1
|
Liao X, Gao S, Xie F, Wang K, Wu X, Wu Y, Gao W, Wang M, Sun J, Liu D, Xu W, Li Q. An underlying mechanism behind interventional pulmonology techniques for refractory asthma treatment: Neuro-immunity crosstalk. Heliyon 2023; 9:e20797. [PMID: 37867902 PMCID: PMC10585236 DOI: 10.1016/j.heliyon.2023.e20797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Asthma is a common disease that seriously threatens public health. With significant developments in bronchoscopy, different interventional pulmonology techniques for refractory asthma treatment have been developed. These technologies achieve therapeutic purposes by targeting diverse aspects of asthma pathophysiology. However, even though these newer techniques have shown appreciable clinical effects, their differences in mechanisms and mutual commonalities still deserve to be carefully explored. Therefore, in this review, we summarized the potential mechanisms of bronchial thermoplasty, targeted lung denervation, and cryoablation, and analyzed the relationship between these different methods. Based on available evidence, we speculated that the main pathway of chronic airway inflammation and other pathophysiologic processes in asthma is sensory nerve-related neurotransmitter release that forms a "neuro-immunity crosstalk" and amplifies airway neurogenic inflammation. The mechanism of completely blocking neuro-immunity crosstalk through dual-ablation of both efferent and afferent fibers may have a leading role in the clinical efficacy of interventional pulmonology in the treatment of asthma and deserves further investigation.
Collapse
Affiliation(s)
- Ximing Liao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaoyong Gao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengyang Xie
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Wang
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaodong Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yin Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Muyun Wang
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaxing Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongchen Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Wujian Xu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Grauer SM, Sanoja R, Poulin D, Rashid H, Jochnowitz N, Calhoun M, Zwilling D, Varty GB, Rosahl TW, Meziane H, Mittlelhaeuser C, Mazzola R, Morrow J, Smith SM, Henze D, Marcus J. Antinociceptive effects of potent, selective and brain penetrant muscarinic M4 positive allosteric modulators in rodent pain models. Brain Res 2020; 1737:146814. [DOI: 10.1016/j.brainres.2020.146814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 03/06/2020] [Accepted: 03/27/2020] [Indexed: 11/27/2022]
|
3
|
Messlinger K. Commentary: Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain. Front Neurol 2017; 8:623. [PMID: 29276497 PMCID: PMC5727421 DOI: 10.3389/fneur.2017.00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/07/2017] [Indexed: 11/26/2022] Open
Affiliation(s)
- Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Karl Messlinger,
| |
Collapse
|
4
|
Sokolov AY, Murzina AA, Osipchuk AV, Lyubashina OA, Amelin AV. Cholinergic mechanisms of headaches. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712417020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Menozzi A, Pozzoli C, Poli E, Bontempi G, Serventi P, Meucci V, Intorre L, Bertini S. Role of muscarinic receptors in the contraction of jejunal smooth muscle in the horse: An in vitro study. Res Vet Sci 2017; 115:387-392. [PMID: 28711697 DOI: 10.1016/j.rvsc.2017.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/09/2017] [Accepted: 07/08/2017] [Indexed: 11/19/2022]
Abstract
Nonselective antimuscarinic drugs are clinically useful in several pathologic conditions of horses, but, blocking all muscarinic receptor (MR) subtypes, may cause several side effects. The availability of selective antimuscarinic drugs could improve therapeutic efficacy and safety. We aimed to enlighten the role of different MR subtypes by evaluating the effects of nonselective, and selective M1, M2 and M3 MR antagonists on the contractions of horse jejunum. Segments of circular muscle of equine jejunum, were put into organ baths, connected to isotonic transducers, and the effects on ACh concentration-response curves, and on electrical field stimulation (EFS)-evoked contractions of intestinal preparations, induced by nonselective or selective MR antagonists, compared to pre-drug level, were studied. Atropine (nonselective MR antagonist), pirenzepine (selective M1 antagonist), and p-FHHSiD (selective M3 antagonist) competitively antagonized ACh (pA2=9.78±0.21; 7.14±0.25 and 7.56±0.17, respectively). Methoctramine (selective M2 antagonist) antagonized ACh in a concentration-unrelated fashion; however, it competitively antagonized carbachol, a nonselective muscarinic agonist (pA2=6.42±0.23). Atropine dose-dependently reduced EFS-evoked contractions, reaching a maximal effect of -45.64±6.54%; the simultaneous block of neurokinin receptors, almost completely abolished the atropine-insensitive contractions. p-FHHSiD dose-dependently reduced EFS-induced contractions, while pirenzepine caused a minor decrease. Methoctramine, ineffective up to 10-7M, enhanced the contractions at 10-6M; the block of neurokinin receptors abolished the increase of contraction. Cholinergic contractions of horse jejunum are mainly mediated by M3 receptors; M2 selective antagonists seem to scarcely affect cholinergic, and to enhance neurokininergic contractions of equine jejunum, thus their use entails a lower risk of causing intestinal hypomotility, compared to nonselective drugs.
Collapse
Affiliation(s)
- Alessandro Menozzi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy.
| | - Cristina Pozzoli
- Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Enzo Poli
- Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy
| | - Giada Bontempi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Paolo Serventi
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| | - Valentina Meucci
- Department of Veterinary Science, University of Pisa, Via Livornese, S. Piero a Grado, Pisa, Italy
| | - Luigi Intorre
- Department of Veterinary Science, University of Pisa, Via Livornese, S. Piero a Grado, Pisa, Italy
| | - Simone Bertini
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
6
|
Ferrier J, Bayet-Robert M, Dalmann R, El Guerrab A, Aissouni Y, Graveron-Demilly D, Chalus M, Pinguet J, Eschalier A, Richard D, Daulhac L, Marchand F, Balayssac D. Cholinergic Neurotransmission in the Posterior Insular Cortex Is Altered in Preclinical Models of Neuropathic Pain: Key Role of Muscarinic M2 Receptors in Donepezil-Induced Antinociception. J Neurosci 2015; 35:16418-30. [PMID: 26674867 PMCID: PMC4679823 DOI: 10.1523/jneurosci.1537-15.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 11/02/2015] [Accepted: 11/07/2015] [Indexed: 01/24/2023] Open
Abstract
Neuropathic pain is one of the most debilitating pain conditions, yet no therapeutic strategy has been really effective for its treatment. Hence, a better understanding of its pathophysiological mechanisms is necessary to identify new pharmacological targets. Here, we report important metabolic variations in brain areas involved in pain processing in a rat model of oxaliplatin-induced neuropathy using HRMAS (1)H-NMR spectroscopy. An increased concentration of choline has been evidenced in the posterior insular cortex (pIC) of neuropathic animal, which was significantly correlated with animals' pain thresholds. The screening of 34 genes mRNA involved in the pIC cholinergic system showed an increased expression of the high-affinity choline transporter and especially the muscarinic M2 receptors, which was confirmed by Western blot analysis in oxaliplatin-treated rats and the spared nerve injury model (SNI). Furthermore, pharmacological activation of M2 receptors in the pIC using oxotremorine completely reversed oxaliplatin-induced mechanical allodynia. Consistently, systemic treatment with donepezil, a centrally active acetylcholinesterase inhibitor, prevented and reversed oxaliplatin-induced cold and mechanical allodynia as well as social interaction impairment. Intracerebral microdialysis revealed a lower level of acetylcholine in the pIC of oxaliplatin-treated rats, which was significantly increased by donepezil. Finally, the analgesic effect of donepezil was markedly reduced by a microinjection of the M2 antagonist, methoctramine, within the pIC, in both oxaliplatin-treated rats and spared nerve injury rats. These findings highlight the crucial role of cortical cholinergic neurotransmission as a critical mechanism of neuropathic pain, and suggest that targeting insular M2 receptors using central cholinomimetics could be used for neuropathic pain treatment. SIGNIFICANCE STATEMENT Our study describes a decrease in cholinergic neurotransmission in the posterior insular cortex in neuropathic pain condition and the involvement of M2 receptors. Targeting these cortical muscarinic M2 receptors using central cholinomimetics could be an effective therapy for neuropathic pain treatment.
Collapse
Affiliation(s)
- Jérémy Ferrier
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, F-63000 Clermont-Ferrand, France, Inserm, U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France, Institut Analgesia, F-63000 Clermont-Ferrand, France
| | - Mathilde Bayet-Robert
- Université Lyon, CNRS, ENS Lyon, UCB Lyon 1, Ctr RMN Très Hauts Champs, F-69100 Villeurbanne, France
| | - Romain Dalmann
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, F-63000 Clermont-Ferrand, France, Inserm, U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France, Institut Analgesia, F-63000 Clermont-Ferrand, France
| | - Abderrahim El Guerrab
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, F-63000 Clermont-Ferrand, France, Inserm, U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France, Centre Jean Perrin, ERTICA EA4677 Université d'Auvergne, F-63001, Clermont-Ferrand, France
| | | | - Danielle Graveron-Demilly
- Université Lyon 1, Inserm U1044, CNRS UMR 5220, Laboratory CREATIS, F-69616 Villeurbanne, France, and
| | - Maryse Chalus
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, F-63000 Clermont-Ferrand, France, Inserm, U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France, Institut Analgesia, F-63000 Clermont-Ferrand, France
| | - Jérémy Pinguet
- Institut Analgesia, F-63000 Clermont-Ferrand, France, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Alain Eschalier
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, F-63000 Clermont-Ferrand, France, Inserm, U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France, Institut Analgesia, F-63000 Clermont-Ferrand, France, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Damien Richard
- Institut Analgesia, F-63000 Clermont-Ferrand, France, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Laurence Daulhac
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, F-63000 Clermont-Ferrand, France, Inserm, U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France, Institut Analgesia, F-63000 Clermont-Ferrand, France
| | - Fabien Marchand
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, F-63000 Clermont-Ferrand, France, Inserm, U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France, Institut Analgesia, F-63000 Clermont-Ferrand, France,
| | - David Balayssac
- Clermont Université, Université d'Auvergne, Pharmacologie Fondamentale et Clinique de la Douleur, F-63000 Clermont-Ferrand, France, Inserm, U1107 NEURO-DOL, F-63001 Clermont-Ferrand, France, Institut Analgesia, F-63000 Clermont-Ferrand, France, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
7
|
De Angelis F, Marinelli S, Fioretti B, Catacuzzeno L, Franciolini F, Pavone F, Tata AM. M2 receptors exert analgesic action on DRG sensory neurons by negatively modulating VR1 activity. J Cell Physiol 2014; 229:783-90. [PMID: 24166293 DOI: 10.1002/jcp.24499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022]
Abstract
The peripheral application of the M2 cholinergic agonist arecaidine on sensory nerve endings shows anti-nociceptive properties. In this work, we analyze in vitro, the mechanisms downstream M2 receptor activation causing the analgesic effects, and in vivo the effects produced by M2 agonist arecaidine administration on nociceptive responses in a murine model of nerve growth factor (NGF)-induced pain. Cultured DRG neurons treated with arecaidine showed a decreased level of VR1 and SP transcripts. Conversely, we found an increased expression of VR1 and SP transcripts in DRG from M2/M4(-/-) mice compared to WT and M1(-/-) mice, confirming the inhibitory effect in particular of M2 receptors on SP and VR1 expression. Patch-clamp experiments in the whole-cell configuration showed that arecaidine treatment caused a reduction of the fraction of capsaicin-responsive cells, without altering the mean capsaicin-activated current in responsive cells. We also demonstrated that arecaidine prevents PKCϵ translocation to the plasma membrane after inflammatory agent stimulation, mainly in medium-small sensory neurons. Finally, in mice, we have observed that intraperitoneal injection of arecaidine reduces VR1 expression blocking hyperalgesia and allodynia caused by NGF intraplantar administration. In conclusion, our data demonstrate that in vivo M2 receptor activation induces desensitization to mechanical and heat stimuli by a down-regulation of VR1 expression and by the inhibition of PKCϵ activity hindering its translocation to the plasma membrane, as suggested by in vitro experiments.
Collapse
Affiliation(s)
- Federica De Angelis
- Department of Biology and Biotechnologies C. Darwin, "Sapienza" University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Ondansetron reverses antihypersensitivity from clonidine in rats after peripheral nerve injury: role of γ-aminobutyric acid in α2-adrenoceptor and 5-HT3 serotonin receptor analgesia. Anesthesiology 2012; 117:389-98. [PMID: 22722575 DOI: 10.1097/aln.0b013e318260d381] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Monoaminergic pathways, impinging an α2-adrenoceptors and 5-HT3 serotonin receptors, modulate nociceptive transmission, but their mechanisms and interactions after neuropathic injury are unknown. Here we examine these interactions in rodents after nerve injury. METHODS Male Sprague-Dawley rats following L5-L6 spinal nerve ligation (SNL) were used for either behavioral testing, in vivo microdialysis for γ-aminobutyric acid (GABA) and acetylcholine release, or synaptosome preparation for GABA release. RESULTS Intrathecal administration of the α2-adrenoceptor agonist (clonidine) and 5-HT3 receptor agonist (chlorophenylbiguanide) reduced hypersensitivity in SNL rats via GABA receptor-mediated mechanisms. Clonidine increased GABA and acetylcholine release in vivo in the spinal cord of SNL rats but not in normal rats. Clonidine-induced spinal GABA release in SNL rats was blocked by α2-adrenergic and nicotinic cholinergic antagonists. The 5-HT3 receptor antagonist ondansetron decreased and chlorophenylbiguanide increased spinal GABA release in both normal and SNL rats. In synaptosomes from the spinal dorsal horn of SNL rats, presynaptic GABA release was increased by nicotinic agonists and decreased by muscarinic and α2-adrenergic agonists. Spinally administered ondansetron significantly reduced clonidine-induced antihypersensitivity and spinal GABA release in SNL rats. CONCLUSION These results suggest that spinal GABA contributes to antihypersensitivity from intrathecal α2-adrenergic and 5-HT3 receptor agonists in the neuropathic pain state, that cholinergic neuroplasticity after nerve injury is critical for α2-adrenoceptor-mediated GABA release, and that blockade of spinal 5-HT3 receptors reduces α2-adrenoceptor-mediated antihypersensitivity via reducing total GABA release.
Collapse
|
9
|
Figueiredo GSM, Zardo RS, Silva BV, Violante FA, Pinto AC, Fernandes PD. Convolutamydine A and synthetic analogues have antinociceptive properties in mice. Pharmacol Biochem Behav 2012; 103:431-9. [PMID: 23046852 DOI: 10.1016/j.pbb.2012.09.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/26/2012] [Accepted: 09/29/2012] [Indexed: 11/28/2022]
Abstract
Convolutamydine A, an oxindole that originated from a marine bryozoan, has several biological effects. In this study, we aimed to investigate the antinociceptive effects of convolutamydine A and two new synthetic analogues. Convolutamydine A and the two analogues were given orally to assess their ability to induce antinociceptive effects. Formalin-induced licking response, acetic acid-induced contortions, and hot plate models were used to characterize the effects of convolutamydine A and its analogues. Convolutamydine A (4,6-bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole), compound 1 (3-(2-oxopropyl)-3-hydroxy-2-oxindole), and compound 2 (5-bromo-3-(2-oxopropyl)-3-hydroxy-2-oxindole) caused peripheral antinociceptive and anti-inflammatory effects in the acetic acid-induced contortions and the formalin-induced licking models. Supraspinal effects were also observed in the hot plate model and were similar to those obtained with morphine. The peripheral effects were not mediated by the cholinergic or opioid systems. The antinociceptive effects of convolutamydine A seem to be mediated by all three systems (cholinergic, opioid, and nitric oxide systems), and the mechanism of action of compounds 1 and 2 involved cholinergic and nitric oxide-mediated mechanisms. Convolutamydine A and its analogues (compounds 1 and 2) showed good antinociceptive ability after systemic administration in acute pain models. The antinociceptive action mediated by cholinergic, opioid, and nitric oxide systems could explain why convolutamydine A, compound 1, and compound 2 retained their antinociceptive effects. The doses used were similar to the doses of morphine and were much lower than that of acetylsalicylic acid, the classical analgesic and anti-inflammatory drug. In conclusion, convolutamydine A and the two analogues demonstrated antinociceptive effects comparable to morphine's effects.
Collapse
Affiliation(s)
- Gabriela S M Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Farmacologia da Inflamação e do Óxido Nítrico, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Corsetti V, Mozzetta C, Biagioni S, Augusti Tocco G, Tata AM. The mechanisms and possible sites of acetylcholine release during chick primary sensory neuron differentiation. Life Sci 2012; 91:783-8. [PMID: 22922497 DOI: 10.1016/j.lfs.2012.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 08/04/2012] [Accepted: 08/13/2012] [Indexed: 11/30/2022]
Abstract
AIMS In this study, we evaluated the ability of differentiating embryonic chick DRG neurons to release and respond to acetylcholine (ACh). In particular, we investigated the neuronal soma and neurites as sites of ACh release, as well as the mechanism(s) underlying this release. MAIN METHODS ACh release from DRG explants in the Campenot chambers was measured by a chemiluminescent assay. Real-time PCR analysis was used to evaluate the expression of ChAT, VAChT, mediatophore and muscarinic receptor subtypes in DRGs at different developmental stages. KEY FINDINGS We found that ACh is released both within the central and lateral compartments of the Campenot chambers, indicating that ACh might be released from both the neuronal soma and fibers. Moreover, we observed that the expression of the ChAT and mediatophore increases during sensory neuron differentiation and during the post-hatching period, whereas VAChT expression decreases throughout development. Lastly, the kinetics of the m2 and m3 transcripts appeared to change differentially compared to the m4 transcript during the same developmental period. SIGNIFICANCE The data obtained demonstrate that the DRG sensory neurons are able to release ACh and to respond to ACh stimulation. ACh is released both by the soma and neurite compartments. The contribution of the mediatophore to ACh release appears to be more significant than that of VAChT, suggesting that the non-vesicular release of ACh might represent the preferential mechanism of ACh release in DRG neurons and possibly in non-cholinergic systems.
Collapse
Affiliation(s)
- V Corsetti
- Dept. of Biology and Biotechnologies Charles Darwin, Research Center of Neurobiology, Daniel Bovet, "Sapienza" University of Rome, Italy
| | | | | | | | | |
Collapse
|
11
|
Koroleva SV, Nikolaeva AA, Ashmarin IP. Types of bioinformatic programs in the continuum of regulatory peptides and non-peptide mediators. Traits of interaction of dopamine and serotonin systems. NEUROCHEM J+ 2012. [DOI: 10.1134/s1819712412020031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Fiorino DF, Garcia-Guzman M. Muscarinic pain pharmacology: realizing the promise of novel analgesics by overcoming old challenges. Handb Exp Pharmacol 2012:191-221. [PMID: 22222700 DOI: 10.1007/978-3-642-23274-9_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The antinociceptive and analgesic effects of muscarinic receptor ligands in human and nonhuman species have been evident for more than half a century. In this review, we describe the current understanding of the roles of different muscarinic subtypes in pain modulation and their mechanism of action along the pain signaling pathway, including peripheral nociception, spinal cord pain processing, and supraspinal analgesia. Extensive preclinical and clinical validation of these mechanisms points to the development of selective muscarinic agonists as one of the most exciting and promising avenues toward novel pain medications.
Collapse
Affiliation(s)
- Dennis F Fiorino
- Vertex Pharmaceuticals Inc., 11010 Torreyana Road, San Diego, CA 92127, USA.
| | | |
Collapse
|
13
|
Weller K, Reeh PW, Sauer SK. TRPV1, TRPA1, and CB1 in the isolated vagus nerve--axonal chemosensitivity and control of neuropeptide release. Neuropeptides 2011; 45:391-400. [PMID: 21868092 DOI: 10.1016/j.npep.2011.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 07/11/2011] [Accepted: 07/30/2011] [Indexed: 01/01/2023]
Abstract
Vagal sensory afferents innervating airways and abdominal tissues express TRPV1 and TRPA1, two depolarizing calcium permeable ion channels playing a major role in sensing environmental irritants and endogenous metabolites which cause neuropeptide release and neurogenic inflammation. Here we have studied axonal chemosensitivity and control of neuropeptide release from the isolated rat and mouse vagus nerve by using prototypical agonists of these transduction channels - capsaicin, mustard oil and the specific endogenous activators, anandamide (methyl arachidonyl ethanolamide, mAEA), and acrolein, respectively. Capsaicin evoked iCGRP release from the rat vagus nerve with an EC₅₀ of 0.12 μM. Co-application of mAEA had a dual effect: nanomolar concentrations of mAEA (0.01 μM) significantly reduced capsaicin-evoked iCGRP release while concentrations ≥ 1 μM mAEA had sensitizing effects. Only 100 μM mAEA directly augmented iCGRP release by itself. In the mouse, 310 μM mAEA increased release in wildtype and TRPA1-/- mice which could be inhibited by capsazepine (10 μM) and was completely absent in TRPV1-/- mice. CB1-/- and CB1/CB2 double -/- mice equally displayed increased sensitivity to mAEA (100 μM) and a sensitizing effect to capsaicin, in contrast to wildtypes. Acrolein and mustard oil (MO)--at μM concentrations--induced a TRPA1-dependent iCGRP release; however, millimolar concentrations of mustard oil (>1mM) evoked iCGRP release by activating TRPV1, confirming recent evidence for TRPV1 agonism of high mustard oil concentrations. Taken together, we present evidence for functional expression of excitatory TRPV1, TRPA1, and inhibitory CB1 receptors along the sensory fibers of the vagus nerve which lend pathophysiological relevance to the axonal membrane and the control of neuropeptide release that may become important in cases of inflammation or neuropathy. Sensitization and possible ectopic discharge may contribute to the development of autonomic dysregulation in visceral tissues that are innervated by the vagus nerve.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Axons/drug effects
- Axons/metabolism
- Calcitonin Gene-Related Peptide/metabolism
- Cannabinoid Receptor Modulators/pharmacology
- Capsaicin/pharmacology
- Endocannabinoids
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mustard Plant
- Neuropeptides/metabolism
- Plant Oils/pharmacology
- Polyunsaturated Alkamides/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Sensory System Agents/pharmacology
- TRPA1 Cation Channel
- TRPC Cation Channels/genetics
- TRPC Cation Channels/metabolism
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
- Transient Receptor Potential Channels/genetics
- Transient Receptor Potential Channels/metabolism
- Vagus Nerve/cytology
- Vagus Nerve/drug effects
- Vagus Nerve/metabolism
Collapse
Affiliation(s)
- K Weller
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | |
Collapse
|
14
|
Shi GB, Zhao MH, Zhao QC, Huang Y, Chen YF. Mechanisms involved in the antinociception of petroleum ether fraction from the EtOH extract of Chrysanthemum indicum in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:609-616. [PMID: 21112199 DOI: 10.1016/j.phymed.2010.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/30/2010] [Accepted: 10/14/2010] [Indexed: 05/27/2023]
Abstract
The petroleum ether fraction (PEF) from the EtOH extract of flowers and buds of Chrysanthemum indicum was evaluated on antinociception in mice using chemical and thermal models of nociception. PEF administered orally at doses of 188 and 376 mg/kg produced significant inhibitions on chemical nociception induced by intraperitoneal acetic acid, subplantar formalin or capsaicin injections and on thermal nociception in the tail-flick test and the hot plate test. In the pentobarbital sodium-induced sleep time test and the open-field test, PEF neither enhanced the pentobarbital sodium-induced sleep time nor impaired the motor performance, indicating that the observed antinociception was unrelated to sedation or motor abnormality. In a measurement of core body temperature, PEF did not affect temperature within 80 min. Moreover, PEF-induced antinociception in the capsaicin test was insensitive to naloxone, yohimbine or methylene blue, but was significantly antagonized by atropine and glibenclamide. These results suggested that PEF-produced antinociception might be involvement in the ATP sensitive K+ channels and the mAChRs-ATP sensitive K+ channels pathway. In additional, the antinociception of PEF might attribute to the synergic effects of these two compounds, 2-[[2-[2-[(2-ethylcyclopropyl)methyl] cyclop Cyclopropaneoctanoic and n-hexadecanoic acid, or the property of a single compound, which merited exploring further.
Collapse
Affiliation(s)
- Guo-bing Shi
- Department of Pharmacy, Shen-yang North Hospital, 83# Wenhua Road, Shen-yang 110840, PR China
| | | | | | | | | |
Collapse
|
15
|
Zhao X, Ye J, Sun Q, Xiong Y, Li R, Jiang Y. Antinociceptive effect of spirocyclopiperazinium salt compound LXM-15 via activating peripheral α7 nAChR and M4 mAChR in mice. Neuropharmacology 2011; 60:446-52. [DOI: 10.1016/j.neuropharm.2010.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
|
16
|
Chung WY, Zhang HQ, Zhang SP. Peripheral muscarinic receptors mediate the anti-inflammatory effects of auricular acupuncture. Chin Med 2011; 6:3. [PMID: 21251313 PMCID: PMC3033863 DOI: 10.1186/1749-8546-6-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 01/21/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The cholinergic and opioid systems play important roles in modulating inflammation. This study tests whether auricular acupuncture (AA) produces anti-inflammatory effects via opioid and peripheral cholinergic receptors in a rat model. METHODS Rats were anesthetized with chloral hydrate and inflammation was induced by intraplantar injection of carrageenan. Electroacupuncture was performed at auricular points bilaterally. The severity of inflammation was assessed using changes in paw volume and thermal and mechanical pain thresholds of the rats during recovery from anesthesia. RESULTS Electroacupuncture at selected auricular acupoints significantly reduced paw edema and mechanical hyperalgesia, with no significant effect on thermal hyperalgesia. The anti-edematous and analgesic effects of AA were abolished by blockade of peripheral cholinergic muscarinic receptors with methyl atropine. Blockade of local muscarinic receptors at the inflamed site with a small dose of atropine also antagonized the anti-edematous effect of AA. By contrast, systemic opioid receptor blockade with naloxone did not antagonize the anti-inflammatory effects of AA. CONCLUSION This study discovers a role of peripheral muscarinic receptors in mediating the anti-inflammatory effects of AA. The cholinergic muscarinic mechanism appears to be more important than the opioid mechanism in the anti-inflammatory action of AA.
Collapse
Affiliation(s)
- Wai Yeung Chung
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | | | |
Collapse
|
17
|
Hager U, Hein A, Lennerz J, Zimmermann K, Neuhuber W, Reeh P. Morphological characterization of rat Mas-related G-protein-coupled receptor C and functional analysis of agonists. Neuroscience 2008; 151:242-54. [DOI: 10.1016/j.neuroscience.2007.09.085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/06/2007] [Accepted: 09/24/2007] [Indexed: 02/05/2023]
|
18
|
Wess J, Eglen RM, Gautam D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 2007; 6:721-33. [PMID: 17762886 DOI: 10.1038/nrd2379] [Citation(s) in RCA: 471] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs), M(1)-M(5), regulate the activity of numerous fundamental central and peripheral functions. The lack of small-molecule ligands that can block or activate specific mAChR subtypes with high selectivity has remained a major obstacle in defining the roles of the individual receptor subtypes and in the development of novel muscarinic drugs. Recently, phenotypic analysis of mutant mouse strains deficient in each of the five mAChR subtypes has led to a wealth of new information regarding the physiological roles of the individual receptor subtypes. Importantly, these studies have identified specific mAChR-regulated pathways as potentially novel targets for the treatment of various important disorders including Alzheimer's disease, schizophrenia, pain, obesity and diabetes.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810, USA.
| | | | | |
Collapse
|
19
|
Yue CQ, Ye J, Li CL, Li RT, Sun Q. Antinociceptive effects of the novel spirocyclopiperazinium salt compound LXM-10 in mice. Pharmacol Biochem Behav 2007; 86:643-50. [PMID: 17379285 DOI: 10.1016/j.pbb.2007.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/25/2007] [Accepted: 02/07/2007] [Indexed: 11/20/2022]
Abstract
The compound LXM-10 (2,4-dimethyl-9-beta-phenylethyl-3-oxo-6, 9-diazaspiro [5.5]undecane chloride) is a new spirocyclopiperazinium salt compound. This is the first article to evaluate its antinociceptive effect in the abdominal constriction test induced by acetic acid and the hot-plate test. In the abdominal constriction test, LXM-10 had a significant dose-response effect, and the maximal inhibition ratio was 79.2%. In the hot-plate test, LXM-10 had significant dose-response and time-response effects. The antinociceptive effect began at 1.0 h, peaked at 2.0 h, and persisted 3.0 h after s.c. administration. The hot-plate latency was increased by 126.8% at the dose of 12.0 mg/kg. The antinociceptive effect of LXM-10 was blocked by mecamylamine (a central and peripheral neuronal nicotinic acetylcholine receptor antagonist, 0.25, 0.5, 1.0 mg/kg, i.p.), hexamethonium (a peripheral neuronal nicotinic acetylcholine receptor antagonist, 0.2, 1.0, 5.0 mg/kg, i.p.), atropine (a central and peripheral muscarinic acetylcholine receptor antagonist, 0.2, 1.0, 5.0 mg/kg, i.p.), and atropine methylnitrate (a peripheral muscarinic acetylcholine receptor antagonist, 0.2, 1.0, 5.0 mg/kg, i.p.) in a dose-dependent fashion. In contrast, the effect was not blocked by naloxone (a non-selective opioid receptor antagonist, 2.0 mg/kg, i.p.) or yohimbine (a alpha(2)-adrenergic receptor antagonist, 1.0, 2.5, 5.0 mg/kg, i.p.) in the hot-plate test. Therefore, the antinociceptive effects of LXM-10 involve the peripheral neuronal nicotinic and muscarinic acetylcholine receptors; they are not related to opioid receptors or alpha(2)-adrenergic receptors. LXM-10 did not affect motor coordination, spontaneous activity, or body temperature. These findings with LXM-10 suggest that spirocyclopiperazinium derivatives could provide insight on new analgesics.
Collapse
MESH Headings
- Analgesics/chemistry
- Analgesics/pharmacology
- Animals
- Atropine/pharmacology
- Atropine Derivatives/pharmacology
- Body Temperature/drug effects
- Drug Evaluation, Preclinical
- Female
- Hexamethonium/pharmacology
- Male
- Mecamylamine/pharmacology
- Mice
- Mice, Inbred ICR
- Motor Activity/drug effects
- Naloxone/pharmacology
- Pain/drug therapy
- Pain/physiopathology
- Pain Measurement
- Piperazines/chemistry
- Piperazines/pharmacology
- Psychomotor Performance/drug effects
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/physiology
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/physiology
- Receptors, Opioid/drug effects
- Receptors, Opioid/physiology
- Yohimbine/pharmacology
Collapse
Affiliation(s)
- Cai-Qin Yue
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, 100083, PR China
| | | | | | | | | |
Collapse
|
20
|
Kindt F, Wiegand S, Löser C, Nilles M, Niemeier V, Hsu SYT, Steinhoff M, Kummer W, Gieler U, Haberberger RV. Intermedin: a skin peptide that is downregulated in atopic dermatitis. J Invest Dermatol 2006; 127:605-13. [PMID: 17008878 DOI: 10.1038/sj.jid.5700576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intermedin (IMD), also called adrenomedullin-2, is a peptide that belongs to the calcitonin/calcitonin gene-related peptide/amylin peptide family. IMD exerts many effects on the cardiovascular system, gastrointestinal tract, and central nervous system. Here, we analyzed the expression of the IMD peptide in human skin of healthy controls, in biopsies from lesional and non-lesional areas of atopic dermatitis (AD) skin, in cultured human keratinocytes, and in the HaCaT keratinocyte cell line at the transcriptional (quantitative reverse transcription-PCR) and translational (immunohistochemistry) level. IMD messenger RNA (mRNA) and protein could be detected in keratinocytes and human skin. Keratinocytes, nerve fibers, periglandular cells, arterial/arteriolar smooth muscle cells, and pericytes of dermal microvessels were intensely IMD-immunoreactive. The IMD mRNA was, compared to healthy skin, significantly reduced in lesional and non-lesional areas of AD skin. This was accompanied by a reduction of IMD immunoreactivity in pericytes of the upper dermis indicating that skin from AD patients is generally affected, and downregulation of IMD in AD skin is not a secondary phenomenon caused by acute inflammation but is a general characteristic of AD skin. These data further point to a role of IMD expressed by pericytes in conferring higher susceptibility of the skin of AD patients to inflammatory stimuli.
Collapse
Affiliation(s)
- Friederike Kindt
- Institute for Anatomy and Cell Biology, University of Giessen, Giessen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ebersberger A, Takac H, Richter F, Schaible HG. Effect of sympathetic and parasympathetic mediators on the release of calcitonin gene-related peptide and prostaglandin E from rat dura mater, in vitro. Cephalalgia 2006; 26:282-9. [PMID: 16472334 DOI: 10.1111/j.1468-2982.2005.01035.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although not without controversy, an influence of the autonomic nervous system in headache is a matter for current debate. A possible contact site of autonomic and sensory nerves is the dura mater, where they form a dense network accompanying blood vessels. We investigated interactions between autonomic and nociceptive fibres by measuring release of calcitonin gene-related peptide (CGRP) and prostaglandin E2 (PGE2) from the dura mater, in vitro. The parasympathomimetic agent carbachol did not change basal release of CGRP or PGE2, whereas it diminished release induced by a mixture of inflammatory mediators. Norepinephrine did not change induced release of CGRP or PGE2, nor basal release of CGRP. However, basal release of PGE2 was enhanced by norepinephrine, and this enhancement was reduced by serotonin through 5-HT(1D) receptors. We conclude that sympathetic transmitters may control nociceptor sensitivity via increased basal PGE2 levels, a possible mechanism to facilitate headache generation. Parasympathetic transmitters may reduce enhanced nociceptor activity.
Collapse
Affiliation(s)
- A Ebersberger
- Department of Physiology, Friedrich-Schiller-University of Jena, Jena, Germany.
| | | | | | | |
Collapse
|
22
|
Hayashida KI, Bynum T, Vincler M, Eisenach JC. Inhibitory M2 muscarinic receptors are upregulated in both axotomized and intact small diameter dorsal root ganglion cells after peripheral nerve injury. Neuroscience 2006; 140:259-68. [PMID: 16580144 DOI: 10.1016/j.neuroscience.2006.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/31/2006] [Accepted: 02/01/2006] [Indexed: 11/24/2022]
Abstract
Acetylcholine reduces nociceptive input in part by activating inhibitory M2 muscarinic receptors on primary sensory neurons, and acetylcholinesterase inhibitors and muscarinic agonists produce analgesia in humans and animals. M2 muscarinic receptors are upregulated in animals with diabetic neuropathy, but their level of expression and function after peripheral nerve injury has not been previously examined. This study tested, using intracellular Ca(2+) response to membrane depolarization, the effect of the M2 muscarinic receptor agonist bethanechol on individual dorsal root ganglion cells from normal and L5-6 spinal nerve-ligated rats, followed by M2 muscarinic receptor immunostaining. We also examined functional transient receptor potential for vanilloids-1 activity by determining intracellular Ca(2+) response evoked by capsaicin in M2 muscarinic receptor immunoreactive cells. In normal dorsal root ganglion cells, bethanechol inhibited the Ca(2+) response in a concentration-related fashion, and this inhibition was blocked by the M2 muscarinic receptor antagonist gallamine. Cells expressing M2 muscarinic receptors by immunostaining were significantly inhibited by bethanechol, whereas those lacking positive staining were not. The proportion of studied dorsal root ganglion neurons with positive M2 muscarinic receptor staining increased significantly in the injured ipsilateral L5-6 and the uninjured ipsilateral L4 ganglia, but not in the contralateral dorsal root ganglion neurons compared with normals. In contrast, the proportion of neurons responding to capsaicin significantly decreased in the injured ipsilateral L5-6 dorsal root ganglion cells. These results suggest that inhibitory M2 muscarinic receptors are upregulated in small- and medium-sized axotomized dorsal root ganglion neurons and their uninjured neighbors following nerve injury, and may represent an appropriate target for analgesia in this setting.
Collapse
Affiliation(s)
- K-I Hayashida
- Department of Anesthesiology and Center for the Pharmacologic Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
23
|
Plato M, Kummer W, Haberberger RV. Structural and neurochemical comparison of vagal and spinal afferent neurons projecting to the rat lung. Neurosci Lett 2005; 395:215-9. [PMID: 16309834 DOI: 10.1016/j.neulet.2005.10.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 10/20/2005] [Accepted: 10/28/2005] [Indexed: 11/29/2022]
Abstract
Afferent information from the lung is conveyed both to the brainstem and to the spinal cord by primary afferent fibres originating from vagal sensory (jugular-nodose ganglion complex=JNC) and dorsal root ganglion (DRG) neurons, respectively. Most interest, so far, has been paid to the vagal pathway while much less is known about spinal afferents. Here we provide the first direct comparison of rat pulmonary spinal and vagal pulmonary afferent neurons with respect to structural (soma size) and two neurochemical characteristics (binding of lectin IB4, immunoreactivity to calcitonin gene-related peptide=CGRP). After retrograde labelling from the lung, all possible combinations of CGRP-immunoreactivity and IB4-binding were observed, and the neurochemically defined subpopulations occurred in the same order of frequency in DRG and JNC: (1) IB4(-)/CGRP(+) (DRG: 48%, JNC: 47%); (2) IB4(-)/CGRP(-) (DRG: 35%, JNC: 29%); (3) IB4(+)/CGRP(+) (DRG: 12%, JNC: 21%) and (4) IB4(+)/CGRP(-) (DRG: 5%, JNC: 3%). In the IB4(-)/CGRP(-) population, pulmonary DRG neurons were slightly, but significantly larger than those in JNC (mean diameter: 33 microm versus 30 microm). This group is likely to contain slowly and rapidly adapting mechanoreceptors, which may be differently distributed among rat vagal and spinal afferent pathways. In rat DRG, labelling patterns IB4(-)/CGRP(+), IB4(+)/CGRP(+) and IB4(+)/CGRP(-) are generally characteristic for different nociceptor subtypes. With respect to these features and soma size, no further distinction between spinal and vagal afferents became obvious, although this does not exclude elicitation of entirely different responses when these pathways are stimulated.
Collapse
Affiliation(s)
- Malte Plato
- Institute for Anatomy and Cell Biology, University of Giessen Lung Center, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany
| | | | | |
Collapse
|
24
|
Lang PM, Burgstahler R, Haberberger RV, Sippel W, Grafe P. A conus peptide blocks nicotinic receptors of unmyelinated axons in human nerves. Neuroreport 2005; 16:479-83. [PMID: 15770155 DOI: 10.1097/00001756-200504040-00012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The novel alpha-conotoxin Vc1.1 is a potential analgesic for the treatment of painful neuropathic conditions. In the present study, the effects of Vc1.1 were tested on the nicotine-induced increase in excitability of unmyelinated C-fiber axons in isolated segments of peripheral human nerves. Vc1.1 in concentrations above 0.1 microM antagonized the increase in axonal excitability produced by nicotine; the maximal inhibition was observed with 10 microM. We also demonstrate immunoreactivity for alpha 3 and alpha 5 subunits of neuronal nicotinic receptors on unmyelinated peripheral human axons. Blockade of nicotinic receptors on unmyelinated peripheral nerve fibers may be helpful in painful neuropathies affecting unmyelinated sympathetic and/or sensory axons.
Collapse
Affiliation(s)
- Philip M Lang
- Department of Anesthesiology, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | | | | | | |
Collapse
|
25
|
Abstract
Perioperative analgesia for thoracotomy has evolved in concert with increasing knowledge of the impact of pain on recovery, the origin of this pain, and new methods for treating it. Thoracic surgery is one of the few areas where there is more general agreement between surgeons and anesthesiologists as to the importance of aggressive pain management, often with an indwelling epidural catheter left in place until after thoracostomy tube removal. The reasons for this agreement is that it has become increasingly clear to both specialties that pain puts patients with decreased pulmonary reserve who undergo thoracotomy at greater risk for morbidity. Future studies need to examine drugs or drug combinations that can lead to further reductions in the often intense pain that patients receiving aggressive epidural analgesia still experience. Studies directed at finding interventions capable of reducing the rate of long-term postthoracotomy pain still need to be performed.
Collapse
Affiliation(s)
- E Andrew Ochroch
- Department of Anesthesia, University of Pennsylvania Health System, 3400 Spruce Street, 680 Dulles Building, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
26
|
Warner DO, Joyner MJ, Charkoudian N. Nicotine increases initial blood flow responses to local heating of human non-glabrous skin. J Physiol 2004; 559:975-84. [PMID: 15272048 PMCID: PMC1665171 DOI: 10.1113/jphysiol.2004.062943] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nicotine affects the regulation of skin blood flow (SkBF), but the mechanisms involved are not well understood. We tested the hypothesis that acute exposure to nicotine inhibits both the initial neurally mediated component and the later sustained component of SkBF responses to local heating of non-glabrous skin in humans. SkBF (measured by laser-Doppler) responses to local heating of forearm skin from 32 to 42 degrees C were measured in 11 chronic smokers. Heating occurred at one site over 15 min (RAMP) and over 90 s (STEP) at another site, and was maintained for an additional 30 min. STEP heating was also applied to a site pretreated with bretylium via iontophoresis to inhibit noradrenergic neurotransmission. Responses were measured before and after acute administration of nicotine via cigarettes or nasal spray in two experimental sessions. Nicotine decreased resting skin blood flow (P < 0.05); this response was inhibited by bretylium. During RAMP, nicotine increased the initial SkBF at 42 degrees C (by approximately 12%, P < 0.05). For STEP, nicotine increased the initial peak response (by approximately 25%, P < 0.05), and decreased the sustained plateau value (by approximately 10%, P < 0.05). In skin pretreated with bretylium, the increase caused by nicotine in the initial peak value persisted, but the plateau value was not different from pre-nicotine. These data suggest that in abstinent cigarette smokers, nicotine augments initial responses to both gradual and rapid non-painful heating of non-glabrous skin by sensitizing the sensory nerves that mediate the axon reflex associated with rapid vasodilatation. In contrast, nicotine decreases SkBF responses to prolonged heating by activating noradrenergic nerves.
Collapse
Affiliation(s)
- David O Warner
- Department of Anaesthesiology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | |
Collapse
|
27
|
Abstract
Muscarinic acetylcholine receptors (mAChRs; M1-M5) play key roles in regulating the activity of many important functions of the central and peripheral nervous system. Because of the lack of ligands endowed with a high degree of receptor subtype selectivity and the fact that most tissues or cell types express two or more mAChR subtypes, identification of the physiological and pathophysiological roles of the individual mAChR subtypes has proven a difficult task. To circumvent these difficulties, several laboratories recently employed gene-targeting techniques to generate mutant mouse strains deficient in each of the five mAChR subtypes. Phenotyping studies showed that each mutant mouse line displayed characteristic physiological, pharmacological, behavioral, biochemical, or neurochemical deficits. The novel insights gained from these studies should prove instrumental for the development of novel classes of muscarinic drugs.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, DHHS, Bethesda, Maryland 20892, USA.
| |
Collapse
|
28
|
Dussor GO, Helesic G, Hargreaves KM, Flores CM. Cholinergic modulation of nociceptive responses in vivo and neuropeptide release in vitro at the level of the primary sensory neuron. Pain 2004; 107:22-32. [PMID: 14715385 DOI: 10.1016/j.pain.2003.09.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) have been widely reported as pharmacological targets for the treatment of pain. However, most of these efforts have focused on CNS mAChRs and their role in modulating nociception at the level of the spinal cord. The present study examines the contribution of peripheral mAChRs in trigeminal nociceptive pathways using a combination of in vivo and in vitro approaches. In the formalin model of orofacial nociception in rats, a peri-oral co-injection of the M2 agonist arecaidine dose-dependently inhibited phase 2 nocifensive behavior up to approximately 50% at 5 nmol. This effect was blocked by co-treatment with the mAChR antagonist atropine and was not seen when arecaidine was administered under the skin of the back, a site distant from that of the formalin injection. In vitro superfusion of isolated rat buccal mucosa with the non-selective mAChR agonist muscarine or arecaidine led to a concentration-dependent inhibition of capsaicin-evoked CGRP release to 39% (EC50=255 nM) and 28% (EC50=847 nM) of control values, respectively. Both responses were blocked by the non-selective mAChR antagonist atropine or the M2 antagonist gallamine. Further, the endogenous ligand ACh produced a bi-phasic response, potentiating evoked CGRP release to 195% of control (EC50= 918nM) and inhibiting evoked CGRP release to 45% of control (EC50=255 microM), effects that were shown to be mediated by nAChRs and mAChRs, respectively. Finally, combined in situ hybridization/immunofluorescence demonstrated that m2 mRNA was present in 20% of trigeminal ganglion neurons between 30 and 60 microm in diameter and that 5-9% of these also expressed CGRP or VR1 immunoreactivity. These results show that activation of peripheral M2 receptors produces antinociception in vivo and the inhibition of nociceptor activity in vitro. While histological analyses at the level of the trigeminal neuronal cell bodies leave open the question of whether the effects of M2 agonists are direct or indirect, these data indicate that primary sensory neuronal M2 receptors may represent a viable peripheral target for the treatment of pain and inflammation.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Acetylcholine/pharmacology
- Analysis of Variance
- Animals
- Arecoline/analogs & derivatives
- Arecoline/pharmacology
- Atropine/pharmacology
- Behavior, Animal/drug effects
- Bungarotoxins/pharmacology
- Calcitonin Gene-Related Peptide/metabolism
- Capsaicin/pharmacology
- Cell Count
- Disinfectants/pharmacology
- Dose-Response Relationship, Drug
- Drug Combinations
- Drug Interactions
- Formaldehyde/pharmacology
- Gallamine Triethiodide/pharmacology
- Gene Expression Regulation/drug effects
- Grooming/drug effects
- In Situ Hybridization
- In Vitro Techniques
- Male
- Mecamylamine/pharmacology
- Mouth Mucosa/drug effects
- Muscarinic Antagonists/pharmacology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Nicotinic Antagonists/pharmacology
- Pain/metabolism
- Pain Measurement/drug effects
- RNA, Messenger/metabolism
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Time
- Trigeminal Ganglion/cytology
- Trigeminal Ganglion/drug effects
- Trigeminal Ganglion/metabolism
Collapse
Affiliation(s)
- Gregory O Dussor
- Department of Pharmacology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
29
|
Tata AM, De Stefano ME, Srubek Tomassy G, Vilaró MT, Levey AI, Biagioni S. Subpopulations of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter. J Neurosci Res 2004; 75:194-202. [PMID: 14705140 DOI: 10.1002/jnr.10855] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The vesicular acetylcholine transporter (VAChT) is a transmembrane protein required, in cholinergic neurons, for selective storage of acetylcholine into synaptic vesicles. Although dorsal root ganglion (DRG) neurons utilize neuropeptides and amino acids for neurotransmission, we have previously demonstrated the presence of a cholinergic system. To investigate whether, in sensory neurons, the vesicular accumulation of acetylcholine relies on the same mechanisms active in classical cholinergic neurons, we investigated VAChT presence, subcellular distribution, and activity. RT-PCR and Western blot analysis demonstrated the presence of VAChT mRNA and protein product in DRG neurons and in the striatum and cortex, used as positive controls. Moreover, in situ hybridization and immunocytochemistry showed VAChT staining located mainly in the medium/large-sized subpopulation of the sensory neurons. A few small neurons were also faintly labeled by immunocytochemistry. In the electron microscope, immunolabeling was associated with vesicle-like elements distributed in the neuronal cytoplasm and in both myelinated and unmyelinated intraganglionic nerve fibers. Finally, [(3)H]acetylcholine active transport, evaluated either in the presence or in the absence of ATP, also demonstrated that, as previously reported, the uptake of acetylcholine by VAChT is ATP dependent. This study suggests that DRG neurons not only are able to synthesize and degrade ACh and to convey cholinergic stimuli but also are capable of accumulating and, possibly, releasing acetylcholine by the same mechanism used by the better known cholinergic neurons.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Biological Transport, Active/physiology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Size
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/ultrastructure
- Membrane Transport Proteins
- Microscopy, Electron
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/ultrastructure
- Nerve Fibers, Unmyelinated/metabolism
- Nerve Fibers, Unmyelinated/ultrastructure
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Synaptic Transmission/physiology
- Synaptic Vesicles/metabolism
- Synaptic Vesicles/ultrastructure
- Transport Vesicles/metabolism
- Transport Vesicles/ultrastructure
- Vesicular Acetylcholine Transport Proteins
- Vesicular Transport Proteins
Collapse
Affiliation(s)
- Ada Maria Tata
- Dipartimento Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, Italy
| | - M Egle De Stefano
- Dipartimento Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, Italy
| | - Giulio Srubek Tomassy
- Dipartimento Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, Italy
| | - M Teresa Vilaró
- Department of Neurochemistry, CSIC-IDIBAPS, Barcelona, Spain
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| | - Stefano Biagioni
- Dipartimento Biologia Cellulare e dello Sviluppo, Università "La Sapienza," Rome, Italy
| |
Collapse
|
30
|
Tata AM, Cursi S, Biagioni S, Augusti-Tocco G. Cholinergic modulation of neurofilament expression and neurite outgrowth in chick sensory neurons. J Neurosci Res 2003; 73:227-34. [PMID: 12836165 DOI: 10.1002/jnr.10650] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The morphogenetic role of the neurotransmitter acetylcholine was studied in cultures of dorsal root ganglia (DRG) neurons obtained from E12 and E18 chick embryos. With this model we have evaluated neurofilament expression and neurite outgrowth following cholinergic agonist and antagonist treatment. Morphometric analysis undertaken to evaluate fiber outgrowth has indicated that E12 DRG cultures treated with cholinergic agonists, such as muscarine and carbachol, when compared with untreated cultures, have longer fibers and a higher number of fibers per neuron. Concomitant treatment with agonists and the antagonists atropine or mecamylamine counteracts the increase in fiber outgrowth, suggesting that the cholinergic agonist effects were mediated by both muscarinic and nicotinic receptors. The expression of the three neurofilament proteins was also evaluated. Western blot analysis showed that, in E12 DRG cultures, both muscarine and carbachol induce a significant increase in neurofilament protein expression and that this effect is inhibited by cholinergic antagonist treatment. Moreover, Northern blot analysis has demonstrated that the increased expression of 68- and 145-kDa neurofilament proteins is dependent on cholinergic modulation of the neurofilament transcripts. Modulated expression of neurofilament proteins by cholinergic agonists was not evident in E18 DRG cultures, suggesting that, when sensory neurons have completed their differentiation, the cholinergic system might be involved in other functions. In conclusion, our data demonstrate that, during sensory neuron development, acetylcholine modulates neurite outgrowth controlling neurospecific marker expression.
Collapse
Affiliation(s)
- Ada Maria Tata
- Dipartimento di Biologia Cellulare e dello Sviluppo, Università degli Studi di Roma "La Sapienza," Rome, Italy
| | | | | | | |
Collapse
|
31
|
Wess J, Duttaroy A, Gomeza J, Zhang W, Yamada M, Felder CC, Bernardini N, Reeh PW. Muscarinic receptor subtypes mediating central and peripheral antinociception studied with muscarinic receptor knockout mice: a review. Life Sci 2003; 72:2047-54. [PMID: 12628455 DOI: 10.1016/s0024-3205(03)00082-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To gain new insight into the physiological and pathophysiological roles of the muscarinic cholinergic system, we generated mutant mouse strains deficient in each of the five muscarinic acetylcholine receptor subtypes (M(1)-M(5)). In this chapter, we review a set of recent studies dealing with the identification of the muscarinic receptor subtypes mediating muscarinic agonist-dependent analgesic effects by central and peripheral mechanisms. Most of these studies were carried out with mutant mouse strains lacking M(2) or/and M(4) muscarinic receptors. It is well known that administration of centrally active muscarinic agonists induces pronounced analgesic effects. To identify the muscarinic receptors mediating this activity, wild-type and muscarinic receptor mutant mice were injected with the non-subtype-selective muscarinic agonist, oxotremorine (s.c., i.t., and i.c.v.), and analgesic effects were assessed in the tail-flick and hot-plate tests. These studies showed that M(2) receptors play a key role in mediating the analgesic effects of oxotremorine, both at the spinal and supraspinal level. However, studies with M(2)/M(4) receptor double KO mice indicated that M(4) receptors also contribute to this activity. Recent evidence suggests that activation of muscarinic receptors located in the skin can reduce the sensitivity of peripheral nociceptors. Electrophysiological and neurochemical studies with skin preparations from muscarinic receptor mutant mice indicated that muscarine-induced peripheral antinociception is mediated by M(2) receptors. Since acetylcholine is synthesized and released by different cell types of the skin, it is possible that non-neuronally released acetylcholine plays a role in modulating peripheral nociception. Our results highlight the usefulness of muscarinic receptor mutant mice to shed light on the functional roles of acetylcholine released from both neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- Jürgen Wess
- Laboratory of Bioorganic Chemistry, Molecular Signaling Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg 8A, Room B1A-05, 8 Center Drive MSC 0810, Bethesda, MD 20892-0810, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The pain that accompanies surgical procedures remains prevalent and is an aspect of the perioperative experience that generates the greatest concern for patients about to undergo surgery. There is also a growing recognition of the extent that acute painful experiences can lead to longer-term painful consequences, even when tissue healing appears to be complete. The neurobiologic basis of this has been partially elucidated. The key observations are that multiple sites and multiple receptors collectively contribute, and that noxious stimuli initiate a cascade of events that sensitise the nervous system so that subsequent noxious stimuli are perceived with greater intensity and even previously non-painful stimuli can be painful. Incorporating these observations into effective perioperative regimens designed to limit acute pain and its consequences leads to a multimodal pre-emptive approach to acute pain management. Acute perioperative pain is an ideal setting for the use of pre-emptive analgesic techniques because the timing of noxious stimuli is known in advance and surgical sensitisation of the nervous system is ongoing despite adequate levels of general anaesthesia with volatile anaesthetics. The relevant neurobiology of pain, reviewed in this article, is the basis for advocating an aggressive, multimodal, pre-emptive approach to acute pain therapy throughout the entire perioperative period. A growing body of outcome studies demonstrates the long-term efficacy of this approach.
Collapse
Affiliation(s)
- Allan Gottschalk
- Department of Anesthesiology and Critical Care Medicine, Meyer 8-134, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
33
|
Miyamoto T, Nojima H, Kuraishi Y. Intradermal cholinergic agonists induce itch-associated response via M3 muscarinic acetylcholine receptors in mice. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 88:351-4. [PMID: 11949891 DOI: 10.1254/jjp.88.351] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we examined whether cholinergic agonists would elicit an itch-associated response in mice. When mice were given an intradermal injection of carbachol (1-10 nmol) or bethanechol (0.3-100 nmol) into the rostral back, they showed the dose-dependent increase of scratching. Nicotine (1-10 nmol) showed no effect. Pretreatment with naloxone, but not with terfenadine, significantly suppressed the carbachol-induced scratching. When intradermally co-injected with carbachol, atropine and 4-DAMP but neither methoctramine nor pancuronium significantly inhibited the carbachol-induced scratching. Muscarinic agonists are suggested to produce itch through activation of M3 muscarinic receptors in the skin.
Collapse
Affiliation(s)
- Takayuki Miyamoto
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Japan
| | | | | |
Collapse
|