1
|
Kang Y, Jin Q, Zhou M, Zheng H, Li D, Wang X, Zhou J, Wang Y, Lv J. Specialized pro-resolving mediators in neutrophil apoptosis regulation: unlocking novel therapeutic potential in kidney diseases. Front Immunol 2025; 16:1589923. [PMID: 40443675 PMCID: PMC12119277 DOI: 10.3389/fimmu.2025.1589923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
Kidney diseases represent a diverse group of disorders with pathogenic mechanisms involving multiple pathological processes, including inflammation, immunity, and cell death. Neutrophils, as primary effector cells in inflammatory immune responses, participate in defending against renal infection and injury by releasing reactive oxygen species, proteases, and cytokines. However, persistent neutrophil activation is considered a crucial driver of kidney disease progression. Neutrophil apoptosis represents a critical turning point between inflammatory progression and resolution. Specialized pro-resolving mediators (SPMs) are endogenous anti-inflammatory mediators that play a critical role in resolving inflammation. They not only induce neutrophil programmed cell death and promote macrophage-mediated efferocytosis of apoptotic cells but also inhibit neutrophil infiltration and degranulation, ultimately facilitating the restoration of inflammatory microenvironment and tissue homeostasis. This review concentrates on elucidating the mechanisms by which SPMs regulate neutrophil apoptosis and systematically demonstrates their potential as novel therapeutic targets in kidney diseases.
Collapse
Affiliation(s)
- Yi Kang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Mengqi Zhou
- Department of Traditional Chinese Medicine, Beijing Puren Hospital, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Danwen Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Xuezhe Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Zhou
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lv
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Fisk HL, Shaikh SR. Emerging mechanisms of organ crosstalk: The role of oxylipins. NUTR BULL 2025; 50:12-29. [PMID: 39659132 PMCID: PMC11815618 DOI: 10.1111/nbu.12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/22/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
There is growing interest in the role of oxylipins in the pathophysiology of several diseases. This is accompanied by a limited but evolving evidence base describing augmented oxylipin concentrations in a range of complications including cardiovascular disease, obesity, liver disease and neurological disorders. Despite this, literature describing oxylipin profiles in blood and multiple organs is inconsistent and the mechanisms by which these profiles are altered, and the relationships between localised tissue and circulating oxylipins are poorly understood. Inflammation and immune response associated with disease requires communication across organs and physiological systems. For example, inflammation and comorbidities associated with obesity extend beyond the adipose tissue and affect the vascular, hepatobiliary and digestive systems amongst others. Communication between organs and physiological systems is implicated in the progression of disease as well as the maintenance of homeostasis. There is emerging evidence for the role of oxylipins as a mechanism of communication in organ crosstalk but the role of these in orchestrating multiple organ and system responses is poorly understood. Herein, we review evidence to support and describe the role of oxylipins in organ crosstalk via the cardiosplenic and gut-link axis. In addition, we review emerging mechanisms of oxylipin regulation, the gut microbiome and modification using nutritional intervention. Finally, we describe future perspectives for addressing challenges in measurement and interpretation of oxylipin research with focus on the host genome as a modifier of oxylipin profiles and response to dietary lipid intervention.
Collapse
Affiliation(s)
- Helena Lucy Fisk
- Faculty of Medicine, School of Human Development and Health, Southampton General HospitalUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity Hospital Southampton NHS Foundation Trust and University of SouthamptonSouthamptonUK
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
3
|
Soták M, Clark M, Suur BE, Börgeson E. Inflammation and resolution in obesity. Nat Rev Endocrinol 2025; 21:45-61. [PMID: 39448830 DOI: 10.1038/s41574-024-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Inflammation is an essential physiological defence mechanism, but prolonged or excessive inflammation can cause disease. Indeed, unresolved systemic and adipose tissue inflammation drives obesity-related cardiovascular disease and type 2 diabetes mellitus. Drugs targeting pro-inflammatory cytokine pathways or inflammasome activation have been approved for clinical use for the past two decades. However, potentially serious adverse effects, such as drug-induced weight gain and increased susceptibility to infections, prevented their wider clinical implementation. Furthermore, these drugs do not modulate the resolution phase of inflammation. This phase is an active process orchestrated by specialized pro-resolving mediators, such as lipoxins, and other endogenous resolution mechanisms. Pro-resolving mediators mitigate inflammation and development of obesity-related disease, for instance, alleviating insulin resistance and atherosclerosis in experimental disease models, so mechanisms to modulate their activity are, therefore, of great therapeutic interest. Here, we review current clinical attempts to either target pro-inflammatory mediators (IL-1β, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome, tumour necrosis factor (TNF) and IL-6) or utilize endogenous resolution pathways to reduce obesity-related inflammation and improve cardiometabolic outcomes. A remaining challenge in the field is to establish more precise biomarkers that can differentiate between acute and chronic inflammation and to assess the functionality of individual leukocyte populations. Such advancements would improve the monitoring of drug effects and support personalized treatment strategies that battle obesity-related inflammation and cardiometabolic disease.
Collapse
Affiliation(s)
- Matúš Soták
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Madison Clark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bianca E Suur
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Emma Börgeson
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Ağagündüz D, Yeşildemir Ö, Koçyiğit E, Koçak T, Özen Ünaldı B, Ayakdaş G, Budán F. Oxylipins Derived from PUFAs in Cardiometabolic Diseases: Mechanism of Actions and Possible Nutritional Interactions. Nutrients 2024; 16:3812. [PMID: 39599599 PMCID: PMC11597274 DOI: 10.3390/nu16223812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Oxylipins are oxidized fatty acids, both saturated and unsaturated, formed through pathways that involve singlet oxygen or dioxygen-mediated oxygenation reactions and are primarily produced by enzyme families such as cyclooxygenases, lipoxygenases, and cytochrome P450. These lipid-based complex bioactive molecules are pivotal signal mediators, acting in a hormone-like manner in the pathophysiology of numerous diseases, especially cardiometabolic diseases via modulating plenty of mechanisms. It has been reported that omega-6 and omega-3 oxylipins are important novel biomarkers of cardiometabolic diseases. Moreover, collected literature has noted that diet and dietary components, especially fatty acids, can modulate these oxygenated lipid products since they are mainly derived from dietary omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) or linoleic acid and α-linolenic by elongation and desaturation pathways. This comprehensive review aims to examine their correlations to cardiometabolic diseases and how diets modulate oxylipins. Also, some aspects of developing new biomarkers and therapeutical utilization are detailed in this review.
Collapse
Affiliation(s)
- Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490 Ankara, Türkiye
| | - Özge Yeşildemir
- Department of Nutrition and Dietetics, Bursa Uludag University, Görükle Campus, 16059 Bursa, Türkiye;
| | - Emine Koçyiğit
- Department of Nutrition and Dietetics, Ordu University, Cumhuriyet Yerleşkesi, 52200 Ordu, Türkiye;
| | - Tevfik Koçak
- Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhanevî Kampüsü, 29100 Gümüşhane, Türkiye;
| | - Buket Özen Ünaldı
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Türkiye;
| | - Gamze Ayakdaş
- Department of Nutrition and Dietetics, Acıbadem University, Kerem Aydınlar Campus, 34752 İstanbul, Türkiye;
| | - Ferenc Budán
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
5
|
Kim N, Shin HY. Deciphering the Potential Role of Specialized Pro-Resolving Mediators in Obesity-Associated Metabolic Disorders. Int J Mol Sci 2024; 25:9598. [PMID: 39273541 PMCID: PMC11395256 DOI: 10.3390/ijms25179598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity-related metabolic disorders, including diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease, increasingly threaten global health. Uncontrolled inflammation is a key pathophysiological factor in many of these conditions. In the human body, inflammatory responses generate specialized pro-resolving mediators (SPMs), which are crucial for resolving inflammation and restoring tissue balance. SPMs derived from omega-3 polyunsaturated fatty acids (n-3 PUFAs) such as resolvins, protectins, and maresins hold promise in attenuating the chronic inflammatory diseases associated with lipid metabolism disorders. Recent research has highlighted the therapeutic potential of n-3 PUFA-derived metabolites in addressing these metabolic disorders. However, the understanding of the pharmacological aspects of SPMs, particularly in obesity-related metabolic disorders, remains limited. This review comprehensively summarizes recent advances in understanding the role of SPMs in resolving metabolic disorders, based on studies in animal models and humans. These studies indicate that SPMs have potential as therapeutic targets for combating obesity, as well as offering insights into their mechanisms of action.
Collapse
Affiliation(s)
- Nahyun Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Barden A, Shinde S, Beilin LJ, Phillips M, Adams L, Bollmann S, Mori TA. Adiposity associates with lower plasma resolvin E1 (Rve1): a population study. Int J Obes (Lond) 2024; 48:725-732. [PMID: 38347128 PMCID: PMC11058310 DOI: 10.1038/s41366-024-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Inadequate inflammation resolution may contribute to persistent low-grade inflammation that accompanies many chronic conditions. Resolution of inflammation is an active process driven by Specialized Pro-resolving Mediators (SPM) that derive from long chain n-3 and n-6 fatty acids. This study examined plasma SPM in relation to sex differences, lifestyle and a broad range cardiovascular disease (CVD) risk factors in 978, 27-year olds from the Australian Raine Study. METHODS Plasma SPM pathway intermediates (18-HEPE, 17-HDHA and 14-HDHA), and SPM (E- and D-series resolvins, PD1, MaR1) and LTB4 were measured by liquid chromatography-tandem mass spectrometry (LCMSMS). Pearson correlations and multiple regression analyses assessed relationships between SPM and CVD risk factors. Unpaired t-tests or ANOVA assessed the effect of sex, smoking, unhealthy alcohol consumption and obesity on SPM. RESULTS Women had higher 17-HDHA (p = 0.01) and lower RvE1 (p < 0.0001) and RvD1 (p = 0.05) levels compared with men. In univariate analysis, obesity associated with lower RvE1 (p = 0.002), whereas smoking (p < 0.001) and higher alcohol consumption (p < 0.001) associated with increased RvE1. In multiple regression analysis, plasma RvE1 was negatively associated with a range of measures of adiposity including BMI, waist circumference, waist-to-height ratio, abdominal subcutaneous fat volume, and skinfold thicknesses in both men and women. CONCLUSION This population study suggests that a deficiency in plasma RvE1 may occur in response to increasing adiposity. This observation could be relevant to ongoing inflammation that associates with CVD and other chronic diseases.
Collapse
Affiliation(s)
- Anne Barden
- Medical School, University of Western Australia, Perth, WA, Australia.
| | - Sujata Shinde
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Lawrence J Beilin
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Michael Phillips
- Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- Royal Perth Hospital Research Foundation, Perth, WA, Australia
| | - Leon Adams
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Trevor A Mori
- Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
7
|
Lu X, Li G, Liu Y, Luo G, Ding S, Zhang T, Li N, Geng Q. The role of fatty acid metabolism in acute lung injury: a special focus on immunometabolism. Cell Mol Life Sci 2024; 81:120. [PMID: 38456906 PMCID: PMC10923746 DOI: 10.1007/s00018-024-05131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
8
|
Shaikh SR, Beck MA, Alwarawrah Y, MacIver NJ. Emerging mechanisms of obesity-associated immune dysfunction. Nat Rev Endocrinol 2024; 20:136-148. [PMID: 38129700 DOI: 10.1038/s41574-023-00932-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Obesity is associated with a wide range of complications, including type 2 diabetes mellitus, cardiovascular disease, hypertension and nonalcoholic fatty liver disease. Obesity also increases the incidence and progression of cancers, autoimmunity and infections, as well as lowering vaccine responsiveness. A unifying concept across these differing diseases is dysregulated immunity, particularly inflammation, in response to metabolic overload. Herein, we review emerging mechanisms by which obesity drives inflammation and autoimmunity, as well as impairing tumour immunosurveillance and the response to infections. Among these mechanisms are obesity-associated changes in the hormones that regulate immune cell metabolism and function and drive inflammation. The cargo of extracellular vesicles derived from adipose tissue, which controls cytokine secretion from immune cells, is also dysregulated in obesity, in addition to impairments in fatty acid metabolism related to inflammation. Furthermore, an imbalance exists in obesity in the biosynthesis and levels of polyunsaturated fatty acid-derived oxylipins, which control a range of outcomes related to inflammation, such as immune cell chemotaxis and cytokine production. Finally, there is a need to investigate how obesity influences immunity using innovative model systems that account for the heterogeneous nature of obesity in the human population.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Yazan Alwarawrah
- Department of Paediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancie J MacIver
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Paediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Irún P, Carrera-Lasfuentes P, Sánchez-Luengo M, Belio Ú, Domper-Arnal MJ, Higuera GA, Hawkins M, de la Rosa X, Lanas A. Pharmacokinetics and Changes in Lipid Mediator Profiling after Consumption of Specialized Pro-Resolving Lipid-Mediator-Enriched Marine Oil in Healthy Subjects. Int J Mol Sci 2023; 24:16143. [PMID: 38003333 PMCID: PMC10671020 DOI: 10.3390/ijms242216143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) play a vital role in human health, well-being, and the management of inflammatory diseases. Insufficient intake of omega-3 is linked to disease development. Specialized pro-resolving mediators (SPMs) are derived from omega-3 PUFAs and expedite the resolution of inflammation. They fall into categories known as resolvins, maresins, protectins, and lipoxins. The actions of SPMs in the resolution of inflammation involve restricting neutrophil infiltration, facilitating the removal of apoptotic cells and cellular debris, promoting efferocytosis and phagocytosis, counteracting the production of pro-inflammatory molecules like chemokines and cytokines, and encouraging a pro-resolving macrophage phenotype. This is an experimental pilot study in which ten healthy subjects were enrolled and received a single dose of 6 g of an oral SPM-enriched marine oil emulsion. Peripheral blood was collected at baseline, 3, 6, 9, 12, and 24 h post-administration. Temporal increases in plasma and serum SPM levels were found by using LC-MS/MS lipid profiling. Additionally, we characterized the temporal increases in omega-3 levels and established fundamental pharmacokinetics in both aforementioned matrices. These findings provide substantial evidence of the time-dependent elevation of SPMs, reinforcing the notion that oral supplementation with SPM-enriched products represents a valuable source of essential bioactive SPMs.
Collapse
Affiliation(s)
- Pilar Irún
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
| | - Patricia Carrera-Lasfuentes
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Faculty of Health Sciences, Campus Universitario Villanueva de Gállego, Universidad San Jorge, Villanueva de Gállego, 50830 Zaragoza, Spain
| | - Marta Sánchez-Luengo
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Úrsula Belio
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - María José Domper-Arnal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
| | - Gustavo A. Higuera
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - Malena Hawkins
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - Xavier de la Rosa
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- SOLUTEX GC, SL., 50180 Zaragoza, Spain
| | - Angel Lanas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 50009 Zaragoza, Spain; (P.C.-L.); (M.J.D.-A.); (A.L.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Centro Mixto de Investigación con Empresas (CEMINEM), Campus Rio Ebro, Universidad de Zaragoza, 50018 Zaragoza, Spain; (Ú.B.); (G.A.H.); (M.H.)
- Service of Digestive Diseases, Hospital Clínico Universitario Lozano Blesa, 50009 Zaragoza, Spain
- Departamento de Medicina, Psiquiatría y Dermatología, Facultad de Medicina, Campus Plaza San Francisco, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
10
|
Flore G, Deledda A, Fosci M, Lombardo M, Moroni E, Pintus S, Velluzzi F, Fantola G. Perioperative Nutritional Management in Enhanced Recovery after Bariatric Surgery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6899. [PMID: 37835169 PMCID: PMC10573058 DOI: 10.3390/ijerph20196899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Obesity is a crucial health problem because it leads to several chronic diseases with an increased risk of mortality and it is very hard to reverse with conventional treatment including changes in lifestyle and pharmacotherapy. Bariatric surgery (BS), comprising a range of various surgical procedures that modify the digestive tract favouring weight loss, is considered the most effective medical intervention to counteract severe obesity, especially in the presence of metabolic comorbidities. The Enhanced Recovery After Bariatric Surgery (ERABS) protocols include a set of recommendations that can be applied before and after BS. The primary aim of ERABS protocols is to facilitate and expedite the recovery process while enhancing the overall effectiveness of bariatric procedures. ERABS protocols include indications about preoperative fasting as well as on how to feed the patient on the day of the intervention, and how to nourish and hydrate in the days after BS. This narrative review examines the application, the feasibility and the efficacy of ERABS protocols applied to the field of nutrition. We found that ERABS protocols, in particular not fasting the patient before the surgery, are often not correctly applied for reasons that are not evidence-based. Furthermore, we identified some gaps in the research about some practises that could be implemented in the presence of additional evidence.
Collapse
Affiliation(s)
- Giovanna Flore
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (M.F.)
| | - Andrea Deledda
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (M.F.)
| | - Michele Fosci
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (M.F.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy;
| | - Enrico Moroni
- Obesity Surgery Unit, Department of Surgery, Azienda di Rilievo Nazionale ed Alta Specializzazione G. Brotzu, 09134 Cagliari, Italy; (E.M.); (S.P.); (G.F.)
| | - Stefano Pintus
- Obesity Surgery Unit, Department of Surgery, Azienda di Rilievo Nazionale ed Alta Specializzazione G. Brotzu, 09134 Cagliari, Italy; (E.M.); (S.P.); (G.F.)
| | - Fernanda Velluzzi
- Obesity Unit, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (G.F.); (A.D.); (M.F.)
| | - Giovanni Fantola
- Obesity Surgery Unit, Department of Surgery, Azienda di Rilievo Nazionale ed Alta Specializzazione G. Brotzu, 09134 Cagliari, Italy; (E.M.); (S.P.); (G.F.)
| |
Collapse
|
11
|
Engert LC, Mullington JM, Haack M. Prolonged experimental sleep disturbance affects the inflammatory resolution pathways in healthy humans. Brain Behav Immun 2023; 113:12-20. [PMID: 37369338 PMCID: PMC10528069 DOI: 10.1016/j.bbi.2023.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Sleep disturbances, as manifested in insomnia symptoms of difficulties falling asleep or frequent nighttime awakenings, are a strong risk factor for a diverse range of diseases involving immunopathology. Low-grade systemic inflammation has been frequently found associated with sleep disturbances and may mechanistically contribute to increased disease risk. Effects of sleep disturbances on inflammation have been observed to be long lasting and remain after recovery sleep has been obtained, suggesting that sleep disturbances may not only affect inflammatory mediators, but also the so-called specialized pro-resolving mediators (SPMs) that actively resolve inflammation. The goal of this investigation was to test for the first time whether the omega-3 fatty acid-derived D- (RvD) and E-series (RvE) resolvins are impacted by prolonged experimental sleep disturbance (ESD). METHODS Twenty-four healthy participants (12 F, age 20-42 years) underwent two 19-day in-hospital protocols (ESD/control), separated by > 2 months. The ESD protocol consisted of repeated nights of short and disrupted sleep with intermittent nights of undisturbed sleep, followed by three nights of recovery sleep at the end of the protocol. Under the control sleep condition, participants had an undisturbed sleep opportunity of 8 h/night throughout the protocol. The D- and E-series resolvins were measured in plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS The precursor of the D-series resolvins, 17-HDHA, was downregulated in the ESD compared to the control sleep condition (p <.001 for condition), and this effect remained after the third night of recovery sleep has been obtained. This effect was also observed for the resolvins RvD3, RvD4, and RvD5 (p <.001 for condition), while RvD1 was higher in the ESD compared to the control sleep condition (p <.01 for condition) and RvD2 showed a mixed effect of a decrease during disturbed sleep followed by an increase during recovery sleep in the ESD condition (p <.001 for condition*day interaction). The precursor of E-series resolvins, 18-HEPE, was downregulated in the ESD compared to the control sleep condition (p <.01 for condition) and remained low after recovery sleep has been obtained. This effect of downregulation was also observed for RvE2 (p <.01 for condition), while there was no effect for RvE1 (p >.05 for condition or condition*day interaction). Sex-differential effects were found for two of the D-series resolvins, i.e., RvD2 and RvD4. CONCLUSION This first investigation on the effects of experimental sleep disturbance on inflammatory resolution processes shows that SPMs, particularly resolvins of the D-series, are profoundly downregulated by sleep disturbances and remain downregulated after recovery sleep has been obtained, suggesting a longer lasting impact of sleep disturbances on these mediators. These findings also suggest that sleep disturbances contribute to the development and progression of a wide range of diseases characterized by immunopathology by interfering with processes that actively resolve inflammation. Pharmacological interventions aimed at promoting inflammatory resolution physiology may help to prevent future disease risk as a common consequence of sleep disturbances. TRIAL REGISTRATION ClinicalTrials.gov NCT02484742.
Collapse
Affiliation(s)
- Larissa C Engert
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Janet M Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Monika Haack
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Rao A, Gupta A, Kain V, Halade GV. Extrinsic and intrinsic modulators of inflammation-resolution signaling in heart failure. Am J Physiol Heart Circ Physiol 2023; 325:H433-H448. [PMID: 37417877 PMCID: PMC10538986 DOI: 10.1152/ajpheart.00276.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Chronic and uncleared inflammation is the root cause of various cardiovascular diseases. Fundamentally, acute inflammation is supportive when overlapping with safe clearance of inflammation termed resolution; however, if the lifestyle-directed extrinsic factors such as diet, sleep, exercise, or physical activity are misaligned, that results in unresolved inflammation. Although genetics play a critical role in cardiovascular health, four extrinsic risk factors-unhealthy processed diet, sleep disruption or fragmentation, sedentary lifestyle, thereby, subsequent stress-have been identified as heterogeneous and polygenic triggers of heart failure (HF), which can result in several complications with indications of chronic inflammation. Extrinsic risk factors directly impact endogenous intrinsic factors, such as using fatty acids by immune-responsive enzymes [lipoxygenases (LOXs)/cyclooxygenases (COXs)/cytochromes-P450 (CYP450)] to form resolution mediators that activate specific resolution receptors. Thus, the balance of extrinsic factors such as diet, sleep, and physical activity feed-forward the coordination of intrinsic factors such as fatty acids-enzymes-bioactive lipid receptors that modulates the immune defense, metabolic health, inflammation-resolution signaling, and cardiac health. Future research on lifestyle- and aging-associated molecular patterns is warranted in the context of intrinsic and extrinsic factors, immune fitness, inflammation-resolution signaling, and cardiac health.
Collapse
Affiliation(s)
- Archana Rao
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| | - Akul Gupta
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| | - Vasundhara Kain
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
13
|
Serhan CN, Chiang N. Resolvins and cysteinyl-containing pro-resolving mediators activate resolution of infectious inflammation and tissue regeneration. Prostaglandins Other Lipid Mediat 2023; 166:106718. [PMID: 36813255 PMCID: PMC10175197 DOI: 10.1016/j.prostaglandins.2023.106718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
This review is a synopsis of the main points from the opening presentation by the authors in the Resolution of Inflammation session at the 8th European Workshop on Lipid Mediators held at the Karolinska Institute, Stockholm, Sweden, June 29th, 2022. Specialized pro-resolving mediators (SPM) promote tissue regeneration, control infections and resolution of inflammation. These include resolvins, protectins, maresins and the newly identified conjugates in tissue regeneration (CTRs). We reported mechanisms of CTRs in activating primordial regeneration pathways in planaria using RNA-sequencing. Also, the 4S,5S-epoxy-resolvin intermediate in the biosynthesis of resolvin D3 and resolvin D4 was prepared by total organic synthesis. Human neutrophils convert this to resolvin D3 and resolvin D4, while human M2 macrophages transformed this labile epoxide intermediate to resolvin D4 and a novel cysteinyl-resolvin that is a potent isomer of RCTR1. The novel cysteinyl-resolvin significantly accelerates tissue regeneration with planaria and inhibits human granuloma formation.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
López-Vicario C, Sebastián D, Casulleras M, Duran-Güell M, Flores-Costa R, Aguilar F, Lozano JJ, Zhang IW, Titos E, Kang JX, Zorzano A, Arita M, Clària J. Essential lipid autacoids rewire mitochondrial energy efficiency in metabolic dysfunction-associated fatty liver disease. Hepatology 2023; 77:1303-1318. [PMID: 35788956 DOI: 10.1002/hep.32647] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Injury to hepatocyte mitochondria is common in metabolic dysfunction-associated fatty liver disease. Here, we investigated whether changes in the content of essential fatty acid-derived lipid autacoids affect hepatocyte mitochondrial bioenergetics and metabolic efficiency. APPROACH AND RESULTS The study was performed in transgenic mice for the fat-1 gene, which allows the endogenous replacement of the membrane omega-6-polyunsaturated fatty acid (PUFA) composition by omega-3-PUFA. Transmission electron microscopy revealed that hepatocyte mitochondria of fat-1 mice had more abundant intact cristae and higher mitochondrial aspect ratio. Fat-1 mice had increased expression of oxidative phosphorylation complexes I and II and translocases of both inner (translocase of inner mitochondrial membrane 44) and outer (translocase of the outer membrane 20) mitochondrial membranes. Fat-1 mice also showed increased mitofusin-2 and reduced dynamin-like protein 1 phosphorylation, which mediate mitochondrial fusion and fission, respectively. Mitochondria of fat-1 mice exhibited enhanced oxygen consumption rate, fatty acid β-oxidation, and energy substrate utilization as determined by high-resolution respirometry, [1- 14 C]-oleate oxidation and nicotinamide adenine dinucleotide hydride/dihydroflavine-adenine dinucleotide production, respectively. Untargeted lipidomics identified a rich hepatic omega-3-PUFA composition and a specific docosahexaenoic acid (DHA)-enriched lipid fingerprint in fat-1 mice. Targeted lipidomics uncovered a higher content of DHA-derived lipid autacoids, namely resolvin D1 and maresin 1, which rescued hepatocytes from TNFα-induced mitochondrial dysfunction, and unblocked the tricarboxylic acid cycle flux and metabolic utilization of long-chain acyl-carnitines, amino acids, and carbohydrates. Importantly, fat-1 mice were protected against mitochondrial injury induced by obesogenic and fibrogenic insults. CONCLUSION Our data uncover the importance of a lipid membrane composition rich in DHA and its lipid autacoid derivatives to have optimal hepatic mitochondrial and metabolic efficiency.
Collapse
Affiliation(s)
- Cristina López-Vicario
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - David Sebastián
- Institute for Research in Biomedicine , The Barcelona Institute of Science and Technology , Departament de Bioquímica i Biomedicina Molecular , University of Barcelona , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas , Madrid , Spain
| | - Mireia Casulleras
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
| | - Ingrid W Zhang
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
| | - Esther Titos
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
- Department of Biomedical Sciences , University of Barcelona , Barcelona , Spain
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology , Massachusetts General Hospital and Harvard Medical School , Boston , Massachusetts , USA
| | - Antonio Zorzano
- Institute for Research in Biomedicine , The Barcelona Institute of Science and Technology , Departament de Bioquímica i Biomedicina Molecular , University of Barcelona , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas , Madrid , Spain
| | - Makoto Arita
- Laboratory for Metabolomics , RIKEN Center for Integrative Medical Sciences , Yokohama , Japan
- Division of Physiological Chemistry and Metabolism , Graduate School of Pharmaceutical Sciences , Keio University , Tokyo , Japan
| | - Joan Clària
- Biochemistry and Molecular Genetics Service , Hospital Clínic, Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona , Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas , Barcelona , Spain
- European Foundation for the Study of Chronic Liver Failure and Grifols Chair , Barcelona , Spain
- Department of Biomedical Sciences , University of Barcelona , Barcelona , Spain
| |
Collapse
|
15
|
Abstract
Inflammation and its timely resolution are critical to ensure effective host defense and appropriate tissue repair after injury and or infection. Chronic, unresolved inflammation typifies many prevalent pathologies. The key mediators that initiate and drive the inflammatory response are well defined and targeted by conventional anti-inflammatory therapeutics. More recently, there is a growing appreciation that specific mediators, including arachidonate-derived lipoxins, are generated in self-limiting inflammatory responses to promote the resolution of inflammation and endogenous repair mechanisms without compromising host defense. We discuss the proresolving biological actions of lipoxins and recent efforts to harness their therapeutic potential through the development of novel, potent lipoxin mimetics generated via efficient, modular stereoselective synthetic pathways. We consider the evidence that lipoxin mimetics may have applications in limiting inflammation and reversing fibrosis and the underlying mechanisms.
Collapse
Affiliation(s)
- Catherine Godson
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland;
- The Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland;
- The Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Lamon-Fava S, Liu M, Dunlop BW, Kinkead B, Schettler PJ, Felger JC, Ziegler TR, Fava M, Mischoulon D, Rapaport MH. Clinical response to EPA supplementation in patients with major depressive disorder is associated with higher plasma concentrations of pro-resolving lipid mediators. Neuropsychopharmacology 2023; 48:929-935. [PMID: 36635595 PMCID: PMC10156711 DOI: 10.1038/s41386-022-01527-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023]
Abstract
Chronic inflammation has been implicated in the pathophysiology of major depressive disorder (MDD). Activating the resolution of inflammation through ω-3 fatty acid supplementation may prove to be a successful therapeutic strategy for the treatment of MDD. Patients with MDD, body mass index >25 kg/m2, and plasma high-sensitivity C-reactive protein ≥3 μg/mL (n = 61) were enrolled in a 12-week randomized trial consisting of 4 parallel arms: EPA 1, 2, and 4 g/d, and placebo. The supplement contained EPA and DHA in a 3.9:1 ratio. Depression symptoms were assessed using the IDS-C30 scale. Plasma fatty acids and pro-resolving lipid mediators (SPMs) were measured in 42 study completers at baseline and at the end of treatment by liquid chromatography/mass spectrometry. The response rate (≥50% reduction in IDS-30 score) was higher in the 4 g/d EPA arm than placebo (Cohen d = 0.53). In the 4 g/d EPA arm, responders had significantly greater increases in 18-hydroxyeicosapentaenoic acid (18-HEPE) and 13-hydroxydocosahexaenoic acid (13-HDHA) than non-responders (p < 0.05). Within the 4 g/d EPA arm, the increase in 18-HEPE was significantly associated with reductions in plasma hs-CRP concentrations (p < 0.05) and IDS-C30 scores (p < 0.01). In summary, response rates were greater among patients with MDD randomized to EPA 4 g/d supplementation and in those who showed a greater ability to activate the synthesis of 18-HEPE. The inverse association of 18-HEPE with both systemic inflammation and symptoms of depression highlights the activation of the resolution of inflammation as a likely mechanism in the treatment of MDD with ω-3 fatty acid supplementation.
Collapse
Affiliation(s)
- Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
| | - Minying Liu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Becky Kinkead
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Pamela J Schettler
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | | | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - David Mischoulon
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Mark Hyman Rapaport
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
17
|
Shaikh SR, Virk R, Van Dyke TE. Potential Mechanisms by Which Hydroxyeicosapentaenoic Acids Regulate Glucose Homeostasis in Obesity. Adv Nutr 2022; 13:2316-2328. [PMID: 35709423 PMCID: PMC9776734 DOI: 10.1093/advances/nmac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Dysregulation of glucose metabolism in response to diet-induced obesity contributes toward numerous complications, such as insulin resistance and hepatic steatosis. Therefore, there is a need to develop effective strategies to improve glucose homeostasis. In this review, we first discuss emerging evidence from epidemiological studies and rodent experiments that increased consumption of EPA (either as oily fish, or dietary/pharmacological supplements) may have a role in preventing impairments in insulin and glucose homeostasis. We then review the current evidence on how EPA-derived metabolites known as hydroxyeicosapentaenoic acids (HEPEs) may be a major mode of action by which EPA exerts its beneficial effects on glucose and lipid metabolism. Notably, cell culture and rodent studies show that HEPEs prevent fat accumulation in metabolic tissues through peroxisome proliferator activated receptor (PPAR)-mediated mechanisms. In addition, activation of the resolvin E1 pathway, either by administration of EPA in the diet or via intraperitoneal administration of resolvin E1, improves hyperglycemia, hyperinsulinemia, and liver steatosis through multiple mechanisms. These mechanisms include shifting immune cell phenotypes toward resolution of inflammation and preventing dysbiosis of the gut microbiome. Finally, we present the next steps for this line of research that will drive future precision randomized clinical trials with EPA and its downstream metabolites. These include dissecting the variables that drive heterogeneity in the response to EPA, such as the baseline microbiome profile and fatty acid status, circadian rhythm, genetic variation, sex, and age. In addition, there is a critical need to further investigate mechanisms of action for HEPEs and to establish the concentration of HEPEs in differing tissues, particularly in response to consumption of oily fish and EPA-enriched supplements.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School
of Medicine, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA
| | - Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School
of Medicine, The University of North Carolina at Chapel Hill, Chapel
Hill, NC, USA
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, The Forsyth
Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of
Dental Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Virk R, Buddenbaum N, Al-Shaer A, Armstrong M, Manke J, Reisdorph N, Sergin S, Fenton JI, Wallace ED, Ehrmann BM, Lovins HB, Gowdy KM, Smith MR, Smith GJ, Kelada SN, Shaikh SR. Obesity reprograms the pulmonary polyunsaturated fatty acid-derived lipidome, transcriptome, and gene-oxylipin networks. J Lipid Res 2022; 63:100267. [PMID: 36028048 PMCID: PMC9508350 DOI: 10.1016/j.jlr.2022.100267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 01/13/2023] Open
Abstract
Obesity exacerbates inflammation upon lung injury; however, the mechanisms by which obesity primes pulmonary dysregulation prior to external injury are not well studied. Herein, we tested the hypothesis that obesity dysregulates pulmonary PUFA metabolism that is central to inflammation initiation and resolution. We first show that a high-fat diet (HFD) administered to C57BL/6J mice increased the relative abundance of pulmonary PUFA-containing triglycerides and the concentration of PUFA-derived oxylipins (particularly prostaglandins and hydroxyeicosatetraenoic acids), independent of an increase in total pulmonary PUFAs, prior to onset of pulmonary inflammation. Experiments with a genetic model of obesity (ob/ob) generally recapitulated the effects of the HFD on the pulmonary oxylipin signature. Subsequent pulmonary next-generation RNA sequencing identified complex and unique transcriptional regulation with the HFD. We found the HFD increased pathways related to glycerophospholipid metabolism and immunity, including a unique elevation in B cell differentiation and signaling. Furthermore, we conducted computational integration of lipidomic with transcriptomic data. These analyses identified novel HFD-driven networks between glycerophospholipid metabolism and B cell receptor signaling with specific PUFA-derived pulmonary oxylipins. Finally, we confirmed the hypothesis by demonstrating that the concentration of pulmonary oxylipins, in addition to inflammatory markers, were generally increased in mice consuming a HFD upon ozone-induced acute lung injury. Collectively, these data show that a HFD dysregulates pulmonary PUFA metabolism prior to external lung injury, which may be a mechanism by which obesity primes the lungs to respond poorly to infectious and/or inflammatory challenges.
Collapse
Affiliation(s)
- Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole Buddenbaum
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abrar Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Selin Sergin
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jenifer I. Fenton
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - E. Diane Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandie M. Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah B. Lovins
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - M Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA,Atlanta Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Gregory J. Smith
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samir N.P. Kelada
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,For correspondence: Saame Raza Shaikh
| |
Collapse
|
19
|
Shaikh SR, MacIver NJ, Beck MA. Obesity Dysregulates the Immune Response to Influenza Infection and Vaccination Through Metabolic and Inflammatory Mechanisms. Annu Rev Nutr 2022; 42:67-89. [PMID: 35995048 PMCID: PMC10880552 DOI: 10.1146/annurev-nutr-062320-115937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The COVID-19 pandemic demonstrates that obesity alone, independent of comorbidities, is a significant risk factor for severe outcomes from infection. This susceptibility mirrors a similar pattern with influenza infection; that is, obesity is a unique risk factor for increased morbidity and mortality. Therefore, it is critical to understand how obesity contributes to a reduced ability to respond to respiratory viral infections. Herein, we discuss human and animal studies with influenza infection and vaccination that show obesity impairs immunity. We cover several key mechanisms for the dysfunction. These mechanisms include systemic and cellular level changes that dysregulate immune cell metabolism and function in addition to how obesity promotes deficiencies in metabolites that control the resolution of inflammation and infection. Finally, we discuss major gaps in knowledge, particularly as they pertain to diet and mechanisms, which will drive future efforts to improve outcomes in response to respiratory viral infections in an increasingly obese population.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
| | - Nancie J MacIver
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; , ,
| |
Collapse
|
20
|
Pamuk F, Kantarci A. Inflammation as a link between periodontal disease and obesity. Periodontol 2000 2022; 90:186-196. [PMID: 35916870 DOI: 10.1111/prd.12457] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrition plays a critical role in the homeostatic balance, maintenance of health, and longevity. There is a close link between inflammatory diseases and nutritional health. Obesity is a severe pathological process with grave implications on several organ systems and disease processes, including type 2 diabetes, cardiovascular disease, osteoarthritis, and rheumatoid arthritis. The impact of obesity on periodontal inflammation has not been fully understood; the association between nutritional balance and periodontal inflammation is much less explored. This review is focused on the potential mechanistic links between periodontal diseases and obesity and common inflammatory activity pathways that can be pharmacologically targeted.
Collapse
Affiliation(s)
- Ferda Pamuk
- Forsyth Institute, Cambridge, Massachusetts, USA.,Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
21
|
Soták M, Rajan MR, Clark M, Harms M, Rani A, Kraft JD, Tandio D, Shen T, Borkowski K, Fiehn O, Newman JW, Quiding-Järbrink M, Biörserud C, Apelgren P, Staalesen T, Hagberg CE, Boucher J, Wallenius V, Lange S, Börgeson E. Lipoxins reduce obesity-induced adipose tissue inflammation in 3D-cultured human adipocytes and explant cultures. iScience 2022; 25:104602. [PMID: 35789845 PMCID: PMC9249816 DOI: 10.1016/j.isci.2022.104602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/16/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue inflammation drives obesity-related cardiometabolic diseases. Enhancing endogenous resolution mechanisms through administration of lipoxin A4, a specialized pro-resolving lipid mediator, was shown to reduce adipose inflammation and subsequently protects against obesity-induced systemic disease in mice. Here, we demonstrate that lipoxins reduce inflammation in 3D-cultured human adipocytes and adipose tissue explants from obese patients. Approximately 50% of patients responded particularly well to lipoxins by reducing inflammatory cytokines and promoting an anti-inflammatory M2 macrophage phenotype. Responding patients were characterized by elevated systemic levels of C-reactive protein, which causes inflammation in cultured human adipocytes. Responders appeared more prone to producing anti-inflammatory oxylipins and displayed elevated prostaglandin D2 levels, which has been interlinked with transcription of lipoxin-generating enzymes. Using explant cultures, this study provides the first proof-of-concept evidence supporting the therapeutic potential of lipoxins in reducing human adipose tissue inflammation. Our data further indicate that lipoxin treatment may require a tailored personalized-medicine approach.
Collapse
Affiliation(s)
- Matúš Soták
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Region Vaestra Goetaland, Sahlgrenska University Hospital, Department of Clinical Physiology, 41345 Gothenburg, Sweden
| | - Meenu Rohini Rajan
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Region Vaestra Goetaland, Sahlgrenska University Hospital, Department of Clinical Physiology, 41345 Gothenburg, Sweden
| | - Madison Clark
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Matthew Harms
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alankrita Rani
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Region Vaestra Goetaland, Sahlgrenska University Hospital, Department of Clinical Physiology, 41345 Gothenburg, Sweden
| | - Jamie D. Kraft
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - David Tandio
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Tong Shen
- NIH West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Kamil Borkowski
- NIH West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - John W. Newman
- NIH West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
- USDA, ARS, Western Human Nutrition Research Center, Davis, USA
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Christina Biörserud
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Apelgren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Vaestra Goetaland, Sahlgrenska University Hospital, Department of Plastic Surgery, Gothenburg, Sweden
| | - Trude Staalesen
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Vaestra Goetaland, Sahlgrenska University Hospital, Department of Plastic Surgery, Gothenburg, Sweden
| | - Carolina E. Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jeremie Boucher
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ville Wallenius
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephan Lange
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Division of Cardiology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Emma Börgeson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden
- Region Vaestra Goetaland, Sahlgrenska University Hospital, Department of Clinical Physiology, 41345 Gothenburg, Sweden
| |
Collapse
|
22
|
Al-Shaer AE, Regan J, Buddenbaum N, Tharwani S, Drawdy C, Behee M, Sergin S, Fenton JI, Maddipati KR, Kane S, Butler E, Shaikh SR. Enriched Marine Oil Supplement Increases Specific Plasma Specialized Pro-Resolving Mediators in Adults with Obesity. J Nutr 2022; 152:1783-1791. [PMID: 35349683 PMCID: PMC9258560 DOI: 10.1093/jn/nxac075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/13/2022] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Specialized pro-resolving mediators (SPMs), synthesized from PUFAs, resolve inflammation and return damaged tissue to homeostasis. Thus, increasing metabolites of the SPM biosynthetic pathway may have potential health benefits for select clinical populations, such as subjects with obesity who display dysregulation of SPM metabolism. However, the concentrations of SPMs and their metabolic intermediates in humans with obesity remains unclear. OBJECTIVES The primary objective of this study was to determine if a marine oil supplement increased specific metabolites of the SPM biosynthetic pathway in adults with obesity. The second objective was to determine if the supplement changed the relative abundance of key immune cell populations. Finally, given the critical role of antibodies in inflammation, we determined if ex vivo CD19 + B-cell antibody production was modified by marine oil intervention. METHODS Twenty-three subjects [median age: 56 y; BMI (in kg/m2): 33.1] consumed 2 g/d of a marine oil supplement for 28-30 d. The supplement was particularly enriched with 18-hydroxyeicosapentaenoic (HEPE), 14-hydroxydocosahexaenoic acid (14-HDHA), and 17-HDHA. Blood was collected pre- and postsupplementation for plasma mass spectrometry oxylipin and fatty acid analyses, flow cytometry, and B-cell isolation. Paired t-tests and Wilcoxon tests were used for statistical analyses. RESULTS Relative to preintervention, the supplement increased 6 different HEPEs and HDHAs accompanied by changes in plasma PUFAs. Resolvin E1 and docosapentaenoic acid-derived maresin 1 concentrations were increased 3.5- and 4.7-fold upon intervention, respectively. The supplement did not increase the concentration of D-series resolvins and had no effect on the abundance of immune cells. Ex vivo B-cell IgG but not IgM concentrations were lowered postsupplementation. CONCLUSIONS A marine oil supplement increased select SPMs and their metabolic intermediates in adults with obesity. Additional studies are needed to determine if increased concentrations of specific SPMs control the resolution of inflammation in humans with obesity. This trial was registered at clinicaltrials.gov as NCT04701138.
Collapse
Affiliation(s)
- Abrar E Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer Regan
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole Buddenbaum
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sonum Tharwani
- The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Catie Drawdy
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Madeline Behee
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Selin Sergin
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, College of Agriculture and Natural Resources and College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University, Detroit, MI, USA
| | - Shawn Kane
- The University of North Carolina at Chapel Hill Family Medicine Center, Chapel Hill, NC, USA
| | - Erik Butler
- The University of North Carolina at Chapel Hill Family Medicine Center, Chapel Hill, NC, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Dubé L, Spahis S, Lachaîne K, Lemieux A, Monhem H, Poulin SM, Randoll C, Travaillaud E, Ould-Chikh NEH, Marcil V, Delvin E, Levy E. Specialized Pro-Resolving Mediators Derived from N-3 Polyunsaturated Fatty Acids: Role in Metabolic Syndrome and Related Complications. Antioxid Redox Signal 2022; 37:54-83. [PMID: 35072542 DOI: 10.1089/ars.2021.0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Metabolic syndrome (MetS) prevalence continues to grow and represents a serious public health issue worldwide. This multifactorial condition carries the risk of hastening the development of type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). Another troubling aspect of MetS is the requirement of poly-pharmacological therapy not devoid of side effects. Therefore, there is an urgent need for prospecting alternative nutraceuticals as effective therapeutic agents for MetS. Recent Advances: Currently, there is an increased interest in understanding the regulation of metabolic derangements by specialized pro-resolving lipid mediators (SPMs), especially those derived from the long chain n-3 polyunsaturated fatty acids. Critical Issues: The SPMs are recognized as efficient modulators that are capable of inhibiting the production of pro-inflammatory cytokines, blocking neutrophil activation/recruitment, and inducing non-phlogistic (anti-inflammatory) activation of macrophage engulfment and removal of apoptotic inflammatory cells and debris. The aim of the present review is precisely to first underline key concepts relative to SPM functions before focusing on their status and actions on MetS components (e.g., obesity, glucose dysmetabolism, hyperlipidemia, hypertension) and complications such as T2D, NAFLD, and CVD. Future Directions: Valuable data from preclinical and clinical investigations have emphasized the SPM functions and influence on oxidative stress- and inflammation-related MetS. Despite these promising findings obtained without compromising host defense, additional efforts are needed to evaluate their potential therapeutic applications and further develop practical tools to monitor their bioavailability to cope with cardiometabolic disorders. Antioxid. Redox Signal. 37, 54-83.
Collapse
Affiliation(s)
- Laurent Dubé
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Schohraya Spahis
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Karelle Lachaîne
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Hanine Monhem
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Carolane Randoll
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Eva Travaillaud
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Valérie Marcil
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Edgard Delvin
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Biochemistry, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Gastroenterology & Hepatology Unit, Université de Montréal, Montreal, Canada
| |
Collapse
|
24
|
Sugimoto S, Mena HA, Sansbury BE, Kobayashi S, Tsuji T, Wang CH, Yin X, Huang TL, Kusuyama J, Kodani SD, Darcy J, Profeta G, Pereira N, Tanzi RE, Zhang C, Serwold T, Kokkotou E, Goodyear LJ, Cypess AM, Leiria LO, Spite M, Tseng YH. Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation. Nat Metab 2022; 4:775-790. [PMID: 35760872 PMCID: PMC9792164 DOI: 10.1038/s42255-022-00590-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 05/18/2022] [Indexed: 12/30/2022]
Abstract
Obesity induces chronic inflammation resulting in insulin resistance and metabolic disorders. Cold exposure can improve insulin sensitivity in humans and rodents, but the mechanisms have not been fully elucidated. Here, we find that cold resolves obesity-induced inflammation and insulin resistance and improves glucose tolerance in diet-induced obese mice. The beneficial effects of cold exposure on improving obesity-induced inflammation and insulin resistance depend on brown adipose tissue (BAT) and liver. Using targeted liquid chromatography with tandem mass spectrometry, we discovered that cold and β3-adrenergic stimulation promote BAT to produce maresin 2 (MaR2), a member of the specialized pro-resolving mediators of bioactive lipids that play a role in the resolution of inflammation. Notably, MaR2 reduces inflammation in obesity in part by targeting macrophages in the liver. Thus, BAT-derived MaR2 could contribute to the beneficial effects of BAT activation in resolving obesity-induced inflammation and may inform therapeutic approaches to combat obesity and its complications.
Collapse
Affiliation(s)
- Satoru Sugimoto
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Hebe Agustina Mena
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brian E Sansbury
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shio Kobayashi
- Section of Immunobiology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Xuanzhi Yin
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Joji Kusuyama
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Sean D Kodani
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Justin Darcy
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Gerson Profeta
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Nayara Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Serwold
- Section of Immunobiology, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Efi Kokkotou
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Luiz Osório Leiria
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matthew Spite
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
25
|
Al-Shaer AE, Pal A, Shi Q, Carson MS, Regan J, Behee M, Buddenbaum N, Drawdy C, Davis T, Virk R, Shaikh SR. Modeling human heterogeneity of obesity with diversity outbred mice reveals a fat mass-dependent therapeutic window for resolvin E1. FASEB J 2022; 36:e22354. [PMID: 35616343 PMCID: PMC10027372 DOI: 10.1096/fj.202200350r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
Resolvin E1 (RvE1), a specialized pro-resolving mediator (SPM), improves glucose homeostasis in inbred mouse models of obesity. However, an impediment toward translation is that obesity is a highly heterogenous disease in which individuals will respond very differently to interventions such as RvE1. Thus, there is a need to study SPMs in the context of modeling the heterogeneity of obesity that is observed in humans. We investigated how RvE1 controls the concentration of key circulating metabolic biomarkers using diversity outbred (DO) mice, which mimic human heterogeneity. We first demonstrate that weights of DO mice can be classified into distinct distributions of fat mass (i.e., modeling differing classes of obesity) in response to a high-fat diet and in the human population when examining body composition. Next, we show RvE1 administration based on body weight for four consecutive days after giving mice a high-fat diet led to approximately half of the mice responding positively for serum total gastric inhibitory polypeptide (GIP), glucagon, insulin, glucose, leptin, and resistin. Interestingly, RvE1 improved hyperleptinemia most effectively in the lowest class of fat mass despite adjusting the dose of RvE1 with increasing adiposity. Furthermore, leptin levels after RvE1 treatment were the lowest in those mice that were also RvE1 positive responders for insulin and resistin. Collectively, these results suggest a therapeutic fat mass-dependent window for RvE1, which should be considered in future clinical trials. Moreover, the data underscore the importance of studying SPMs with heterogenous mice as a step toward precision SPM administration in humans.
Collapse
Affiliation(s)
- Abrar E Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anandita Pal
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith S Carson
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Regan
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Madeline Behee
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicole Buddenbaum
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Catie Drawdy
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Traci Davis
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
26
|
Bosco A, Dessì A, Zanza C, Pintus R, Fanos V. Resolvins' Obesity-Driven Deficiency: The Implications for Maternal-Fetal Health. Nutrients 2022; 14:nu14081662. [PMID: 35458224 PMCID: PMC9029397 DOI: 10.3390/nu14081662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Since pregnancy is already characterized by mild but significant inflammatory activity in physiological conditions, when complicated by obesity the probability of a persistent inflammatory state increases, with consequent multiple repercussions that add up to the complications associated with acute inflammation. In this context, the role of resolvins, specialized pro-resolving mediators (SPMs), deriving from omega-3 essential fatty acids, may be crucial. Indeed, differential production in numerous high-risk conditions associated with both childbirth and neonatal health, the correlation between maternal omega-3 intake and resolvin concentrations in maternal blood and at the placental level, and the high values found in breast milk in the first month of breastfeeding, are some of the most important hallmarks of these autacoids. In addition, a growing body of scientific evidence supports the lack of SPMs, at the level of immune-metabolic tissues, in the case of obesity. Furthermore, the obesity-related lack of SPMs seems to be decisive in the context of the current outbreak of COVID-19, as it appears to be one of the causes associated with the higher incidence of complications and negative outcomes of SARS-CoV-2 infection. The usefulness of metabolomics in this field appears clear, given that through the metabolome it is possible to observe the numerous and complex interactions between the mother, the placenta and the fetus in order to identify specific biomarkers useful in the prediction, diagnosis and monitoring of the various obstetric conditions. However, further investigations are needed in order to evaluate the possible use of some resolvins as biomarkers of maternal–fetal outcomes but also to establish adequate integration values in pregnant women with omega-3 fatty acids or with more active derivatives that guarantee optimal SPM production under risky conditions.
Collapse
|
27
|
Fisk HL, Childs CE, Miles EA, Ayres R, Noakes PS, Paras-Chavez C, Kuda O, Kopecký J, Antoun E, Lillycrop KA, Calder PC. Modification of subcutaneous white adipose tissue inflammation by omega-3 fatty acids is limited in human obesity-a double blind, randomised clinical trial. EBioMedicine 2022; 77:103909. [PMID: 35247847 PMCID: PMC8894262 DOI: 10.1016/j.ebiom.2022.103909] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Obesity is associated with enhanced inflammation. However, investigation in human subcutaneous white adipose tissue (scWAT) is limited and the mechanisms by which inflammation occurs have not been well elucidated. Marine long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have anti-inflammatory actions and may reduce scWAT inflammation. METHODS Subcutaneous white adipose tissue (scWAT) biopsies were collected from individuals living with obesity (n=45) and normal weight individuals (n=39) prior to and following a 12-week intervention with either 3 g/day of a fish oil concentrate (providing 1.1 g eicosapentaenoic acid (EPA) + 0.8 g docosahexaenoic acid (DHA)) or 3 g/day of corn oil. ScWAT fatty acid, oxylipin, and transcriptome profiles were assessed by gas chromatography, ultra-pure liquid chromatography tandem mass spectrometry, RNA sequencing and qRT-PCR, respectively. FINDINGS Obesity was associated with greater scWAT inflammation demonstrated by lower concentrations of specialised pro-resolving mediators (SPMs) and hydroxy-DHA metabolites and an altered transcriptome with differential expression of genes involved in LC n-3 PUFA activation, oxylipin synthesis, inflammation, and immune response. Intervention with LC n-3 PUFAs increased their respective metabolites including the SPM precursor 14-hydroxy-DHA in normal weight individuals and decreased arachidonic acid derived metabolites and expression of genes involved in immune and inflammatory response with a greater effect in normal weight individuals. INTERPRETATION Downregulated expression of genes responsible for fatty acid activation and metabolism may contribute to an inflammatory oxylipin profile and limit the effects of LC n-3 PUFAs in obesity. There may be a need for personalised LC n-3 PUFA supplementation based on obesity status. FUNDING European Commission Seventh Framework Programme (Grant Number 244995) and Czech Academy of Sciences (Lumina quaeruntur LQ200111901).
Collapse
Affiliation(s)
- Helena L Fisk
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom.
| | - Caroline E Childs
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Robert Ayres
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Paul S Noakes
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom; Medical School, University of Notre Dame Australia, Fremantle, Australia
| | - Carolina Paras-Chavez
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Ondrej Kuda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kopecký
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Elie Antoun
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom
| | - Karen A Lillycrop
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, Southampton General Hospital, University of Southampton, IDS Building, MP887, Tremona Road, Southampton SO16 6YD, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
28
|
Dalli J, Gomez EA, Jouvene CC. Utility of the Specialized Pro-Resolving Mediators as Diagnostic and Prognostic Biomarkers in Disease. Biomolecules 2022; 12:biom12030353. [PMID: 35327544 PMCID: PMC8945731 DOI: 10.3390/biom12030353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022] Open
Abstract
A precision medicine approach is widely acknowledged to yield more effective therapeutic strategies in the treatment of patients with chronic inflammatory conditions than the prescriptive paradigm currently utilized in the management and treatment of these patients. This is because such an approach will take into consideration relevant factors including the likelihood that a patient will respond to given therapeutics based on their disease phenotype. Unfortunately, the application of this precision medicine paradigm in the daily treatment of patients has been greatly hampered by the lack of robust biomarkers, in particular biomarkers for determining early treatment responsiveness. Lipid mediators are central in the regulation of host immune responses during both the initiation and resolution of inflammation. Amongst lipid mediators, the specialized pro-resolving mediators (SPM) govern immune cells to promote the resolution of inflammation. These autacoids are produced via the stereoselective conversion of essential fatty acids to yield molecules that are dynamically regulated during inflammation and exert potent immunoregulatory activities. Furthermore, there is an increasing appreciation for the role that these mediators play in conveying the biological actions of several anti-inflammatory therapeutics, including statins and aspirin. Identification and quantitation of these mediators has traditionally been achieved using hyphenated mass spectrometric techniques, primarily liquid-chromatography tandem mass spectrometry. Recent advances in the field of chromatography and mass spectrometry have increased both the robustness and the sensitivity of this approach and its potential deployment for routine clinical diagnostics. In the present review, we explore the evidence supporting a role for specific SPM as potential biomarkers for patient stratification in distinct disease settings together with methodologies employed in the identification and quantitation of these autacoids.
Collapse
Affiliation(s)
- Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
- Correspondence:
| | - Esteban Alberto Gomez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
| | - Charlotte Camille Jouvene
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
| |
Collapse
|
29
|
Regidor PA, de la Rosa X, Müller A, Mayr M, Gonzalez Santos F, Gracia Banzo R, Rizo JM. PCOS: A Chronic Disease That Fails to Produce Adequately Specialized Pro-Resolving Lipid Mediators (SPMs). Biomedicines 2022; 10:biomedicines10020456. [PMID: 35203665 PMCID: PMC8962413 DOI: 10.3390/biomedicines10020456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction: Polycystic ovary syndrome (PCOS) is an endocrinological disorder that affects 5–15% of women of their reproductive age and is a frequent cause of infertility. Major symptoms include hyperandrogenism, ovulatory dysfunction, and often obesity and/or insulin resistance. PCOS also represents a state of chronic low-grade inflammation that is closely interlinked with the metabolic features. “Classical” pro-inflammatory lipid mediators such as prostaglandins (PG), leukotrienes (LT), or thromboxanes (TX) are derived from arachidonic acid (AA) and are crucial for the initial response. Resolution processes are driven by four families of so-called specialized pro-resolving mediators (SPMs): resolvins, maresins, lipoxins, and protectins. The study aimed to establish lipid mediator profiles of PCOS patients compared to healthy women to identify differences in their resolutive and pro-inflammatory lipid parameters. Material and Methods: Fifteen female patients (18–45 years) were diagnosed with PCOS according to Rotterdam criteria, and five healthy women, as a comparator group, were recruited for the study. The main outcome measures were: pro-inflammatory lipid mediators (PG, LT, TX) and their precursor AA, SPMs (resolvins, maresins, protectins, lipoxins), their precursors EPA, DHA, DPA, and their active biosynthesis pathway intermediates (18-HEPE, 17-HDHA, 14-HDHA). Results: The level of pro-inflammatory parameters in serum was significantly higher in PCOS-affected women. The ratio (sum of pro-inflammatory molecules)/(sum of SPMs plus hydroxylated intermediates) reflecting the inflammatory state was significantly lower in the group of healthy women. Conclusion: There is a strong pro-inflammatory state in PCOS patients. Further research will clarify whether supplementation with SPMs or their precursors may improve this state.
Collapse
Affiliation(s)
- Pedro-Antonio Regidor
- Exeltis Healthcare, Adalperostr. 84, 85737 Ismaning, Germany; (A.M.); (M.M.)
- OTC Chemo, Manuel Pombo Angulo 28-4th Floor, 28050 Madrid, Spain;
- Correspondence: ; Tel.: +49-894-5205-2919 or +49-173-893-8132; Fax: +49-8945-2052-9819
| | - Xavier de la Rosa
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, 60 Fenwood Road Boston, Boston, MA 02115, USA;
| | - Anna Müller
- Exeltis Healthcare, Adalperostr. 84, 85737 Ismaning, Germany; (A.M.); (M.M.)
| | - Manuela Mayr
- Exeltis Healthcare, Adalperostr. 84, 85737 Ismaning, Germany; (A.M.); (M.M.)
| | | | - Rafael Gracia Banzo
- Solutex GC SL, Parque Empresarial Utebo, Avda. Miguel Servet n° 81, 50180 Utebo, Spain;
| | - Jose Miguel Rizo
- OTC Chemo, Manuel Pombo Angulo 28-4th Floor, 28050 Madrid, Spain;
| |
Collapse
|
30
|
Cruz-Pineda WD, Garibay-Cerdenares OL, Rodríguez-Ruíz HA, Matia-García I, Marino-Ortega LA, Espinoza-Rojo M, Reyes-Castillo Z, Castro-Alarcón N, Castañeda-Saucedo E, Illades-Aguiar B, Parra-Rojas I. Changes in the Expression of Insulin Pathway, Neutrophil Elastase and Alpha 1 Antitrypsin Genes from Leukocytes of Young Individuals with Insulin Resistance. Diabetes Metab Syndr Obes 2022; 15:1865-1876. [PMID: 35757193 PMCID: PMC9215908 DOI: 10.2147/dmso.s362881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chronic hyperinsulinemia is a hallmark of insulin resistance that affects a diversity of cells, including leukocytes modifying the expression of some genes involved in insulin signaling. PURPOSE The aim of this study was to evaluate how hyperinsulinemia affects the expression of genes involved in the proximal insulin signaling pathway in leukocytes from 45 young individuals grouped: normal weight with not insulin resistance (NIR), with insulin resistance (IR) and with obesity (OB-IR). METHODS qPCR was performed to analyze the expression of insulin receptor (INSR), insulin receptor substrate 1 and 2 (IRS-1 and IRS-2), neutrophil elastase (NE), alpha 1 antitrypsin (A1AT), glucose transporters 1, 3 and 4 (GLUT-1, GLUT-3 and GLUT-4) by the 2-ΔCt method, and the correlation between the genes was determined by Spearman's test. RESULTS The mRNA expression analysis of all genes between NIR and IR individuals revealed no differences. However, when comparing NIR and IR individuals with OB-IR, an increase in NE and A1AT expression and a clear trend towards a decrease in IRS-2 expression was observed, whereas the comparison of IR and OB-IR showed a decrease in GLUT-3 expression. Overall, the correlation analysis showed that in the IR group there was a positive correlation only between NE with IRS-1 (r = 0.72, p = 0.003), while in the OB-IR group, there was a positive correlation between the NE and A1AT with INSR (r = 0.62, p = 0.01 and r = 0.74, p = 0.002, respectively) and with IRS-2 (r = 0.74, p = 0.002 and r = 0.76, p = 0.001, respectively). CONCLUSION These results suggest that hyperinsulinemia and obesity are associated with changes in the expression of genes in leukocytes involved in the insulin pathway that are related to NE and A1AT.
Collapse
Affiliation(s)
- Walter David Cruz-Pineda
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Olga Lilia Garibay-Cerdenares
- CONACyT-Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
- Olga Lilia Garibay-Cerdenares, CONACyT-Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo, Guerrero, CP 39090, México, Tel/Fax +52 7474710901, Email
| | - Hugo Alberto Rodríguez-Ruíz
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Inés Matia-García
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Linda Anahí Marino-Ortega
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Mónica Espinoza-Rojo
- Laboratorio de Biología Molecular y Genómica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Zyanya Reyes-Castillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Natividad Castro-Alarcón
- Laboratorio de Investigación en Microbiología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Investigación en Biología Celular del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
| | - Isela Parra-Rojas
- Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, México
- Correspondence: Isela Parra-Rojas, Laboratorio de Investigación en Obesidad y Diabetes, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Avenida Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo, Guerrero, CP 39090, México, Tel/Fax +52 7474719310, Email
| |
Collapse
|
31
|
Heinrich L, Booijink R, Khurana A, Weiskirchen R, Bansal R. Lipoxygenases in chronic liver diseases: current insights and future perspectives. Trends Pharmacol Sci 2021; 43:188-205. [PMID: 34961619 DOI: 10.1016/j.tips.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases (CLDs) caused by viral infections, alcohol/drug abuse, or metabolic disorders affect millions of people globally and have increased mortality owing to the lack of approved therapies. Lipoxygenases (LOXs) are a family of multifaceted enzymes that are responsible for the oxidation of polyunsaturated fatty acids (PUFAs) and are implicated in the pathogenesis of multiple disorders including liver diseases. This review describes the three main LOX signaling pathways - 5-, 12-, and 15-LOX - and their involvement in CLDs. We also provide recent insights and future perspectives on LOX-related hepatic pathophysiology, and discuss the potential of LOXs and LOX-derived metabolites as diagnostic biomarkers and therapeutic targets in CLDs.
Collapse
Affiliation(s)
- Lena Heinrich
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands
| | - Richell Booijink
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands
| | - Amit Khurana
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen 52074, Germany; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT), Hauz Khas, New Delhi 110016, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen 52074, Germany
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands.
| |
Collapse
|
32
|
Vander Ploeg M, Quinn K, Armstrong M, Manke J, Reisdorph N, Shaikh SR. SPM pathway marker analysis of the brains of obese mice in the absence and presence of eicosapentaenoic acid ethyl esters. Prostaglandins Leukot Essent Fatty Acids 2021; 175:102360. [PMID: 34743051 PMCID: PMC8633202 DOI: 10.1016/j.plefa.2021.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 10/19/2022]
Abstract
Obesity drives an imbalanced signature of specialized pro-resolving mediators (SPM). Herein, we investigated if high fat diet-induced obesity dysregulates the concentration of SPM intermediates in the brains of C57BL/6 J mice. Furthermore, given the benefits of EPA for cardiometabolic diseases, major depression, and cognition, we probed the effect of an EPA supplemented high fat diet on brain SPM intermediates. Mass spectrometry revealed no effect of the high fat diet on PUFA-derived brain metabolites. EPA also did not have an effect on most brain PUFA-derived metabolites except an increase of 12-hydroxyeicosapentaenoic acid (12-HEPE). In contrast, EPA dramatically increased serum HEPEs and lowered several PUFA-derived metabolites. Finally, untargeted mass spectrometry showed no effects of the high fat diet, with or without EPA, on the brain metabolome. Collectively, these results show the murine brain resists a deficiency in SPM pathway markers in response to a high fat diet and that EPA supplementation increases 12-HEPE levels.
Collapse
Affiliation(s)
- Matthew Vander Ploeg
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO , United States
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO , United States
| | - Jonathan Manke
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO , United States
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Denver Anschutz Medical Campus, Aurora, CO , United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
33
|
Panigrahy D, Gilligan MM, Serhan CN, Kashfi K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol Ther 2021; 227:107879. [PMID: 33915177 DOI: 10.1016/j.pharmthera.2021.107879] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
The resolution of inflammation has emerged as a critical endogenous process that protects host tissues from prolonged or excessive inflammation that can become chronic. Failure of the resolution of inflammation is a key pathological mechanism that drives the progression of numerous inflammation-driven diseases. Essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators termed 'specialized pro-resolving mediators' (SPMs) regulate endogenous resolution programs by limiting further neutrophil tissue infiltration and stimulating local immune cell (e.g., macrophage)-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, as well as counter-regulating eicosanoid/cytokine production. The SPM superfamily encompasses lipoxins, resolvins, protectins, and maresins. Our understanding of the resolution phase of acute inflammation has grown exponentially in the past three decades with the discovery of novel pro-resolving lipid mediators, their pro-efferocytosis mechanisms, and their receptors. Technological advancement has further facilitated lipid mediator metabolipidomic based profiling of healthy and diseased human tissues, highlighting the extraordinary therapeutic potential of SPMs across a broad array of inflammatory diseases including cancer. As current front-line cancer therapies such as surgery, chemotherapy, and radiation may induce various unwanted side effects such as robust pro-inflammatory and pro-tumorigenic host responses, characterizing SPMs and their receptors as novel therapeutic targets may have important implications as a new direction for host-targeted cancer therapy. Here, we discuss the origins of inflammation resolution, key discoveries and the failure of resolution mechanisms in diseases with an emphasis on cancer, and future directions focused on novel therapeutic applications for this exciting and rapidly expanding field.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York, School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| |
Collapse
|
34
|
Clària J, Flores-Costa R, Duran-Güell M, López-Vicario C. Proresolving lipid mediators and liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159023. [PMID: 34352389 DOI: 10.1016/j.bbalip.2021.159023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic feature of virtually all acute and chronic liver diseases. It intersects different liver pathologies from the early stages of liver injury, when the inflammatory burden is mild-to-moderate, to very advanced stages of liver disease, when the inflammatory response is very intense and drives multiple organ dysfunction and failure(s). The current review describes the most relevant features of the inflammatory process in two different clinical entities across the liver disease spectrum, namely non-alcoholic steatohepatitis (NASH) and acute-on-chronic liver failure (ACLF). Special emphasis is given within these two disease conditions to gather the most relevant data on the specialized pro-resolving mediators that orchestrate the resolution of inflammation, a tightly controlled process which dysregulation commonly associates with chronic inflammatory conditions.
Collapse
Affiliation(s)
- Joan Clària
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain.
| | - Roger Flores-Costa
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain
| | - Marta Duran-Güell
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain
| | - Cristina López-Vicario
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain.
| |
Collapse
|
35
|
Andrews D, Godson C. Lipoxins and synthetic lipoxin mimetics: Therapeutic potential in renal diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158940. [PMID: 33839296 DOI: 10.1016/j.bbalip.2021.158940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
Inflammation and its timely resolution are critical to ensuring effective host defence and appropriate tissue repair after injury. Unresolved inflammation typifies many renal pathologies. The key drivers of the inflammatory response are well defined and targeted by conventional anti-inflammatory therapeutics. However, these are associated with undesirable side effects including immune suppression. More recently, there is growing appreciation that specialized lipid mediators [SPMs] including lipoxins promote the resolution of inflammation and endogenous repair mechanisms without compromising host defence. We discuss the pro-resolving bioactions of lipoxins and recent work that aims to harness their therapeutic potential in the context of kidney disease.
Collapse
Affiliation(s)
- Darrell Andrews
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Al-Shaer AE, Buddenbaum N, Shaikh SR. Polyunsaturated fatty acids, specialized pro-resolving mediators, and targeting inflammation resolution in the age of precision nutrition. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158936. [PMID: 33794384 PMCID: PMC8496879 DOI: 10.1016/j.bbalip.2021.158936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
Chronic inflammation contributes toward the pathogenesis of numerous diseases including, but not limited to, obesity, autoimmunity, cardiovascular diseases, and cancers. The discovery of specialized pro-resolving mediators (SPMs), which are critical for resolving inflammation, has commenced investigation into targeting pathways of inflammation resolution to improve physiological outcomes. SPMs are predominately synthesized from the n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Therefore, one viable strategy to promote inflammation resolution would be to increase dietary intake of EPA/DHA, which are deficient in select populations. However, there are inconsistencies between the use of EPA/DHA as dietary or pharmacological supplements and improved inflammatory status. Herein, we review the literature on the relationship between the high n-6/n-3 PUFA ratio, downstream SPM biosynthesis, and inflammatory endpoints. We highlight key studies that have investigated how dietary intake of EPA/DHA increase tissue SPMs and their effects on inflammation. We also discuss the biochemical pathways by which EPA/DHA drive SPM biosynthesis and underscore mechanistic gaps in knowledge about these pathways which include a neglect for host genetics/ethnic differences in SPM metabolism, sexual dimorphism in SPM levels, and potential competition from select dietary n-6 PUFAs for enzymes of SPM synthesis. Altogether, establishing how dietary PUFAs control SPM biosynthesis in a genetic- and sex-dependent manner will drive new precision nutrition studies with EPA/DHA to prevent chronic inflammation in select populations.
Collapse
Affiliation(s)
- Abrar E Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, 170 Rosenau Hall, CB# 7400, 135 Dauer Drive, Chapel Hill, NC, USA
| | - Nicole Buddenbaum
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, 170 Rosenau Hall, CB# 7400, 135 Dauer Drive, Chapel Hill, NC, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, 170 Rosenau Hall, CB# 7400, 135 Dauer Drive, Chapel Hill, NC, USA.
| |
Collapse
|
37
|
Terrando N, Park JJ, Devinney M, Chan C, Cooter M, Avasarala P, Mathew JP, Quinones QJ, Maddipati KR, Berger M. Immunomodulatory lipid mediator profiling of cerebrospinal fluid following surgery in older adults. Sci Rep 2021; 11:3047. [PMID: 33542362 PMCID: PMC7862598 DOI: 10.1038/s41598-021-82606-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) derived lipids play key roles in initiating and resolving inflammation. Neuro-inflammation is thought to play a causal role in perioperative neurocognitive disorders, yet the role of these lipids in the human central nervous system in such disorders is unclear. Here we used liquid chromatography–mass spectrometry to quantify AA, DHA, and EPA derived lipid levels in non-centrifuged cerebrospinal fluid (CSF), centrifuged CSF pellets, and centrifuged CSF supernatants of older adults obtained before, 24 h and 6 weeks after surgery. GAGE analysis was used to determine AA, DHA and EPA metabolite pathway changes over time. Lipid mediators derived from AA, DHA and EPA were detected in all sample types. Postoperative lipid mediator changes were not significant in non-centrifuged CSF (p > 0.05 for all three pathways). The AA metabolite pathway showed significant changes in centrifuged CSF pellets and supernatants from before to 24 h after surgery (p = 0.0000247, p = 0.0155 respectively), from before to 6 weeks after surgery (p = 0.0000497, p = 0.0155, respectively), and from 24 h to 6 weeks after surgery (p = 0.0000499, p = 0.00363, respectively). These findings indicate that AA, DHA, and EPA derived lipids are detectable in human CSF, and the AA metabolite pathway shows postoperative changes in centrifuged CSF pellets and supernatants.
Collapse
Affiliation(s)
| | - John J Park
- Duke University School of Medicine, Durham, NC, USA
| | | | | | - Mary Cooter
- Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Miles Berger
- Duke University Medical Center, Durham, NC, USA.
| | | |
Collapse
|
38
|
Crouch M, Al-Shaer A, Shaikh SR. Hormonal Dysregulation and Unbalanced Specialized Pro-Resolving Mediator Biosynthesis Contribute toward Impaired B Cell Outcomes in Obesity. Mol Nutr Food Res 2021; 65:e1900924. [PMID: 32112513 PMCID: PMC8627245 DOI: 10.1002/mnfr.201900924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/09/2020] [Indexed: 12/16/2022]
Abstract
Diet-induced obesity is associated with impaired B-cell-driven humoral immunity, which coincides with chronic inflammation and has consequences for responses to infections and vaccinations. Key nutritional, cellular, and molecular mechanisms by which obesity may impair aspects of humoral immunity such as B cell development, class switch recombination, and formation of long-lived antibody secreting cells are reviewed. A key theme to emerge is the central role of white adipose tissue on the formation and function of pro-inflammatory B cell subsets that exacerbate insulin resistance. The underlying role of select hormones such as leptin is highlighted, which may be driving the formation of pro-inflammatory B cells in the absence of antigen stimulation. This review also extensively covers the regulatory role of lipid metabolites such as prostaglandins and specialized pro-resolving mediators (SPMs) that are synthesized from polyunsaturated fatty acids. Notably, SPM biosynthesis is impaired in obesity and contributes toward impaired antibody production. Future directions for research, including avenues for therapeutic intervention, are included.
Collapse
Affiliation(s)
- Miranda Crouch
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Abrar Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
39
|
Regidor PA, Mueller A, Sailer M, Gonzalez Santos F, Rizo JM, Moreno Egea F. Chronic Inflammation in PCOS: The Potential Benefits of Specialized Pro-Resolving Lipid Mediators (SPMs) in the Improvement of the Resolutive Response. Int J Mol Sci 2020; 22:ijms22010384. [PMID: 33396555 PMCID: PMC7795660 DOI: 10.3390/ijms22010384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
PCOS as the most common endocrine disorder of women in their reproductive age affects between 5–15% of the female population. Apart from its cardinal symptoms, like irregular and anovulatory cycles, hyperandrogenemia and a typical ultrasound feature of the ovary, obesity, and insulin resistance are often associated with the disease. Furthermore, PCOS represents a status of chronic inflammation with permanently elevated levels of inflammatory markers including IL-6 and IL-18, TNF-α, and CRP. Inflammation, as discovered only recently, consists of two processes occurring concomitantly: active initiation, involving “classical” mediators including prostaglandins and leukotrienes, and active resolution processes based on the action of so-called specialized pro-resolving mediators (SPMs). These novel lipid mediator molecules derive from the essential ω3-poly-unsaturated fatty acids (PUFAs) DHA and EPA and are synthesized via specific intermediates. The role and benefits of SPMs in chronic inflammatory diseases like obesity, atherosclerosis, and Diabetes mellitus has become a subject of intense research during the last years and since PCOS features several of these pathologies, this review aims at summarizing potential roles of SPMs in this disease and their putative use as novel therapeutics.
Collapse
Affiliation(s)
| | - Anna Mueller
- Exeltis Germany GmbH, Adalperostr. 84, 85737 Ismaning, Germany; (A.M.); (M.S.)
| | - Manuela Sailer
- Exeltis Germany GmbH, Adalperostr. 84, 85737 Ismaning, Germany; (A.M.); (M.S.)
| | | | | | - Fernando Moreno Egea
- Solutex SA. Avenida de la Transición Española 24, 28108 Alcobendas, Spain; (F.G.S.); (F.M.E.)
| |
Collapse
|
40
|
Riederer M, Wallner M, Schweighofer N, Fuchs-Neuhold B, Rath A, Berghold A, Eberhard K, Groselj-Strele A, Staubmann W, Peterseil M, Waldner I, Mayr JA, Rothe M, Holasek S, Maunz S, Pail E, van der Kleyn M. Distinct maternal amino acids and oxylipins predict infant fat mass and fat-free mass indices. Arch Physiol Biochem 2020; 129:563-574. [PMID: 33283558 DOI: 10.1080/13813455.2020.1846204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Interested in maternal determinants of infant fat mass index (FMI) and fat-free mass index (FFMI), considered as predictors for later development of obesity, we analysed amino acids (AA) and oxylipins in maternal serum and breast milk (BM). FMI and FFMI were calculated in 47 term infants aged 4 months (T4). Serum AA were analysed in pregnancy (T1, T2) and 6-8 weeks postpartum (T3). At T3, AA and oxylipins were analysed in BM. Biomarker-index-associations were identified by regression analysis. Infant FMI (4.1 ± 1.31 kg/m2; MW ± SD) was predicted by T2 proline (R2 adj.: 7.6%, p = .036) and T3 BM 11-hydroxy-eicosatetraenoic-acid (11-HETE) and 13-hydroxy-docosahexaenoic-acid (13-HDHA; together:35.5% R2 adj., p < .001). Maternal peripartum antibiotics (AB) emerged as confounders (+AB: 23.5% higher FMI; p = .025). Infant FFMI (12.1 ± 1.19 kg/m2; MW ± SD) was predicted by histidine (R2 adj.: 14.5%, p < .001) and 17-HDHA (BM, R2 adj.:19.3%, p < .001), determined at T3. Confirmed in a larger cohort, the parameters could elucidate connections between maternal metabolic status, nutrition, and infant body development.
Collapse
Affiliation(s)
- Monika Riederer
- Institute of Biomedical Science, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Marlies Wallner
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | | | - Bianca Fuchs-Neuhold
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Anna Rath
- Institute of Midwifery, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Katharina Eberhard
- Core Facility Computational Bioanalytics, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Andrea Groselj-Strele
- Core Facility Computational Bioanalytics, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Wolfgang Staubmann
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Marie Peterseil
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Irmgard Waldner
- Institute of Midwifery, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Johannes A Mayr
- University Clinic for Pediatrics and Adolescent Medicine Salzburg, Salzburg, Austria
| | | | - Sandra Holasek
- Department of Pathophysiology, Medical University Graz, Graz, Austria
| | - Susanne Maunz
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Elisabeth Pail
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | | |
Collapse
|
41
|
Callan N, Hanes D, Bradley R. Early evidence of efficacy for orally administered SPM-enriched marine lipid fraction on quality of life and pain in a sample of adults with chronic pain. J Transl Med 2020; 18:401. [PMID: 33087142 PMCID: PMC7579794 DOI: 10.1186/s12967-020-02569-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Marine lipids contain omega-3 fatty acids that can be metabolized into anti-inflammatory and pro-resolving mediators-namely 17-HDHA and 18-HEPE-which can serve as modulators of the pain experience. The purpose of this study was to determine the impact of 4 weeks of oral supplementation with a fractionated marine lipid concentration, standardized to 17-HDHA and 18-HEPE, on health-related quality of life and inflammation in adults with chronic pain. METHODS This study was a prospective, non-randomized, open-label clinical trial. Forty-four adults with ≥ moderate pain intensity for at least 3 months were recruited. The primary outcome was change in health-related quality of life (QOL) using the Patient Reported Outcomes Measurement Information System-43 Profile (PROMIS-43) and the American Chronic Pain Association (ACPA) QOL scale. Exploratory outcomes assessed safety and tolerability, changes in anxiety and depression, levels of pain intensity and interference, patient satisfaction, and impression of change. Changes in blood biomarkers of inflammation (hs-CRP and ESR) were also explored. RESULTS Outcome measures were collected at Baseline, Week 2, and Week 4 (primary endpoint). At Week 4, PROMIS-43 QOL subdomains changed with significance from baseline (p < 0.05), with borderline changes in the ACPA Quality of Life scale (p < 0.052). Exploratory analyses revealed significant changes (p < 0.05) in all measures of pain intensity, pain interference, depression, and anxiety. There were no statistically significant changes in either hs-CRP or ESR, which stayed within normal limits. CONCLUSION We conclude that oral supplementation with a fractionated marine lipid concentration standardized to 17-HDHA and 18-HEPE may improve quality of life, reduce pain intensity and interference, and improve mood within 4 weeks in adults with chronic pain. The consistency and magnitude of these results support the need for placebo-controlled clinical trials of marine lipid concentrations standardized to 17-HDHA and 18-HEPE. Trial registration ClinicalTrials.gov: Influence of an Omega-3 SPM Supplement on Quality of Life, NCT02683850. Registered 17 February 2016-retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02683850 .
Collapse
Affiliation(s)
- Nini Callan
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, 97201, USA
| | - Doug Hanes
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, 97201, USA
| | - Ryan Bradley
- National University of Natural Medicine, Helfgott Research Institute, 2220 SW 1st Ave, Portland, OR, 97201, USA. .,Herbert Wertheim School of Public Health, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Parolini C. Marine n-3 polyunsaturated fatty acids: Efficacy on inflammatory-based disorders. Life Sci 2020; 263:118591. [PMID: 33069735 DOI: 10.1016/j.lfs.2020.118591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a physiological response to injury, stimulating tissue repair and regeneration. However, the presence of peculiar individual conditions can negatively perturb the resolution phase eventually leading to a state of low-grade systemic chronic inflammation, characterized by tissue and organ damages and increased susceptibility to non-communicable disease. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are able to influence many aspects of this process. Experiments performed in various animal models of obesity, Alzheimer's disease and multiple sclerosis have demonstrated that n-3 PUFAs can modulate the basic mechanisms as well as the disease progression. This review describes the available data from experimental studies to the clinical trials.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
43
|
Chiang N, Serhan CN. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem 2020; 64:443-462. [PMID: 32885825 PMCID: PMC7682745 DOI: 10.1042/ebc20200018] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Today, persistent and uncontrolled inflammation is appreciated to play a pivotal role in many diseases, such as cardiovascular diseases, neurodegenerative diseases, metabolic syndrome and many other diseases of public health concern (e.g. Coronavirus Disease 2019 (COVID-19) and periodontal disease). The ideal response to initial challenge in humans is a self-limited inflammatory response leading to complete resolution. The resolution phase is now widely recognized as a biosynthetically active process, governed by a superfamily of endogenous chemical mediators that stimulate resolution of inflammatory responses, namely specialized proresolving mediators (SPMs). Because resolution is the natural ideal response, the SPMs have gained attention. SPMs are mediators that include ω-6 arachidonic acid-derived lipoxins, ω-3 eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)-derived resolvins, protectins and maresins, cysteinyl-SPMs, as well as n-3 docosapentaenoic acid (DPA)-derived SPMs. These novel immunoresolvents, their biosynthetic pathways and receptors have proven to promote resolution of inflammation, clearance of microbes, reduce pain and promote tissue regeneration via specific cellular and molecular mechanisms. As of 17 August, 2020, PubMed.gov reported >1170 publications for resolvins, confirming their potent protective actions from many laboratories worldwide. Since this field is rapidly expanding, we provide a short update of advances within 2-3 years from human and preclinical animal studies, together with the structural-functional elucidation of SPMs and identification of novel SPM receptors. These new discoveries indicate that SPMs, their pathways and receptors could provide a basis for new approaches for treating inflammation-associated diseases and for stimulating tissue regeneration via resolution pharmacology and precision nutrition.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, U.S.A
| |
Collapse
|
44
|
Pal A, Gowdy KM, Oestreich KJ, Beck M, Shaikh SR. Obesity-Driven Deficiencies of Specialized Pro-resolving Mediators May Drive Adverse Outcomes During SARS-CoV-2 Infection. Front Immunol 2020; 11:1997. [PMID: 32983141 PMCID: PMC7438933 DOI: 10.3389/fimmu.2020.01997] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Obesity is a major independent risk factor for increased morbidity and mortality upon infection with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), which is responsible for the current coronavirus disease pandemic (COVID-19). Therefore, there is a critical need to identify underlying metabolic factors associated with obesity that could be contributing toward increased susceptibility to SARS-CoV-2 in this vulnerable population. Here, we focus on the critical role of potent endogenous lipid metabolites known as specialized pro-resolving mediators (SPMs) that are synthesized from polyunsaturated fatty acids. SPMs are generated during the transition of inflammation to resolution and have a vital role in directing damaged tissues to homeostasis; furthermore, SPMs display anti-viral activity in the context of influenza infection without being immunosuppressive. We cover evidence from rodent and human studies to show that obesity, and its co-morbidities, induce a signature of SPM deficiency across immunometabolic tissues. We further discuss how the effects of obesity upon SARS-CoV-2 infection are likely exacerbated with environmental exposures that promote chronic pulmonary inflammation and augment SPM deficits. Finally, we highlight potential approaches to overcome the loss of SPMs using dietary and pharmacological interventions. Collectively, this mini-review underscores the need for mechanistic studies on how SPM deficiencies driven by obesity and environmental exposures may exacerbate the response to SARS-CoV-2.
Collapse
Affiliation(s)
- Anandita Pal
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| | - Melinda Beck
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
45
|
Pal A, Al‐Shaer AE, Guesdon W, Torres MJ, Armstrong M, Quinn K, Davis T, Reisdorph N, Neufer PD, Spangenburg EE, Carroll I, Bazinet RP, Halade GV, Clària J, Shaikh SR. Resolvin E1 derived from eicosapentaenoic acid prevents hyperinsulinemia and hyperglycemia in a host genetic manner. FASEB J 2020; 34:10640-10656. [PMID: 32579292 PMCID: PMC7497168 DOI: 10.1096/fj.202000830r] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Eicosapentaenoic acid (EPA) has garnered attention after the success of the REDUCE-IT trial, which contradicted previous conclusions on EPA for cardiovascular disease risk. Here we first investigated EPA's preventative role on hyperglycemia and hyperinsulinemia. EPA ethyl esters prevented obesity-induced glucose intolerance, hyperinsulinemia, and hyperglycemia in C57BL/6J mice. Supporting NHANES analyses showed that fasting glucose levels of obese adults were inversely related to EPA intake. We next investigated how EPA improved murine hyperinsulinemia and hyperglycemia. EPA overturned the obesity-driven decrement in the concentration of 18-hydroxyeicosapentaenoic acid (18-HEPE) in white adipose tissue and liver. Treatment of obese inbred mice with RvE1, the downstream immunoresolvant metabolite of 18-HEPE, but not 18-HEPE itself, reversed hyperinsulinemia and hyperglycemia through the G-protein coupled receptor ERV1/ChemR23. To translate the findings, we determined if the effects of RvE1 were dependent on host genetics. RvE1's effects on hyperinsulinemia and hyperglycemia were divergent in diversity outbred mice that model human genetic variation. Secondary SNP analyses further confirmed extensive genetic variation in human RvE1/EPA-metabolizing genes. Collectively, the data suggest EPA prevents hyperinsulinemia and hyperglycemia, in part, through RvE1's activation of ERV1/ChemR23 in a host genetic manner. The studies underscore the need for personalized administration of RvE1 based on genetic/metabolic enzyme profiles.
Collapse
Affiliation(s)
- Anandita Pal
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Abrar E. Al‐Shaer
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - William Guesdon
- Department of Biochemistry & Molecular BiologyBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
- Present address:
School of Immunology and Microbial SciencesKing's College LondonGuy's CampusLondonSE1 9RTUK
| | - Maria J. Torres
- Department of PhysiologyEast Carolina Diabetes & Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
- Present address:
Duke Molecular Physiology InstituteDuke University300 North Duke StreetDurhamNC27701USA
| | - Michael Armstrong
- Department of Pharmaceutical SciencesUniversity of Colorado Denver Anschutz Medical CampusAuroraCOUSA
| | - Kevin Quinn
- Department of Pharmaceutical SciencesUniversity of Colorado Denver Anschutz Medical CampusAuroraCOUSA
| | - Traci Davis
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Nichole Reisdorph
- Department of Pharmaceutical SciencesUniversity of Colorado Denver Anschutz Medical CampusAuroraCOUSA
| | - P. Darrell Neufer
- Department of PhysiologyEast Carolina Diabetes & Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Espen E. Spangenburg
- Department of PhysiologyEast Carolina Diabetes & Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Ian Carroll
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | | | - Ganesh V. Halade
- Division of Cardiovascular SciencesDepartment of MedicineThe University of South FloridaTampaFLUSA
| | - Joan Clària
- Department of Biochemistry and Molecular GeneticsUniversity of BarcelonaHospital ClínicBarcelonaSpain
| | - Saame Raza Shaikh
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
46
|
Schaller MS, Chen M, Colas RA, Sorrentino TA, Lazar AA, Grenon SM, Dalli J, Conte MS. Treatment With a Marine Oil Supplement Alters Lipid Mediators and Leukocyte Phenotype in Healthy Patients and Those With Peripheral Artery Disease. J Am Heart Assoc 2020; 9:e016113. [PMID: 32696697 PMCID: PMC7792251 DOI: 10.1161/jaha.120.016113] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Peripheral artery disease (PAD) is an advanced form of atherosclerosis characterized by chronic inflammation. Resolution of inflammation is a highly coordinated process driven by specialized pro‐resolving lipid mediators endogenously derived from omega‐3 fatty acids. We investigated the impact of a short‐course, oral, enriched marine oil supplement on leukocyte phenotype and biochemical mediators in patients with symptomatic PAD and healthy volunteers. Methods and Results This was a prospective, open‐label study of 5‐day oral administration of an enriched marine oil supplement, assessing 3 escalating doses in 10 healthy volunteers and 10 patients with PAD. Over the course of the study, there was a significant increase in the plasma level of several lipid mediator families, total specialized pro‐resolving lipid mediators, and specialized pro‐resolving lipid mediator:prostaglandin ratio. Supplementation was associated with an increase in phagocytic activity of peripheral blood monocytes and neutrophils. Circulating monocyte phenotyping demonstrated reduced expression of multiple proinflammatory markers (cluster of differentiation 18, 163, 54, and 36, and chemokine receptor 2). Similarly, transcriptional profiling of monocyte‐derived macrophages displayed polarization toward a reparative phenotype postsupplementation. The most notable cellular and biochemical changes over the study occurred in patients with PAD. There were strong correlations between integrated biochemical measures of lipid mediators (specialized pro‐resolving lipid mediators:prostaglandin ratio) and phenotypic changes in circulating leukocytes in both healthy individuals and patients with PAD. Conclusions These data suggest that short‐term enriched marine oil supplementation dramatically remodels downstream lipid mediator pathways and induces a less inflammatory and more pro‐resolution phenotype in circulating leukocytes and monocyte‐derived macrophages. Further studies are required to determine the potential clinical relevance of these findings in patients with PAD. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02719665.
Collapse
Affiliation(s)
- Melinda S Schaller
- Division of Vascular and Endovascular Surgery Cardiovascular Research Institute University of California, San Francisco San Francisco CA
| | - Mian Chen
- Division of Vascular and Endovascular Surgery Cardiovascular Research Institute University of California, San Francisco San Francisco CA
| | - Romain A Colas
- William Harvey Research InstituteBarts and The London School of Medicine and Dentistry Queen Mary University of London London United Kingdom
| | - Thomas A Sorrentino
- Division of Vascular and Endovascular Surgery Cardiovascular Research Institute University of California, San Francisco San Francisco CA
| | - Ann A Lazar
- Department of Epidemiology and Biostatistics University of California, San Francisco San Francisco CA
| | - S Marlene Grenon
- Division of Vascular and Endovascular Surgery Cardiovascular Research Institute University of California, San Francisco San Francisco CA
| | - Jesmond Dalli
- William Harvey Research InstituteBarts and The London School of Medicine and Dentistry Queen Mary University of London London United Kingdom.,Centre for Inflammation and Therapeutic Innovation Queen Mary University of London London United Kingdom
| | - Michael S Conte
- Division of Vascular and Endovascular Surgery Cardiovascular Research Institute University of California, San Francisco San Francisco CA
| |
Collapse
|
47
|
Mariqueo TA, Zúñiga-Hernández J. Omega-3 derivatives, specialized pro-resolving mediators: Promising therapeutic tools for the treatment of pain in chronic liver disease. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102095. [PMID: 32450460 DOI: 10.1016/j.plefa.2020.102095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/02/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
The main causes of liver injury are associated with inflammation and permanent damage. They can cause chronic liver disease (CLD), which is mainly related to viral hepatitis, alcohol consumption and non-alcoholic steatohepatitis, leading to fibrosis, cirrhosis and hepatocellular carcinoma. These conditions prevent the liver from working normally and make it begin to fail, which in turn may prompt a liver transplant. CLD and cirrhosis are the eleventh cause of death worldwide. At present, there are no approved pharmacological treatments to prevent, treat or resolve liver fibrosis. The prevalence of pain in the hepatic disease is elevated with ranges between 30% and 40%. Most of the pain drugs require hepatic function; therefore, the suitable control of pain is still a clinical challenge. Specialized pro-resolving mediators (SPM): lipoxins, resolvins, protectins and maresins, are potent endogenous molecules (nM concentrations) that modulate inflammatory body responses by reducing neutrophil infiltration, macrophage activity and pain sensitization. SPM have anti-inflammatory properties, stimulate tissue resolution, repair and regeneration, and exhibit anti-nociceptive actions. Furthermore, SPM were tried on different cellular, animal models and human observational data of liver injury, improving the pathogenesis of inflammation and fibrosis. In the present work, we will describe recent evidence that suggests that SPM can be used as a therapeutic option for CLD. Additionally, we will examine the role of SPM in the control of pain in pathologies associated with liver injury.
Collapse
Affiliation(s)
- T A Mariqueo
- Centro de Investigaciones Medicas, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - J Zúñiga-Hernández
- Centro de Investigaciones Medicas, Escuela de Medicina, Universidad de Talca, Talca, Chile.
| |
Collapse
|
48
|
Barden A, Shinde S, Tsai IJ, Croft KD, Beilin LJ, Puddey IB, Mori TA. Effect of weight loss on neutrophil resolvins in the metabolic syndrome. Prostaglandins Leukot Essent Fatty Acids 2019; 148:25-29. [PMID: 31492430 DOI: 10.1016/j.plefa.2019.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Non-resolving inflammation associates with obesity and insulin resistance, and may be dependent on the balance of inflammatory substances and specialised pro-resolving mediators of inflammation (SPM) that act to halt the inflammatory response. This controlled trial examined the effect of weight loss on neutrophil synthesis of SPM in volunteers with the metabolic syndrome (MetS). METHODS Volunteers with MetS (n = 42) were matched for age and gender and randomly assigned to a 12-wk weight loss program followed by 4-wk weight stabilization or a 16-wk weight maintenance program. At baseline and 16 weeks, isolated neutrophils were stimulated with calcium ionophore and the released SPM were measured by LC-MS/MS. RESULTS At baseline the SPM resolvin (Rv) E1, 18R-RvE3, RvD2 and Maresin-1 (MaR-1) were detected from stimulated neutrophils. The concentration of released RvE1 was at least 6-fold that of other detected SPM. Weight loss of 4.7 ± 0.8 kg, led to a 2-fold increase in RvE1, P = 0.013, relative to the weight maintenance group. The increase in RvE1 after weight loss was related to, but independent of leukotriene B4. CONCLUSION: Following weight loss, human neutrophils from individuals with the metabolic syndrome are capable of releasing larger amounts of RvE1 upon stimulation.
Collapse
Affiliation(s)
- A Barden
- Medical School, University of Western Australia, Perth, Australia.
| | - S Shinde
- Medical School, University of Western Australia, Perth, Australia
| | - I-J Tsai
- Medical School, University of Western Australia, Perth, Australia
| | - K D Croft
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - L J Beilin
- Medical School, University of Western Australia, Perth, Australia
| | - I B Puddey
- Medical School, University of Western Australia, Perth, Australia
| | - T A Mori
- Medical School, University of Western Australia, Perth, Australia
| |
Collapse
|