1
|
Potter H, Chial HJ, Caneus J, Elos M, Elder N, Borysov S, Granic A. Chromosome Instability and Mosaic Aneuploidy in Neurodegenerative and Neurodevelopmental Disorders. Front Genet 2019; 10:1092. [PMID: 31788001 PMCID: PMC6855267 DOI: 10.3389/fgene.2019.01092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Evidence from multiple laboratories has accumulated to show that mosaic neuronal aneuploidy and consequent apoptosis characterizes and may underlie neuronal loss in many neurodegenerative diseases, particularly Alzheimer’s disease and frontotemporal dementia. Furthermore, several neurodevelopmental disorders, including Seckel syndrome, ataxia telangiectasia, Nijmegen breakage syndrome, Niemann–Pick type C, and Down syndrome, have been shown to also exhibit mosaic aneuploidy in neurons in the brain and in other cells throughout the body. Together, these results indicate that both neurodegenerative and neurodevelopmental disorders with apparently different pathogenic causes share a cell cycle defect that leads to mosaic aneuploidy in many cell types. When such mosaic aneuploidy arises in neurons in the brain, it promotes apoptosis and may at least partly underlie the cognitive deficits that characterize the neurological symptoms of these disorders. These findings have implications for both diagnosis and treatment/prevention.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Heidi J Chial
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Julbert Caneus
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
| | - Mihret Elos
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Nina Elder
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Sergiy Borysov
- Department of Math and Science, Saint Leo University, Saint Leo, FL, United States
| | - Antoneta Granic
- AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle University Institute for Ageing, NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Ezratty EJ, Pasolli HA, Fuchs E. A Presenilin-2-ARF4 trafficking axis modulates Notch signaling during epidermal differentiation. J Cell Biol 2016; 214:89-101. [PMID: 27354375 PMCID: PMC4932368 DOI: 10.1083/jcb.201508082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 06/01/2016] [Indexed: 01/08/2023] Open
Abstract
How primary cilia impact epidermal growth and differentiation during embryogenesis is poorly understood. Here, we show that during skin development, Notch signaling occurs within the ciliated, differentiating cells of the first few suprabasal epidermal layers. Moreover, both Notch signaling and cilia disappear in the upper layers, where key ciliary proteins distribute to cell-cell borders. Extending this correlation, we find that Presenilin-2 localizes to basal bodies/cilia through a conserved VxPx motif. When this motif is mutated, a GFP-tagged Presenilin-2 still localizes to intercellular borders, but basal body localization is lost. Notably, in contrast to wild type, this mutant fails to rescue epidermal differentiation defects seen upon Psen1 and 2 knockdown. Screening components implicated in ciliary targeting and polarized exocytosis, we provide evidence that the small GTPase ARF4 is required for Presenilin basal body localization, Notch signaling, and subsequent epidermal differentiation. Collectively, our findings raise the possibility that ARF4-dependent polarized exocytosis acts through the basal body-ciliary complex to spatially regulate Notch signaling during epidermal differentiation.
Collapse
Affiliation(s)
- Ellen J Ezratty
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| | - H Amalia Pasolli
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| |
Collapse
|
3
|
Potter H, Granic A, Caneus J. Role of Trisomy 21 Mosaicism in Sporadic and Familial Alzheimer's Disease. Curr Alzheimer Res 2016; 13:7-17. [PMID: 26651340 PMCID: PMC5570437 DOI: 10.2174/156720501301151207100616] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/13/2015] [Accepted: 08/30/2015] [Indexed: 02/07/2023]
Abstract
Trisomy 21 and the consequent extra copy of the amyloid precursor protein (APP) gene and increased beta-amyloid (Aβ) peptide production underlie the universal development of Alzheimer's disease (AD) pathology and high risk of AD dementia in people with Down syndrome (DS). Trisomy 21 and other forms of aneuploidy also arise among neurons and peripheral cells in both sporadic and familial AD and in mouse and cell models thereof, reinforcing the conclusion that AD and DS are two sides of the same coin. The demonstration that 90% of the neurodegeneration in AD can be attributed to the selective loss of aneuploid neurons generated over the course of the disease indicates that aneuploidy is an essential feature of the pathogenic pathway leading to the depletion of neuronal cell populations. Trisomy 21 mosaicism also occurs in neurons and other cells from patients with Niemann-Pick C1 disease and from patients with familial or sporadic frontotemporal lobar degeneration (FTLD), as well as in their corresponding mouse and cell models. Biochemical studies have shown that Aβ induces mitotic spindle defects, chromosome mis-segregation, and aneuploidy in cultured cells by inhibiting specific microtubule motors required for mitosis. These data indicate that neuronal trisomy 21 and other types of aneuploidy characterize and likely contribute to multiple neurodegenerative diseases and are a valid target for therapeutic intervention. For example, reducing extracellular calcium or treating cells with lithium chloride (LiCl) blocks the induction of trisomy 21 by Aβ. The latter finding is relevant in light of recent reports of a lowered risk of dementia in bipolar patients treated with LiCl and in the stabilization of cognition in AD patients treated with LiCl.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology and Linda Crnic Institute for Down Syndrome, 12700 E. 19th Ave room 4010, mail stop 8608, Aurora CO 80045, USA.
| | | | | |
Collapse
|
4
|
Schedin-Weiss S, Inoue M, Teranishi Y, Yamamoto NG, Karlström H, Winblad B, Tjernberg LO. Visualizing active enzyme complexes using a photoreactive inhibitor for proximity ligation--application on γ-secretase. PLoS One 2013; 8:e63962. [PMID: 23717518 PMCID: PMC3663845 DOI: 10.1371/journal.pone.0063962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/09/2013] [Indexed: 11/20/2022] Open
Abstract
Here, we present a highly sensitive method to study protein-protein interactions and subcellular location selectively for active multicomponent enzymes. We apply the method on γ-secretase, the enzyme complex that catalyzes the cleavage of the amyloid precursor protein (APP) to generate amyloid β-peptide (Aβ), the major causative agent in Alzheimer disease (AD). The novel assay is based on proximity ligation, which can be used to study protein interactions in situ with very high sensitivity. In traditional proximity ligation assay (PLA), primary antibody recognition is typically accompanied by oligonucleotide-conjugated secondary antibodies as detection probes. Here, we first performed PLA experiments using antibodies against the γ-secretase components presenilin 1 (PS1), containing the catalytic site residues, and nicastrin, suggested to be involved in substrate recognition. To selectively study the interactions of active γ-secretase, we replaced one of the primary antibodies with a photoreactive γ-secretase inhibitor containing a PEG linker and a biotin group (GTB), and used oligonucleotide-conjugated streptavidin as a probe. Interestingly, significantly fewer interactions were detected with the latter, novel, assay, which is a reasonable finding considering that a substantial portion of PS1 is inactive. In addition, the PLA signals were located more peripherally when GTB was used instead of a PS1 antibody, suggesting that γ-secretase matures distal from the perinuclear ER region. This novel technique thus enables highly sensitive protein interaction studies, determines the subcellular location of the interactions, and differentiates between active and inactive γ-secretase in intact cells. We suggest that similar PLA assays using enzyme inhibitors could be useful also for other enzyme interaction studies.
Collapse
Affiliation(s)
- Sophia Schedin-Weiss
- KI-Alzheimer Disease Research Center-KI-ADRC, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society-NVS, Novum Level 5, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
5
|
Hoeing K, Zscheppang K, Mujahid S, Murray S, Volpe MV, Dammann CEL, Nielsen HC. Presenilin-1 processing of ErbB4 in fetal type II cells is necessary for control of fetal lung maturation. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:480-91. [PMID: 21195117 PMCID: PMC3046222 DOI: 10.1016/j.bbamcr.2010.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/29/2010] [Accepted: 12/21/2010] [Indexed: 11/19/2022]
Abstract
Maturation of pulmonary fetal type II cells to initiate adequate surfactant production is crucial for postnatal respiratory function. Little is known about specific mechanisms of signal transduction controlling type II cell maturation. The ErbB4 receptor and its ligand neuregulin (NRG) are critical for lung development. ErbB4 is cleaved at the cell membrane by the γ-secretase enzyme complex whose active component is either presenilin-1 (PSEN-1) or presenilin-2. ErbB4 cleavage releases the 80kDa intracellular domain (4ICD), which associates with chaperone proteins such as YAP (Yes-associated protein) and translocates to the nucleus to regulate gene expression. We hypothesized that PSEN-1 and YAP have a development-specific expression in fetal type II cells and are important for ErbB4 signaling in surfactant production. In primary fetal mouse E16, E17, and E18 type II cells, PSEN-1 and YAP expression increased at E17 and E18 over E16. Subcellular fractionation showed a strong cytosolic and a weaker membrane location of both PSEN-1 and YAP. This was enhanced by NRG stimulation. Co-immunoprecipitations showed ErbB4 associated separately with PSEN-1 and with YAP. Their association, phosphorylation, and co-localization were induced by NRG. Confocal immunofluorescence and nuclear fractionation confirmed these associations in a time-dependent manner after NRG stimulation. Primary ErbB4-deleted E17 type II cells were transfected with a mutant ErbB4 lacking the γ-secretase binding site. When compared to transfection with wild-type ErbB4, the stimulatory effect of NRG on surfactant protein mRNA expression was lost. We conclude that PSEN-1 and YAP have crucial roles in ErbB4 signal transduction during type II cell maturation.
Collapse
Affiliation(s)
- Kristina Hoeing
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, 800 Washington Street, Boston MA, USA 02111
- Department of Pediatrics, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Katja Zscheppang
- Department of Pediatrics, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Sana Mujahid
- Department of Anatomy and Cell Biology, Tufts University Sackler School of Biomedical Sciences, Harrison Ave, Boston MA, USA 02111
| | - Sandy Murray
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, 800 Washington Street, Boston MA, USA 02111
| | - MaryAnn V. Volpe
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, 800 Washington Street, Boston MA, USA 02111
| | - Christiane E. L. Dammann
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, 800 Washington Street, Boston MA, USA 02111
- Department of Pediatrics, Hannover Medical School, Hannover, Niedersachsen, Germany
| | - Heber C. Nielsen
- Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, 800 Washington Street, Boston MA, USA 02111
- Department of Pediatrics, Hannover Medical School, Hannover, Niedersachsen, Germany
- Department of Anatomy and Cell Biology, Tufts University Sackler School of Biomedical Sciences, Harrison Ave, Boston MA, USA 02111
| |
Collapse
|
6
|
van Tijn P, Kamphuis W, Marlatt MW, Hol EM, Lucassen PJ. Presenilin mouse and zebrafish models for dementia: focus on neurogenesis. Prog Neurobiol 2010; 93:149-64. [PMID: 21056616 DOI: 10.1016/j.pneurobio.2010.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/27/2010] [Accepted: 10/31/2010] [Indexed: 01/18/2023]
Abstract
Autosomal dominant mutations in the presenilin gene PSEN cause familial Alzheimer's disease (AD), a neurological disorder pathologically characterized by intraneuronal accumulation and extracellular deposition of amyloid-β in plaques and intraneuronal, hyperphosphorylated tau aggregation in neurofibrillary tangles. Presenilins (PS/PSENs) are part of the proteolytic γ-secretase complex, which cleaves substrate proteins within the membrane. Cleavage of the amyloid precursor protein (APP) by γ-secretase releases amyloid-β peptides. Besides its role in the processing of APP and other transmembrane proteins, presenilin plays an important role in neural progenitor cell maintenance and neurogenesis. In this review, we discuss the role of presenilin in relation to neurogenesis and neurodegeneration and review the currently available presenilin animal models. In addition to established mouse models, zebrafish are emerging as an attractive vertebrate model organism to study the role of presenilin during the development of the nervous system and in neurodegenerative disorders involving presenilin. Zebrafish is a suitable model organism for large-scale drug screening, making this a valuable model to identify novel therapeutic targets for AD.
Collapse
Affiliation(s)
- Paula van Tijn
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
7
|
Abstract
All Down’s syndrome individuals develop Alzheimer’s disease (AD) neuropathology by the age of 40 years. To unite the two diseases under one hypothesis, we have suggested that classical AD, both of the genetic and late-onset sporadic forms, might be promoted by small numbers of trisomy 21 cells developing during the life of the affected individual. Recent evidence from several laboratories will be presented, which strongly supports the trisomy 21 hypothesis that defects in mitosis, and particularly in chromosome segregation, may be a part of the AD process. Specifically, genetic mutations that cause familial AD disrupt the cell cycle and lead to chromosome aneuploidy, including trisomy 21, in transgenic mice and transfected cells; cells from both familial and sporadic AD patients exhibit chromosome aneuploidy, including trisomy 21. The possibility that many cases of AD are mosaic for trisomy 21 suggests novel approaches to diagnosis and therapy.
Collapse
Affiliation(s)
- Huntington Potter
- Johnnie B Byrd Sr Alzheimer’s Center & Research Institute, Eric Pfeiffer Chair for Research in Alzheimer’s Disease, Department of Molecular Medicine, University of South Florida College of Medicine, FL, USA
| |
Collapse
|
8
|
Nizzari M, Venezia V, Repetto E, Caorsi V, Magrassi R, Gagliani MC, Carlo P, Florio T, Schettini G, Tacchetti C, Russo T, Diaspro A, Russo C. Amyloid Precursor Protein and Presenilin1 Interact with the Adaptor GRB2 and Modulate ERK 1,2 Signaling. J Biol Chem 2007; 282:13833-44. [PMID: 17314098 DOI: 10.1074/jbc.m610146200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The amyloid precursor protein (APP) and the presenilins 1 and 2 are genetically linked to the development of familial Alzheimer disease. APP is a single-pass transmembrane protein and precursor of fibrillar and toxic amyloid-beta peptides, which are considered responsible for Alzheimer disease neurodegeneration. Presenilins are multipass membrane proteins, involved in the enzymatic cleavage of APP and other signaling receptors and transducers. The role of APP and presenilins in Alzheimer disease development seems to be related to the formation of amyloid-beta peptides; however, their physiological function, reciprocal interaction, and molecular mechanisms leading to neurodegeneration are unclear. APP and presenilins are also involved in multiple interactions with intracellular proteins, the significance of which is under investigation. Among the different APP-interacting proteins, we focused our interest on the GRB2 adaptor protein, which connects cell surface receptors to intracellular signaling pathways. In this study we provide evidence by co-immunoprecipitation experiments, confocal and electron microscopy, and by fluorescence resonance energy transfer experiments that both APP and presenilin1 interact with GRB2 in vesicular structures at the centrosome of the cell. The final target for these interactions is ERK1,2, which is activated in mitotic centrosomes in a PS1- and APP-dependent manner. These data suggest that both APP and presenilin1 can be part of a common signaling pathway that regulates ERK1,2 and the cell cycle.
Collapse
Affiliation(s)
- Mario Nizzari
- Dipartimento di Oncologia, Biologia e Genetica, Università di Genova, Viale Benedetto XV, 2, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
To MD, Gokgoz N, Doyle TG, Donoviel DB, Knight JA, Hyslop PS, Bernstein A, Andrulis IL. Functional characterization of novel presenilin-2 variants identified in human breast cancers. Oncogene 2006; 25:3557-64. [PMID: 16474849 DOI: 10.1038/sj.onc.1209397] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We identified in breast cancer cases two germline alterations, R62H and R71W, in presenilin-2 (PS-2), a gene involved in familial Alzheimer's disease (FAD). The role of these alleles in FAD is unclear, but neither allele affected Abeta(42)/Abeta(40) ratio. However, both R62H and R71W alterations compromised PS-2 function in Notch signaling in Caenorhabditis elegans and cell growth inhibition in mouse embryonic fibroblasts, and these effects were dependent on gene dosage. We found that both alterations enhanced the degradation of the PS-2 full-length protein, indicating that they may have a loss-of function effect. The effect of the R71W alteration was noticeably stronger, and we observed an almost threefold higher frequency of this allele in breast cancer cases versus controls, but this difference did not reach statistical significance. Nonetheless, these results collectively suggest that the novel PS-2 alleles described here, especially R71W, affect PS-2 function and may potentially confer a moderate risk of susceptibility to breast cancer.
Collapse
Affiliation(s)
- M D To
- Fred A Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Jeong SJ, Kim M, Chang KA, Kim HS, Park CH, Suh YH. Huntingtin is localized in the nucleus during preimplanatation embryo development in mice. Int J Dev Neurosci 2005; 24:81-5. [PMID: 16289942 DOI: 10.1016/j.ijdevneu.2005.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 09/16/2005] [Accepted: 10/03/2005] [Indexed: 11/25/2022] Open
Abstract
Huntington's disease (HD) is a dominant neurodegenerative disorder caused by the expansion of a CAG repeat in the gene encoding huntingtin. Moreover, the nuclear targeting of mutant huntingtin increases cellular toxicity, whereas normal huntingtin resides mainly in the cytoplasm, and is associated with membranes or microtubules. Huntingtin is enriched in neurons and its expression is increased during neural development. The inactivation of the HD gene results in embryonic lethality before nervous system development. Thus, huntingtin is critical during early embryonic development. Nevertheless, the function of huntingtin at this stage is unknown, even the distribution of the protein has not been described. The present study was undertaken to elucidate the distribution of huntingtin during the early developmental period in the mouse embryo. At the preimplantation stage, huntingtin was detected in nuclei up to 2.5 days post coitum (dpc), but disappeared from nuclei during the blastocyst stage (3.5 dpc). Following this stage, huntingtin was mainly localized in the cytoplasm and co-localized with mitotic spindles. These data suggest that the nuclear targeting of normal huntingtin is required during early embryo development in mice.
Collapse
Affiliation(s)
- Sung-Jin Jeong
- Department of Pharmacology, College of Medicine, Seoul National University, Neuroscience Research Institute of SNUMRC, 28 Yongon-Dong, Chongro-Gu, Seoul 110-744, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Wen PH, De Gasperi R, Sosa MAG, Rocher AB, Friedrich VL, Hof PR, Elder GA. Selective expression of presenilin 1 in neural progenitor cells rescues the cerebral hemorrhages and cortical lamination defects in presenilin 1-null mutant mice. Development 2005; 132:3873-83. [PMID: 16079160 PMCID: PMC1698506 DOI: 10.1242/dev.01946] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mice with a null mutation of the presenilin 1 gene (Psen1(-/-)) die during late intrauterine life or shortly after birth and exhibit multiple CNS and non-CNS abnormalities, including cerebral hemorrhages and altered cortical development. The cellular and molecular basis for the developmental effects of Psen1 remain incompletely understood. Psen1 is expressed in neural progenitors in developing brain, as well as in postmitotic neurons. We crossed transgenic mice with either neuron-specific or neural progenitor-specific expression of Psen1 onto the Psen1(-/-) background. We show that neither neuron-specific nor neural progenitor-specific expression of Psen1 can rescue the embryonic lethality of the Psen1(-/-) embryo. Indeed neuron-specific expression rescued none of the abnormalities in Psen1(-/-) mice. However, Psen1 expression in neural progenitors rescued the cortical lamination defects, as well as the cerebral hemorrhages, and restored a normal vascular pattern in Psen1(-/-) embryos. Collectively, these studies demonstrate that Psen1 expression in neural progenitor cells is crucial for cortical development and reveal a novel role for neuroectodermal expression of Psen1 in development of the brain vasculature.
Collapse
Affiliation(s)
- Paul H Wen
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Flood F, Sundström E, Samuelsson EB, Wiehager B, Seiger A, Johnston JA, Cowburn RF. Presenilin expression during induced differentiation of the human neuroblastoma SH-SY5Y cell line. Neurochem Int 2004; 44:487-96. [PMID: 15209417 DOI: 10.1016/j.neuint.2003.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human neuroblastoma SH-SY5Y cells stably transfected with both wild-type and exon-9 deleted (deltaE9) presenilin constructs were used to study the role of the presenilin proteins during differentiation. Cells transfected with either wild-type or deltaE9 PS1, of which the latter abolishes normal endoproteolytic cleavage of the protein, showed no obvious differences in their ability to differentiate to a neuronal-like phenotype upon treatment with retinoic acid (RA). A defined pattern of PS1 expression was observed during differentiation with both RA and the phorbol ester TPA. Full-length PS1 was shown to increase dramatically within 5-24 h of RA treatment. TPA gave an earlier and longer lasting increase in full-length PS1 levels. The intracellular distribution pattern of PS1 was markedly altered following RA treatment. Within 24h PS1 was highly up-regulated throughout the cell body around the nucleus. Between 2 and 4 weeks PS1 staining appeared punctate and also localised to the nucleus. Increases in PS1 expression upon treatment with RA and TPA were blocked by treatment with cycloheximide, indicating a role of de-novo protein synthesis in this effect. PS2 expression remained unchanged during differentiation. Levels of full-length PS1 were also seen to increase during neurogenesis and neuronal differentiation in the forebrain of first trimester human foetuses between 6.5 and 11 weeks. These combined observations support the idea that PS1 is involved in neuronal differentiation by a mechanism likely independent of endoproteolysis of the protein.
Collapse
Affiliation(s)
- Fiona Flood
- Neurotec Department, Division of Experimental Geriatrics, Karolinska Institutet, KASPAC, Novum pl 5, S-141 86 Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Li J, Pauley AM, Myers RL, Shuang R, Brashler JR, Yan R, Buhl AE, Ruble C, Gurney ME. SEL-10 interacts with presenilin 1, facilitates its ubiquitination, and alters A-beta peptide production. J Neurochem 2002; 82:1540-8. [PMID: 12354302 DOI: 10.1046/j.1471-4159.2002.01105.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the human presenilin genes (PS1 or PS2) have been linked to autosomal dominant, early onset Alzheimer's disease (AD). Presenilins, probably as an essential part of gamma-secretase, modulate gamma-cleavage of the amyloid protein precursor (APP) to the amyloid beta-peptide (Abeta). Mutations in sel-12, a Caenorhabditis elegans presenilin homologue, cause a defect in egg laying that can be suppressed by loss of function mutations in a second gene, SEL-10. SEL-10 protein is a homologue of yeast Cdc4, a member of the SCF (Skp1-Cdc53/CUL1-F-box protein) E2-E3 ubiquitin ligase family. In this study, we show that human SEL-10 interacts with PS1 and enhances PS1 ubiquitination, thus altering cellular levels of unprocessed PS1 and its N- and C-terminal fragments. Co-transfection of sel-10 and APP cDNAs in HEK293 cells leads to an alteration in the metabolism of APP and to an increase in the production of amyloid beta-peptide, the principal component of amyloid plaque in Alzheimer's disease.
Collapse
Affiliation(s)
- Jinhe Li
- Department of Neurobiology, Computer Aided Drug Design, Pharmacia Corporation, Kalamazoo, Michigan 49001, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wen PH, Friedrich VL, Shioi J, Robakis NK, Elder GA. Presenilin-1 is expressed in neural progenitor cells in the hippocampus of adult mice. Neurosci Lett 2002; 318:53-6. [PMID: 11796184 DOI: 10.1016/s0304-3940(01)02485-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The functions of the presenilin-1 (PS-1) protein remain largely unknown. In adult brain PS-1 is expressed principally in neurons. However during development PS-1 is expressed more widely including in embryonic neural progenitors. To determine if PS-1 is expressed in neural progenitors in adult hippocampus we used bromodeoxyuridine (BrdU) labeling combined with immunostaining for BrdU, PS-1 and markers of neuronal or glial differentiation. Most BrdU labeled cells also expressed PS-1 at a time when few BrdU labeled cells expressed the early neuronal markers beta-III tubulin or TOAD-64 and none expressed mature neuronal (NeuN or calbindin) or astrocytic (GFAP) markers. Cells expressing PS-1 and the neural progenitor marker nestin were also found. Thus PS-1 is expressed in neural progenitor cells in adult hippocampus implying its possible role in neurogenesis in adult brain.
Collapse
Affiliation(s)
- Paul H Wen
- Department of Psychiatry, P.O. Box 1229, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|