; sun protection is essential. Conversely, people with deeply pigmented skin are at low risk of skin cancer but at high risk of vitamin D deficiency; routine sun protection is not recommended. For those at intermediate risk of skin cancer, sun protection remains a priority, but individuals may obtain sufficient sun exposure to maintain adequate vitamin D status. CONCLUSIONS The new position statement provides sun exposure advice that explicitly recognises the differing needs of Australia's diverse population. IMPLICATIONS FOR PUBLIC HEALTH Mass communication campaigns should retain the focus on skin cancer prevention. The new position statement will support the delivery of personalised advice.
Collapse
Affiliation(s)
- Rachel E Neale
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; University of Queensland, Brisbane, Australia.
| | | | - Peter R Ebeling
- Monash University, Melbourne, Australia; Healthy Bones Australia, Australia
| | - Thomas Elliott
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Christian M Girgis
- University of Sydney, Sydney, Australia; Australa and New Zealand Bone and Mineral Society, Australia
| | - Louisa Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; University of Queensland, Brisbane, Australia
| | | | - Graeme Jones
- Australa and New Zealand Bone and Mineral Society, Australia; University of Tasmania, Hobart, Australia
| | | | - Rebecca S Mason
- University of Sydney, Sydney, Australia; Healthy Bones Australia, Australia
| | | | | | | | | | | | - Jane Smith
- Royal Australian College of General Practitioners, Australia
| | - Ann R Webb
- University of Manchester, Manchester, United Kingdom
| | - David C Whiteman
- QIMR Berghofer Medical Research Institute, Brisbane, Australia; University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Calik J, Dzięgiel P, Sauer N. Case report: Exceptional disease progression in a 70-year-old patient: generalized melanosis and melanuria in the course of metastatic melanoma - a case study. Front Oncol 2024; 14:1332362. [PMID: 38347840 PMCID: PMC10859400 DOI: 10.3389/fonc.2024.1332362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
This case study documents an extraordinary disease progression in a 70-year-old patient diagnosed with metastatic melanoma. The patient's condition advanced to an unusual manifestation characterized by generalized melanosis and melanuria, a rare and foreboding complication of metastatic melanoma. The clinical presentation involved rapid-onset skin darkening, primarily affecting the face and torso, along with darkened urine, marking the onset of melanuria. Despite extensive diagnostic evaluations, including abdominal ultrasound, neck ultrasound, thoracic CT scans, and endoscopic examinations, the exact metastatic sites remained elusive, demonstrating the diagnostic challenges associated with this condition. Laboratory tests revealed abnormal hematological and biochemical markers, along with elevated S100 protein levels, indicating disease progression. The patient underwent a surgical skin biopsy that confirmed the diagnosis of metastatic melanoma, leading to a multidisciplinary approach to treatment. Following this, the patient-initiated chemotherapy with dacarbazine (DTIC). Regrettably, this was necessitated by the absence of reimbursement for BRAF and MEK inhibitors as well as immunotherapy, and it subsequently led to rapid disease progression and a decline in the patient's clinical condition. The patient's condition further complicated with erysipelas and increased distress, ultimately leading to their unfortunate demise. This case highlights the aggressive nature of generalized melanosis, characterized by a rapid clinical course, substantial pigmentation, and limited response to conventional chemotherapy. Importantly, the patient had a BRAF mutation, emphasizing the urgency of exploring alternative treatment strategies. Patients with a BRAF mutation are excellent candidates for BRAF and MEK inhibitor treatment, potentially allowing them to extend their lifespan if this therapy were available. The challenges encountered in diagnosing, managing, and treating this aggressive form of metastatic melanoma underline the need for early detection, tailored therapeutic approaches, and ongoing research efforts to improve patient outcomes in such cases.
Collapse
Affiliation(s)
- Jacek Calik
- Department of Clinical Oncology, Wroclaw Medical University, Wrocław, Poland
- Old Town Clinic, Wroclaw, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wrocław, Poland
- Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Natalia Sauer
- Old Town Clinic, Wroclaw, Poland
- Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
15
|
Young AR. The adverse consequences of not using sunscreens. Int J Cosmet Sci 2023; 45 Suppl 1:11-19. [PMID: 37799076 DOI: 10.1111/ics.12897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 10/07/2023]
Abstract
The adverse effects of solar ultraviolet radiation (UVR) on normal skin are well established, especially in those with poorly melanized skin. Clinically, these effects may be classified as acute, such as erythema or chronic such as keratinocyte and melanocyte skin cancers. Apart from skin type genetics, clinical responses to solar UVR are dependent on geophysical (e.g., solar intensity) and behavioural factors. The latter are especially important because they may result in 'solar overload' with unwanted clinical consequences and ever greater burdens to healthcare systems. Correctly used, sunscreens can mitigate the acute and chronic effects of solar UVR exposure. Laboratory studies also show that sunscreens can inhibit the initial molecular and cellular events that are responsible for clinical outcomes. Despite public health campaigns, global trends continue to show increasing incidence of all types of skin cancer. Large-scale epidemiological studies have shown the benefits of sunscreen use in preventing skin cancer, though it is likely that sunscreen use has not been optimal in such studies. It is evident that without substantial changes in sun-seeking behaviour, sunscreen use is a very important part of the defence against the acute and chronic effects of solar exposure. Ideally, sunscreens should be able to provide the level of protection that reduces the risk of skin cancer in susceptible skin types to that observed in heavily melanized skin.
Collapse
Affiliation(s)
- Antony R Young
- St John's Institute of Dermatology, King's College London, London, UK
| |
Collapse
|
16
|
Busch L, Kröger M, Zamudio Díaz DF, Schleusener J, Lohan SB, Ma J, Witzel C, Keck CM, Meinke MC. Far-UVC- and UVB-induced DNA damage depending on skin type. Exp Dermatol 2023; 32:1582-1587. [PMID: 37545424 DOI: 10.1111/exd.14902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023]
Abstract
Far-UVC radiation sources of wavelengths 222 nm and 233 nm represent an interesting potential alternative for the antiseptic treatment of the skin due to their high skin compatibility. Nevertheless, no studies on far-UVC-induced DNA damage in different skin types have been published to date, which this study aims for. After irradiating the skin with far-UVC of the wavelengths 222 and 233 nm as well as broadband UVB, the tissue was screened for cyclobutane pyrimidine dimer-positive (CPD+ ) cells using immunohistochemistry. The epidermal DNA damage was lower in dark skin types than in fair skin types after irradiation at 233 nm. Contrary to this, irradiation at 222 nm caused no skin type-dependent differences, which can be attributed to the decreased penetration depth of radiation. UVB showed the relatively strongest differences between light and dark skin types when using a suberythemal dose of 3 mJ/cm2 . As melanin is known for its photoprotective effect, we evaluated the ratio of melanin content in the stratum basale and stratum granulosum in samples of different skin types using two-photon excited fluorescence lifetime imaging (TPE-FLIM) finding a higher ratio up to skin type IV-V. As far-UVC is known to penetrate only into the upper layers of the viable skin, the aforementioned melanin ratio could explain the less pronounced differences between skin types after irradiation with far-UVC compared to UVB.
Collapse
Affiliation(s)
- Loris Busch
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Marburg, Germany
| | - Marius Kröger
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela F Zamudio Díaz
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Berlin, Germany
| | - Johannes Schleusener
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Silke B Lohan
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jackie Ma
- Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany
| | - Christian Witzel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Marburg, Germany
| | - Martina C Meinke
- Department of Dermatology, Venereology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
17
|
Brunsgaard EK, Jensen J, Grossman D. Melanoma in skin of color: Part II. Racial disparities, role of UV, and interventions for earlier detection. J Am Acad Dermatol 2023; 89:459-468. [PMID: 35533770 DOI: 10.1016/j.jaad.2022.04.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Despite a higher incidence of melanoma among White individuals, melanoma-specific survival is worse among individuals with skin of color. Racial disparities in survival are multifactorial. Decreased skin cancer education focused on people with skin of color, lower rates of screening, increased socioeconomic barriers, higher proportions of more aggressive subtypes, and underrepresentation in research and professional education contribute to delays in diagnosis and treatment. Although high, intermittent UV exposure during childhood has been established as a significant modifiable risk factor for melanoma in individuals with lighter skin phototypes, there are limited data on UV exposure and melanoma risk in people with darker skin phototypes. The second article of this continuing medical education series will examine factors contributing to racial disparities in melanoma-specific survival, discuss the role of UV radiation, and address the need for further research and targeted educational interventions for melanoma in individuals with skin of color.
Collapse
Affiliation(s)
- Elise K Brunsgaard
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Jakob Jensen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Communication, University of Utah, Salt Lake City, Utah
| | - Douglas Grossman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah; Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah.
| |
Collapse
|
18
|
Abstract
Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.
Collapse
Affiliation(s)
- Erick L Bastos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Frank H Quina
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| | - Maurício S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, 05508-000 São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Wright CY, Norval M. Solar Ultraviolet Radiation, Skin Cancer and Photoprotective Strategies in South Africa †. Photochem Photobiol 2023; 99:509-518. [PMID: 35841370 DOI: 10.1111/php.13676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
The most recent data relating to the incidence of, and mortality from, the three commonest forms of skin cancer, namely basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and cutaneous melanoma (CM), in the Black African, Colored, Asian/Indian and White population groups in South Africa are reviewed. While exposure to solar ultraviolet radiation is the major environmental risk factor for BCC in all four groups, for SSC in the White and Asian/Indian groups and for CM in the White group, this is unlikely to be the case for most SCCs in the Black African group and for most CMs in the Black African and Asian/Indian groups. Strategies for practical personal photoprotection in South Africa are discussed with particular emphasis on people at heightened risk of skin cancer including the White population group, those with HIV or oculocutaneous albinism and outdoor workers.
Collapse
Affiliation(s)
- Caradee Yael Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, South Africa
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Mary Norval
- Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
20
|
Tran V, Janda M, Lucas RM, McLeod DSA, Thompson BS, Waterhouse M, Whiteman DC, Neale RE. Vitamin D and Sun Exposure: A Community Survey in Australia. Curr Oncol 2023; 30:2465-2481. [PMID: 36826149 PMCID: PMC9955356 DOI: 10.3390/curroncol30020188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Sun exposure carries both harms and benefits. Exposing the skin to the sun is the main modifiable cause of skin cancers, which exert a considerable health and economic burden in Australia. The most well-established benefit of exposure to ultraviolet (UV) radiation is vitamin D production. Australia has the highest incidence of skin cancer in the world but, despite the high ambient UV radiation, approximately one quarter of the population is estimated to be vitamin D deficient. Balancing the risks and benefits is challenging and requires effective communication. We sought to provide a snapshot of public knowledge and attitudes regarding sun exposure and vitamin D and to examine the associations between these factors and sun protective behaviors. In 2020 we administered an online survey; 4824 participants with self-reported fair or medium skin color were included in this analysis. Only 25% and 34% of participants were able to identify the amount of time outdoors needed to maintain adequate vitamin D status in summer and winter, respectively and 25% were concerned that sunscreen use inhibits vitamin D synthesis. This lack of knowledge was associated with suboptimal sun protection practices. Public education is warranted to prevent over-exposure, while supporting natural vitamin D production.
Collapse
Affiliation(s)
- Vu Tran
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- The University of Queensland, Brisbane, QLD 4006, Australia
| | - Monika Janda
- The University of Queensland, Brisbane, QLD 4006, Australia
| | - Robyn M. Lucas
- The Australian National University, Canberra, ACT 2601, Australia
| | - Donald S. A. McLeod
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Bridie S. Thompson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Mary Waterhouse
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - David C. Whiteman
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- The University of Queensland, Brisbane, QLD 4006, Australia
| | - Rachel E. Neale
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- The University of Queensland, Brisbane, QLD 4006, Australia
- Correspondence:
| |
Collapse
|
21
|
Krutmann J, Piquero-Casals J, Morgado-Carrasco D, Granger C, Trullàs C, Passeron T, Lim HW. Photoprotection for people with skin of colour: needs and strategies. Br J Dermatol 2023; 188:168-175. [PMID: 36763874 DOI: 10.1093/bjd/ljac046] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
Skin of colour or pigmented skin has unique characteristics: it has a higher eumelanin-to-pheomelanin ratio, more mature melanosomes, an increased amount of melanin distributed in the upper layers of the epidermis, and more efficient DNA repair compared with lighter skin. However, individuals with skin of colour are at a significant risk of skin damage caused by ultraviolet radiation, including the development of photodermatoses and photoageing changes such as uneven skin tone, and are predisposed to pigmentary disorders. In fact, one of the most common conditions leading to dermatology consultations by patients with skin of colour is photoexacerbated pigmentary disorders. Unfortunately, individuals with skin of colour may be less prone to engage in photoprotective measures, including the use of sunscreens. Physicians are also less likely to prescribe sunscreens for them. There is thus a clear need for better education on photodamage and for more efficient and suitable photoprotection in populations with skin of colour. However, this need has thus far only partially been met, and the development of sunscreen products designed to provide optimal photoprotection for people with skin of colour remains a challenge. Targeted sunscreens for individuals with skin of colour require optimal cosmetic appeal (leaving no white residue and not disrupting skin tone). They should include broad-spectrum [ultraviolet (UV)B/UVA] protection with high sun protection factor, as well as protection against long-wave UVA (UVA1) and visible light, as these wavelengths are capable of inducing or augmenting pigmentary disorders. They may also contain depigmenting agents for patients with pigmentary disorders.
Collapse
Affiliation(s)
- Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Dusseldorf, Germany.,Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Daniel Morgado-Carrasco
- Dermatology Department, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | | | | | - Thierry Passeron
- University Côte d'Azur, CHU Nice, Department of Dermatology, Nice, France.,University Côte d'Azur, INSERM U1065, C3M, Nice, France
| | - Henry W Lim
- Photomedicine and Photobiology Unit, Department of Dermatology, Henry Ford Health, Detroit, MI, USA
| |
Collapse
|
22
|
Waku T, Nakada S, Masuda H, Sumi H, Wada A, Hirose S, Aketa I, Kobayashi A. The CNC-family transcription factor Nrf3 coordinates the melanogenesis cascade through macropinocytosis and autophagy regulation. Cell Rep 2023; 42:111906. [PMID: 36640303 DOI: 10.1016/j.celrep.2022.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Melanin is a pigment produced from the amino acid L-tyrosine in melanosomes. The CNC-family transcription factor Nrf3 is expressed in the basal layer of the epidermis, where melanocytes reside, but its melanogenic function is unclear. Here, we show that Nrf3 regulates macropinocytosis and autophagy to coordinate melanogenesis cascade. In response to an exogenous inducer of melanin production, forskolin, Nrf3 upregulates the core melanogenic gene circuit, which includes Mitf, Tyr, Tyrp1, Pmel, and Oca2. Furthermore, Nrf3 induces the gene expression of Cln3, an autophagosome-related factor, for melanin precursor uptake by macropinocytosis. Ulk2 and Gabarapl2 are also identified as Nrf3-target autophagosome-related genes for melanosome formation. In parallel, Nrf3 prompts autolysosomal melanosome degradation for melanocyte survival. An endogenous melanogenic inducer αMSH also activates Nrf3-mediated melanin production, whereas it is suppressed by an HIV-1 protease inhibitor, nelfinavir. These findings indicate the significant role of Nrf3 in the melanogenesis and the anti-melanogenic potential of nelfinavir.
Collapse
Affiliation(s)
- Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| | - Sota Nakada
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruka Masuda
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruna Sumi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Ayaka Wada
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Shuuhei Hirose
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Iori Aketa
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan; Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
23
|
Yong SS, Han WH, Faheem NAA, Puvan N, Tan LL, Wong SM, Kwan Z. Predictive factors of sun protection behaviour among global airline pilots. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022; 38:541-547. [PMID: 35324018 DOI: 10.1111/phpp.12787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Airline pilots face significant ultraviolet radiation exposure resulting in an increased risk of sun damage and skin cancers. We aimed to evaluate sun-protective practices and associated factors among airline pilots. METHODS We disseminated an online questionnaire evaluating the use of sunscreen, sunglasses, hats and protective clothing during daytime hours in the cockpit and during outdoor activities to 346 global commercial airline pilots, and we received 220 completed responses. The Pearson chi-squared test or Fisher's exact test where necessary were used to determine possible factors associated with the use of sun-protective practices. Potential confounders were adjusted for using multivariate analyses. RESULTS The most common sun protective behaviour was the wearing of sunglasses during daytime flights (89.5%), followed by the use of caps during outdoor activities (47.7%). More pilots applied sunscreen during daytime flights (14.1%) compared with walk-arounds (8.2%). Males were less likely to use sunscreen during flights (adjusted odds ratio, aOR = 0.76), use sunscreen for walk-arounds (aOR = 0.175) and wear long sleeves (aOR = 0.013). Pilots who flew less than 30 h a month in high latitude regions were less likely to use a cap or hat outdoors (aOR = 0.419) or use sunscreen during walk-arounds (aOR = 0.241). Younger pilots were also less likely to use caps or hats outdoors (aOR = 0.446). CONCLUSION Male pilots and those who spent less time in high latitudes were less likely to practice sun protection. Targeted educational efforts may be implemented to reduce occupational ultraviolet exposure.
Collapse
Affiliation(s)
- Shin Shen Yong
- Division of Dermatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Winn Hui Han
- Division of Dermatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nik Aimee Azizah Faheem
- Division of Dermatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nisha Puvan
- Division of Dermatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Leng Leng Tan
- Thomson Hospital Kota Damansara, Petaling Jaya, Malaysia
| | - Su-Ming Wong
- Division of Dermatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhenli Kwan
- Division of Dermatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Young AR, Schalka S, Temple RC, Simeone E, Sohn M, Kohlmann C, Morelli M. Innovative digital solution supporting sun protection and vitamin D synthesis by using satellite-based monitoring of solar radiation. Photochem Photobiol Sci 2022; 21:1853-1868. [DOI: 10.1007/s43630-022-00263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
|
25
|
Vitamin D in the Context of Evolution. Nutrients 2022; 14:nu14153018. [PMID: 35893872 PMCID: PMC9332464 DOI: 10.3390/nu14153018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022] Open
Abstract
For at least 1.2 billion years, eukaryotes have been able to synthesize sterols and, therefore, can produce vitamin D when exposed to UV-B. Vitamin D endocrinology was established some 550 million years ago in animals, when the high-affinity nuclear receptor VDR (vitamin D receptor), transport proteins and enzymes for vitamin D metabolism evolved. This enabled vitamin D to regulate, via its target genes, physiological process, the first of which were detoxification and energy metabolism. In this way, vitamin D was enabled to modulate the energy-consuming processes of the innate immune system in its fight against microbes. In the evolving adaptive immune system, vitamin D started to act as a negative regulator of growth, which prevents overboarding reactions of T cells in the context of autoimmune diseases. When, some 400 million years ago, species left the ocean and were exposed to gravitation, vitamin D endocrinology took over the additional role as a major regulator of calcium homeostasis, being important for a stable skeleton. Homo sapiens evolved approximately 300,000 years ago in East Africa and had adapted vitamin D endocrinology to the intensive exposure of the equatorial sun. However, when some 75,000 years ago, when anatomically modern humans started to populate all continents, they also reached regions with seasonally low or no UV-B, i.e., and under these conditions vitamin D became a vitamin.
Collapse
|
26
|
Lozev I, Chernin S, Kandathil LJ, Oliveira N, Tchernev G. Giant advanced SCC of the scalp with cranial bone invasion: surgical removal and simultaneous defect closure with several rotation advancement flaps. J Eur Acad Dermatol Venereol 2022; 36:e791-e792. [PMID: 35620944 DOI: 10.1111/jdv.18272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Ilia Lozev
- Department of Common, Abdominal and Vascular Surgery, Medical Institute of Ministry of Interior, General Skobelev 79, 1606, Sofia, Bulgaria
| | - Svetoslav Chernin
- Department of Common, Abdominal and Vascular Surgery, Medical Institute of Ministry of Interior, General Skobelev 79, 1606, Sofia, Bulgaria
| | | | - Nikhil Oliveira
- Onkoderma- Clinic for Dermatology, Venereology and Dermatologic Surgery, General Skobelev 26
| | - Georgi Tchernev
- Department of Dermatology, Venereology and Dermatologic Surgery, Medical Institute of Ministry of Interior, General Skobelev 79, 1606, Sofia, Bulgaria.,Onkoderma- Clinic for Dermatology, Venereology and Dermatologic Surgery, General Skobelev 26, General Skobelev 79, 1606, Sofia, Bulgaria
| |
Collapse
|
27
|
Casalou C, Moreiras H, Mayatra JM, Fabre A, Tobin DJ. Loss of 'Epidermal Melanin Unit' Integrity in Human Skin During Melanoma-Genesis. Front Oncol 2022; 12:878336. [PMID: 35574390 PMCID: PMC9097079 DOI: 10.3389/fonc.2022.878336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Cutaneous melanoma can be a most challenging neoplasm of high lethality, in part due to its extreme heterogeneity and characteristic aggressive and invasive nature. Indeed, its moniker 'the great masquerader' reflects that not all melanomas are created equal in terms of their originating cellular contexts, but also that melanoma cells in the malignant tumor can adopt a wide range of different cell states and variable organotropism. In this review, we focus on the early phases of melanomagenesis by discussing how the originating pigment cell of the melanocyte lineage can be influenced to embark on a wide range of tumor fates with distinctive microanatomical pathways. In particular, we assess how cells of the melanocyte lineage can differ by maturation status (stem cell; melanoblast; transiently amplifying cell; differentiated; post-mitotic; terminally-differentiated) as well as by micro-environmental niche (in the stratum basale of the epidermis; within skin appendages like hair follicle, eccrine gland, etc). We discuss how the above variable contexts may influence the susceptibility of the epidermal-melanin unit (EMU) to become unstable, which may presage cutaneous melanoma development. We also assess how unique features of follicular-melanin unit(s) (FMUs) can, by contrast, protect melanocytes from melanomagenesis. Lastly, we postulate how variable melanocyte fates in vitiligo, albinism, psoriasis, and alopecia areata may provide new insights into immune-/non immune-mediated outcomes for melanocytes in cutaneous melanin units.
Collapse
Affiliation(s)
- Cristina Casalou
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Hugo Moreiras
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jay M Mayatra
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- Department of Histopathology, St Vincent's University Hospital, Dublin, Ireland.,UCD School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Desmond J Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland.,The Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Pena AM, Decencière E, Brizion S, Sextius P, Koudoro S, Baldeweck T, Tancrède-Bohin E. In vivo melanin 3D quantification and z-epidermal distribution by multiphoton FLIM, phasor and Pseudo-FLIM analyses. Sci Rep 2022; 12:1642. [PMID: 35102172 PMCID: PMC8803839 DOI: 10.1038/s41598-021-03114-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Characterizing melanins in situ and determining their 3D z-epidermal distribution is paramount for understanding physiological/pathological processes of melanin neosynthesis, transfer, degradation or modulation with external UV exposure or cosmetic/pharmaceutical products. Multiphoton fluorescence intensity- and lifetime-based approaches have been shown to afford melanin detection, but how can one quantify melanin in vivo in 3D from multiphoton fluorescence lifetime (FLIM) data, especially since FLIM imaging requires long image acquisition times not compatible with 3D imaging in a clinical setup? We propose an approach combining (i) multiphoton FLIM, (ii) fast image acquisition times, and (iii) a melanin detection method called Pseudo-FLIM, based on slope analysis of autofluorescence intensity decays from temporally binned data. We compare Pseudo-FLIM to FLIM bi-exponential and phasor analyses of synthetic melanin, melanocytes/keratinocytes coculture and in vivo human skin. Using parameters of global 3D epidermal melanin density and z-epidermal distribution profile, we provide first insights into the in vivo knowledge of 3D melanin modulations with constitutive pigmentation versus ethnicity, with seasonality over 1 year and with topical application of retinoic acid or retinol on human skin. Applications of Pseudo-FLIM based melanin detection encompass physiological, pathological, or environmental factors-induced pigmentation modulations up to whitening, anti-photoaging, or photoprotection products evaluation.
Collapse
Affiliation(s)
- Ana-Maria Pena
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France.
| | | | - Sébastien Brizion
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Peggy Sextius
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Serge Koudoro
- MINES ParisTech - PSL Research University, Fontainebleau, France
| | - Thérèse Baldeweck
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, BP22, 93601, Aulnay-sous-Bois, France
| | - Emmanuelle Tancrède-Bohin
- L'Oréal Research and Innovation, Campus Charles Zviak RIO, 9 rue Pierre Dreyfus, Clichy, France
- Service de Dermatologie, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
29
|
Vitamin D and Pigmented Skin. Nutrients 2022; 14:nu14020325. [PMID: 35057504 PMCID: PMC8781604 DOI: 10.3390/nu14020325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
The default supply of vitamin D3 to humans is its endogenous production in UV-B-exposed skin [...].
Collapse
|
30
|
Slominski RM, Sarna T, Płonka PM, Raman C, Brożyna AA, Slominski AT. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front Oncol 2022; 12:842496. [PMID: 35359389 PMCID: PMC8963986 DOI: 10.3389/fonc.2022.842496] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Melanin pigment plays a critical role in the protection against the harmful effects of ultraviolet radiation and other environmental stressors. It is produced by the enzymatic transformation of L-tyrosine to dopaquinone and subsequent chemical and biochemical reactions resulting in the formation of various 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and 5,6-dihydroxyindole (DHI) oligomers-main constituents of eumelanin, and benzothiazine and benzothiazole units of pheomelanin. The biosynthesis of melanin is regulated by sun exposure and by many hormonal factors at the tissue, cellular, and subcellular levels. While the presence of melanin protects against the development of skin cancers including cutaneous melanoma, its presence may be necessary for the malignant transformation of melanocytes. This shows a complex role of melanogenesis in melanoma development defined by chemical properties of melanin and the nature of generating pathways such as eu- and pheomelanogenesis. While eumelanin is believed to provide radioprotection and photoprotection by acting as an efficient antioxidant and sunscreen, pheomelanin, being less photostable, can generate mutagenic environment after exposure to the short-wavelength UVR. Melanogenesis by itself and its highly reactive intermediates show cytotoxic, genotoxic, and mutagenic activities, and it can stimulate glycolysis and hypoxia-inducible factor 1-alpha (HIF-1α) activation, which, combined with their immunosuppressive effects, can lead to melanoma progression and resistance to immunotherapy. On the other hand, melanogenesis-related proteins can be a target for immunotherapy. Interestingly, clinicopathological analyses on advanced melanomas have shown a negative correlation between tumor pigmentation and diseases outcome as defined by overall survival and disease-free time. This indicates a "Yin and Yang" role for melanin and active melanogenesis in melanoma development, progression, and therapy. Furthermore, based on the clinical, experimental data and diverse effects of melanogenesis, we propose that inhibition of melanogenesis in advanced melanotic melanoma represents a realistic adjuvant strategy to enhance immuno-, radio-, and chemotherapy.
Collapse
Affiliation(s)
- Radomir M Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Przemysław M Płonka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Chander Raman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States.,Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL, United States
| |
Collapse
|
31
|
Young AR, Morgan KA, Harrison GI, Lawrence KP, Petersen B, Wulf HC, Philipsen PA. A revised action spectrum for vitamin D synthesis by suberythemal UV radiation exposure in humans in vivo. Proc Natl Acad Sci U S A 2021; 118:e2015867118. [PMID: 34580202 PMCID: PMC8501902 DOI: 10.1073/pnas.2015867118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 11/24/2022] Open
Abstract
Action spectra are important biological weighting functions for risk/benefit analyses of ultraviolet (UV) radiation (UVR) exposure. One important human benefit of exposure to terrestrial solar UVB radiation (∼295 to 315 nm) is the cutaneous synthesis of vitamin D3 that is initiated by the photoconversion of 7-dehydrocholesterol to previtamin D3 An action spectrum for this process that is followed by other nonphotochemical steps to achieve biologically active vitamin D3 has been established from ex vivo data and is widely used, although its validity has been questioned. We tested this action spectrum in vivo by full- or partial-body suberythemal irradiation of 75 healthy young volunteers with five different polychromatic UVR spectra on five serial occasions. Serum 25-hydroxyvitamin D3 [25(OH)D3] levels, as the most accurate measure of vitamin D3 status, were assessed before, during, and after the exposures. These were then used to generate linear dose-response curves that were different for each UVR spectrum. It was established that the previtamin D3 action spectrum was not valid when related to the serum 25(OH)D3 levels, as weighting the UVR doses with this action spectrum did not result in a common regression line unless it was adjusted by a blue shift, with 5 nm giving the best fit. Such a blue shift is in accord with the published in vitro action spectra for vitamin D3 synthesis. Thus, calculations regarding the risk (typically erythema) versus the benefit of exposure to solar UVR based on the ex vivo previtamin D3 action spectrum require revision.
Collapse
Affiliation(s)
- Antony R Young
- St. John's Institute of Dermatology, School of Basic and Biomedical Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom;
| | - Kylie A Morgan
- St. John's Institute of Dermatology, School of Basic and Biomedical Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Graham I Harrison
- St. John's Institute of Dermatology, School of Basic and Biomedical Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Karl P Lawrence
- St. John's Institute of Dermatology, School of Basic and Biomedical Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9RT, United Kingdom
| | - Bibi Petersen
- Global Medical Affairs, LEO Pharma, 2750 Ballerup, Denmark
| | - Hans Christian Wulf
- Department of Dermatology D92, Copenhagen University Hospital - Bispebjerg, DK-2400 Copenhagen, Denmark
| | - Peter A Philipsen
- Department of Dermatology D92, Copenhagen University Hospital - Bispebjerg, DK-2400 Copenhagen, Denmark
| |
Collapse
|
32
|
Eckersley A, Ozols M, O'Connor C, Bell M, Sherratt MJ. Predicting and characterising protein damage in the extracellular matrix. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
33
|
Jablonski NG. The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables. Pigment Cell Melanoma Res 2021; 34:707-729. [PMID: 33825328 PMCID: PMC8359960 DOI: 10.1111/pcmr.12976] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
The primary biological role of human skin pigmentation is as a mediator of penetration of ultraviolet radiation (UVR) into the deep layers of skin and the cutaneous circulation. Since the origin of Homo sapiens, dark, protective constitutive pigmentation and strong tanning abilities have been favored under conditions of high UVR and represent the baseline condition for modern humans. The evolution of partly depigmented skin and variable tanning abilities has occurred multiple times in prehistory, as populations have dispersed into environments with lower and more seasonal UVR regimes, with unique complements of genes and cultural practices. The evolution of extremes of dark pigmentation and depigmentation has been rare and occurred only under conditions of extremely high or low environmental UVR, promoted by positive selection on variant pigmentation genes followed by limited gene flow. Over time, the evolution of human skin pigmentation has been influenced by the nature and course of human dispersals and modifications of cultural practices, which have modified the nature and actions of skin pigmentation genes. Throughout most of prehistory and history, the evolution of human skin pigmentation has been a contingent and non-deterministic process.
Collapse
Affiliation(s)
- Nina G. Jablonski
- Department of AnthropologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
34
|
Jiang S, Liao ZK, Jia HY, Liu XM, Wan J, Lei TC. The regional distribution of melanosomes in the epidermis affords a localized intensive photoprotection for basal keratinocyte stem cells. J Dermatol Sci 2021; 103:130-134. [PMID: 34238637 DOI: 10.1016/j.jdermsci.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 06/27/2021] [Indexed: 01/06/2023]
Abstract
Human skin is a highly efficient self-renewing barrier that is critical to withstanding environmental insults. Undifferentiated keratinocyte stem cells reside in the basal layer of the epidermis and in hair follicles that continuously give rise to progenies ensuring epidermal turnover and renewal. Ultraviolet (UV) radiation is a proven cause of skin keratinocyte cancers, which preferentially occur at sun-exposed areas of the skin. Fortunately, melanocytes produce melanin that is packaged in specific organelles (termed melanosomes) that are then delivered to nearby keratinocytes, endowing the recipient cells with photoprotection. It has long been thought that melanosome transfer takes place stochastically from melanocytes to keratinocytes via an as-yet-unrecognized manner. However, recent studies have indicated that melanosomes are distributed regionally in the basal layer of the skin, affording localized intensive photoprotection for progenitor keratinocytes and stem cells that reside in the microenvironment of the basal epidermis. In this review, we summarize current knowledge about molecular and cellular mechanisms that are responsible for the selective transfer and exclusive degradation of melanosomes in the epidermis, emphasizing implications for skin carcinogenesis.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi-Kai Liao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hai-Yan Jia
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ming Liu
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Wan
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tie-Chi Lei
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
35
|
Passeron T, Krutmann J, Andersen ML, Katta R, Zouboulis CC. Clinical and biological impact of the exposome on the skin. J Eur Acad Dermatol Venereol 2021; 34 Suppl 4:4-25. [PMID: 32677068 DOI: 10.1111/jdv.16614] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
The skin exposome is defined as the totality of environmental exposures over the life course that can induce or modify various skin conditions. Here, we review the impact on the skin of solar exposure, air pollution, hormones, nutrition and psychological factors. Photoageing, photocarcinogenesis and pigmentary changes are well-established consequences of chronic exposure of the skin to solar radiation. Exposure to traffic-related air pollution contributes to skin ageing. Particulate matter and nitrogen dioxide cause skin pigmentation/lentigines, while ozone causes wrinkles and has an impact on atopic eczema. Human skin is a major target of hormones, and they exhibit a wide range of biological activities on the skin. Hormones decline with advancing age influencing skin ageing. Nutrition has an impact on numerous biochemical processes, including oxidation, inflammation and glycation, which may result in clinical effects, including modification of the course of skin ageing and photoageing. Stress and lack of sleep are known to contribute to a pro-inflammatory state, which, in turn, affects the integrity of extracellular matrix proteins, in particular collagen. Hormone dysregulation, malnutrition and stress may contribute to inflammatory skin disorders, such as atopic dermatitis, psoriasis, acne and rosacea.
Collapse
Affiliation(s)
- T Passeron
- Côte d'Azur University, Department of Dermatology, University Hospital Centre Nice, Nice, France.,Côte d'Azur University, INSERM U1065, C3M, Nice, France
| | - J Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - M L Andersen
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP)/Escola Paulista de Medicina, São Paulo, Brazil
| | - R Katta
- Volunteer Clinical Faculty, Baylor College of Medicine, McGovern Medical School at UT Health, Houston, TX, USA
| | - C C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| |
Collapse
|
36
|
Shi X, Wu J, Lang X, Wang C, Bai Y, Riley DG, Liu L, Ma X. Comparative transcriptome and histological analyses provide insights into the skin pigmentation in Minxian black fur sheep (Ovis aries). PeerJ 2021; 9:e11122. [PMID: 33986980 PMCID: PMC8086576 DOI: 10.7717/peerj.11122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background Minxian black fur (MBF) sheep are found in the northwestern parts of China. These sheep have developed several special traits. Skin color is a phenotype subject to strong natural selection and diverse skin colors are likely a consequence of differences in gene regulation. Methods Skin structure, color differences, and gene expression (determined by RNA sequencing) were evaluated the Minxian black fur and Small-tail Han sheep (n = 3 each group), which are both native Chinese sheep breeds. Results Small-tail Han sheep have a thicker skin and dermis than the Minxian black fur sheep (P < 0.01); however, the quantity of melanin granules is greater (P < 0.01) in Minxian black fur sheep with a more extensive distribution in skin tissue and hair follicles. One hundred thirty-three differentially expressed genes were significantly associated with 37 ontological terms and two critical KEGG pathways for pigmentation (“tyrosine metabolism” and “melanogenesis” pathways). Important genes from those pathways with known involvement in pigmentation included OCA2 melanosomal transmembrane protein (OCA2), dopachrome tautomerase (DCT), tyrosinase (TYR) and tyrosinase related protein (TYRP1), melanocortin 1 receptor (MC1R), and premelanosome protein (PMEL). The results from our histological and transcriptome analyses will form a foundation for additional investigation into the genetic basis and regulation of pigmentation in these sheep breeds.
Collapse
Affiliation(s)
- Xiaolei Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Jianping Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xia Lang
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Cailian Wang
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.,Key Laboratory for Sheep, Goat, and Cattle Germplasm and Straw Feed in Gansu Province, Lanzhou, Gansu Province, China
| | - Yan Bai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - David Greg Riley
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Lishan Liu
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Xiaoming Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
37
|
Castellano-Pellicena I, Morrison CG, Bell M, O’Connor C, Tobin DJ. Melanin Distribution in Human Skin: Influence of Cytoskeletal, Polarity, and Centrosome-Related Machinery of Stratum basale Keratinocytes. Int J Mol Sci 2021; 22:ijms22063143. [PMID: 33808676 PMCID: PMC8003549 DOI: 10.3390/ijms22063143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Melanin granules cluster within supra-nuclear caps in basal keratinocytes (KCs) of the human epidermis, where they protect KC genomic DNA against ultraviolet radiation (UVR) damage. While much is known about melanogenesis in melanocytes (MCs) and a moderate amount about melanin transfer from MC to KC, we know little about the fate of melanin once inside KCs. We recently reported that melanin fate in progenitor KCs is regulated by rare asymmetric organelle movement during mitosis. Here, we explore the role of actin, microtubules, and centrosome-associated machinery in distributing melanin within KCs. Short-term cultures of human skin explants were treated with cytochalasin-B and nocodazole to target actin filaments and microtubules, respectively. Treatment effects on melanin distribution were assessed by the Warthin-Starry stain, on centrosome-associated proteins by immunofluorescence microscopy, and on co-localisation with melanin granules by brightfield microscopy. Cytochalasin-B treatment disassembled supra-nuclear melanin caps, while nocodazole treatment moved melanin from the apical to basal KC domain. Centrosome and centriolar satellite-associated proteins showed a high degree of co-localisation with melanin. Thus, once melanin granules are transferred to KCs, their preferred apical distribution appears to be facilitated by coordinated movement of centrosomes and centriolar satellites. This mechanism may control melanin's strategic position within UVR-exposed KCs.
Collapse
Affiliation(s)
- Irene Castellano-Pellicena
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, H91 W2TY Galway, Ireland;
| | - Mike Bell
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Clare O’Connor
- Walgreens Boots Alliance, Nottingham NG90 1BS, UK; (M.B.); (C.O.)
| | - Desmond J. Tobin
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland;
- The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
- Correspondence: ; Tel.: +353-(0)-1-716-6262
| |
Collapse
|
38
|
Fajuyigbe D, Douki T, Dijk A, Sarkany RPE, Young AR. Dark cyclobutane pyrimidine dimers are formed in the epidermis of Fitzpatrick skin types I/II and VI in vivo after exposure to solar‐simulated radiation. Pigment Cell Melanoma Res 2021; 34:575-584. [DOI: 10.1111/pcmr.12956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | - Antony R. Young
- St John’s Institute of Dermatology King’s College London London UK
| |
Collapse
|
39
|
Neville JJ, Palmieri T, Young AR. Physical Determinants of Vitamin D Photosynthesis: A Review. JBMR Plus 2021; 5:e10460. [PMID: 33553995 PMCID: PMC7839826 DOI: 10.1002/jbm4.10460] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Vitamin D synthesis by exposure of skin to solar ultraviolet radiation (UVR) provides the majority of this hormone that is essential for bone development and maintenance but may be important for many other health outcomes. This process, which is the only well-established benefit of solar UVR exposure, depends on many factors including genetics, age, health, and behavior. However, the most important factor is the quantity and quality of UVR reaching the skin. Vitamin D synthesis specifically requires ultraviolet B (UVB) radiation that is the minority component (<5%) of solar UVR. This waveband is also the most important for the adverse effects of solar exposure. The most obvious of which is sunburn (erythema), but UVB is also the main cause of DNA damage to the skin that is a prerequisite for most skin cancers. UVB at the Earth's surface depends on many physical and temporal factors such as latitude, altitude, season, and weather. Personal, cultural, and behavioral factors are also important. These include skin melanin, clothing, body surface area exposed, holiday habits, and sunscreen use. There is considerable disagreement in the literature about the role of some of these factors, possibly because some studies have been done by researchers with little understanding of photobiology. It can be argued that vitamin D supplementation obviates the need for solar exposure, but many studies have shown little benefit from this approach for a wide range of health outcomes. There is also increasing evidence that such exposure offers health benefits independently of vitamin D: the most important of which is blood-pressure reduction. In any case, public health advice must optimize risk versus benefit for solar exposure. It is fortunate that the individual UVB doses necessary for maintaining optimal vitamin D status are lower than those for sunburn, irrespective of skin melanin. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jonathan J Neville
- St John's Institute of Dermatology, School of Basic & Medical Biosciences King's College London London United Kingdom
| | - Tommaso Palmieri
- St John's Institute of Dermatology, School of Basic & Medical Biosciences King's College London London United Kingdom
| | - Antony R Young
- St John's Institute of Dermatology, School of Basic & Medical Biosciences King's College London London United Kingdom
| |
Collapse
|
40
|
Montero-Vilchez T, Segura-Fernández-Nogueras MV, Pérez-Rodríguez I, Soler-Gongora M, Martinez-Lopez A, Fernández-González A, Molina-Leyva A, Arias-Santiago S. Skin Barrier Function in Psoriasis and Atopic Dermatitis: Transepidermal Water Loss and Temperature as Useful Tools to Assess Disease Severity. J Clin Med 2021; 10:jcm10020359. [PMID: 33477944 PMCID: PMC7833436 DOI: 10.3390/jcm10020359] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 01/05/2023] Open
Abstract
Multiple diagnostic tools are used to evaluate psoriasis and atopic dermatitis (AD) severity, but most of them are based on subjective components. Transepidermal water loss (TEWL) and temperature are skin barrier function parameters that can be objectively measured and could help clinicians to evaluate disease severity accurately. Thus, the aims of this study are: (1) to compare skin barrier function between healthy skin, psoriatic skin and AD skin; and (2) to assess if skin barrier function parameters could predict disease severity. A cross-sectional study was designed, and epidermal barrier function parameters were measured. The study included 314 participants: 157 healthy individuals, 92 psoriatic patients, and 65 atopic dermatitis patients. TEWL was significantly higher, while stratum corneum hydration (SCH) (8.71 vs. 38.43 vs. 44.39 Arbitrary Units (AU)) was lower at psoriatic plaques than at uninvolved psoriatic skin and healthy controls. Patients with both TEWL > 13.85 g·m−2h−1 and temperature > 30.85 °C presented a moderate/severe psoriasis (psoriasis area severity index (PASI) ≥ 7), with a specificity of 76.3%. TEWL (28.68 vs. 13.15 vs. 11.60 g·m−2 h−1) and temperature were significantly higher, while SCH (25.20 vs. 40.95 vs. 50.73 AU) was lower at AD eczematous lesions than uninvolved AD skin and healthy controls. Patients with a temperature > 31.75 °C presented a moderate/severe AD (SCORing Atopic Dermatitis (SCORAD) ≥ 37) with a sensitivity of 81.8%. In conclusion, temperature and TEWL values may help clinicians to determine disease severity and select patients who need intensive treatment.
Collapse
Affiliation(s)
- Trinidad Montero-Vilchez
- Dermatology Department, Hospital Universitario Virgen de las Nieves, Avenida de Madrid, 15, 18012 Granada, Spain; (T.M.-V.); (A.M.-L.); (S.A.-S.)
- Instituto de Investigación Biosanitaria GRANADA, 18012 Granada, Spain;
| | | | - Isabel Pérez-Rodríguez
- Dermatology Department, Faculty of Medicine, University of Granada,18001 Granada, Spain; (M.-V.S.-F.-N.); (I.P.-R.); (M.S.-G.)
| | - Miguel Soler-Gongora
- Dermatology Department, Faculty of Medicine, University of Granada,18001 Granada, Spain; (M.-V.S.-F.-N.); (I.P.-R.); (M.S.-G.)
| | - Antonio Martinez-Lopez
- Dermatology Department, Hospital Universitario Virgen de las Nieves, Avenida de Madrid, 15, 18012 Granada, Spain; (T.M.-V.); (A.M.-L.); (S.A.-S.)
- Instituto de Investigación Biosanitaria GRANADA, 18012 Granada, Spain;
| | | | - Alejandro Molina-Leyva
- Dermatology Department, Hospital Universitario Virgen de las Nieves, Avenida de Madrid, 15, 18012 Granada, Spain; (T.M.-V.); (A.M.-L.); (S.A.-S.)
- Instituto de Investigación Biosanitaria GRANADA, 18012 Granada, Spain;
- Correspondence: ; Tel.: +34-958-023-422
| | - Salvador Arias-Santiago
- Dermatology Department, Hospital Universitario Virgen de las Nieves, Avenida de Madrid, 15, 18012 Granada, Spain; (T.M.-V.); (A.M.-L.); (S.A.-S.)
- Instituto de Investigación Biosanitaria GRANADA, 18012 Granada, Spain;
- Dermatology Department, Faculty of Medicine, University of Granada,18001 Granada, Spain; (M.-V.S.-F.-N.); (I.P.-R.); (M.S.-G.)
| |
Collapse
|
41
|
Free, soluble-bound and insoluble-bound phenolics and their bioactivity in raspberry pomace. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.109995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Okafor OC, Onyishi NT. Primary cutaneous malignancies in nonalbino and albino Africans. Int J Dermatol 2020; 60:222-228. [PMID: 33247861 DOI: 10.1111/ijd.15312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/17/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The pigmented skin of black Africans has been credited with reduction in risk of skin cancer. African albinos have inherited defects in skin melanin deposition, which predisposes them to ultraviolet radiation-induced cutaneous carcinogenesis. We compared the manifestation of skin cancers between albino and nonalbino Africans aiming to describe the effect of pigmentation or lack of it on the epidemiological characteristics of skin cancer in Africans. MATERIALS AND METHODS Cutaneous malignancies seen in our institution over a 19-year period were analyzed using SPSS statistical software. Results were presented in tables of frequencies. Continuous variables were presented as mean with standard deviation and compared with independent sample t-test and ANOVA. Alpha level of <0.05 was considered significant. RESULT There were 86 albinos and 364 nonalbinos in the study. Mean age (SD) at presentation for albinos was 41 (14) years and for nonalbinos 52 (17) years. Albinos had most tumors in the head and neck region and upper extremities. For nonalbinos, lower extremities followed by anogenital region were the most common body site of cutaneous malignancy. Squamous cell carcinoma was the most common type of skin cancer in the albino and nonalbino patients. No case of malignant melanoma was diagnosed in the albino group. CONCLUSION Albino skin cancer patients were much younger than nonalbinos. Albinos and nonalbinos differ in body site distribution of skin cancers. Distribution of keratinocyte carcinomas in albinos parallels the reported findings in Caucasians. Albinos may have some level of protection from cutaneous melanoma in spite of hypomelanized skin.
Collapse
|
43
|
Solano F. Metabolism and Functions of Amino Acids in the Skin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:187-199. [PMID: 32761577 DOI: 10.1007/978-3-030-45328-2_11] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amino acids are the building blocks of all proteins, including the most abundant fibrous proteins in the skin, as keratins, collagen and elastin. Sagging and wrinkled skin are features of chronic sun-damaged and aged uncared skin, and they are mainly associated with the deterioration of collagen and elastic fibers. The maintenance of skin structures by self-repair processes is essential to skin health. Thus, amino acids significantly impact the appearance of the skin. Amino acids are important nutrients required for (a) wound healing promotion and repair of the damaged skin; (b) acid-base balance and water retention in cellular layers, such as stratum corneum; (c) protection against sunlight damage; (d) maintenance of an appropriate skin microbiome. This review highlights the contribution of all proteinogenic amino acids and some related metabolites to the skin structures as constituents of the main cutaneous proteins or as signaling molecules for the regulation and determination of skin physiology.
Collapse
Affiliation(s)
- F Solano
- Department Biochemistry and Molecular Biology B and Immunology, School of Medicine, LAIB-IMIB University of Murcia, Murcia, Spain.
| |
Collapse
|
44
|
Hanel A, Carlberg C. Skin colour and vitamin D: An update. Exp Dermatol 2020; 29:864-875. [PMID: 32621306 DOI: 10.1111/exd.14142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/14/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Homo sapiens evolved in East Africa and had dark skin, hair, and eyes, in order to protect against deleterious consequences of intensive UV radiation at equatorial latitudes. Intensive skin pigmentation was thought to bear the risk of inefficient vitamin D3 synthesis in the skin. This initiated the hypothesis that within the past 75 000 years, in which humans migrated to higher latitudes in Asia and Europe, the need for vitamin D3 synthesis served as an evolutionary driver for skin lightening. In this review, we summarize the recent archeogenomic reconstruction of population admixture in Europe and demonstrate that skin lightening happened as late as 5000 years ago through immigration of lighter pigmented populations from western Anatolia and the Russian steppe but not primarily via evolutionary pressure for vitamin D3 synthesis. We show that variations in genes encoding for proteins being responsible for the transport, metabolism and signalling of vitamin D provide alternative mechanisms of adaptation to a life in northern latitudes without suffering from consequences of vitamin D deficiency. This includes hypotheses explaining differences in the vitamin D status and response index of European populations.
Collapse
Affiliation(s)
- Andrea Hanel
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
45
|
Tancrède-Bohin E, Baldeweck T, Brizion S, Decencière E, Victorin S, Ngo B, Raynaud E, Souverain L, Bagot M, Pena AM. In vivo multiphoton imaging for non-invasive time course assessment of retinoids effects on human skin. Skin Res Technol 2020; 26:794-803. [PMID: 32713074 PMCID: PMC7754381 DOI: 10.1111/srt.12877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/22/2020] [Indexed: 01/09/2023]
Abstract
Background In vivo multiphoton imaging and automatic 3D image processing tools provide quantitative information on human skin constituents. These multiphoton‐based tools allowed evidencing retinoids epidermal effects in the occlusive patch test protocol developed for antiaging products screening. This study aimed at investigating their relevance for non‐invasive, time course assessment of retinoids cutaneous effects under real‐life conditions for one year. Materials and Methods Thirty women, 55‐65 y, applied either retinol (RO 0.3%) or retinoic acid (RA 0.025%) on one forearm dorsal side versus a control product on the other forearm once a day for 1 year. In vivo multiphoton imaging was performed every three months, and biopsies were taken after 1 year. Epidermal thickness and dermal‐epidermal junction undulation were estimated in 3D with multiphoton and in 2D with histology, whereas global melanin density and its z‐epidermal distribution were estimated using 3D multiphoton image processing tools. Results Main results after one year were as follows: a) epidermal thickening with RO (+30%); b) slight increase in dermal‐epidermal junction undulation with RO; c) slight decrease in 3D melanin density with RA; d) limitation of the melanin ascent observed with seasonality and time within supra‐basal layers with both retinoids, using multiphoton 3D‐melanin z‐epidermal profile. Conclusions With a novel 3D descriptor of melanin z‐epidermal distribution, in vivo multiphoton imaging allows demonstrating that daily usage of retinoids counteracts aging by acting not only on epidermal morphology, but also on melanin that is shown to accumulate in the supra‐basal layers with time.
Collapse
Affiliation(s)
- Emmanuelle Tancrède-Bohin
- L'Oréal Research and Innovation, Clichy, France.,Service de Dermatologie, Hôpital Saint-Louis, Paris, France
| | | | | | - Etienne Decencière
- Center for Mathematical Morphology, MINES ParisTech - PSL Research University, Fontainebleau, France
| | | | - Blandine Ngo
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | - Luc Souverain
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Martine Bagot
- Service de Dermatologie, Hôpital Saint-Louis, Paris, France.,Inserm U976, Hôpital Saint-Louis, Université de Paris, Paris, France
| | - Ana-Maria Pena
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| |
Collapse
|
46
|
Boo YC. Emerging Strategies to Protect the Skin from Ultraviolet Rays Using Plant-Derived Materials. Antioxidants (Basel) 2020; 9:E637. [PMID: 32708455 PMCID: PMC7402153 DOI: 10.3390/antiox9070637] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sunlight contains a significant amount of ultraviolet (UV) ray, which leads to various effects on homeostasis in the body. Defense strategies to protect from UV rays have been extensively studied, as sunburn, photoaging, and photocarcinogenesis are caused by excessive UV exposure. The primary lines of defense against UV damage are melanin and trans-urocanic acid, which are distributed in the stratum corneum. UV rays that pass beyond these lines of defense can lead to oxidative damage. However, cells detect changes due to UV rays as early as possible and initiate cell signaling processes to prevent the occurrence of damage and repair the already occurred damage. Cosmetic and dermatology experts recommend using a sunscreen product to prevent UV-induced damage. A variety of strategies using antioxidants and anti-inflammatory agents have also been developed to complement the skin's defenses against UV rays. Researchers have examined the use of plant-derived materials to alleviate the occurrence of skin aging, diseases, and cancer caused by UV rays. Furthermore, studies are also underway to determine how to promote melanin production to protect from UV-induced skin damage. This review provides discussion of the damage that occurs in the skin due to UV light and describes potential defense strategies using plant-derived materials. This review aims to assist researchers in understanding the current research in this area and to potentially plan future studies.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, BK21 Plus KNU Biomedical Convergence Program, Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
47
|
Dorr MM, Guignard R, Auger FA, Rochette PJ. The use of tissue-engineered skin to demonstrate the negative effect of CXCL5 on epidermal ultraviolet radiation-induced cyclobutane pyrimidine dimer repair efficiency. Br J Dermatol 2020; 184:123-132. [PMID: 32271940 DOI: 10.1111/bjd.19117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Ultraviolet radiation (UVR) is responsible for keratinocyte cancers through the induction of mutagenic cyclobutane pyrimidine dimers (CPDs). Many factors influence CPD repair in epidermal keratinocytes, and a better understanding of those factors might lead to prevention strategies against skin cancer. OBJECTIVES To evaluate the impact of dermal components on epidermal CPD repair efficiency and to investigate potential factors responsible for the dermal-epidermal crosstalk modulating UVR-induced DNA damage repair in keratinocytes. METHODS A model of self-assembled tissue-engineered skin containing human primary keratinocytes and fibroblasts was used in this study. RESULTS We showed that CPD repair in keratinocytes is positively influenced by the presence of a dermis. We investigated the secretome and found that the cytokine CXCL5 is virtually absent from the culture medium of reconstructed skin, compared with media from fibroblasts and keratinocytes alone. By modulating CXCL5 levels in culture media of keratinocytes, we have shown that CXCL5 is an inhibitor of CPD repair. CONCLUSIONS This work outlines the impact of the secreted dermal components on epidermal UVR-induced DNA damage repair and sheds light on a novel role of CXCL5 in CPD repair.
Collapse
Affiliation(s)
- M M Dorr
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - R Guignard
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - F A Auger
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada
| | - P J Rochette
- Centre de Recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Québec, QC, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval - LOEX, Québec, QC, Canada.,Université Laval, Faculté de Médecine, Département d'Ophtalmologie, Université Laval, Québec, QC, Canada
| |
Collapse
|
48
|
Douki T. Oxidative Stress and Genotoxicity in Melanoma Induction: Impact on Repair Rather Than Formation of DNA Damage? Photochem Photobiol 2020; 96:962-972. [PMID: 32367509 DOI: 10.1111/php.13278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022]
Abstract
Keratinocytes and melanocytes, two cutaneous cell types located within the epidermis, are the origin of most skin cancers, namely carcinomas and melanomas. These two types of tumors differ in many ways. First, carcinomas are almost 10 times more frequent than melanomas. In addition, the affected cellular pathways, the mutated genes and the metastatic properties of the tumors are not the same. This review addresses another specificity of melanomas: the role of photo-oxidative stress. UVA efficiently produces reactive oxygen species in melanocytes, which results in more frequent oxidatively generated DNA lesions than in other cell types. The question of the respective contribution of UVB-induced pyrimidine dimers and UVA-mediated oxidatively generated lesions to mutagenesis in melanoma remains open. Recent results based on next-generation sequencing techniques strongly suggest that the mutational signature associated with pyrimidine dimers is overwhelming in melanomas like in skin carcinomas. UVA-induced oxidative stress may yet be indirectly linked to the genotoxic pathways involved in melanoma through its ability to hamper DNA repair activities.
Collapse
Affiliation(s)
- Thierry Douki
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France
| |
Collapse
|
49
|
Langton AK, Hann M, Costello P, Halai P, Sisto Alessi César S, Lien-Lun Chien A, Kang S, Griffiths CEM, Sherratt MJ, Watson REB. Heterogeneity of fibrillin-rich microfibrils extracted from human skin of diverse ethnicity. J Anat 2020; 237:478-486. [PMID: 32452018 DOI: 10.1111/joa.13217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
The dermal elastic fibre network is the primary effector of skin elasticity, enabling it to extend and recoil many times over the lifetime of the individual. Fibrillin-rich microfibrils (FRMs) constitute integral components of the elastic fibre network, with their distribution showing differential deposition in the papillary dermis across individuals of diverse skin ethnicity. Despite these differential findings in histological presentation, it is not known if skin ethnicity influences FRM ultrastructure. FRMs are evolutionarily highly conserved from jellyfish to man and, regardless of tissue type or species, isolated FRMs have a characteristic 'beads-on-a-string' ultrastructural appearance, with an average inter-bead distance (or periodicity) of 56 nm. Here, skin biopsies were obtained from the photoprotected buttock of healthy volunteers (18-27 years; African: n = 5; European: n = 5), and FRMs were isolated from the superficial papillary dermis and deeper reticular dermis and imaged by atomic force microscopy. In the reticular dermis, there was no significant difference in FRM ultrastructure between European and African participants. In contrast, in the more superficial papillary dermis, inter-bead periodicity was significantly larger for FRMs extracted from European participants than from African participants by 2.20 nm (p < .001). We next assessed whether these differences in FRM ultrastructure were present during early postnatal development by characterizing FRMs from full-thickness neonatal foreskin. Analysis of FRM periodicity identified no significant difference between neonatal cohorts (p = .865). These data suggest that at birth, FRMs are developmentally invariant. However, in adults of diverse skin ethnicity, there is a deviation in ultrastructure for the papillary dermal FRMs that may be acquired during the passage of time from child to adulthood. Understanding the mechanism by which this difference in papillary dermal FRMs arises warrants further study.
Collapse
Affiliation(s)
- Abigail K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Mark Hann
- Centre for Biostatistics, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Patrick Costello
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Poonam Halai
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | | | - Anna Lien-Lun Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher E M Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology and Regenerative Medicine, The University of Manchester, Manchester, UK
| | - Rachel E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
50
|
Solano F. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules 2020; 25:E1537. [PMID: 32230973 PMCID: PMC7180973 DOI: 10.3390/molecules25071537] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
Direct sun exposure is one of the most aggressive factors for human skin. Sun radiation contains a range of the electromagnetic spectrum including UV light. In addition to the stratospheric ozone layer filtering the most harmful UVC, human skin contains a photoprotective pigment called melanin to protect from UVB, UVA, and blue visible light. This pigment is a redox UV-absorbing agent and functions as a shield to prevent direct UV action on the DNA of epidermal cells. In addition, melanin indirectly scavenges reactive oxygenated species (ROS) formed during the UV-inducing oxidative stress on the skin. The amounts of melanin in the skin depend on the phototype. In most phenotypes, endogenous melanin is not enough for full protection, especially in the summertime. Thus, photoprotective molecules should be added to commercial sunscreens. These molecules should show UV-absorbing capacity to complement the intrinsic photoprotection of the cutaneous natural pigment. This review deals with (a) the use of exogenous melanin or melanin-related compounds to mimic endogenous melanin and (b) the use of a number of natural compounds from plants and marine organisms that can act as UV filters and ROS scavengers. These agents have antioxidant properties, but this feature usually is associated to skin-lightening action. In contrast, good photoprotectors would be able to enhance natural cutaneous pigmentation. This review examines flavonoids, one of the main groups of these agents, as well as new promising compounds with other chemical structures recently obtained from marine organisms.
Collapse
Affiliation(s)
- Francisco Solano
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine and LAIB-IMIB, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|