1
|
Sharma PC, McCandless M, Sontakke SP, Varshney N, Brodell RT, Kyle PB, Daley W. Navigating Viral Gastroenteritis: Epidemiological Trends, Pathogen Analysis, and Histopathological Findings. Cureus 2024; 16:e61197. [PMID: 38939260 PMCID: PMC11210331 DOI: 10.7759/cureus.61197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Gastroenteritis is a common cause of morbidity and mortality globally. Its cause encompasses a spectrum of agents, including viruses, bacteria, parasites, toxins, and drugs. Viruses account for a considerable portion of gastroenteritis cases across all age groups, typically presenting with symptoms like nausea, vomiting, diarrhea, dehydration, anorexia, and weight loss. While sporadic cases occur, viral gastroenteritis is more frequently observed in outbreaks within closely knit communities such as daycare facilities, nursing homes, and cruise ships. Therefore, it becomes necessary to determine when healthcare providers should consider this condition in their differential diagnosis and to develop the most effective strategy to confirm the diagnosis. METHODS De-identified data of patients with gastroenteritis were collected over a five-year period utilizing the Patient Cohort Explorer, an electronic health record at the University of Mississippi Medical Center. Confirmatory laboratory tests employed the BioFire® FilmArray® multiplex polymerase chain reaction for gastrointestinal pathogens. Out of the 22 most common agents associated with gastroenteritis, only viral pathogens, specifically adenovirus, astrovirus, norovirus, rotavirus, and sapovirus, were included in the analysis. When available, histopathology was reviewed. RESULTS Among the various causes of gastroenteritis, both infectious and non-infectious, our findings revealed that 25.46% of the cases were linked to viral pathogens. This included a significantly higher percentage of pediatric patients (72.73%) when compared to adults (27.07%), with a p-value of 0.015. Norovirus genogroups I and II emerged as the most frequently detected viruses across all age groups, with a significant prevalence among adults. No discernible gender-based differences were observed. The histopathological findings included inflammation, ulceration, erosion, architectural distortion, and the pathognomonic viral inclusion bodies associated with adenovirus. CONCLUSION Our comprehensive analysis of viral gastroenteritis cases highlights the substantial burden of this condition, particularly among pediatric patients. Norovirus emerges as a prevalent culprit which emphasizes the importance of vigilant surveillance and timely diagnosis, especially in settings where outbreaks are common.
Collapse
Affiliation(s)
- Poonam C Sharma
- Pathology, University of Mississippi Medical Center, Jackson, USA
| | | | - Sumit P Sontakke
- Medical Foundations, Ross University School of Medicine, Bridgetown, BRB
| | - Neha Varshney
- Pathology, University of Mississippi Medical Center, Jackson, USA
| | - Robert T Brodell
- Pathology and Dermatology, University of Mississippi Medical Center, Jackson, USA
| | - Patrick B Kyle
- Pathology, University of Mississippi Medical Center, Jackson, USA
| | - William Daley
- Pathology, University of Mississippi Medical Center, Jackson, USA
| |
Collapse
|
2
|
Xu J, Yin L, Yan Z, Guo Y, Su Z, Lin W, Zhou Q, Chen F. Impact of duck astrovirus on susceptibility to infection across duck ages. Poult Sci 2024; 103:103564. [PMID: 38447308 PMCID: PMC11067766 DOI: 10.1016/j.psj.2024.103564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
An outbreak of duck astrovirus (DAstV) has occurred in duck farming regions of China, causing substantial economic setbacks in the duck industry. This investigation aimed to examine the variations in DAstV pathogenicity among ducks at different age intervals. Infections were induced in ducks at distinct age groups (1, 7, 14, 21, and 28 d) utilizing the DAstv-1-GDB-2022 strain. The results indicate increased pathogenicity of the DAstv-1-GDB-2022 strain in ducklings aged 21 to 28 d, manifesting as liver and kidney enlargement, severe bleeding, and potential fatalities. Conversely, ducklings aged 1 and 14 d displayed milder symptoms postinfection. Notably, viral shedding continued in ducks of diverse age groups even 21 d postinfection (Dpi). Moreover, DAstV replicates in various tissues, predominantly affecting the liver. Immunohistochemical tests using rabbit anti-DAstV antibodies revealed robust positive signals in both the liver and kidneys, which correlated with the clinical symptom severity observed through macroscopic and microscopic examinations. Serum biochemical assays and indirect ELISA demonstrated a consistent response to DAstV infection across different age groups, with older ducklings exhibiting increased sensitivity. In conclusion, this study successfully replicated clinical symptoms similar to those of natural DAstV infection using the DAstv-1-GDB-2022 strain. Importantly, we systematically delineated the differences in susceptibility to DAstV among ducks at various ages, laying the foundation for further research into the pathogenic mechanisms of DAstV and potential vaccine development.
Collapse
Affiliation(s)
- Jingyu Xu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lijuan Yin
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhuanqiang Yan
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yawei Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zetao Su
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qingfeng Zhou
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Nguyen TV, Piewbang C, Techangamsuwan S. Genetic characterization of canine astrovirus in non-diarrhea dogs and diarrhea dogs in Vietnam and Thailand reveals the presence of a unique lineage. Front Vet Sci 2023; 10:1278417. [PMID: 37818392 PMCID: PMC10561284 DOI: 10.3389/fvets.2023.1278417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 10/12/2023] Open
Abstract
The role of canine astrovirus (CaAstV) in canine gastrointestinal disease (GID) is unknown. In this study, a total of 327 fecal swab (FS) samples were collected, including 113 FSs in Vietnam (46 samples from healthy dogs and 67 samples from GID dogs) and 214 FSs in Thailand (107 samples from healthy dogs and 107 samples from GID dogs). Overall, the prevalence of CaAstV in Vietnam and Thailand was 25.7% (29/113) and 8.9% (19/214), respectively. CaAstV was detected in both non-diarrhea dogs (21.7 and 7.5%) and diarrhea dogs (28.4% and 10.3%), respectively, in Vietnam and Thailand. In both countries, CaAstV was frequently detected in puppies under 6 months of age (23.3%) (p = 0.02). CaAstV-positive samples in Vietnam and Thailand were identified as co-infected with canine parvovirus, canine enteric coronavirus, canine distemper virus, and canine kobuvirus. The complete coding sequence of seven Vietnamese CaAstV and two Thai CaAstV strains were successfully characterized. Phylogenetic analyses showed that Vietnamese and Thai CaAstV strains were genetically close to each other and related to the Chinese strains. Furthermore, analysis of complete coding sequences indicated that the OR220030_G21/Thailand/2021 strain formed a unique lineage, whereas no recombination event was found in this study, suggesting that this strain might be an original lineage. In summary, this is the first study to report the presence of CaAstV in dogs with and without diarrhea in Vietnam and Thailand, and it was most often found in puppies with diarrhea. Our results highlight the importance of the CaAstV in dog populations and the need for continued surveillance of these emerging pathogens.
Collapse
Affiliation(s)
- Tin Van Nguyen
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chutchai Piewbang
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Somporn Techangamsuwan
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Rubinstein RJ, Reyes Y, González F, Gutiérrez L, Toval-Ruíz C, Hammond K, Bode L, Vinjé J, Vilchez S, Becker-Dreps S, Bucardo F, Vielot NA. Epidemiology of pediatric astrovirus gastroenteritis in a Nicaraguan birth cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.24.23294584. [PMID: 37662285 PMCID: PMC10473812 DOI: 10.1101/2023.08.24.23294584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Astrovirus is a leading cause of acute gastroenteritis in children worldwide. However, few prospective studies have analyzed astrovirus in community-dwelling pediatric populations in low-and-middle-income countries. Methods We assessed the incidence, risk factors, clinical characteristics, genotypes, viral coinfections and seasonality of astrovirus gastroenteritis in 443 healthy Nicaraguan children born in 2017-2018, followed for 36 months. Children were recruited from maternity hospitals and birth records in an economically-diverse neighborhood of León, the second-largest city in Nicaragua. Astrovirus-positive episodes and genotypes were identified from diarrheal specimens with reverse transcription quantitative polymerase chain reaction and Sanger sequencing. Results Of 1708 total specimens tested, eighty children (18%) experienced at least 1 astrovirus episode, and 9 experienced repeat episodes, mostly during the rainy season (May-October). The incidence of astrovirus episodes was 7.8/100 child-years (95% CI: 6.2, 9.8). Genotype-specific incidence of astrovirus also exhibited seasonality. Median age of astrovirus episode onset was 16 months (IQR 9, 23). Initial astrovirus episodes were not associated with protection against future episodes during the age span studied. Astrovirus cases were exclusively breastfed for a shorter period than uninfected children, and the human milk oligosaccharide lacto-N-fucopentaose-I was more concentrated in mothers of these children. Home toilets appeared to protect against future astrovirus episodes (HR=0.19, 95% CI 0.04-0.91). Human astrovirus-5 episodes, comprising 15% of all typed episodes, were associated with longer diarrhea and more symptomatic rotavirus co-infections. Conclusion Astrovirus was a common cause of gastroenteritis in this cohort, and future studies should clarify the role of astrovirus genotype in clinical infection severity.
Collapse
Affiliation(s)
- Rebecca J Rubinstein
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yaoska Reyes
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua-León, León, Nicaragua
| | - Fredman González
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua-León, León, Nicaragua
| | - Lester Gutiérrez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua-León, León, Nicaragua
| | - Christian Toval-Ruíz
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua-León, León, Nicaragua
| | - Kelli Hammond
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lars Bode
- Department of Pediatrics, University of California San Diego
| | - Jan Vinjé
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua-León, León, Nicaragua
| | - Sylvia Becker-Dreps
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Filemón Bucardo
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Universidad Nacional Autónoma de Nicaragua-León, León, Nicaragua
| | - Nadja A Vielot
- Department of Family Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Ushijima H, Nishimura S, Shimizu-Onda Y, Thi Kim Pham N, Trinh QD, Okitsu S, Takano C, Kumthip K, Hoque SA, Komine-Aizawa S, Maneekarn N, Hayakawa S, Khamrin P. Outbreak of human astroviruses 1 and Melbourne 2 in acute gastroenteritis pediatric patients in Japan during the COVID-19 pandemic, 2021. J Infect Public Health 2023; 16:1301-1305. [PMID: 37336127 DOI: 10.1016/j.jiph.2023.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Human astrovirus (HAstV) infection is one of the leading causes of acute gastroenteritis in young children. The present study reports the outbreak of HAstV in children with acute gastroenteritis in Kyoto, Japan, during the COVID-19 pandemic, 2021. METHODS A total of 61 stool samples were collected from children with acute gastroenteritis who visited a pediatric outpatient clinic in Maizuru city, Kyoto, Japan from July to October, 2021. HAstV was screened by RT-PCR, and the genotypes were identified by nucleotide sequence analysis. RESULTS Of 61 cases of acute gastroenteritis, 20 were mono-infected with HAstV alone. In addition, mixed infection of HAstV and NoV, and HAstV and RVA were also detected in 15 and 1 cases, respectively. Of 36 HAstV strains detected in this outbreak, 29 and 7 were HAstV1 and MLB2 genotypes, respectively. All HAstV1 strains were closely related to the HAstV1 reported from Thailand and Japan in 2021 and all of them belonged to subgenotype HAstV1a. Among MLB2, they were most closely related to the MLB2 strains reported from China in 2016 and 2018. CONCLUSIONS After the kindergartens and schools were re-opened at the middle of 2021 in Japan, an outbreak of HAstV was reported. Control measures against the COVID-19 pandemics might affect the spread of diarrheal virus infection. Here we report the outbreak of HAstV1 and MLB2 in Kyoto, Japan, during COVID-19 pandemic in 2021.
Collapse
Affiliation(s)
- Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.
| | | | - Yuko Shimizu-Onda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Sheikh Ariful Hoque
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Pattara Khamrin
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Fu J, Yu F, Li H, Shen L, Tian Y, Jia L, Zhang D, Yang P, Wang Q, Gao Z. Acute gastroenteritis outbreaks caused by human astrovirus, 1978-2021: A systematic review. BIOSAFETY AND HEALTH 2023; 5:120-125. [PMID: 40078833 PMCID: PMC11894968 DOI: 10.1016/j.bsheal.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Human astrovirus (HAstV) is one of the main pathogens that cause sporadic cases of acute gastroenteritis, sometimes leading to outbreaks. This study aimed to elucidate the epidemiological and etiological characteristics of HAstV outbreaks worldwide. Literature on HAstV outbreaks published before January 2022 was retrieved from the China National Knowledge Infrastructure, WanFang, WeiPu, PubMed, and Web of Science databases. Date, region, population, settings, transmission modes, clinical symptoms, and etiological characteristics of the outbreaks were collected and analyzed. Thirty-one articles on 32 HAstV outbreaks reported between November 1978 and October 2018 were included. The outbreaks mainly occurred in autumn (14/32, 43.75%), and more of them were reported in 1996, 2004, and 2017. Outbreaks were primarily distributed in the Northern Hemisphere and mainly occurred in nursery centers and kindergartens (9/29, 31.03%), hospitals (5/29, 17.24%), and schools (4/29, 13.79%). Viral genotypes were identified during 19 outbreaks, and HAstV-1 was predominant (8/19, 42.10%). Eleven outbreaks were caused by mixed infection, and norovirus (9/11, 81.82%) and rotavirus (5/11, 45.45%) were the most common mixed pathogens. The transmission routes were reported in 9 outbreaks of mixed infection, and most (7/9) were related to waterborne and foodborne transmission. Although HAstV outbreaks are infrequently reported, it is necessary to consider HAstV in norovirus-negative gastroenteritis outbreaks. In addition, local Centers for Disease Control and Prevention should have the capacity to handle HAstV outbreaks and identify pathogens.
Collapse
Affiliation(s)
- Jiamei Fu
- China Medical University School of Public Health, Shenyang 110122, China
- Beijing Center for Disease Prevention and Control, Beijing 100069, China
| | - Fan Yu
- China Medical University School of Public Health, Shenyang 110122, China
| | - Hanning Li
- Capital Medical University School of Public Health, Beijing 100013, China
| | - Lingyu Shen
- Beijing Center for Disease Prevention and Control, Beijing 100069, China
| | - Yi Tian
- Beijing Center for Disease Prevention and Control, Beijing 100069, China
| | - Lei Jia
- Beijing Center for Disease Prevention and Control, Beijing 100069, China
| | - Daitao Zhang
- Beijing Center for Disease Prevention and Control, Beijing 100069, China
| | - Peng Yang
- Beijing Center for Disease Prevention and Control, Beijing 100069, China
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Beijing 100069, China
| | - Zhiyong Gao
- China Medical University School of Public Health, Shenyang 110122, China
- Beijing Center for Disease Prevention and Control, Beijing 100069, China
| |
Collapse
|
7
|
Liu C, Li L, Dong J, Zhang J, Huang Y, Zhai Q, Xiang Y, Jin J, Huang X, Wang G, Sun M, Liao M. Global analysis of gene expression profiles and gout symptoms in goslings infected with goose astrovirus. Vet Microbiol 2023; 279:109677. [PMID: 36764218 DOI: 10.1016/j.vetmic.2023.109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
While blocking inflammation is an effective way to ease the symptoms of gout disease in humans, the treatment and prevention of gout in goslings infected with goose astrovirus (GAstV), a recently emergent condition, remain unclear. In this study, we investigated the reprogramming of the host genes as a result of GAstV infection by combining analysis of the global transcriptome and metabolic network pathways in the kidneys of goslings infected with GAstV. We showed that as GAstV replication increased in vivo, the regulation of key enzymes in the host metabolism progressively increased, flowing metabolites into the purine/pyrimidine biosynthesis pathways. Furthermore, we found that GAstV: 1) inhibits the host oxidation-reduction response by inhibiting the expression of the catalase gene; 2) activates the Toll-like receptor 2 pathway to enhance the immune inflammatory response; and 3) activates the key enzyme in lactic acid synthesis to produce lactate accumulation which inhibits the host's antiviral response, so as to facilitate the replication of the virus itself. This study provided the first insight into the overall metabolic requirements of GAstV for replication in vivo by combining transcriptome with metabolic network pathway information.
Collapse
Affiliation(s)
- Chenggang Liu
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Shanwei Academy of Agricultural Sciences, Shanwei 516699, China
| | - Linlin Li
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jiawen Dong
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Junqin Zhang
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Yunzhen Huang
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Qi Zhai
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Yong Xiang
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jin Jin
- Shanwei Academy of Agricultural Sciences, Shanwei 516699, China
| | - Xianshe Huang
- Shanwei Academy of Agricultural Sciences, Shanwei 516699, China
| | - Gang Wang
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Minhua Sun
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.
| | - Ming Liao
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.
| |
Collapse
|
8
|
Pacini MI, Mazzei M, Sgorbini M, D’Alfonso R, Papini RA. A One-Year Retrospective Analysis of Viral and Parasitological Agents in Wildlife Animals Admitted to a First Aid Hospital. Animals (Basel) 2023; 13:ani13050931. [PMID: 36899788 PMCID: PMC10000059 DOI: 10.3390/ani13050931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
This study aimed to provide information on the presence and frequency of viral and parasitic agents in wildlife presented to a Veterinary Teaching Hospital in 2020-2021. Serum and faecal samples were collected from 50 rescued animals (roe deer, fallow deer, foxes, badgers, pine martens, and porcupines) and examined by serological, molecular, and parasitological techniques. Transtracheal wash (TTW) was also collected post-mortem from roe deer. Overall, the results of the different techniques showed infections with the following viral and parasitic agents: Bovine Viral Diarrhea Virus, Small Ruminant Lentiviruses, Kobuvirus, Astrovirus, Canine Adenovirus 1, Bopivirus, gastrointestinal strongyles, Capillaria, Ancylostomatidae, Toxocara canis, Trichuris vulpis, Hymenolepis, Strongyloides, Eimeria, Isospora, Dictyocaulus, Angiostrongylus vasorum, Crenosoma, Dirofilaria immitis, Neospora caninum, Giardia duodenalis, and Cryptosporidium. Sequencing (Tpi locus) identified G. duodenalis sub-assemblages AI and BIV in one roe deer and one porcupine, respectively. Adult lungworms collected from the TTW were identified as Dictyocaulus capreolus (COX1 gene). This is the first molecular identification of G. duodenalis sub-assemblage AI and D. capreolus in roe deer in Italy. These results show a wide presence of pathogens in wild populations and provide an overview of environmental health surveillance.
Collapse
Affiliation(s)
- Maria Irene Pacini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
- Correspondence:
| | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Micaela Sgorbini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Rossella D’Alfonso
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Amerigo Papini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| |
Collapse
|
9
|
Elbashir I, Aldoos NF, Mathew S, Al Thani AA, Emara MM, Yassine HM. Molecular epidemiology, genetic diversity, and vaccine availability of viral acute gastroenteritis in the middle East and North Africa (MENA) region. J Infect Public Health 2022; 15:1193-1211. [PMID: 36240530 DOI: 10.1016/j.jiph.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/26/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022] Open
Abstract
Acute gastroenteritis is the cause of considerable mortality and morbidity worldwide, particularly among children under five years in underdeveloped countries. Most acute gastroenteritis (AGE) cases are attributed to viral etiologies, including rotavirus, norovirus, adenovirus, astrovirus, and sapovirus. This paper aimed to determine the prevalence rate of different viral etiologies of AGE in the Middle East and North Africa (MENA) region. Moreover, this paper explored rotavirus phylogenetic relatedness, compared VP7 and VP4 antigenic regions of rotavirus with vaccine strains, and explored the availability of vaccines in the MENA region. The literature search identified 160 studies from 18 countries from 1980 to 2019. The overall prevalence of rotavirus, norovirus, adenovirus, astrovirus, and sapovirus were 29.8 %, 13.9 %, 6.3 %, 3.5 %, and 3.2 % of tested samples, respectively. The most common rotavirus genotype combinations in the MENA region were G1P[8], G9P[9], and G2P[4], whereas GII.4 was the predominant norovirus genotype all of which were reported in almost all the studies with genotyping data. The comparison of VP7 and VP4 between circulating rotavirus in the MENA region and vaccine strains has revealed discrete divergent regions, including the neutralizing epitopes. Rotavirus vaccine was introduced to most of the countries of the MENA region; however, only a few studies have assessed the effectiveness of vaccine introduction. This paper provides a comprehensive update on the prevalence of the different viral agents of AGE in the MENA region.
Collapse
Affiliation(s)
- Israa Elbashir
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar.
| | - Noor F Aldoos
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar.
| | - Shilu Mathew
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar.
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar; Department of Biomedical Sciences, College of Health Science-QU Health, Qatar University, Doha 2713, Qatar
| | - Mohamed M Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar.
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar.
| |
Collapse
|
10
|
Esona MD, Gautam R, Chhabra P, Vinjé J, Bowen MD, Burke RM. Gastrointestinal Tract Infections: Viruses. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022:82-106. [DOI: 10.1016/b978-0-12-818731-9.00217-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Stanyevic B, Sepich M, Biondi S, Baroncelli GI, Peroni D, Di Cicco M. The evolving epidemiology of acute gastroenteritis in hospitalized children in Italy. Eur J Pediatr 2022; 181:349-358. [PMID: 34327610 PMCID: PMC8760218 DOI: 10.1007/s00431-021-04210-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/14/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022]
Abstract
Few data are available on the prevalence and features of acute gastroenteritis (AGE) in hospitalized children in Italy, where specific rotavirus vaccines were introduced into the national vaccination plan in 2017. To evaluate vaccination effects on AGE epidemiology, we analysed data from children aged ≤ 18 years admitted for AGE at the University Hospital of Pisa in 2019, comparing them with those recorded in 2012. Demographical, clinical, diagnostic, and treatment data were collected reviewing medical records and were therefore compared. In 2019 and 2012, 86 (median age 2.5 years [IQR 1.4-5.9]) and 85 children (median age 2.3 years [IQR 1.3-5.1]) were respectively admitted with AGE. The most common symptoms were diarrhoea and vomiting; decreased skin turgor was more frequent in 2019 (54% and 34% respectively, p = 0.01). Viral infections were more common than bacterial ones; in 2019, a decrease in rotavirus infections (67% and 22%, p = 0.003) and an increase in adenovirus infections (50% and 10%, p = 0.002) and in the number of patients with negative stool testing (58% and 39%, p = 0.04) were found.Conclusions: Viral infections are the leading cause of AGE in hospitalized children in Italy. The introduction of rotavirus vaccines did not reduce the number of hospitalizations per year. Adenovirus and other non-routinely screened viruses may be undergoing a selection process making them common causative agents for AGE. What is Known: • Rotavirus is the leading cause of acute severe gastroenteritis in children worldwide, especially < 5 years of age. • The introduction of specific vaccines may be changing its epidemiology. • Few data are available on acute gastroenteritis in hospitalized children in Italy. What is New: • Viral infections are the leading cause of acute gastroenteritis in hospitalized children in Italy. • Specific vaccines are reducing rotavirus infections, but adenovirus and other non-routinely screened viruses may be undergoing a selection process making them common causative agents for gastroenteritis.
Collapse
Affiliation(s)
- Brigida Stanyevic
- School of Medicine, University of Pisa, Via Roma n. 55, 56126 Pisa, Italy
| | - Margherita Sepich
- Paediatrics Unit, Pisa University Hospital, Via Roma n. 67, 56126 Pisa, Italy ,Department of Clinical and Experimental Medicine, University of Pisa, Via Roma n. 55, 56126 Pisa, Italy
| | - Samanta Biondi
- Paediatrics Unit, Pisa University Hospital, Via Roma n. 67, 56126 Pisa, Italy
| | | | - Diego Peroni
- Paediatrics Unit, Pisa University Hospital, Via Roma n. 67, 56126 Pisa, Italy ,Department of Clinical and Experimental Medicine, University of Pisa, Via Roma n. 55, 56126 Pisa, Italy
| | - Maria Di Cicco
- Paediatrics Unit, Pisa University Hospital, Via Roma n. 67, 56126, Pisa, Italy. .,Department of Clinical and Experimental Medicine, University of Pisa, Via Roma n. 55, 56126, Pisa, Italy.
| |
Collapse
|
12
|
High divergence of human astrovirus genotypes circulating in pediatric patients hospitalized with acute gastroenteritis in Chiang Mai, Thailand, 2017-2020. Sci Rep 2021; 11:23266. [PMID: 34853390 PMCID: PMC8636499 DOI: 10.1038/s41598-021-02745-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
Human astrovirus (HAstV) is one of the common causes of acute gastroenteritis in children. The investigation of molecular epidemiology of HAstV is essential for monitoring the emergence and/or re-emergence of new HAstV genotypes, as well as understanding the evolution of HAstV circulating in children suffering from acute gastroenteritis. The present study aimed to investigate the prevalence and distribution of HAstVs strains circulating in children hospitalized with acute gastroenteritis in Chiang Mai, Thailand during 2017-2020. A total of 1500 fecal specimens collected from children with acute gastroenteritis were screened for HAstV by RT-PCR that targeted the partial RdRp in ORF1b and strains were characterized by sequencing and phylogenetic analysis. Of the 1500 fecal samples, 39 (2.6%) were positive for HAstV. Of these, both classic and novel HAstV genotypes, including classic HAstV1-HAstV5, novel HAstV-MLB1, MLB2, and HAstV-VA2, were detected. The data in this study revealed a high divergence of HAstV genotypes circulating in pediatric patients admitted to the hospitals with acute gastroenteritis in Chiang Mai, Thailand during 2017-2020.
Collapse
|
13
|
Structures of Two Human Astrovirus Capsid/Neutralizing Antibody Complexes Reveal Distinct Epitopes and Inhibition of Virus Attachment to Cells. J Virol 2021; 96:e0141521. [PMID: 34613806 PMCID: PMC8754201 DOI: 10.1128/jvi.01415-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human astrovirus is an important cause of viral gastroenteritis worldwide. Young children, the elderly, and the immunocompromised are especially at risk for contracting severe disease. However, no vaccines exist to combat human astrovirus infection. Evidence points to the importance of antibodies in protecting healthy adults from reinfection. To develop an effective subunit vaccine that broadly protects against diverse astrovirus serotypes, we must understand how neutralizing antibodies target the capsid surface at the molecular level. Here, we report the structures of the human astrovirus capsid spike domain bound to two neutralizing monoclonal antibodies. These antibodies bind two distinct conformational epitopes on the spike surface. We add to existing evidence that the human astrovirus capsid spike contains a receptor-binding domain and demonstrate that both antibodies neutralize human astrovirus by blocking virus attachment to host cells. We identify patches of conserved amino acids which overlap or border the antibody epitopes and may constitute a receptor-binding site. Our findings provide a basis for developing therapies to prevent and treat human astrovirus gastroenteritis. IMPORTANCE Human astroviruses infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies block astrovirus infection. Here, we determined the crystal structures of the astrovirus capsid protein in complex with two virus-neutralizing antibodies. We show that the antibodies bind to two distinct sites on the capsid spike domain, however, both antibodies block virus attachment to human cells. Importantly, our findings support the use of the human astrovirus capsid spike as an antigen in a subunit-based vaccine to prevent astrovirus disease.
Collapse
|
14
|
Triana S, Stanifer ML, Metz‐Zumaran C, Shahraz M, Mukenhirn M, Kee C, Serger C, Koschny R, Ordoñez‐Rueda D, Paulsen M, Benes V, Boulant S, Alexandrov T. Single-cell transcriptomics reveals immune response of intestinal cell types to viral infection. Mol Syst Biol 2021; 17:e9833. [PMID: 34309190 PMCID: PMC8311733 DOI: 10.15252/msb.20209833] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Human intestinal epithelial cells form a primary barrier protecting us from pathogens, yet only limited knowledge is available about individual contribution of each cell type to mounting an immune response against infection. Here, we developed a framework combining single-cell RNA-Seq and highly multiplex RNA FISH and applied it to human intestinal organoids infected with human astrovirus, a model human enteric virus. We found that interferon controls the infection and that astrovirus infects all major cell types and lineages and induces expression of the cell proliferation marker MKI67. Intriguingly, each intestinal epithelial cell lineage exhibits a unique basal expression of interferon-stimulated genes and, upon astrovirus infection, undergoes an antiviral transcriptional reprogramming by upregulating distinct sets of interferon-stimulated genes. These findings suggest that in the human intestinal epithelium, each cell lineage plays a unique role in resolving virus infection. Our framework is applicable to other organoids and viruses, opening new avenues to unravel roles of individual cell types in viral pathogenesis.
Collapse
Affiliation(s)
- Sergio Triana
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesCollaboration for Joint PhD degree between EMBL and Heidelberg UniversityHeidelbergGermany
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular VirologyHeidelberg UniversityHeidelbergGermany
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Camila Metz‐Zumaran
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Mohammed Shahraz
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Markus Mukenhirn
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Carmon Kee
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Clara Serger
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Ronald Koschny
- Department of Internal Medicine IVInterdisciplinary Endoscopy CenterUniversity Hospital HeidelbergHeidelbergGermany
| | - Diana Ordoñez‐Rueda
- Flow Cytometry Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Malte Paulsen
- Flow Cytometry Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Vladimir Benes
- Genomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Steeve Boulant
- Research Group “Cellular Polarity and Viral Infection”German Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Infectious Diseases, VirologyHeidelberg UniversityHeidelbergGermany
| | - Theodore Alexandrov
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Molecular Medicine Partnership UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
15
|
Human Astrovirus 1-8 Seroprevalence Evaluation in a United States Adult Population. Viruses 2021; 13:v13060979. [PMID: 34070419 PMCID: PMC8229645 DOI: 10.3390/v13060979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022] Open
Abstract
Human astroviruses are an important cause of viral gastroenteritis globally, yet few studies have investigated the serostatus of adults to establish rates of previous infection. Here, we applied biolayer interferometry immunosorbent assay (BLI-ISA), a recently developed serosurveillance technique, to measure the presence of blood plasma IgG antibodies directed towards the human astrovirus capsid spikes from serotypes 1-8 in a cross-sectional sample of a United States adult population. The seroprevalence rates of IgG antibodies were 73% for human astrovirus serotype 1, 62% for serotype 3, 52% for serotype 4, 29% for serotype 5, 27% for serotype 8, 22% for serotype 2, 8% for serotype 6, and 8% for serotype 7. Notably, seroprevalence rates for capsid spike antigens correlate with neutralizing antibody rates determined previously. This work is the first seroprevalence study evaluating all eight classical human astrovirus serotypes.
Collapse
|
16
|
Li Y, Gordon E, Idle A, Hui A, Chan R, Seguin MA, Delwart E. Astrovirus Outbreak in an Animal Shelter Associated With Feline Vomiting. Front Vet Sci 2021; 8:628082. [PMID: 33644152 PMCID: PMC7905307 DOI: 10.3389/fvets.2021.628082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
An outbreak of cat vomiting was observed in an animal shelter. Testing for known enteric feline pathogens did not identify a causative agent. Viral metagenomics on four mini pools of feces from cases and controls housed in the same area revealed the presence of feline astrovirus in all pools. Also found with fewer reads in one pool each were rotavirus I, carnivore bocaparvovirus 3, norovirus (NoV) GVI, and a novel dependovirus. The genome of the highly prevalent astrovirus was sequenced and classified into mamastrovirus species two, also known as feline astrovirus. Real-time RT-PCR on longitudinally acquired fecal samples from 11 sick cases showed 10 (91%) to be shedding astrovirus for as long as 19 days. Affected cats were sick for an average of 9.8 days, with a median of 2.5 days (range = 1–31 days). Unaffected control cats housed in the same areas during the outbreak showed five out of nine (56%) to also be shedding astrovirus. Feline fecal samples collected from the same animal shelter ~1 year before (n = 8) and after (n = 10) showed none to be shedding astrovirus, indicating that this virus was temporarily associated with the vomiting outbreak and is not part of the commensal virome for cats in this shelter. Together with the absence of highly prevalent known pathogens, our results support a role for feline astrovirus infection, as well as significant asymptomatic shedding, in an outbreak of contagious feline vomiting.
Collapse
Affiliation(s)
- Yanpeng Li
- Vitalant Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Emilia Gordon
- The British Columbia Society for the Prevention of Cruelty to Animals, Vancouver, BC, Canada
| | - Amanda Idle
- The British Columbia Society for the Prevention of Cruelty to Animals, Vancouver, BC, Canada
| | - Alvin Hui
- Vitalant Research Institute, San Francisco, CA, United States
| | - Roxanne Chan
- IDEXX Reference Laboratories, Inc., Markham, ON, Canada
| | - M Alexis Seguin
- IDEXX Reference Laboratories, Inc., Westbrook, ME, United States
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
17
|
Caffarena RD, Casaux ML, Schild CO, Fraga M, Castells M, Colina R, Maya L, Corbellini LG, Riet-Correa F, Giannitti F. Causes of neonatal calf diarrhea and mortality in pasture-based dairy herds in Uruguay: a farm-matched case-control study. Braz J Microbiol 2021; 52:977-988. [PMID: 33575990 PMCID: PMC7877513 DOI: 10.1007/s42770-021-00440-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/02/2021] [Indexed: 01/08/2023] Open
Abstract
Neonatal calf diarrhea (NCD) and mortality cause significant losses to the dairy industry. The preweaning dairy calf mortality risk in Uruguay is high (15.2%); however, causes for these losses are largely unknown. This study aimed to assess whether various pathogens were associated with NCD and death in Uruguayan dairy calves and whether these infections, diarrhea, or deaths were associated with the failure of transfer of passive immunity (FTPI). Contemporary diarrheic (n = 264,) and non-diarrheic (n = 271) 1- to 30-day-old calves from 27 farms were sampled. Feces were analyzed by antigen-capture ELISA for Cryptosporidium spp., rotavirus, bovine coronavirus, and Escherichia coli F5+, RT-PCR for bovine astrovirus (BoAstV), and bacterial cultures for Salmonella enterica. Blood/serum was analyzed by RT-PCR or antigen-capture ELISA for bovine viral diarrhea virus (BVDV). Serum of ≤ 8-day-old calves (n = 95) was assessed by refractometry to determine the concention of serum total proteins (STP) as an indicator of FTPI. Whether the sampled calves died before weaning was recorded. At least one pathogen was detected in 65.4% of the calves, and this percentage was significantly higher in diarrheic (83.7%) versus non-diarrheic (47.6%) calves. Unlike the other pathogens, Cryptosporidium spp. and rotavirus were associated with NCD. Diarrheic calves, calves infected with any of the pathogens, and calves infected with rotavirus had significantly lower concentrations of STP. Diarrheic calves had higher chances of dying before weaning than non-diarrheic calves. Diarrheic calves infected with S. enterica were at increased risk of mortality. Controlling NCD, salmonellosis, cryptosporidiosis, and rotavirus infections, and improving colostrum management practices would help to reduce calf morbi-mortality in dairy farms in Uruguay.
Collapse
Affiliation(s)
- Rubén Darío Caffarena
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA) Estación Experimental La Estanzuela, Colonia, Uruguay. .,Departamento de Patología y Clínica de Rumiantes y Suinos, Facultad de Veterinaria, Universidad de la República (UdelaR), Montevideo, Uruguay.
| | - María Laura Casaux
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA) Estación Experimental La Estanzuela, Colonia, Uruguay
| | - Carlos Omar Schild
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA) Estación Experimental La Estanzuela, Colonia, Uruguay
| | - Martín Fraga
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA) Estación Experimental La Estanzuela, Colonia, Uruguay
| | - Matías Castells
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA) Estación Experimental La Estanzuela, Colonia, Uruguay.,Laboratorio de Virología Molecular, Centro Universitario Regional (CENUR) Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Centro Universitario Regional (CENUR) Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay
| | - Leticia Maya
- Laboratorio de Virología Molecular, Centro Universitario Regional (CENUR) Litoral Norte, Universidad de la República (UdelaR), Salto, Uruguay
| | - Luis Gustavo Corbellini
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA) Estación Experimental La Estanzuela, Colonia, Uruguay.,Departamento de Medicina Veterinária Preventiva, Laboratório de Epidemiologia Veterinária (Epilab), Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
| | - Franklin Riet-Correa
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA) Estación Experimental La Estanzuela, Colonia, Uruguay.,Programa de Pós Graduação em Ciência Animal nos Trópicos, Faculdade de Veterinária, Universidade Federal da Bahia, Ondina, Salvador, BA, Brasil
| | - Federico Giannitti
- Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA) Estación Experimental La Estanzuela, Colonia, Uruguay.
| |
Collapse
|
18
|
Shrestha SK, Shrestha J, Andreassen AK, Strand TA, Dudman S, Dembinski JL. Genetic Diversity of Astrovirus in Children From a Birth Cohort in Nepal. Front Microbiol 2021; 11:588707. [PMID: 33613461 PMCID: PMC7893100 DOI: 10.3389/fmicb.2020.588707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/21/2020] [Indexed: 11/27/2022] Open
Abstract
Objective: This study describes the types of Human astroviruses detected in stool samples collected from a birth cohort of children in Nepal. Methods: Using a commercial kit (ProSpecT), a total of 5,224 diarrheal and non-diarrheal stool samples were screened for Human astrovirus by ELISA. RT-PCR was performed on ELISA positive samples (2.8%) for further confirmation. The primary RT-PCR assay used targets the ORF2 region and detects human astrovirus type 1–8. Samples that were negative in this assay were further analyzed using primers that target the ORF1b region of human astrovirus which detect both classical type (HAstV 1–8) and novel types (MLB1–5, VA 1–5). PCR positive samples were analyzed by Sanger sequencing to determine the genotype. Results: A total of 148 available ELISA positive stool samples were analyzed by RT-PCR and further genotyped. RT-PCR analysis of these samples using the ORF2 and ORF1b assay revealed that 124 (84%) were positive for classical human types (HAstV 1–8). Seven different classical HAstV genotypes based on ORF2 and ORF1a were identified (HAstV 1- HAstV 8) with the greatest prevalence of HAstV 5 genotype (42.2%), followed by HAstV 1 (34.7%), HAstV 2 and HAstV 8 (7.4%), HAstV 4 (4.1%), HAstV 3 (3.3%), and HAstV 6 (0.8%). Non-classical types were not detected in our study. Conclusion: A high diversity of circulating Astrovirus strains were detected in young children, both with and without symptoms of gastroenteritis. HAstV 5 and HAstV 1 were the most common genotypes in young children in Nepal.
Collapse
Affiliation(s)
- Sanjaya Kumar Shrestha
- Center for International Health, University of Bergen, Bergen, Norway.,Walter Reed/Armed Forces Research Institute of Medical Sciences Research Unit Nepal, Kathmandu, Nepal
| | - Jasmin Shrestha
- Center for International Health, University of Bergen, Bergen, Norway.,Walter Reed/Armed Forces Research Institute of Medical Sciences Research Unit Nepal, Kathmandu, Nepal
| | | | - Tor A Strand
- Center for International Health, University of Bergen, Bergen, Norway.,Department of Research, Innlandet Hospital Trust, Lillehammer, Norway
| | - Susanne Dudman
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
19
|
Nadan S, Taylor MB, Page NA. Circulation of classic and recombinant human astroviruses detected in South Africa: 2009 to 2014. J Clin Virol 2020; 135:104719. [PMID: 33388529 DOI: 10.1016/j.jcv.2020.104719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Astroviruses (AstVs) are associated with diarrhoeal and extra-intestinal infections in human, animal and avian species. A prevalence of 7% was reported in selected regions in SA while AstVs detected from clinical stool specimens were almost identical phylogenetically to strains identified in environmental and water samples. This study investigated the molecular diversity of astroviruses circulating between 2009 and 2014 in South Africa (SA). METHODS Astroviruses detected in stool specimens collected from hospitalised children were investigated retrospectively. Astroviruses were characterised using type-specific RT-PCR, partial nucleotide sequence analyses in ORF1 and ORF2 and whole genome sequencing. Different genotypes were compared with clinical features to investigate genotype-related associations. The Vesikari severity scale (VSS) was evaluated for scoring astrovirus diarrhoeal infections. RESULTS Of 405 astroviruses detected, 49.9 % (202/405) were characterised into 32 genotypes comprising 66.3 % (134/202) putative-recombinants and 33.7 % (68/202) classic strains. No trends by year of collection, age or site were observed. Whole genome analysis in eight strains revealed that genotypes assigned by partial nucleotide sequence analyses to five astroviruses were incorrect. Bivariate analyses showed there were no significant associations between genotypes and clinical symptoms or severity of infection. A comparison of Vesikari parameters with astrovirus-positive proxy values demonstrated that Vesikari scores for duration of diarrhoea and admission temperatures would result in a milder infection rating in astrovirus-positive cases. CONCLUSIONS Diverse genotypes co-circulated with putative-recombinants predominating. Astrovirus classification was complicated by the lack of a consistent characterisation system and reliable reference database. The VSS should be used cautiously to rate astrovirus diarrhoea. While surveillance in communities and out-patient clinics must be continued, screening for human astroviruses in alternate hosts is needed to determine the reservoir species.
Collapse
Affiliation(s)
- Sandrama Nadan
- Centre for Enteric Diseases, National Institute for Communicable Disease, Private Bag X4, Sandringham, 2131, South Africa.
| | - Maureen B Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, 0031, South Africa; National Health Laboratory Services, Tshwane Academic Division, Pretoria, South Africa
| | - Nicola A Page
- Centre for Enteric Diseases, National Institute for Communicable Disease, Private Bag X4, Sandringham, 2131, South Africa; Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, 0031, South Africa
| |
Collapse
|
20
|
Zhang W, Wang R, Liang J, Zhao N, Li G, Gao Q, Su S. Epidemiology, genetic diversity and evolution of canine astrovirus. Transbound Emerg Dis 2020; 67:2901-2910. [PMID: 32946195 DOI: 10.1111/tbed.13663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/30/2020] [Accepted: 05/30/2020] [Indexed: 01/19/2023]
Abstract
Astroviruses (AstVs) are major causative agents of gastroenteritis in children and have been reported in many species. Canine astrovirus (CaAstV), as an enteric pathogen, has been widely detected worldwide, but little is known about their genetic diversity and evolution, partly owing to a lack of genomic data. Here, we sequenced 12 nearly full-length CaAstV genomes to address the gap in knowledge. We found 14 (13.2%) and 7 (3.35%) CaAstV-positive samples from pet dogs with and without diarrhoea, respectively. Co-infections were with co-infection with Torque teno canis virus (TTCaV) reported for the first time. Phylogenetic analysis of the ORF2 gene revealed four major lineages. In particular, lineage 4 might have evolved from a recombinant virus from lineage 2 and lineage 3. The strains sequenced here clustered with lineages 2, 3 and 4 in contrast with other Chinese strains identified previously that clustered with lineages 2 and 4. Amino acid sequence alignment within lineage revealed intralineage amino acid diversity and that the type of epidemic strains within lineages changes over time. Three amino acids substitutions located in predicted B-cell epitopes, which might be involved escape of host immunity. Moreover, frequent inter-clade ORF2 gene recombinants were identified. The identification of individual recombination events and a recombinant lineage indicated that recombination plays a crucial role in CaAstV genetic evolution and diversity by generating divergent viruses. Moreover, phylogenetic analysis of ORF1b, the most conserved gene of astrovirus, revealed a close relationship between CaAstV and California sea lion astroviruses. Overall, we report detailed information on the genetic evolution and diversity of CaAstV, which indicates that CaAstV may pose challenges for diagnostics and future control strategies.
Collapse
Affiliation(s)
- Wenyan Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering 1. Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ruyi Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering 1. Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jiawei Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering 1. Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Naiyu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering 1. Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Gairu Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering 1. Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qi Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering 1. Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shuo Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Engineering 1. Laboratory of Animal Immunology, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Detection of Astrovirus in a Cow with Neurological Signs by Nanopore Technology, Italy. Viruses 2020; 12:v12050530. [PMID: 32403368 PMCID: PMC7290991 DOI: 10.3390/v12050530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, starting from nucleic acids purified from the brain tissue, Nanopore technology was used to identify the etiological agent of severe neurological signs observed in a cow which was immediately slaughtered. Histological examination revealed acute non-suppurative encephalomyelitis affecting the brainstem, cerebrum, cerebellum, and medulla oblongata, while by using PCR-based assays, the nucleic acids of major agents for neurological signs were not detected. By using Nanopore technology, 151 sequence reads were assigned to Bovine Astrovirus (BoAstV). Real-time RT-PCR and in situ hybridization (ISH) confirmed the presence of viral RNA in the brain. Moreover, using the combination of fluorescent ISH and immunofluorescence (IF) techniques, it was possible to detect BoAstV RNA and antigens in the same cells, suggesting the active replication of the virus in infected neurons. The nearly whole genome of the occurring strain (BoAstV PE3373/2019/Italy), obtained by Illumina NextSeq 500, showed the highest nucleotide sequence identity (94.11%) with BoAstV CH13/NeuroS1 26,730 strain, an encephalitis-associated bovine astrovirus. Here, we provide further evidence of the role of AstV as a neurotropic agent. Considering that in a high proportion of non-suppurative encephalitis cases, which are mostly indicative of a viral infection, the etiologic agent remains unknown, our result underscores the value and versatility of Nanopore technology for a rapid diagnosis when the PCR-based algorithm gives negative results.
Collapse
|
22
|
Jamnikar-Ciglenecki U, Civnik V, Kirbis A, Kuhar U. A molecular survey, whole genome sequencing and phylogenetic analysis of astroviruses from roe deer. BMC Vet Res 2020; 16:68. [PMID: 32085761 PMCID: PMC7035776 DOI: 10.1186/s12917-020-02289-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although astroviruses (AstV) have been detected in a variety of host species, there are only limited records of their occurrence in deer. One of the most important game species in Europe, due to its meat and antlers, is roe deer. Infected game animals can pose a threat to the health of other animals and of humans, so more attention needs to be focused on understanding the diversity of viruses in wildlife. The complete genome and organization of the roe deer AstV genome have not so far been described. RESULTS In our study, 111 game animals were screened for the presence of AstV. While no AstVs were detected in red deer, wild boar, chamois and mouflon, AstV RNA was present in three samples of roe deer. They were further subjected to whole genome sequencing with next generation sequencing. In this study, two AstV genomes were assembled; one in sample D5-14 and one in sample D12-14, while, in sample D45-14, no AstV sequences were identified. The complete coding sequences of the AstV SLO/D5-14 strain genome and of the almost complete genome of the AstV SLO/D12-14 strain were determined. They showed a typical Mamastrovirus organization. Phylogenetic analyses and amino acid pairwise distance analysis revealed that Slovenian roe deer AstV strains are closely related to each other and, also, related to other deer, bovine, water buffalo, yak, Sichuan takin, dromedary, porcine and porcupine AstV strains - thus forming a highly supported group of currently unassigned sequences. CONCLUSIONS Our findings suggest the existence of a new Mamastrovirus genogroup might be constituted while this aforementioned group is distantly related to Mamastrovirus genogroups I and II. In this study, additional data supporting a novel taxonomic classification are presented.
Collapse
Affiliation(s)
- Urska Jamnikar-Ciglenecki
- Institute of Food safety, Feed and Environment, University of Ljubljana, Veterinary faculty, Gerbičeva 60, 1000, Ljubljana, Slovenia.
| | - Vita Civnik
- Institute of Food safety, Feed and Environment, University of Ljubljana, Veterinary faculty, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Andrej Kirbis
- Institute of Food safety, Feed and Environment, University of Ljubljana, Veterinary faculty, Gerbičeva 60, 1000, Ljubljana, Slovenia
| | - Urska Kuhar
- Institute of Microbiology and Parasitology, University of Ljubljana, Veterinary faculty, Gerbičeva 60, 1000, Ljubljana, Slovenia
| |
Collapse
|
23
|
Lan J, Zhang R, Li P, Chen J, Xie Z, Jiang S. Identification of a Type-Specific Epitope in the ORF2 Protein of Duck Astrovirus Type 1. Animals (Basel) 2019; 9:ani9121069. [PMID: 31810309 PMCID: PMC6940979 DOI: 10.3390/ani9121069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/03/2023] Open
Abstract
Simple Summary Duck astrovirus type 1 (DAstV-1) infection constitutes a cause of viral hepatitis in ducklings and little is known about the B-cell epitope of DAstV-1. In this study, using a monoclonal antibody (mAb) 3D2 against ORF2 protein of DAstV-1, a highly conserved linear B-cell epitope of 454 STTESA459 in DAstV-1 ORF2 was identified. The mAb 3D2 showed no neutralizing activity to DAstV-1 and had no cross-reactivity with other DAstV serotypes. Abstract Duck astrovirus type 1 (DAstV-1) infection constitutes a cause of viral hepatitis in ducklings and little is known about the B-cell epitope of DAstV-1. In this study, a monoclonal antibody (mAb) 3D2 against open reading frame 2 (ORF2) protein of DAstV-1 was used to identify the possible epitope in the four serotypes of DAstV. The mAb 3D2 showed no neutralization activity to DAstV-1, and reacted with the conserved linear B-cell epitopes of 454STTESA459 in DAstV-1 ORF2 protein. Sequence analysis, dot blot assay, and cross-reactivity test indicated that the epitope peptide was highly conserved in DAstV-1 sequence and mAb 3D2 had no cross-reactivity with other DAstV serotypes. To the best of our knowledge, this is the first report about identification of the specific conserved linear B-cell epitope of DAstV-1, which will facilitate the serologic diagnosis of DAstV-1 infection.
Collapse
Affiliation(s)
- Jingjing Lan
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Ruihua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Pengfei Li
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
| | - Junhao Chen
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
- College of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Zhijing Xie
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
| | - Shijin Jiang
- College of Veterinary Medicine, Shandong Agricultural University, Taian 271000, China; (J.L.); (R.Z.); (P.L.); (J.C.); (Z.X.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 271000, China
- Correspondence: ; Tel.: +86-538-8245799
| |
Collapse
|
24
|
Zhang R, Lan J, Li H, Chen J, Yang Y, Lin S, Xie Z, Jiang S. A novel method to rescue and culture duck Astrovirus type 1 in vitro. Virol J 2019; 16:112. [PMID: 31488178 PMCID: PMC6729042 DOI: 10.1186/s12985-019-1218-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 09/02/2019] [Indexed: 01/10/2023] Open
Abstract
Background Reverse genetics systems enable the manipulation of viral genomes and therefore serve as robust reverse genetic tools to study RNA viruses. A DNA-launched rescue system initiates the transcription of viral genomic cDNA from eukaryotic promoter in transfected cells, generating homogenous RNA transcripts in vitro and thus enhancing virus rescue efficiency. As one of the hazardous pathogens to ducklings, the current knowledge of the pathogenesis of duck astrovirus type 1 (DAstV-1) is limited. The construction of a DNA-launched rescue system can help to accelerate the study of the virus pathogenesis. However, there is no report of such a system for DAstV-1. Methods In this study, a DNA-launched infectious clone of DAstV-1 was constructed from a cDNA plasmid, which contains a viral cDNA sequence flanked by hammerhead ribozyme (HamRz) and a hepatitis delta virus ribozyme (HdvRz) sequence at both terminals of the viral genome. A silent nucleotide mutation creating a Bgl II site in the ORF2 gene was made to distinguish the rescued virus (rDAstV-1) from the parental virus (pDAstV-1). Immunofluorescence assay (IFA) and western blot were conducted for rescued virus identification in duck embryo fibroblast (DEF) cells pre-treated with trypsin. The growth characteristics of rDAstV-1 and pDAstV-1 in DEF cells and the tissue tropism in 2-day-old ducklings of rDAstV-1 and pDAstV-1 were determined. Results The infectious DAstV-1 was successfully rescued from baby hamster kidney (BHK-21) cells and could propagate in DEF cells pre-treated with 1 μg/ml trypsin. Upon infection of DEF cells pre-treated with trypsin, DAstV-1 mRNA copies were identified after serial passaging, and the result showed that rDAstV-1 and pDAstV-1 shared similar replication kinetics. Animal experiment showed that the rDAstV-1 had an extensive tissue tropism, and the virus was capable of invading both the central and the peripheral immune organs in infected ducklings. Conclusions An improved DNA-launched reverse genetics system for DAstV-1 was firstly constructed. Infectious virus recovered from BHK-21 cells could propagate in DEF cells pre-treated with trypsin. This is the first report of the successful in vitro cultivation of DAstV-1. We believe this valuable experimental system will contribute to the further study of DAstV-1 genome function and pathogenesis.
Collapse
Affiliation(s)
- Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China
| | - Jingjing Lan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China
| | - Haie Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Junhao Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China
| | - Yupeng Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China
| | - Shaoli Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zhijing Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China. .,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian, 271018, Shandong, China.
| |
Collapse
|
25
|
Detection of Murine Astrovirus and Myocoptes musculinus in individually ventilated caging systems: Investigations to expose suitable detection methods for routine hygienic monitoring. PLoS One 2019; 14:e0221118. [PMID: 31408494 PMCID: PMC6692027 DOI: 10.1371/journal.pone.0221118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
Murine Astrovirus is one of the most prevalent viral agents in laboratory rodent facilities worldwide, but its influence on biomedical research results is poorly examined. Due to possible influence on research results and high seroprevalence rates in mice, it appears useful to include this virus into routine health monitoring programs. In order to establish exhaust air particle PCR as a reliable detection method for Murine Astrovirus infections in mice kept in individually ventilated cages (IVC) and compare the method to sentinel mice monitoring regarding reproducibility and detection limit, we conducted a study with defined Murine Astrovirus cage prevalence. In parallel, the efficacy of both detection strategies (soiled-bedding sentinel (SBS) and exhaust air dust (EAD) analysis) was tested for Myocoptes musculinus. The fur mite was used as a reference organism during the whole study period to ensure the validity of this method. Because some publications already demonstrated successful detection of several pathogens, including murine fur mite species, via EAP-PCR. Detection of Murine Astrovirus infections at low prevalence is possible with both methods tested. Detection by exhaust air particles (EAP) is faster, more sensitive and more reliable compared to soiled bedding sentinels (SBS). Exhaust air particle PCR also detected the reference organism Myocoptes musculinus, which was not detected at all by sentinel mice, not even by high sensitivity fur swab qPCR. In conclusion, Murine Astrovirus can be detected by both exhaust air particle PCR and soiled bedding sentinels. We recommend exhaust air particle PCR as the better detection technique for Murine Astrovirus, because it is more reliable. Environmental samples are the method of choice for detection of Myocoptes musculinus because relying on soiled bedding sentinels harbors a big risk of missing existing infestations.
Collapse
|
26
|
Cortez V, Sharp B, Yao J, Livingston B, Vogel P, Schultz-Cherry S. Characterizing a Murine Model for Astrovirus Using Viral Isolates from Persistently Infected Immunocompromised Mice. J Virol 2019; 93:e00223-19. [PMID: 30971471 PMCID: PMC6580942 DOI: 10.1128/jvi.00223-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Human astroviruses are single-stranded RNA enteric viruses that cause a spectrum of disease ranging from asymptomatic infection to systemic extragastrointestinal spread; however, they are among the least-characterized enteric viruses, and there is a lack of a well-characterized small animal model. Finding that immunocompromised mice were resistant to human astrovirus infection via multiple routes of inoculation, our studies aimed to determine whether murine astrovirus (MuAstV) could be used to model human astrovirus disease. We experimentally infected wild-type mice with MuAstV isolated from immunocompromised mice and found that the virus was detected throughout the gastrointestinal tract, including the stomach, but was not associated with diarrhea. The virus was also detected in the lung. Although virus levels were higher in recently weaned mice, the levels were similar in male and female adult mice. Using two distinct viruses isolated from different immunocompromised mouse strains, we observed virus strain-specific differences in the duration of infection (3 versus 10 weeks) in wild-type mice, indicating that the within-host immune pressure from donor mice shaped the virus kinetics in immunocompetent recipient hosts. Both virus strains elicited minimal pathology and a lack of sustained immunity. In summary, MuAstV represents a useful model for studying asymptomatic human infection and gaining insight into the astrovirus pathogenesis and immunity.IMPORTANCE Astroviruses are widespread in both birds and mammals; however, little is known about the pathogenesis and the immune response to the virus due to the lack of a well-characterized small-animal model. Here we describe two distinct strains of murine astrovirus that cause infections in immunocompetent mice that mirror aspects of asymptomatic human infections, including minimal pathology and short-lived immunity. However, we noted that the duration of infection differed greatly between the strains, highlighting an important facet of these viruses that was not previously appreciated. The ubiquitous nature and diversity of murine astroviruses coupled with the continuous likelihood of reinfection raise the possibility of viral interference with other mouse models of disease.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bridgett Sharp
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
27
|
Isobe T, Tange S, Tasaki H, Kanamori K, Kato A, Nakanishi A. Upregulation of CHOP participates in caspase activation and virus release in human astrovirus-infected cells. J Gen Virol 2019; 100:778-792. [PMID: 30912739 DOI: 10.1099/jgv.0.001250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human astroviruses (HAstVs), non-enveloped RNA viruses with positive-sense RNA genomes, are an important cause of acute gastroenteritis in young children, although the processes that produce infectious virions are not clearly defined. To track the viral replication complex (RC) upon HAstV1 infection, the subcellular distribution of double-stranded (ds) RNA and of ORF1b, a viral RNA polymerase, was examined by immunocytochemistry. Foci that were positive for dsRNA and for ORF1b were co-localized, and both foci were also co-localized with resident proteins of the endoplasmic reticulum (ER). Focusing on the association between the HAstV RC and ER, we examined the expression of unfolded protein response (UPR) markers and found that targets of eukaryotic translation initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4), including CCAAT/enhancer-binding protein homologous protein (CHOP), a proapoptotic transcription factor, were upregulated at the late phase in HAstV-infected cells. Consistently, eIF2α was phosphorylated at the late phase of HAstV infection. The formation of foci resembling stress granules, another known downstream response to eIF2α phosphorylation, was also observed at the same period. Phosphorylation of eIF2α was attenuated in protein kinase R (PKR)-knockdown cells, suggesting that, unlike the canonical ER stress response, PKR was involved in eIF2α phosphorylation in response to HAstV infection. Studies have indicated that immature HAstV capsid protein is processed by caspases, and caspase cleavage is integral to particle release. Inhibition of CHOP upregulation reduced caspase activation and the release of HAstV RNA from cells during HAstV infection. Our results suggest that the eIF2α-ATF4-CHOP pathway participates in HAstV propagation.
Collapse
Affiliation(s)
- Tomoyasu Isobe
- 1Section of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522, Japan
| | - Shoichiro Tange
- 2Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, 060-8556, Japan
| | | | - Kumiko Kanamori
- 1Section of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522, Japan
| | - Akiko Kato
- 4Laboratory of Radiation Safety, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522, Japan
| | - Akira Nakanishi
- 1Section of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522, Japan.,4Laboratory of Radiation Safety, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522, Japan
| |
Collapse
|
28
|
Bitencurt ELR, Siqueira JAM, Medeiros TB, Bandeira RDS, de Souza Oliveira D, de Paula Souza E Guimarães RJ, da Silva Soares L, Macarenhas JDP, Teixeira DM, Silva RSU, Loureiro ECB, de Moraes Silva MC, da Silva LD, Gabbay YB. Epidemiological and molecular investigation of norovirus and astrovirus infections in Rio Branco, Acre, Northern Brazil: A retrospective study. J Med Virol 2019; 91:997-1007. [PMID: 30624790 DOI: 10.1002/jmv.25395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/06/2018] [Accepted: 12/06/2018] [Indexed: 01/18/2023]
Abstract
Norovirus (NoV) is a major cause of nonbacterial acute gastroenteritis (AGE) outbreaks worldwide, with infections reported in semiclosed environments, particularly in hospitals and nursing homes. Astrovirus (HAstV) is prevalent worldwide, especially in developing countries. We aimed to determine the prevalence, spatial distribution, and genetic diversity of NoV and HAstV in children under 5 years of age in Rio Branco city, Acre State, Amazon Region, Brazil. Stool samples from children with (n = 240) and without (n = 248) AGE were collected from January to December 2012 from seven neighborhoods. The overall NoV prevalence was 12.3% (60 of 488); representing 15.8% (38 of 240) of the symptomatic samples and 8.9% (22 of 248) of the controls. HAstVs infection was observed in 4.7% (23 of 488) of the samples tested, 6.2% (15 of 240) of AGE cases, and 2.4% (6 of 248) of the controls (plus two without information about feces consistency). Infections were found in all age groups with higher frequency in children less than two years of age, for both viruses. NoV was detected in all neighborhoods, with a higher concentration in the fourth (30%; 18 of 60). NoV nucleotide sequencing performed in 86.7% (52 of 60) of the positive samples showed the circulation of the strains GII.4 (57.7%; 30 of 52), GIIPe/GII.4 (19.2%; 10 of 52), GII.7, GII.Pg/GII.1, and GII.Pc (3.8%; 2 of 52 for each), GII.6 and GII.Pg (1.9%; 1 of 52 for each), and GI.3 (7.7%; 4 of 52). Three GII.4 variants were detected: Den Haag_2006b (n = 1), New Orleans_2009 (n = 1), and Sydney_2012 (n = 14). HAstV types HAstV-1a (81.8%; 9 of 11) and HAstV-2c (18.2%; 2 of 11) were observed in the 47.8% (11 of 23) of characterized samples. This is the first data obtained in Acre State regarding the prevalence of these viruses and provides epidemiological and molecular information for a better understanding of their role among children with and without AGE.
Collapse
Affiliation(s)
| | | | - Tallyta Barros Medeiros
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Renato da Silva Bandeira
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Darleise de Souza Oliveira
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | | | - Luana da Silva Soares
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | | | - Dielle Monteiro Teixeira
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Rita S U Silva
- Municipality Secretary of Health of Rio Branco, Acre, Brazil
| | | | | | - Luciana Damascena da Silva
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| | - Yvone Benchimol Gabbay
- Evandro Chagas Institute; Health Surveillance Secretariat, Brazilian Ministry of Health, Ananindeua, Pará, Brazil
| |
Collapse
|
29
|
Hirvonen JJ. Comparison of three multiplex real-time PCR assays for detection of enteric viruses in patients with diarrhea. Eur J Clin Microbiol Infect Dis 2018; 38:241-244. [DOI: 10.1007/s10096-018-3418-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
|
30
|
Cortez V, Freiden P, Gu Z, Adderson E, Hayden R, Schultz-Cherry S. Persistent Infections with Diverse Co-Circulating Astroviruses in Pediatric Oncology Patients, Memphis, Tennessee, USA. Emerg Infect Dis 2018; 23:288-290. [PMID: 28098537 PMCID: PMC5324824 DOI: 10.3201/eid2302.161436] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human astroviruses are a major cause of pediatric gastroenteritis, especially in immunocompromised children. We conducted a retrospective study to demonstrate that diverse astrovirus genotypes can co-circulate in pediatric oncology patients. A subset of cases is associated with long-term virus shedding (range 17–183 days).
Collapse
|
31
|
|
32
|
Olortegui MP, Rouhani S, Yori PP, Salas MS, Trigoso DR, Mondal D, Bodhidatta L, Platts-Mills J, Samie A, Kabir F, Lima A, Babji S, Shrestha SK, Mason CJ, Kalam A, Bessong P, Ahmed T, Mduma E, Bhutta ZA, Lima I, Ramdass R, Moulton LH, Lang D, George A, Zaidi AK, Kang G, Houpt ER, Kosek MN. Astrovirus Infection and Diarrhea in 8 Countries. Pediatrics 2018; 141:peds.2017-1326. [PMID: 29259078 PMCID: PMC9923568 DOI: 10.1542/peds.2017-1326] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Astroviruses are important drivers of viral gastroenteritis but remain understudied in community settings and low- and middle-income countries. We present data from 8 countries with high prevalence of diarrhea and undernutrition to describe astrovirus epidemiology and assess evidence for protective immunity among children 0 to 2 years of age. METHODS We used 25 898 surveillance stools and 7077 diarrheal stools contributed by 2082 children for enteropathogen testing, and longitudinal statistical analysis to describe incidence, risk factors, and protective immunity. RESULTS Thirty-five percent of children experienced astrovirus infections. Prevalence in diarrheal stools was 5.6%, and severity exceeded all enteropathogens except rotavirus. Incidence of infection and diarrhea were 2.12 and 0.88 episodes per 100 child-months, respectively. Children with astrovirus infection had 2.30 times the odds of experiencing diarrhea after adjustment for covariates (95% confidence interval [CI], 2.01-2.62; P < .001). Undernutrition was a risk factor: odds of infection and diarrhea were reduced by 10% and 13%, respectively, per increase in length-for-age z score (infection: odds ratio, 0.90 [95% CI, 0.85-0.96]; P < .001; diarrhea: odds ratio, 0.87 [95% CI, 0.79-0.96]; P = .006). Some evidence of protective immunity to infection was detected (hazard ratio, 0.84 [95% CI, 0.71-1.00], P = .052), although this was heterogeneous between sites and significant in India and Peru. CONCLUSIONS Astrovirus is an overlooked cause of diarrhea among vulnerable children worldwide. With the evidence presented here, we highlight the need for future research as well as the potential for astrovirus to be a target for vaccine development.
Collapse
Affiliation(s)
| | - Saba Rouhani
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Pablo Peñataro Yori
- Asociación Benéfica PRISMA, Iquitos, Peru;,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | | | - James Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia
| | | | | | - Aldo Lima
- Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Sanjaya Kumar Shrestha
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand;,Centre for International Health, University of Bergen, Bergen, Norway
| | - Carl J. Mason
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Adil Kalam
- Aga Khan University, Naushahro Feroze, Pakistan
| | | | | | | | | | - Ila Lima
- Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Lawrence H. Moulton
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Dennis Lang
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland; and,Foundation for the National Institutes of Health, Bethesda, Maryland
| | | | | | | | - Eric R. Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia
| | - Margaret N. Kosek
- Asociación Benéfica PRISMA, Iquitos, Peru;,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland;,Address correspondence to Margaret N. Kosek, MD, Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205. E-mail
| | | |
Collapse
|
33
|
Structural Basis for Escape of Human Astrovirus from Antibody Neutralization: Broad Implications for Rational Vaccine Design. J Virol 2017; 92:JVI.01546-17. [PMID: 29070688 DOI: 10.1128/jvi.01546-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/11/2017] [Indexed: 02/02/2023] Open
Abstract
Human astroviruses are recognized as a leading cause of viral diarrhea worldwide in children, immunocompromised patients, and the elderly. There are currently no vaccines available to prevent astrovirus infection; however, antibodies developed by healthy individuals during previous infection correlate with protection from reinfection, suggesting that an effective vaccine could be developed. In this study, we investigated the molecular mechanism by which several strains of human astrovirus serotype 2 (HAstV-2) are resistant to the potent HAstV-2-neutralizing monoclonal antibody PL-2 (MAb PL-2). Sequencing of the HAstV-2 capsid genes reveals mutations in the PL-2 epitope within the capsid's spike domain. To understand the molecular basis for resistance from MAb PL-2 neutralization, we determined the 1.35-Å-resolution crystal structure of the capsid spike from one of these HAstV-2 strains. Our structure reveals a dramatic conformational change in a loop within the PL-2 epitope due to a serine-to-proline mutation, locking the loop in a conformation that sterically blocks binding and neutralization by MAb PL-2. We show that mutation to serine permits loop flexibility and recovers MAb PL-2 binding. Importantly, we find that HAstV-2 capsid spike containing a serine in this loop is immunogenic and elicits antibodies that neutralize all HAstV-2 strains. Taken together, our results have broad implications for rational selection of vaccine strains that do not contain prolines in antigenic loops, so as to elicit antibodies against diverse loop conformations.IMPORTANCE Human astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. In this study, we investigated how several strains of HAstV are resistant to a virus-neutralizing monoclonal antibody. We determined the crystal structure of the capsid protein spike domain from one of these HAstV strains and found that a single amino acid mutation induces a structural change in a loop that is responsible for antibody binding. Our findings reveal how viruses can escape antibody neutralization and provide insight for the rational design of vaccines to elicit diverse antibodies that provide broader protection from infection.
Collapse
|
34
|
|
35
|
Cordey S, Vu DL, Schibler M, L’Huillier AG, Brito F, Docquier M, Posfay-Barbe KM, Petty TJ, Turin L, Zdobnov EM, Kaiser L. Astrovirus MLB2, a New Gastroenteric Virus Associated with Meningitis and Disseminated Infection. Emerg Infect Dis 2016; 22:846-53. [PMID: 27088842 PMCID: PMC4861523 DOI: 10.3201/eid2205.151807] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This virus is an unrecognized cause of central nervous system infection, particularly among immunocompromised patients. Next-generation sequencing has identified novel astroviruses for which a pathogenic role is not clearly defined. We identified astrovirus MLB2 infection in an immunocompetent case-patient and an immunocompromised patient who experienced diverse clinical manifestations, notably, meningitis and disseminated infection. The initial case-patient was identified by next-generation sequencing, which revealed astrovirus MLB2 RNA in cerebrospinal fluid, plasma, urine, and anal swab specimens. We then used specific real-time reverse transcription PCR to screen 943 fecal and 424 cerebrospinal fluid samples from hospitalized patients and identified a second case of meningitis, with positive results for the agent in the patient’s feces and plasma. This screening revealed 5 additional positive fecal samples: 1 from an infant with acute diarrhea and 4 from children who had received transplants. Our findings demonstrate that astrovirus MLB2, which is highly prevalent in feces, can disseminate outside the digestive tract and is an unrecognized cause of central nervous system infection.
Collapse
|
36
|
Mihalov-Kovács E, Martella V, Lanave G, Bodnar L, Fehér E, Marton S, Kemenesi G, Jakab F, Bányai K. Genome analysis of canine astroviruses reveals genetic heterogeneity and suggests possible inter-species transmission. Virus Res 2016; 232:162-170. [PMID: 27965150 PMCID: PMC7114541 DOI: 10.1016/j.virusres.2016.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/10/2016] [Accepted: 12/07/2016] [Indexed: 02/04/2023]
Abstract
We sequenced the genome of several canine astroviruses. Genetic heterogeneity was detected among strains. A novel strain related to mink astrovirus was identified.
Canine astrovirus RNA was detected in the stools of 17/63 (26.9%) samples, using either a broadly reactive consensus RT-PCR for astroviruses or random RT-PCR coupled with massive deep sequencing. The complete or nearly complete genome sequence of five canine astroviruses was reconstructed that allowed mapping the genome organization and to investigate the genetic diversity of these viruses. The genome was about 6.6 kb in length and contained three open reading frames (ORFs) flanked by a 5′ UTR, and a 3′ UTR plus a poly-A tail. ORF1a and ORF1b overlapped by 43 nucleotides while the ORF2 overlapped by 8 nucleotides with the 3′ end of ORF1b. Upon genome comparison, four strains (HUN/2012/2, HUN/2012/6, HUN/2012/115, and HUN/2012/135) were more related genetically to each other and to UK canine astroviruses (88–96% nt identity), whilst strain HUN/2012/126 was more divergent (75–76% nt identity). In the ORF1b and ORF2, strains HUN/2012/2, HUN/2012/6, and HUN/2012/135 were related genetically to other canine astroviruses identified formerly in Europe and China, whereas strain HUN/2012/126 was related genetically to a divergent canine astrovirus strain, ITA/2010/Zoid. For one canine astrovirus, HUN/2012/8, only a 3.2 kb portion of the genome, at the 3′ end, could be determined. Interestingly, this strain possessed unique genetic signatures (including a longer ORF1b/ORF2 overlap and a longer 3′UTR) and it was divergent in both ORF1b and ORF2 from all other canine astroviruses, with the highest nucleotide sequence identity (68% and 63%, respectively) to a mink astrovirus, thus suggesting a possible event of interspecies transmission. The genetic heterogeneity of canine astroviruses may pose a challenge for the diagnostics and for future prophylaxis strategies.
Collapse
Affiliation(s)
- Eszter Mihalov-Kovács
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, H-1143, Hungary
| | - Vito Martella
- Dipartimento di Medicina Veterinaria, Universitá Aldo Moro di Bari, S.p. per Casamassima km 3, 70010 Valenzano, Italy
| | - Gianvito Lanave
- Dipartimento di Medicina Veterinaria, Universitá Aldo Moro di Bari, S.p. per Casamassima km 3, 70010 Valenzano, Italy
| | - Livia Bodnar
- Dipartimento di Medicina Veterinaria, Universitá Aldo Moro di Bari, S.p. per Casamassima km 3, 70010 Valenzano, Italy
| | - Enikő Fehér
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, H-1143, Hungary
| | - Szilvia Marton
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, H-1143, Hungary
| | - Gábor Kemenesi
- Virological Research Group, Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Ferenc Jakab
- Virological Research Group, Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Krisztián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, H-1143, Hungary.
| |
Collapse
|
37
|
Abstract
In recent decades, probiotics have shown beneficial effects on animal and human health. Probiotics can protect the host against several health threats, including infectious diseases. Before 1995, researchers believed that the effect of probiotics was only on gut microbiota which can restore the gut flora and thus prevent pathogenic bacteria from triggering gastroenteritis. Recent studies have shown that the immunomodulatory activity is the most important mechanism of action of probiotics. From this information, researchers started to evaluate the effect of some immunobiotics, not only on pathogenic bacteria but also on viruses, including enteric and respiratory viruses. Several studies have confirmed the potential antiviral activity of some probiotics due to the immunomodulatory effect. These studies were conducted on humans (clinical trials) and in animal models. In this chapter, probiotics with antiviral effect against respiratory and enteric viruses will be presented and discussed, as well as their mechanisms of action.
Collapse
|
38
|
Xia M, Wei C, Wang L, Cao D, Meng XJ, Jiang X, Tan M. Development and evaluation of two subunit vaccine candidates containing antigens of hepatitis E virus, rotavirus, and astrovirus. Sci Rep 2016; 6:25735. [PMID: 27194006 PMCID: PMC4872161 DOI: 10.1038/srep25735] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV), rotavirus (RV), and astrovirus (AstV) are important pathogens that transmit through a common fecal-oral route, causing hepatitis (HEV) and gastroenteritis (RV and AstV) respectively in humans. In this study, we developed and evaluated two subunit vaccine candidates that consisted of the same protruding or spike protein antigens of the three viruses in two formats, a fusion of the three antigens into one molecule (fused vaccine) vs. a mixture of the three free antigens together (mixed vaccine). Both vaccines were easily made via E. coli expression system. Mouse immunization experiments showed that the fused vaccine elicited significantly higher antibody responses against the three viral antigens than those induced by the mixed vaccine. In addition, the mouse post-immune antisera of the fused vaccine revealed significantly higher neutralizing titers against HEV infection in cell culture, as well as significantly higher 50% blocking titers (BT50) against RV VP8-HBGA receptor interactions than those of the post-immune antisera after immunization of the mixed vaccine. Thus, the fused vaccine is a promising trivalent vaccine candidate against HEV, RV, and AstV, which is worth for further development.
Collapse
Affiliation(s)
- Ming Xia
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Chao Wei
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Leyi Wang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Dianjun Cao
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ming Tan
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
39
|
Cordey S, Vu DL, Schibler M, L’Huillier AG, Brito F, Docquier M, Posfay-Barbe KM, Petty TJ, Turin L, Zdobnov EM, Kaiser L. Astrovirus MLB2, a New Gastroenteric Virus Associated with Meningitis and Disseminated Infection. Emerg Infect Dis 2016. [DOI: 10.3201/eid2205.150807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
40
|
Schlottau K, Schulze C, Bilk S, Hanke D, Höper D, Beer M, Hoffmann B. Detection of a Novel Bovine Astrovirus in a Cow with Encephalitis. Transbound Emerg Dis 2016; 63:253-9. [PMID: 26948516 DOI: 10.1111/tbed.12493] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 02/06/2023]
Abstract
Encephalitis can be caused by several infectious agents, including bacteria, fungi, parasites and viruses. In many cases, the causative agent cannot be identified, because the pathogens are unknown or detection methods are not routinely available. In our case, a 15-month-old cow developed central nervous disorders and died within 6 days after the onset of clinical signs. The histopathology revealed an acute encephalitis, predominantly in the brain stem, and a ganglionitis of the trigeminal ganglion with massive neuronal necroses in both the brain and the ganglion. However, a relevant panel of bacterial and viral infections of cattle could be routinely excluded. Therefore, a brain sample from the cow was analysed using a metagenomics approach with next-generation sequencing. A novel bovine astrovirus (BoAstV-BH89/14) could be identified using the analysis pipeline RIEMS, and the finding could be confirmed with a specific BoAstV RT-qPCR. The genome of the bovine astrovirus (BoAstV), belonging to the family Astroviridae in the genus Mamastrovirus, has a length of 6478 bp. Sequence identities between 71% to a sheep astrovirus and 69% to two recently described bovine astroviruses from the USA and Switzerland were ascertained. The latter were also connected to encephalitis cases in cattle. Like these, the new virus described here was detected in different brain sections using the specific BoAstV RT-qPCR and fluorescent in situ hybridization. In conclusion, while astroviruses so far were mainly found in relation to gastroenteritis in animals and humans, recently detected astrovirus infections were also related to encephalitis.
Collapse
Affiliation(s)
- K Schlottau
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - C Schulze
- Berlin-Brandenburg State Laboratory, Frankfurt (Oder), Germany
| | - S Bilk
- Berlin-Brandenburg State Laboratory, Frankfurt (Oder), Germany
| | - D Hanke
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - D Höper
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - M Beer
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| | - B Hoffmann
- Friedrich-Loeffler-Institut, Institute of Diagnostic Virology, Greifswald-Insel Riems, Germany
| |
Collapse
|
41
|
Monastiri A, Aouni M, Guix S, Mechri B, Lopez-Roig M, Abid NBS, Gueddiche N, Hamami S, Boughzala L, Serra-Cobo J. Clinical surveillance for human astrovirus in Monastir region, Tunisia. BMC Public Health 2016; 16:57. [PMID: 26796330 PMCID: PMC4722761 DOI: 10.1186/s12889-016-2726-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/12/2016] [Indexed: 11/30/2022] Open
Abstract
Background/aims Astroviruses (AstVs) are enteric viruses that can cause gastroenteritis in children. This study is part of monitoring the circulation of astroviruses in children hospitalized and/or outpatients for acute gastroenteritis at the primary care center of Ouerdanine or at the Pediatric Department of the University Hospital Fattouma-Bourguiba (Monastir, Tunisia). The aims of our study were to know the prevalence of human astrovirus in clinical samples of children, characterize the strains and evaluate the infectivity of isolated strains on cell culture. Methods Fifty stool samples were collected from children under five years old in the region of Monastir (Tunisia) from October 2010 to June 2011. All specimens were subjected to RT-PCR amplification followed by sequencing and phylogenetic analysis. Results The study shows a low prevalence of astrovirus (4 %) in children. The two positive samples obtained were HAstV type 3. Samples that were RT-PCR positive were cultured in CaCO-2 cells and the presence of infectious viral particles was confirmed. The phylogenetic analysis shows that the different HAstV-3 strains isolated in Tunisia are grouped into two clusters. The first cluster includes strains obtained in 2004, which belong to lineage HAstV-3a, while strains isolated in 2010 belong to lineage HAstV-3c. Conclusions This study is part of monitoring the circulation of astroviruses in children younger than five years old from Monastir region, Tunisia. The results show low prevalence (4 %). All genotyped samples belonged to lineage HAstV-3c, which could be presently emerging. Two different lineages have been isolated in Tunisia: HAstV-3a in 2004 and HAstV-3c in 2010.
Collapse
Affiliation(s)
- Abir Monastiri
- Laboratory of Contagious Diseases and Biologically Active Substances, LR99ES27, Faculty of Pharmacy, University of Monastir, Avicenne Street 5000, Monastir, Tunisia.
| | - Mahjoub Aouni
- Laboratory of Contagious Diseases and Biologically Active Substances, LR99ES27, Faculty of Pharmacy, University of Monastir, Avicenne Street 5000, Monastir, Tunisia
| | - Susana Guix
- Department of Microbiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Badereddine Mechri
- Laboratory of Contagious Diseases and Biologically Active Substances, LR99ES27, Faculty of Pharmacy, University of Monastir, Avicenne Street 5000, Monastir, Tunisia
| | - Marc Lopez-Roig
- IRBIO and Department of Animal Biology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - Nabil Ben Salem Abid
- Laboratory of Contagious Diseases and Biologically Active Substances, LR99ES27, Faculty of Pharmacy, University of Monastir, Avicenne Street 5000, Monastir, Tunisia
| | - Neji Gueddiche
- Pediatric Department, University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Sabeur Hamami
- Pediatric Department, University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Lamjed Boughzala
- Laboratory of Contagious Diseases and Biologically Active Substances, LR99ES27, Faculty of Pharmacy, University of Monastir, Avicenne Street 5000, Monastir, Tunisia
| | - Jordi Serra-Cobo
- IRBIO and Department of Animal Biology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
42
|
Burd EM, Hinrichs BH. Gastrointestinal Infections. MOLECULAR PATHOLOGY IN CLINICAL PRACTICE 2016. [PMCID: PMC7123654 DOI: 10.1007/978-3-319-19674-9_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Establishing a specific etiology for gastrointestinal infections can be challenging because of the common clinical features and wide variety of causative microorganisms. In many cases, the etiologic agent cannot be determined using traditional diagnostic methods and may result in unnecessary antibiotic use or prolonged periods of illness. Molecular tests provide many advantages over traditional laboratory methods but, with the exception of a few analytes, are still largely in the developmental phase for gastrointestinal pathogens and are not widely used. The main advantages of molecular tests include increased sensitivity and the ability to detect agents which will not grow in culture. To test for all possible gastrointestinal pathogens at one time would require a large panel that would include a variety of bacterial, viral and parasitic agents. Challenges inherent in developing diagnostic molecular panels include ensuring that all variants of a particular microorganism can be detected as well as the rapid evolution of pathogens. In this chapter, the diagnostic merit of molecular tests as well as available tests will be presented for the major groups of gastrointestinal pathogens.
Collapse
|
43
|
Molecular Diagnosis of Gastrointestinal Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Structural, Mechanistic, and Antigenic Characterization of the Human Astrovirus Capsid. J Virol 2015; 90:2254-63. [PMID: 26656707 PMCID: PMC4810704 DOI: 10.1128/jvi.02666-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022] Open
Abstract
Human astroviruses (HAstVs) are nonenveloped, positive-sense, single-stranded RNA viruses that are a leading cause of viral gastroenteritis. HAstV particles display T=3 icosahedral symmetry formed by 180 copies of the capsid protein (CP), which undergoes proteolytic maturation to generate infectious HAstV particles. Little is known about the molecular features that govern HAstV particle assembly, maturation, infectivity, and immunogenicity. Here we report the crystal structures of the two main structural domains of the HAstV CP: the core domain at 2.60-Å resolution and the spike domain at 0.95-Å resolution. Fitting of these structures into the previously determined 25-Å-resolution electron cryomicroscopy density maps of HAstV allowed us to characterize the molecular features on the surfaces of immature and mature T=3 HAstV particles. The highly electropositive inner surface of HAstV supports a model in which interaction of the HAstV CP core with viral RNA is a driving force in T=3 HAstV particle formation. Additionally, mapping of conserved residues onto the HAstV CP core and spike domains in the context of the immature and mature HAstV particles revealed dramatic changes to the exposure of conserved residues during virus maturation. Indeed, we show that antibodies raised against mature HAstV have reactivity to both the HAstV CP core and spike domains, revealing for the first time that the CP core domain is antigenic. Together, these data provide new molecular insights into HAstV that have practical applications for the development of vaccines and antiviral therapies. IMPORTANCE Astroviruses are a leading cause of viral diarrhea in young children, immunocompromised individuals, and the elderly. Despite the prevalence of astroviruses, little is known at the molecular level about how the astrovirus particle assembles and is converted into an infectious, mature virus. In this paper, we describe the high-resolution structures of the two main astrovirus capsid proteins. Fitting these structures into previously determined low-resolution maps of astrovirus allowed us to characterize the molecular surfaces of immature and mature astroviruses. Our studies provide the first evidence that astroviruses undergo viral RNA-dependent assembly. We also provide new insight into the molecular mechanisms that lead to astrovirus maturation and infectivity. Finally, we show that both capsid proteins contribute to the adaptive immune response against astrovirus. Together, these studies will help to guide the development of vaccines and antiviral drugs targeting astrovirus.
Collapse
|
45
|
Chapellier B, Tange S, Tasaki H, Yoshida K, Zhou Y, Sakon N, Katayama K, Nakanishi A. Examination of a plasmid-based reverse genetics system for human astrovirus. Microbiol Immunol 2015; 59:586-96. [PMID: 26272702 DOI: 10.1111/1348-0421.12317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/26/2015] [Accepted: 08/11/2015] [Indexed: 12/29/2022]
Abstract
A plasmid-based reverse genetics system for human astrovirus type 1 (HAstV1) is examined. Upon transfection into 293T cells, the plasmid vector, which harbors a HAstV1 expression cassette, expressed astroviral RNA that appeared to be capable of viral RNA replication, as indicated by the production of subgenomic RNA and capsid protein expression irrespective of the heterologous 5' ends of the transcribed RNA. Particles infectious to Caco-2 cells were made in this system; however, their infectivity was much lower than would be expected from the amount of particles apparently produced. Using Huh-7 cells as the transfection host with the aim of improving viral capsid processing for virion maturation partially restored the efficiency of infectious particle formation. Our results support the possibility that the DNA transfection process induces a cellular response that targets late, but not early, stages of HAstV1 infection.
Collapse
Affiliation(s)
- Benoit Chapellier
- Laboratory of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522
| | - Shoichiro Tange
- Laboratory of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522
| | - Hidetaka Tasaki
- Laboratory of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522
| | - Kazuhiro Yoshida
- Laboratory of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522
| | - Yan Zhou
- Laboratory of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522
| | - Naomi Sakon
- Osaka Prefectural Institute of Public Health, Osaka, Osaka, 537-0025
| | - Kazuhiko Katayama
- National Institute for Infectious Diseases, Department of Virology 2, Laboratory of Gastroenteritis Viruses, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Akira Nakanishi
- Laboratory of Gene Therapy, Department of Aging Intervention, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522
| |
Collapse
|
46
|
Platts-Mills JA, Babji S, Bodhidatta L, Gratz J, Haque R, Havt A, McCormick BJ, McGrath M, Olortegui MP, Samie A, Shakoor S, Mondal D, Lima IF, Hariraju D, Rayamajhi BB, Qureshi S, Kabir F, Yori PP, Mufamadi B, Amour C, Carreon JD, Richard SA, Lang D, Bessong P, Mduma E, Ahmed T, Lima AA, Mason CJ, Zaidi AK, Bhutta ZA, Kosek M, Guerrant RL, Gottlieb M, Miller M, Kang G, Houpt ER. Pathogen-specific burdens of community diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). LANCET GLOBAL HEALTH 2015. [PMID: 26202075 DOI: 10.1016/s2214-109x(15)00151-5] [Citation(s) in RCA: 653] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Most studies of the causes of diarrhoea in low-income and middle-income countries have looked at severe disease in people presenting for care, and there are few estimates of pathogen-specific diarrhoea burdens in the community. METHODS We undertook a birth cohort study with not only intensive community surveillance for diarrhoea but also routine collection of non-diarrhoeal stools from eight sites in South America, Africa, and Asia. We enrolled children within 17 days of birth, and diarrhoeal episodes (defined as maternal report of three or more loose stools in 24 h, or one loose stool with visible blood) were identified through twice-weekly home visits by fieldworkers over a follow-up period of 24 months. Non-diarrhoeal stool specimens were also collected for surveillance for months 1-12, 15, 18, 21, and 24. Stools were analysed for a broad range of enteropathogens using culture, enzyme immunoassay, and PCR. We used the adjusted attributable fraction (AF) to estimate pathogen-specific burdens of diarrhoea. FINDINGS Between November 26, 2009, and February 25, 2014, we tested 7318 diarrhoeal and 24 310 non-diarrhoeal stools collected from 2145 children aged 0-24 months. Pathogen detection was common in non-diarrhoeal stools but was higher with diarrhoea. Norovirus GII (AF 5·2%, 95% CI 3·0-7·1), rotavirus (4·8%, 4·5-5·0), Campylobacter spp (3·5%, 0·4-6·3), astrovirus (2·7%, 2·2-3·1), and Cryptosporidium spp (2·0%, 1·3-2·6) exhibited the highest attributable burdens of diarrhoea in the first year of life. The major pathogens associated with diarrhoea in the second year of life were Campylobacter spp (7·9%, 3·1-12·1), norovirus GII (5·4%, 2·1-7·8), rotavirus (4·9%, 4·4-5·2), astrovirus (4·2%, 3·5-4·7), and Shigella spp (4·0%, 3·6-4·3). Rotavirus had the highest AF for sites without rotavirus vaccination and the fifth highest AF for sites with the vaccination. There was substantial variation in pathogens according to geography, diarrhoea severity, and season. Bloody diarrhoea was primarily associated with Campylobacter spp and Shigella spp, fever and vomiting with rotavirus, and vomiting with norovirus GII. INTERPRETATION There was substantial heterogeneity in pathogen-specific burdens of diarrhoea, with important determinants including age, geography, season, rotavirus vaccine usage, and symptoms. These findings suggest that although single-pathogen strategies have an important role in the reduction of the burden of severe diarrhoeal disease, the effect of such interventions on total diarrhoeal incidence at the community level might be limited.
Collapse
Affiliation(s)
- James A Platts-Mills
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | | | - Jean Gratz
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA; Haydom Lutheran Hospital, Haydom, Tanzania
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Alexandre Havt
- Clinical Research Unit and Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | | | - Monica McGrath
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Dinesh Mondal
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ila Fn Lima
- Clinical Research Unit and Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | | | | | | | | | | | | | | | - J Daniel Carreon
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie A Richard
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Dennis Lang
- Foundation for the National Institutes of Health, Bethesda, MD, USA
| | | | - Esto Mduma
- Haydom Lutheran Hospital, Haydom, Tanzania
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Aldo Aam Lima
- Clinical Research Unit and Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil
| | - Carl J Mason
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | - Margaret Kosek
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Asociación Benéfica PRISMA, Iquitos, Peru
| | - Richard L Guerrant
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Michael Gottlieb
- Foundation for the National Institutes of Health, Bethesda, MD, USA
| | - Mark Miller
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Eric R Houpt
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| | | |
Collapse
|
47
|
Capillary Electrophoresis-Based Detection for Foodborne Enteroviruses in Vegetable Samples. Chromatographia 2015. [DOI: 10.1007/s10337-015-2931-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Detection of canine astrovirus in dogs with diarrhea in Japan. Arch Virol 2015; 160:1549-53. [PMID: 25824600 PMCID: PMC7087093 DOI: 10.1007/s00705-015-2405-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/20/2015] [Indexed: 11/24/2022]
Abstract
Canine astrovirus (CAstV) is the causative agent of gastroenteritis in dogs. We collected rectal swabs from dogs with or without diarrhea symptoms in Japan and examined the feces for the presence of CAstV by RT-PCR with primers based on a conserved region of the ORF1b gene. The ORF1b gene of CAstV was not detected in the 42 dogs without clinical illness but was present in three pups out of the 31 dogs with diarrhea symptoms. Based on the full-length capsid protein, the CAstV KU-D4-12 strain that we detected in this study shared high homology with the novel virulent CAstV VM-2011 strain.
Collapse
|
49
|
Lu L, Jia R, Zhong H, Xu M, Su L, Cao L, Dong Z, Dong N, Xu J. Molecular characterization and multiple infections of rotavirus, norovirus, sapovirus, astrovirus and adenovirus in outpatients with sporadic gastroenteritis in Shanghai, China, 2010–2011. Arch Virol 2015; 160:1229-38. [DOI: 10.1007/s00705-015-2387-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/27/2015] [Indexed: 01/12/2023]
|
50
|
Abstract
Human astroviruses (HAtVs) are positive-sense single-stranded RNA viruses that were discovered in 1975. Astroviruses infecting other species, particularly mammalian and avian, were identified and classified into the genera Mamastrovirus and Avastrovirus. Through next-generation sequencing, many new astroviruses infecting different species, including humans, have been described, and the Astroviridae family shows a high diversity and zoonotic potential. Three divergent groups of HAstVs are recognized: the classic (MAstV 1), HAstV-MLB (MAstV 6), and HAstV-VA/HMO (MAstV 8 and MAstV 9) groups. Classic HAstVs contain 8 serotypes and account for 2 to 9% of all acute nonbacterial gastroenteritis in children worldwide. Infections are usually self-limiting but can also spread systemically and cause severe infections in immunocompromised patients. The other groups have also been identified in children with gastroenteritis, but extraintestinal pathologies have been suggested for them as well. Classic HAstVs may be grown in cells, allowing the study of their cell cycle, which is similar to that of caliciviruses. The continuous emergence of new astroviruses with a potential zoonotic transmission highlights the need to gain insights on their biology in order to prevent future health threats. This review focuses on the basic virology, pathogenesis, host response, epidemiology, diagnostic assays, and prevention strategies for HAstVs.
Collapse
Affiliation(s)
- Albert Bosch
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|