1
|
Schwarze‐Taufiq TA, Pranoto IKA, Hui K, Kinoshita C, Yu O, Crane PK, Gray SL, Young JE. Anticholinergic drugs and dementia risk: Using stem cell-based studies to complement pharmacoepidemiology. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2025; 11:e70040. [PMID: 39911736 PMCID: PMC11795422 DOI: 10.1002/trc2.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 02/07/2025]
Abstract
BACKGROUND Anticholinergic (AC) use remains common in older adults despite evidence of safety risks, including increased risk in dementia. Pharmacoepidemiology studies from various populations report associations between specific anticholinergic classes - antidepressants and bladder antimuscarinics - and increased dementia incidence. However, it is difficult to determine whether these associations are directly caused by the neurotoxic effects of anticholinergic drugs or by the underlying health conditions which the medications are taken for, known as confounding by indication. Here, we leverage human induced pluripotent stem cells-derived-neurons (hiPSC-Ns) to complement the pharmacoepidemiology studies by directly examining the effects of various anticholinergic classes on dementia-related cellular phenotypes. METHODS We treated human induced pluripotent stem cell (hiPSC)-derived neurons with eight drugs representing different AC medication classes, including antidepressants, bladder antimuscarinics, antihistamines, and antispasmodics. We analyzed these neurons for cytotoxicity, amyloid beta (Aβ) peptide levels in the conditioned medium, and the level of intracellular phosphorylated tau from these cultures. RESULTS We observed that antidepressants and bladder antimuscarinics were consistently cytotoxic, whereas antihistamines and antispasmodics did not show overt cytotoxicity at the times and concentrations that we tested. Some of the cytotoxic medications altered the amounts of Aβ1-42 peptides, but there were no significant differences in the intracellular ratio of phosphorylated tau/total tau between AC drug treatments. CONCLUSIONS These results corroborate population-based studies and suggest a molecular basis for the differences in dementia risk observed according to AC class. This warrants future work examining the effect of AC medications on hiPSC-derived cells from multiple subjects and examining other molecular outcomes including synaptic function and neuroinflammation in hiPSC-based models. Highlights Certain classes of anticholinergic (AC) medications are linked to dementia.Human-induced pluripotent stem cell (hiPSC) models are used to directly test the cytotoxicity of AC medications.AC classes that are associated with dementia are more neurotoxic.
Collapse
Affiliation(s)
- Tiara A. Schwarze‐Taufiq
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Inez K. A. Pranoto
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Katherine Hui
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Onchee Yu
- Kaiser Permanente Washington Health Research InstituteSeattleWashingtonUSA
| | - Paul K. Crane
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Shelly L. Gray
- School of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Jessica E. Young
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
2
|
Sara Salahuddin H, Attaullah S, Ali Shah S, Khan S, Zahid M, Ullah M, Khayyam, Salahuddin S, Gul S, Alsugoor MH. Ranuncoside's attenuation of scopolamine-induced memory impairment in mice via Nrf2 and NF-ĸB signaling. Saudi Pharm J 2023; 31:101702. [PMID: 37533493 PMCID: PMC10391653 DOI: 10.1016/j.jsps.2023.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
Scopolamine is a well-known pharmacological agent responsible for causing memory impairment in animals, as well as oxidative stress and neuroinflammation inducer which lead to the development of Alzheimer disease. Although a cure for Alzheimer's disease is unavailable. Ranuncoside, a metabolite obtained from a medicinal plant has demonstrated antioxidant and anti-inflammatory properties in vitro, making it a promising treatment with potential anti-Alzheimer disease properties. However, as ranuncoside has not been evaluated for its antioxidant and anti-neuroinflammatory properties in any in vivo model, our study aimed to evaluate its neurotherapeutic efficacy against scopolamine-induced memory impairment in adult male albino mice. Mice were randomly divided into four experimental groups. Mice of group I was injected with saline, group II was injected with scopolamine (1 mg/kg/day) for 3 weeks. After receiving a daily injection of scopolamine for 1 week, the mice of group III were injected with ranuncoside (10 mg/kg) every other day for 2 weeks along with scopolamine daily and group IV were injected with ranuncoside on 5th alternate days. Behavioral tests (i.e., Morris water maze and Y-maze) were performed to determine the memory-enhancing effect of ranuncoside against scopolamine's memory deleterious effect. Western blot analysis was also performed to further elucidate the anti-neuroinflammatory and antioxidant effects of ranuncoside against scopolamine-induced neuroinflammation and oxidative stress. Our results showed memory-enhancing, anti-neuroinflammatory effect, and antioxidant effects of ranuncoside against scopolamine by increasing the expression of the endogenous antioxidant system (i.e., Nrf2 and HO-1), followed by blocking neuroinflammatory markers such as NF-κB, COX-2, and TNF-α. The results also revealed that ranuncoside possesses hypoglycemic and hypolipidemic effects against scopolamine-induced hyperglycemia and hyperlipidemia in mice as well as scopolamine's hyperglycemic effect. In conclusion, our findings suggest that ranuncoside could be a potential agent for the management of Alzheimer's disease, hyperglycemia, and hyperlipidemia.
Collapse
Affiliation(s)
| | - Sobia Attaullah
- Department of Zoology, Islamia College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ali Shah
- Neuro Molecular Medicine Research Centre (NMMRC), Ring Road, Peshawar, KPK, Pakistan
- The University of Haripur, KPK, Pakistan
| | - SanaUllah Khan
- Department of Zoology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahid
- Department of Zoology, Islamia College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mujeeb Ullah
- Department of Zoology, Islamia College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Khayyam
- Department of Zoology, Islamia College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sidra Salahuddin
- Hayatabad Medical Complex, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Seema Gul
- Department of Zoology, Islamia College, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mahdi H Alsugoor
- Department of Emergency Medical Services, College of Health Sciences-AlQunfudah, Umm Al- Qura University, Makkah 21912, Saudi Arabia
| |
Collapse
|
3
|
Si S, Zhao X, Su F, Lu H, Zhang D, Sun L, Wang F, Xu L. New advances in clinical application of neostigmine: no longer focusing solely on increasing skeletal muscle strength. Front Pharmacol 2023; 14:1227496. [PMID: 37601044 PMCID: PMC10436336 DOI: 10.3389/fphar.2023.1227496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
Neostigmine is a clinical cholinesterase inhibitor, that is, commonly used to enhance the function of the cholinergic neuromuscular junction. Recent studies have shown that neostigmine regulates the immune-inflammatory response through the cholinergic anti-inflammatory pathway, affecting perioperative neurocognitive function. This article reviews the relevant research evidence over the past 20 years, intending to provide new perspectives and strategies for the clinical application of neostigmine.
Collapse
Affiliation(s)
- Shangkun Si
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohu Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fan Su
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongxiu Lu
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Sun
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fulei Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Shan M, Bai Y, Fang X, Lan X, Zhang Y, Cao Y, Zhu D, Luo H. American Ginseng for the Treatment of Alzheimer's Disease: A Review. Molecules 2023; 28:5716. [PMID: 37570686 PMCID: PMC10420665 DOI: 10.3390/molecules28155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunfan Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Biopharmaceutical and Health Food, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
5
|
Sizova M, Camacho V, Sampedro F, Sabaté-Llobera A, Abouzian S, Stefaneli P, Duch J, Fernández-León A, López-Mora DA, Estorch M, Carrió I, Flotats A. Brain metabolic changes in patients with disseminated malignant melanoma under immunotherapy. Melanoma Res 2022; 32:334-342. [PMID: 35703175 DOI: 10.1097/cmr.0000000000000835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although there is evidence that chemotherapy can have side effects on metabolism and brain function, there are few studies on the occurrence of these side effects with immunotherapy. The present study was conducted to assess whether brain metabolic changes occur in patients with malignant melanoma under immunotherapy. Thirty-nine patients after surgical intervention and with a diagnosis of malignant melanoma were retrospectively included and were divided into two groups: one group under the first-line therapy with anti-programmed cell death-1 ± anti-cytotoxic T lymphocyte antigen-4 monoclonal antibodies and the other group without any treatment after surgery, which served as a control. Basal and follow-up whole body and brain 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 F]FDG) PET/computed tomography (CT) studies were performed. Changes in brain glucose metabolism after treatment initiation of the immunotherapy group were compared with the findings in the control group. In addition, longitudinal regression analysis to investigate whether the time under immunotherapy influenced the changes of brain metabolism was performed. None of the patients presented cognitive impairment or other neurological alterations between basal and follow-up brain [ 18 F]FDG PET/CT examinations. The statistical analysis revealed a significant relative SUV (SUVr)-loss in the left frontal region in patients of the immunotherapy group compared with the control group, with radjusted = -0.62 and P = 0.008. Severity of SUVr-loss was correlated with duration of treatment. Patients with disseminated malignant melanoma receiving immunotherapy may present a decrease of brain metabolism in the left frontal region, which is related with time-under-treatment, without any clinical evidence of neurological disorder.
Collapse
Affiliation(s)
- Marina Sizova
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona
| | - Valle Camacho
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona
| | - Frederic Sampedro
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Safae Abouzian
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona
| | | | - Joan Duch
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona
| | | | | | | | - Ignasi Carrió
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona
| | - Albert Flotats
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona
| |
Collapse
|
6
|
Somogyi G, Hlatky D, Spisák T, Spisák Z, Nyitrai G, Czurkó A. Deciphering the scopolamine challenge rat model by preclinical functional MRI. Sci Rep 2021; 11:10873. [PMID: 34035328 PMCID: PMC8149883 DOI: 10.1038/s41598-021-90273-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/07/2021] [Indexed: 11/09/2022] Open
Abstract
During preclinical drug testing, the systemic administration of scopolamine (SCO), a cholinergic antagonist, is widely used. However, it suffers important limitations, like non-specific behavioural effects partly due to its peripheral side-effects. Therefore, neuroimaging measures would enhance its translational value. To this end, in Wistar rats, we measured whisker-stimulation induced functional MRI activation after SCO, peripherally acting butylscopolamine (BSCO), or saline administration in a cross-over design. Besides the commonly used gradient-echo echo-planar imaging (GE EPI), we also used an arterial spin labeling method in isoflurane anesthesia. With the GE EPI measurement, SCO decreased the evoked BOLD response in the barrel cortex (BC), while BSCO increased it in the anterior cingulate cortex. In a second experiment, we used GE EPI and spin-echo (SE) EPI sequences in a combined (isoflurane + i.p. dexmedetomidine) anesthesia to account for anesthesia-effects. Here, we also examined the effect of donepezil. In the combined anesthesia, with the GE EPI, SCO decreased the activation in the BC and the inferior colliculus (IC). BSCO reduced the response merely in the IC. Our results revealed that SCO attenuated the evoked BOLD activation in the BC as a probable central effect in both experiments. The likely peripheral vascular actions of SCO with the given fMRI sequences depended on the type of anesthesia or its dose.
Collapse
Affiliation(s)
- Gergely Somogyi
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary
| | - Dávid Hlatky
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary
| | - Tamás Spisák
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary.,Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Zsófia Spisák
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary
| | - Gabriella Nyitrai
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary
| | - András Czurkó
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., POB: 27, Budapest 10, H-1475 , Hungary.
| |
Collapse
|
7
|
Bakker C, Prins S, Liptrot J, Hart EP, Klaassen ES, Brown GA, Brown A, Congreve M, Weir M, Marshall FH, Stevens J, Cross DM, Tasker T, Nathan PJ, Groeneveld GJ. Safety, pharmacokinetics and pharmacodynamics of HTL0009936, a selective muscarinic M 1 -acetylcholine receptor agonist: A randomized cross-over trial. Br J Clin Pharmacol 2021; 87:4439-4449. [PMID: 33891333 PMCID: PMC8596821 DOI: 10.1111/bcp.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/01/2022] Open
Abstract
AIMS HTL0009936 is a selective M1 muscarinic receptor agonist in development for cognitive dysfunction in Alzheimer's disease. Safety, tolerability and pharmacokinetics and exploratory pharmacodynamic effects of HTL0009936 administered by continuous IV infusion at steady state were investigated in elderly subjects with below average cognitive functioning (BACF). METHODS Part A was a four-treatment open label sequential study in healthy elderly investigating 10-83 mg HTL0009936 (IV) and a 24 mg HTL0009936 single oral dose. Part B was a five-treatment randomized, double-blind, placebo and physostigmine controlled cross-over study with IV HTL0009936 in elderly subjects with BACF. Pharmacodynamic assessments were performed using neurocognitive and electrophysiological tests. RESULTS Pharmacokinetics of HTL0009936 showed dose-proportional increases in exposure with a mean half-life of 2.4 hours. HTL0009936 was well-tolerated with transient dose-related adverse events (AEs). Small increases in mean systolic blood pressure of 7.12 mmHg (95% CI [3.99-10.24]) and in diastolic of 5.32 mmHg (95% CI [3.18-7.47]) were noted at the highest dose in part B. Overall, there was suggestive, but no definitive, positive or negative pharmacodynamic effects. Statistically significant effects were observed on P300 with HTL0009936 and adaptive tracking with physostigmine. CONCLUSIONS HTL0009936 showed well-characterized pharmacokinetics and single doses were safe and generally well-tolerated in healthy elderly subjects. Due to physostigmine tolerability issues and subject burden, the study design was changed and some pharmacodynamic assessments (neurocognitive) were performed at suboptimal drug exposures. Therefore no clear conclusions can be made on pharmacodynamic effects of HTL0009936, although an effect on P300 is suggestive of central target engagement.
Collapse
Affiliation(s)
- Charlotte Bakker
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | - Samantha Prins
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ellen P Hart
- Centre for Human Drug Research, Leiden, The Netherlands
| | | | | | | | | | | | - Fiona H Marshall
- Sosei Heptares, Cambridge, UK.,MSD Research Laboratories (Merck & Co), Kenilworth, New Jersey, USA
| | - Jasper Stevens
- Centre for Human Drug Research, Leiden, The Netherlands.,University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Pradeep J Nathan
- Sosei Heptares, Cambridge, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,School of Psychological Sciences, Monash University, Australia
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Bailey DM, Lanéelle D, Trihan JE, Marchi N, Stacey BS, Tamiya K, Washio T, Tuaillon E, Hirtz C, Lehmann S, Ogoh S, Normand H. Gravitational Transitions Increase Posterior Cerebral Perfusion and Systemic Oxidative-nitrosative Stress: Implications for Neurovascular Unit Integrity. Neuroscience 2020; 441:142-160. [PMID: 32502571 DOI: 10.1016/j.neuroscience.2020.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
The present study examined if repeated bouts of micro- and hypergravity during parabolic flight (PF) alter structural integrity of the neurovascular unit (NVU) subsequent to free radical-mediated changes in regional cerebral perfusion. Six participants (5♂, 1♀) aged 29 ± 11 years were examined before, during and after a 3 h PF and compared to six sex and age-matched (27 ± 6 years) normogravity controls. Blood flow was measured in the anterior (middle cerebral artery, MCA; internal carotid artery, ICA) and posterior (vertebral artery, VA) circulation (duplex ultrasound) in-flight over the course of 15 parabolas. Venous blood was assayed for free radicals (electron paramagnetic resonance spectroscopy), nitric oxide (NO, ozone-based chemiluminescence) and NVU integrity (chemiluminescence/ELISA) in normogravity before and after exposure to 31 parabolas. While MCA velocity did not change (P > 0.05), a selective increase in VA flow was observed during the most marked gravitational transition from micro- to hypergravity (P < 0.05). Increased oxidative-nitrosative stress defined by a free radical-mediated reduction in NO and elevations in glio-vascular GFAP and S100ß were observed after PF (P < 0.05), the latter proportional to the increase in VA flow (r = 0.908, P < 0.05). In contrast, biomarkers of neuronal-axonal damage (neuron-specific enolase, neurofilament light-chain, ubiquitin carboxy-terminal hydrolase L1 and tau) did not change (P > 0.05). Collectively, these findings suggest that the cumulative effects of repeated gravitational transitions may promote minor blood-brain barrier disruption, potentially related to the combined effects of haemodynamic (posterior cerebral hyperperfusion) and molecular (systemic oxidative-nitrosative) stress.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK.
| | - Damien Lanéelle
- Service de Médecine Vasculaire, Centre Hospitalo-Universitaire, Caen, France; UNICAEN, INSERM, COMETE, GIP CYCERON, Normandie University, Caen, France
| | - Jean-Eudes Trihan
- Service de Médecine Vasculaire, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Nicola Marchi
- UMR, Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics (CNRS Unit Mixte de Recherche 5203; INSERM U1191), University of Montpellier, France
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Kazuki Tamiya
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Edouard Tuaillon
- Unit Mixte de Recherche, INSERM l'Etablissement Français du Sang, University of Montpellier 1, Montpellier, France
| | - Christophe Hirtz
- LBPC-PPC, University of Montpellier, Institute of Regenerative Medicine-Biotherapy IRMB, Centre Hospitalier Universitaire de Montpellier, INSERM, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, University of Montpellier, Institute of Regenerative Medicine-Biotherapy IRMB, Centre Hospitalier Universitaire de Montpellier, INSERM, Montpellier, France
| | - Shigehiko Ogoh
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK; Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Hervé Normand
- UNICAEN, INSERM, COMETE, GIP CYCERON, Normandie University, Caen, France; UNICAEN, COMETE, Caen, France; INSERM, U 1075 COMETE, Caen, France; Department of Clinical Physiology, Centre Hospitalier Universitaire de Caen, Caen, France
| |
Collapse
|
9
|
Baakman AC, Alvarez-Jimenez R, Loewen G, de Kam ML, Broekhuizen K, Hilt DC, Groeneveld GJ. No synergistic effect of subtherapeutic doses of donepezil and EVP-6124 in healthy elderly subjects in a scopolamine challenge model. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:89-98. [PMID: 30984817 PMCID: PMC6446049 DOI: 10.1016/j.trci.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Donepezil is a widely used cholinesterase inhibitor in the management of Alzheimer's disease. Despite large-scaled evidence for its efficacy, elevated peripheral ACh levels often lead to side effects and are dose limiting. The present exploratory study is designed to determine the potentiation of the effects of donepezil by cotreatment with EVP-6124, an alpha-7 nicotinic agonist, to reduce scopolamine-induced cognitive deficits in healthy elderly subjects. Secondary objectives are to explore safety and pharmacokinetic and pharmacodynamics effects of EVP-6124 alone and in combination with donepezil compared to placebo. METHODS A phase I randomized, single-center, placebo-controlled, double-blind, five-way, partial crossover study was performed with donepezil 2.5, 5 mg or placebo combined with EVP-6124 0.3, 1, 2, 4 mg or placebo in three cohorts of healthy elderly subjects in a scopolamine (0.3 mg i.v.) challenge test. Safety, pharmacokinetic, and pharmacodynamics outcomes were assessed. RESULTS A total of 36 subjects completed the study. Donepezil pharmacokinetic parameters were similar with and without EVP-6124. Effective dose combinations were donepezil/EVP-6124(5/2 mg) and donepezil/EVP-6124 (5/0.3 mg) and showed improvements of the delayed recall of the Visual Verbal Learning Test (1.2; CI = 0.1-2.3) and reaction time during the two-back condition of the N-back (-42; CI = -77, -8), respectively. Overall, no marked reversal of scopolamine effects was observed. DISCUSSION This study shows no synergistic effect of subtherapeutic doses of donepezil and EVP-6124 in a scopolamine challenge model in healthy elderly subjects. Dosing of scopolamine and the combination of donepezil and EVP-6124 requires further study.
Collapse
|
10
|
Simpraga S, Alvarez-Jimenez R, Mansvelder HD, van Gerven JMA, Groeneveld GJ, Poil SS, Linkenkaer-Hansen K. EEG machine learning for accurate detection of cholinergic intervention and Alzheimer's disease. Sci Rep 2017; 7:5775. [PMID: 28720796 PMCID: PMC5515842 DOI: 10.1038/s41598-017-06165-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
Monitoring effects of disease or therapeutic intervention on brain function is increasingly important for clinical trials, albeit hampered by inter-individual variability and subtle effects. Here, we apply complementary biomarker algorithms to electroencephalography (EEG) recordings to capture the brain’s multi-faceted signature of disease or pharmacological intervention and use machine learning to improve classification performance. Using data from healthy subjects receiving scopolamine we developed an index of the muscarinic acetylcholine receptor antagonist (mAChR) consisting of 14 EEG biomarkers. This mAChR index yielded higher classification performance than any single EEG biomarker with cross-validated accuracy, sensitivity, specificity and precision ranging from 88–92%. The mAChR index also discriminated healthy elderly from patients with Alzheimer’s disease (AD); however, an index optimized for AD pathophysiology provided a better classification. We conclude that integrating multiple EEG biomarkers can enhance the accuracy of identifying disease or drug interventions, which is essential for clinical trials.
Collapse
Affiliation(s)
- Sonja Simpraga
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Department of Neurology, VU University Medical Center, Amsterdam, The Netherlands
| | - Simon-Shlomo Poil
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,NBT Analytics BV, Amsterdam, The Netherlands
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, CNCR, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Serrador JM, Freeman R. Enhanced Cholinergic Activity Improves Cerebral Blood Flow during Orthostatic Stress. Front Neurol 2017; 8:103. [PMID: 28373858 PMCID: PMC5357636 DOI: 10.3389/fneur.2017.00103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/02/2017] [Indexed: 02/05/2023] Open
Abstract
Cerebral blood flow (CBF) and consequently orthostatic tolerance when upright depends on dilation of the cerebral vasculature in the face of reduced perfusion pressure associated with the hydrostatic gradient. However, it is still unclear if cholinergic activation plays a role in this dilation. To determine if enhancing central cholinergic activity with the centrally acting acetylcholinesterase inhibitor, physostigmine would increase CBF when upright compared to the peripherally acting acetylcholinesterase inhibitor, neostigmine, or saline. We performed a randomized double-blind dose-ranging study that took place over 3 days in a hospital-based research lab. Eight healthy controls (six women and two men, mean age, 26 years; range 21–33) were given infusions of physostigmine, neostigmine, or saline on three different days. Five-minute tilts were repeated at baseline (no infusion), Dose 1 (0.2 μg/kg/min physostigmine; 0.1 μg/kg/min neostigmine) and Dose 2 (0.6 μg/kg/min physostigmine or 0.3 μg/kg/min neostigmine), and placebo (0.9% NaCl). Cerebral blood velocity, beat-to-beat blood pressure, and end-tidal CO2 were continuously measured during tilts. Physostigmine (0.6 μg/kg/min) resulted in higher cerebral blood velocity during tilt (90.5 ± 1.5%) than the equivalent neostigmine (85.5 ± 2.6%) or saline (84.8 ± 1.7%) trials (P < 0.05). This increase occurred despite a greater postural hypocapnia, suggesting physostigmine had a direct vasodilatory effect on the cerebral vasculature. Cerebral hypoperfusion induced by repeated tilts was eliminated by infusion of physostigmine not neostigmine. In conclusion, this study provides the first evidence that enhancement of central, not peripheral, cholinergic activity attenuates the physiological decrease in CBF seen during upright tilt. These data support the need for further research to determine if enhancing central cholinergic activity may improve symptoms in patients with symptomatic orthostatic intolerance.
Collapse
Affiliation(s)
- Jorge M Serrador
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences, Newark, NJ, USA; Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Cardiovascular Electronics, National University of Ireland Galway, Galway, Ireland
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
12
|
Blokland A, Sambeth A, Prickaerts J, Riedel WJ. Why an M1 Antagonist Could Be a More Selective Model for Memory Impairment than Scopolamine. Front Neurol 2016; 7:167. [PMID: 27746762 PMCID: PMC5042959 DOI: 10.3389/fneur.2016.00167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Anke Sambeth
- Maastricht University , Maastricht , Netherlands
| | | | - Wim J Riedel
- Maastricht University , Maastricht , Netherlands
| |
Collapse
|
13
|
Yan BC, Park JH, Chen BH, Cho JH, Kim IH, Ahn JH, Lee JC, Hwang IK, Cho JH, Lee YL, Kang IJ, Won MH. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death. Neural Regen Res 2014; 9:1731-9. [PMID: 25422633 PMCID: PMC4238160 DOI: 10.4103/1673-5374.143415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2014] [Indexed: 11/04/2022] Open
Abstract
Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperitoneal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN; a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reached the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-immunoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2'-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death.
Collapse
Affiliation(s)
- Bing Chun Yan
- Department of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Jeong-Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
14
|
Wang J, Wang X, Lv B, Yuan W, Feng Z, Mi W, Zhang H. Effects of Fructus Akebiae on learning and memory impairment in a scopolamine-induced animal model of dementia. Exp Ther Med 2014; 8:671-675. [PMID: 25009638 PMCID: PMC4079397 DOI: 10.3892/etm.2014.1775] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/09/2014] [Indexed: 11/23/2022] Open
Abstract
Fructus Akebiae (FAE) is a component of traditional Chinese medicines used for the clinical treatment of amnesia. The aim of the present study was to investigate the effects of FAE extract on scopolamine-induced learning and memory impairment in mice and Sprague-Dawley rats. Treatment with FAE (2.5, 5 and 10 mg/kg) was investigated in scopolamine-treated animals, and its effects on different types of memory were examined using the T-maze, the Morris water maze task, the novel object recognition test, the passive avoidance task and the step-down test. The results revealed that 5 and 10 mg/kg FAE attenuated scopolamine-mediated impairment of cognition, including spatial, episodic, aversive, and short- and long-term memory. Overall, these results suggest that FAE is an effective cognitive enhancer, and thus highlights the value of a multi-target strategy to address the complexity of cognitive dysfunction in Alzheimer’s disease.
Collapse
Affiliation(s)
- Jinghua Wang
- Anesthesia and Operation Center, Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing 100853, P.R. China
| | - Xuan Wang
- Department of Psychiatry, Beijing Huilongguan Hospital, Beijing 100096, P.R. China
| | - Baosheng Lv
- Anesthesia and Operation Center, Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing 100853, P.R. China
| | - Weixiu Yuan
- Anesthesia and Operation Center, Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing 100853, P.R. China
| | - Zeguo Feng
- Anesthesia and Operation Center, Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing 100853, P.R. China
| | - Weidong Mi
- Anesthesia and Operation Center, Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing 100853, P.R. China
| | - Hong Zhang
- Anesthesia and Operation Center, Chinese PLA General Hospital and Medical School of Chinese PLA, Beijing 100853, P.R. China
| |
Collapse
|
15
|
Vascular action as the primary mechanism of cognitive effects of cholinergic, CNS-acting drugs, a rat phMRI BOLD study. J Cereb Blood Flow Metab 2014; 34:995-1000. [PMID: 24643080 PMCID: PMC4050244 DOI: 10.1038/jcbfm.2014.47] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 01/05/2023]
Abstract
Concordant results of functional magnetic resonance imaging (fMRI) and behavioral tests prove that some non-blood-brain barrier-penetrating drugs produce robust central nervous system (CNS) effects. The anticholinergic scopolamine interferes with learning when tested in rats, which coincides with a negative blood-oxygen-level-dependent (BOLD) change in the prefrontal cortex (PFC) as demonstrated by fMRI. The peripherally acting butylscopolamine also evokes a learning deficit in a water-labyrinth test and provokes a negative BOLD signal in the PFC. Donepezil-a highly CNS-penetrating cholinesterase inhibitor-prevents the negative BOLD and cognitive deficits regardless whether the provoking agent is scopolamine or butylscopolamine. Interestingly, the non-BBB-penetrating cholinesterase inhibitor neostigmine also prevents or substantially inhibits those cognitive and fMRI changes. Intact cerebral blood flow and optimal metabolism are crucial for the normal functioning of neurons and other cells in the brain. Drugs that are not BBB penetrating yet act on the CNS highlight the importance of unimpaired circulation, and point to the cerebral vasculature as a primary target for drug action in diseases where impaired circulation and consequently suboptimal energy metabolism are followed by upstream pathologic events.
Collapse
|
16
|
Glodzik L, Randall C, Rusinek H, de Leon MJ. Cerebrovascular reactivity to carbon dioxide in Alzheimer's disease. J Alzheimers Dis 2013; 35:427-40. [PMID: 23478306 DOI: 10.3233/jad-122011] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is growing evidence that cerebrovascular reactivity to carbon dioxide (CVRCO2) is impaired in Alzheimer's disease (AD). Preclinical and animal studies suggest chronic hypercontractility in brain vessels in AD. We review (a) preclinical studies of mechanisms for impaired CVRCO2 in AD; (b) clinical studies of cerebrovascular function in subjects with AD dementia, mild cognitive impairment (MCI), and normal cognition. Although results of clinical studies are inconclusive, an increasing number of reports reveal an impairment of vascular reactivity to carbon dioxide in subjects with AD, and possibly also in MCI. Thus, CVRCO2 may be an attractive means to detect an early vascular dysfunction in subjects at risk.
Collapse
Affiliation(s)
- Lidia Glodzik
- Center for Brain Health, Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
17
|
Doyle OM, Ashburner J, Zelaya FO, Williams SCR, Mehta MA, Marquand AF. Multivariate decoding of brain images using ordinal regression. Neuroimage 2013; 81:347-357. [PMID: 23684876 PMCID: PMC4068378 DOI: 10.1016/j.neuroimage.2013.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 11/26/2022] Open
Abstract
Neuroimaging data are increasingly being used to predict potential outcomes or groupings, such as clinical severity, drug dose response, and transitional illness states. In these examples, the variable (target) we want to predict is ordinal in nature. Conventional classification schemes assume that the targets are nominal and hence ignore their ranked nature, whereas parametric and/or non-parametric regression models enforce a metric notion of distance between classes. Here, we propose a novel, alternative multivariate approach that overcomes these limitations — whole brain probabilistic ordinal regression using a Gaussian process framework. We applied this technique to two data sets of pharmacological neuroimaging data from healthy volunteers. The first study was designed to investigate the effect of ketamine on brain activity and its subsequent modulation with two compounds — lamotrigine and risperidone. The second study investigates the effect of scopolamine on cerebral blood flow and its modulation using donepezil. We compared ordinal regression to multi-class classification schemes and metric regression. Considering the modulation of ketamine with lamotrigine, we found that ordinal regression significantly outperformed multi-class classification and metric regression in terms of accuracy and mean absolute error. However, for risperidone ordinal regression significantly outperformed metric regression but performed similarly to multi-class classification both in terms of accuracy and mean absolute error. For the scopolamine data set, ordinal regression was found to outperform both multi-class and metric regression techniques considering the regional cerebral blood flow in the anterior cingulate cortex. Ordinal regression was thus the only method that performed well in all cases. Our results indicate the potential of an ordinal regression approach for neuroimaging data while providing a fully probabilistic framework with elegant approaches for model selection. Often in neuroimaging the independent variables are ranked or ordered. Classification and regression models cannot explicitly model an ordinal target. We present a novel multivariate ordinal regression approach for neuroimaging data. Our results show that ordinal regression is a powerful method for ranking data.
Collapse
Affiliation(s)
- O M Doyle
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - J Ashburner
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London WC1N 3BG, UK.
| | - F O Zelaya
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - S C R Williams
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - M A Mehta
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - A F Marquand
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
18
|
El Khoury MA, Gorgievski V, Moutsimilli L, Giros B, Tzavara ET. Interactions between the cannabinoid and dopaminergic systems: evidence from animal studies. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:36-50. [PMID: 22300746 DOI: 10.1016/j.pnpbp.2011.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/18/2011] [Accepted: 12/18/2011] [Indexed: 12/16/2022]
Abstract
There is a prominent role of the cannabinoid system to control basal ganglia function, in respect to reward, psychomotor function and motor control. Cannabinoid dysregulations might have a pathogenetic role in dopamine- and basal ganglia related neuropsychiatric disorders, such as drug addiction, psychosis, Parkinson's disease and Huntington's disease. This review highlights interactions between cannabinoids, and dopamine, to modulate neurotransmitter release and synaptic plasticity in the context of drug addiction, psychosis and cognition. Modulating endocannabinoid function, as a plasticity based therapeutic strategy, in the above pathologies with particular focus on cannabinoid receptor type 1 (CB1 receptor) antagonists/inverse agonists, is discussed. On the basis of the existing literature and of new experimental evidence presented here, CB1 receptor antagonists might be beneficial in disease states associated with hedonic dysregulation, and with cognitive dysfunction in particular in the context of psychosis. It is suggested that this effects might be mediated via a hyperglutamatergic state through metabotropic glutamate activation. Indications for endocannabinoid catabolism inhibitors in psychiatric disorders, that might be CB1 receptor independent and might involve TRPV1 receptors, are also discussed.
Collapse
Affiliation(s)
- Marie-Anne El Khoury
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-952, Université Pierre et Marie Curie, 9 quai St Bernard, 75005 Paris, France
| | | | | | | | | |
Collapse
|
19
|
Liem-Moolenaar M, de Boer P, Timmers M, Schoemaker RC, van Hasselt JGC, Schmidt S, van Gerven JMA. Pharmacokinetic-pharmacodynamic relationships of central nervous system effects of scopolamine in healthy subjects. Br J Clin Pharmacol 2011; 71:886-98. [PMID: 21306419 DOI: 10.1111/j.1365-2125.2011.03936.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • The cholinergic system is important for different central nervous system functions, including memory, learning and attention. Scopolamine, a centrally active muscarinic antagonist, has been used to model dementia and to demonstrate the pharmacological effects of cholinergic drugs, but for most effects the concentration-effect relationships are unknown. WHAT THIS STUDY ADDS • We determined the pharmacokinetic-pharmacodynamic relationships of scopolamine using a multidimensional central nervous system test battery in a large group of healthy volunteers. The results suggested there are various functional cholinergic systems with different pharmacological characteristics, which can be used to study the effects of drugs that directly or indirectly modify cholinergic systems. The design of such studies should take the different concentration-effect relationships into account. AIM(S) Although scopolamine is a frequently used memory impairment model, the relationships between exposure and corresponding central nervous system (CNS) effects are mostly unknown. The aim of our study was to characterize these using pharmacokinetic-pharmacodynamic (PK-PD) modelling. METHODS In two double-blind, placebo-controlled, four-way crossover studies, 0.5-mg scopolamine was administered i.v. to 90 healthy male subjects. PK and PD/safety measures were monitored pre-dose and up to 8.5 h after administration. PK-PD relationships were modelled using non-linear mixed-effect modelling. RESULTS Most PD responses following scopolamine administration in 85 subjects differed significantly from placebo. As PD measures lagged behind the plasma PK profile, PK-PD relationships were modelled using an effect compartment and arbitrarily categorized according to their equilibration half-lives (t(1/2) k(eo) ; hysteresis measure). t(1/2) k(eo) for heart rate was 17 min, saccadic eye movements and adaptive tracking 1-1.5 h, body sway, smooth pursuit, visual analogue scales alertness and psychedelic 2.5-3.5 h, pupil size, finger tapping and visual analogue scales feeling high more than 8 h. CONCLUSIONS Scopolamine affected different CNS functions in a concentration-dependent manner, which based on their distinct PK-PD characteristics seemed to reflect multiple distinct functional pathways of the cholinergic system. All PD effects showed considerable albeit variable delays compared with plasma concentrations. The t(1/2) k(eo) of the central effects was longer than of the peripheral effects on heart rate, which at least partly reflects the long CNS retention of scopolamine, but possibly also the triggering of independent secondary mechanisms. PK-PD analysis can optimize scopolamine administration regimens for future research and give insight into the physiology and pharmacology of human cholinergic systems.
Collapse
|
20
|
Yamamoto S, Nishiyama S, Kawamata M, Ohba H, Wakuda T, Takei N, Tsukada H, Domino EF. Muscarinic receptor occupancy and cognitive impairment: a PET study with [11C](+)3-MPB and scopolamine in conscious monkeys. Neuropsychopharmacology 2011; 36:1455-65. [PMID: 21430646 PMCID: PMC3096814 DOI: 10.1038/npp.2011.31] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The muscarinic cholinergic receptor (mAChR) antagonist scopolamine was used to induce transient cognitive impairment in monkeys trained in a delayed matching to sample task. The temporal relationship between the occupancy level of central mAChRs and cognitive impairment was determined. Three conscious monkeys (Macaca mulatta) were subjected to positron emission tomography (PET) scans with the mAChR radioligand N-[(11)C]methyl-3-piperidyl benzilate ([(11)C](+)3-MPB). The scan sequence was pre-, 2, 6, 24, and 48 h post-intramuscular administration of scopolamine in doses of 0.01 and 0.03 mg/kg. Occupancy levels of mAChR were maximal 2 h post-scopolamine in cortical regions innervated primarily by the basal forebrain, thalamus, and brainstem, showing that mAChR occupancy levels were 43-59 and 65-89% in doses of 0.01 and 0.03 mg/kg, respectively. In addition, dose-dependent impairment of working memory performance was measured 2 h after scopolamine. A positive correlation between the mAChR occupancy and cognitive impairment 2 and 6 h post-scopolamine was the greatest in the brainstem (P<0.00001). Although cognitive impairment was not observed 24 h post-scopolamine, sustained mAChR occupancy (11-24%) was found with both doses in the basal forebrain and thalamus, but not in the brainstem. These results indicate that a significant degree of mAChRs occupancy is needed to produce cognitive impairment by scopolamine. Furthermore, the importance of the brainstem cholinergic system in working memory in monkey is described.
Collapse
Affiliation(s)
- Shigeyuki Yamamoto
- Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shingo Nishiyama
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Masahiro Kawamata
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Nori Takei
- Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan
| | - Edward F Domino
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-05632, USA, Tel: +1 734 764 9115, Fax: +1 734 763 4450, E-mail:
| |
Collapse
|
21
|
Irving EA, Upton N. Symptomatic treatment of Alzheimer’s disease: identification of biomarkers to aid translation from bench to bedside. Biomark Med 2007; 1:93-110. [DOI: 10.2217/17520363.1.1.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the absence of robust pharmacodynamic markers, the potential success of novel therapeutic agents for the symptomatic relief of Alzheimer’s disease is largely unknown until the drugs enter relatively large studies, assessing clinical outcome over a 6-month period. In order to increase the efficiency of future clinical development there is, therefore, a need to identify pharmacodynamic markers of drug response, pharmacodynamic models that allow early prediction of efficacy and markers to aid the stratification of the patient population. Using literature available from cholinesterase inhibitors, memantine and Ginkgo biloba, this review focuses on the identification of potential pharmacodynamic markers/models and highlights the utility of these end points throughout the drug discovery process, from preclinical to clinical development.
Collapse
Affiliation(s)
- Elaine A Irving
- GlaxoSmithKline, Neurology and GI CEDD, New Frontiers Science Park North, Third Avenue, Harlow, Essex, CM19 5AW, UK
| | - Neil Upton
- GlaxoSmithKline, Neurology and GI CEDD, New Frontiers Science Park North, Third Avenue, Harlow, Essex, CM19 5AW, UK
| |
Collapse
|
22
|
Saxena G, Singh SP, Pal R, Singh S, Pratap R, Nath C. Gugulipid, an extract of Commiphora whighitii with lipid-lowering properties, has protective effects against streptozotocin-induced memory deficits in mice. Pharmacol Biochem Behav 2007; 86:797-805. [PMID: 17477963 DOI: 10.1016/j.pbb.2007.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 03/15/2007] [Accepted: 03/23/2007] [Indexed: 11/30/2022]
Abstract
Gugulipid, an ethyl acetate extract of the resin of plant Commiphora whighitii is an established hypolipidemic agent in clinical practice. The major constituent of gugulipid is guggulsterone [4, 17 (20)-pregnadiene-3, 16-dione]. It has been observed recently that patients receiving lipid-lowering drugs like statins have a reduced risk of dementia. Therefore, the present study was planned to explore the potential of gugulipid as cognitive enhancer. Gugulipid (12.5, 25 and 50 mg/kg, p.o.) showed dose dependent improvement in scopolamine-induced deficits in passive avoidance test. The maximal effective dose of gugulipid i.e. 50 mg/kg, p.o. was used for further studies on streptozotocin (STZ) model of dementia in mice. Gugulipid was investigated for its effect on learning and memory, parameters of oxidative stress (GSH and MDA) and acetylcholinesterase (AChE) activity in the STZ (ic)-treated mice. Intracerebral (ic) injections of STZ (0.5 mg/kg) on 1st and 3rd day caused significant deficit in memory in passive avoidance and Morris water maze test after the 14th day of first dose. In passive avoidance, transfer latency time (TLT) was not increased on retention trials in STZ (ic) group while gugulipid treatment resulted in significant increase in TLT on retention trials in STZ (ic)-treated mice. In Morris water maze test the latency time to reach platform in STZ (ic)-treated mice was significantly higher than control and vehicle (artificial CSF). Pre-treatment of gugulipid (50 mg/kg, p.o.) daily for 14 days started with the first dose of STZ (ic), significantly prevented STZ (ic)-induced memory deficit. Post-treatment i.e. after 14 days of first dose of STZ (ic) of gugulipid (50 mg/kg, p.o.) significantly decreased the latency time indicating anti-dementia activity. Effect of gugulipid and STZ in visible platform test was similar to those seen with hidden platform. Gugulipid and STZ-treated mice did not cause significant change in locomotor activity. Furthermore, STZ (ic) resulted into increase in AChE activity, low level of GSH and high concentration of MDA in brain on 21st day as compared to control. Gugulipid treatment caused significant decrease in AChE activity, low level of MDA and high concentration of GSH in brain following STZ (ic) as compared to vehicle administration in STZ (ic)-treated mice. The study demonstrated that gugulipid has significant protective affect against streptozotocin-induced memory deficits model of dementia that can be attributed to anti-oxidant and anti-AChE activity of gugulipid. These observations suggest gugulipid as a potential anti-dementia drug (CDRI, Lucknow has obtained US patent No. 6896901 for use of gugulipid as cognitive enhancer).
Collapse
Affiliation(s)
- Gunjan Saxena
- Division of Pharmacology, Central Drug Research Institute, Lucknow 226001, India
| | | | | | | | | | | |
Collapse
|
23
|
Claassen JAHR, Jansen RWMM. Cholinergically Mediated Augmentation of Cerebral Perfusion in Alzheimer's Disease and Related Cognitive Disorders: The Cholinergic-Vascular Hypothesis. J Gerontol A Biol Sci Med Sci 2006; 61:267-71. [PMID: 16567376 DOI: 10.1093/gerona/61.3.267] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The treatment of Alzheimer's disease (AD) with cholinesterase inhibitors (ChEIs) is based on the cholinergic hypothesis. This hypothesis fails to account for the global nature of the clinical effects of ChEIs, for the replication of these effects in other dementias, and for the strong and unpredictable intraindividual variation in response to treatment. These findings may be better explained by the premise that ChEIs primarily act by augmenting cerebral perfusion: the cholinergic-vascular hypothesis. This article will review the evidence from preclinical and clinical investigations on the vascular role of the cholinergic neural system. The clinical relevance of this hypothesis is discussed with respect to its interactions with the vascular and amyloid hypotheses of AD. Implications for treatment are indicated. Finally, we propose that the role of the cholinergic system in neurovascular regulation and functional hyperemia elucidates how the cholinergic deficit in AD contributes to the clinical and pathological features of this disease.
Collapse
Affiliation(s)
- Jurgen A H R Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | |
Collapse
|
24
|
Vasella FC, Frascarolo P, Spahn DR, Magnusson L. Antagonism of neuromuscular blockade but not muscle relaxation affects depth of anaesthesia. Br J Anaesth 2005; 94:742-7. [PMID: 15778268 DOI: 10.1093/bja/aei120] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Conflicting effects of neuromuscular blocking drugs and anticholinesterases on depth of anaesthesia have been reported. Therefore we evaluated the effect of atracurium and neostigmine on bispectral index (BIS) and middle-latency auditory evoked potentials (AAI). METHODS We studied 40 patients (ASA I-II) aged 18-69 yr. General anaesthesia consisted of propofol and remifentanil by target-controlled infusion and neuromuscular function was monitored by electromyography. When BIS reached stable values, patients were randomly assigned to one of two groups. Group 1 received atracurium 0.4 mg kg(-1) and, 5 min later, the same volume of NaCl 0.9%; group 2 received saline first and then atracurium. When the first twitch of a train of four reached 10% of control intensity, patients were again randomized: one group (N) received neostigmine 0.04 mg kg(-1) and glycopyrrolate 0.01 mg kg(-1), and the control group (G) received only glycopyrrolate. RESULTS Injection of atracurium or NaCl 0.9% had no effect on BIS or AAI. After neostigmine-glycopyrrolate, BIS and AAI increased significantly (mean maximal change of BIS 7.1 [SD 7.5], P<0.001; mean maximal change of AAI 9.7 [10.5], P<0.001). When glycopyrrolate was injected alone BIS and AAI also increased (mean maximal change of BIS 2.2 [3.4], P=0.008; mean maximal change of AAI 3.5 [5.7], P=0.012), but this increase was significantly less than in group N (P=0.012 for BIS; P=0.027 for AAI). CONCLUSION These data suggest that neostigmine alters the state of propofol-remifentanil anaesthesia and may enhance recovery.
Collapse
Affiliation(s)
- F C Vasella
- Department of Anaesthesiology, University Hospital, CHUV BH-10, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
25
|
Tapp PD, Chu Y, Araujo JA, Chiou JY, Head E, Milgram NW, Su MY. Effects of scopolamine challenge on regional cerebral blood volume. A pharmacological model to validate the use of contrast enhanced magnetic resonance imaging to assess cerebral blood volume in a canine model of aging. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:399-406. [PMID: 15795048 DOI: 10.1016/j.pnpbp.2004.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2004] [Indexed: 11/17/2022]
Abstract
Cognitive impairment resulting from disruption of cholinergic function may occur through modulation of cerebrovascular volume (CBV). In the present study, dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) was used to examine cerebrovascular volume in young and old dogs during baseline and after administration of a cholinergic antagonist (scopolamine). In the first study, 24 animals (2-15 years of age) were given a baseline scan followed by a second scan after scopolamine administration (30 microg/kg). Gray matter rCBV was significantly higher than white matter rCBV during baseline and scopolamine administration. In the second study a subset of 7 dogs (4 young and 3 old) received scopolamine before anesthesia was induced for a second DSC-MRI scan. Consistent with the first study, gray matter rCBV was significantly higher than white matter rCBV. Scopolamine administered before anesthesia however, resulted in higher rCBV values compared to baseline in cerebral gray matter. Additionally, rCBVs were higher in young dogs at baseline in gray and white matter and marginally higher in gray matter when scopolamine was administered before anesthesia. These results indicate that in the dog, rCBV varies with brain compartment, decreases with age, and that DSC-MRI provides a measure of cerebrovascular function which may be related to age-dependent changes in cognition, brain structure, and neuropathology.
Collapse
Affiliation(s)
- P Dwight Tapp
- John Tu and Thomas Yuen Center for Functional Onco-imaging, University of California, 164 Irvine Hall, Irvine, CA, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Barbelivien A, Vaussy C, Marchalant Y, Maubert E, Bertrand N, Beley A, Roussel S, Mackenzie ET, Dauphin F. Degeneration of the basalocortical pathway from the cortex induces a functional increase in galaninergic markers in the nucleus basalis magnocellularis of the rat. J Cereb Blood Flow Metab 2004; 24:1255-66. [PMID: 15545921 DOI: 10.1097/01.wcb.0000139447.69413.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present work aimed 1) to evaluate whether an increase in galanin or galanin receptors could be induced in the nucleus basalis magnocellularis (nbm) by degeneration of the basalocortical neurons from the cortex and 2) to analyze the consequences of such an increase on cortical activity. First, a mild ischemic insult to the frontoparietal cortex was performed to induce the degeneration of the basalocortical system; galanin immunoreactivity, galanin binding sites, and cholinergic muscarinic receptors were quantified through immunocytochemistry and autoradiography. Second, galanin infusions in the nbm were undertaken to mimic a local increase of the galaninergic innervation; cortical acetylcholine release, cerebral glucose use, and cerebral blood flow were then measured as indices of cortical activity. As a result of the cortical ischemic lesion, the postsynaptic M1 and presynaptic M2 muscarinic receptors were found to be reduced in the altered cortex. In contrast, galaninergic binding capacity and fiber density were found to be increased in the ipsilateral nbm in parallel with a local decrease in the cholinergic markers such as the muscarinic M1 receptor density. Galanin infusion into the nbm inhibited the cortical acetylcholine release and cerebral blood flow increases elicited by the activation of the cholinergic basalocortical system but failed to affect acetylcholine release, cerebral blood flow, and cerebral glucose use when injected alone in the nbm. These results demonstrate that degeneration of the basalocortical system from the cortex induces an increase in galaninergic markers in the nbm, a result that might suggest that the galaninergic overexpression described in the basal forebrain of patients with Alzheimer's disease can result from a degeneration of the cholinergic basalocortical system from the cortex. Because galanin was found to reduce the activity of the basalocortical cholinergic system only when this one is activated, galanin might exert its role rather during activation deficits than under resting conditions such as the resting cortical hypometabolism, which is characteristic of Alzheimer's disease.
Collapse
|
27
|
Benson BE, Carson RE, Kiesewetter DO, Herscovitch P, Eckelman WC, Post RM, Ketter TA. A potential cholinergic mechanism of procaine's limbic activation. Neuropsychopharmacology 2004; 29:1239-50. [PMID: 14997171 DOI: 10.1038/sj.npp.1300404] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The local anesthetic procaine, when administered to humans intravenously (i.v.), yields brief intense emotional and sensory experiences, and concomitant increases in anterior paralimbic cerebral blood flow, as measured by positron emission tomography (PET). Procaine's high muscarinic affinity, together with the distribution of muscarinic receptors that overlaps with brain regions activated by procaine, suggests a muscarinic contribution to procaine's emotional and sensory effects. This study evaluates the effects of procaine on cerebral muscarinic cholinergic receptors in the anesthetized rhesus monkey. Whole brain and regional muscarinic receptor binding was measured before and after procaine administration on the same day in three anesthetized rhesus monkeys with PET and the radiotracer 3-(3-(3[18F]fluoropropylthio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine ([18F]FP-TZTP), a cholinergic ligand that has preferential binding to muscarinic (M(2)) receptors. On separate days each animal received six different doses of i.v. procaine in a randomized fashion. Procaine blocked up to approximately 90% of [18F]FP-TZTP specific binding globally in a dose-related manner. There were no regional differences in procaine's inhibitory concentration for 50% blockade (IC50) for [18F]FP-TZTP. Tracer delivery, which was highly correlated to cerebral blood flow in previous monkey studies, was significantly increased at all doses of procaine with the greatest increases occurring near procaine's IC50 for average cortex. Furthermore, anterior limbic regions showed greater increases in tracer delivery than nonlimbic regions. Procaine has high affinity to muscarinic M2 receptors in vivo in the rhesus monkey. This, as well as a preferential increase of tracer delivery to paralimbic regions, suggests that action at these receptors could contribute to i.v. procaine's emotional and sensory effects in man. These findings are consistent with other evidence of cholinergic modulation of mood and emotion.
Collapse
Affiliation(s)
- Brenda E Benson
- Biological Psychiatry Branch, NIMH, NIH, Bethesda, MD 20892-1272, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Ueno KI, Togashi H, Mori K, Matsumoto M, Ohashi S, Hoshino A, Fujita T, Saito H, Minami M, Yoshioka M. Behavioural and pharmacological relevance of stroke-prone spontaneously hypertensive rats as an animal model of a developmental disorder. Behav Pharmacol 2002; 13:1-13. [PMID: 11990715 DOI: 10.1097/00008877-200202000-00001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study evaluates juvenile stroke-prone spontaneously hypertensive rats (SHRSP) as an animal model of a developmental disorder, which is diagnosed according to hyperactivity-impulsivity and/or inattention. To characterize behavioural alterations, we studied motor activity, as well as emotional and cognitive behaviours in juvenile SHRSP, with and without methylphenidate, a psychostimulant. Ambulatory and rearing activities in the open-field environment were significantly higher in SHRSP than in Wistar-Kyoto rats (WKY). In the elevated plus maze task, the entries into open arms, as an index of impulsivity, were significantly increased in SHRSP. In the Y-maze task, spontaneous alternation behaviour, as an index of attention, was significantly lowered in the male SHRSP, but not in the female SHRSP, indicating that spontaneous alternation deficit is gender specific. Methylphenidate (0.01-1 mg/kg, i.p.) significantly attenuated locomotor hyperactivity at low doses and dose-dependently improved the spontaneous alternation deficit in SHRSP. Our findings reveal that juvenile SHRSP manifest problematic behaviours resembling a developmental disorder, attention-deficit/hyperactivity disorder (ADHD), namely hyperactivity-impulsivity and/or inattention. Methylphenidate alleviated the behavioural symptoms of hyperactivity and inattention. We propose that juvenile SHRSP are an appropriate animal model of a developmental disorder resembling ADHD, from behavioural and pharmacological perspectives.
Collapse
Affiliation(s)
- K-i Ueno
- Department of Pharmacology, Hokkaido University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ahveninen J, Jääskeläinen IP, Kaakkola S, Tiitinen H, Pekkonen E. Aging and cholinergic modulation of the transient magnetic 40-Hz auditory response. Neuroimage 2002; 15:153-8. [PMID: 11771983 DOI: 10.1006/nimg.2001.0956] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic blockade by scopolamine, a central muscarinic receptor antagonist, may produce transient memory impairment in healthy subjects, and it has been used as a neurochemical model of cognitive degeneration in aged individuals. To observe the muscarinic modulation of memory and cortical auditory processing, nine cognitively intact elderly subjects (59-80 years) were studied using neuropsychological tests and 122-channel magnetoencephalography (MEG) after an administration of scopolamine hydrobromide (0.3 mg, i.v.) or glycopyrrolate (0.2 mg, i.v.), a peripheral muscarinic antagonist. A double-blind randomized crossover design was used in two sessions separated by at least 1 week. Scopolamine, but not glycopyrrolate, produced a transient impairment of verbal memory performance in the elderly subjects. MEG indicated that the auditory-evoked 40-Hz magnetic response was significantly larger after scopolamine than after glycopyrrolate administration. Furthermore, reanalysis of our earlier results in younger subjects (20-31 years), basically supporting the present MEG findings, tentatively suggests that the scopolamine effects on the 40-Hz response may be slightly pronounced with aging. In sum, the transient magnetic 40-Hz auditory response may be useful in studies on brain cholinergic deficits in elderly subjects.
Collapse
Affiliation(s)
- Jyrki Ahveninen
- Cognitive Brain Research Unit, Department of Neurology, University of Helsinki, FIN-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
30
|
Peruzzi P, von Euw D, Lacombe P. Differentiated cerebrovascular effects of physostigmine and tacrine in cortical areas deafferented from the nucleus basalis magnocellularis suggest involvement of basalocortical projections to microvessels. Ann N Y Acad Sci 2000; 903:394-406. [PMID: 10818530 DOI: 10.1111/j.1749-6632.2000.tb06391.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholinesterase inhibitors used to treat Alzheimer's disease according to the principle of cholinergic replacement therapy have proved to be less beneficial than expected. The present study was designed to investigate the cerebrovascular response to physostigmine and tacrine in the experimental model of lesioning of the nucleus basalis magnocellularis (NBM), a model involving a cholinergic deficit. Regional cerebral blood flow was measured by the [14C]iodoantipyrine tissue sampling technique in conscious rats infused with i.v. physostigmine (0.2 mg/kg/h), tacrine (8 mg/kg/h), or saline, 3-5 weeks after unilateral lesion of the NBM with ibotenic acid. Physostigmine and tacrine dose-dependently increased blood flow in most cortical and subcortical regions compared to the control group. However, physostigmine caused smaller blood flow increases in several areas, mostly cortical, of the lesioned compared to the intact hemisphere. The converse was observed with tacrine. A facilitated circulatory response appeared in cortical areas deafferented from the NBM, especially in the frontal cortex. These results provide evidence for distinct NBM-dependent components of the cortical cerebrovascular effects of physostigmine and tacrine. They suggest the involvement of different cellular postsynaptic targets of the NBM. The physostigmine-type effects could involve direct projects onto an inhibitory cortical interneuron supersensitized by deafferentation. This arrangement may explain why physostigmine and perhaps other cholinergic agonists are unable to specifically compensate for a deficit in NBM functioning. The tacrine-type effects presumably involve projections to the microvasculature, including perivascular astrocytes. The neurovascular junction would be sensitized by deafferentation from the NBM. Our data suggest that the regulatory mechanisms of blood flow originating in the NBM might constitute a target of neurodegenerative processes of Alzheimer's disease.
Collapse
Affiliation(s)
- P Peruzzi
- Laboratoire de Recherches Cérébrovasculaires, CNRS UPR 646, Université Paris 7, IFR 6, Circulation-Lariboisière, Faculté Lariboisière-Saint Louis, France
| | | | | |
Collapse
|
31
|
Potter DD, Pickles CD, Roberts RC, Rugg MD. Scopolamine impairs memory performance and reduces frontal but not parietal visual P3 amplitude. Biol Psychol 2000; 52:37-52. [PMID: 10686371 DOI: 10.1016/s0301-0511(99)00023-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been suggested that the P3 event-related potential (ERP) may mark the operation of certain working or long-term memory processes. It has also been reported that cholinergic blockade by scopolamine induces significant memory impairment and is associated with an increased latency, as well as amplitude reduction or abolition of the auditory P3, thus supporting hypothesised links between P3 and long-term memory function. An intriguing anomaly is that, while visual P3 latency is also increased by scopolamine, amplitude is not changed. The aim of this study was to make a more detailed assessment of the effects of scopolamine on the visual P3 at a drug dose known to induce memory impairment. After drug administration, memory performance was significantly impaired and visual P3 latency was significantly increased. There was little evidence of parietal P3 amplitude reduction, but frontal P3 amplitude was significantly reduced in both target and non-target conditions. These findings, when considered in the light of a more recent study of the effects of scopolamine on auditory P3, suggest that cholinergic blockade produces a common effect in both visual and auditory modalities of significant frontal P3 amplitude reduction, but no significant parietal P3 amplitude reduction. These results are consistent with the view that there are modality-independent generators of the parietal and frontal P3. The finding of drug-induced memory impairment and modulations of frontal ERP deflections is also consistent with recent evidence of a significant role for regions of the frontal lobe in encoding and retrieval of long-term memories.
Collapse
Affiliation(s)
- D D Potter
- School of Psychology, University of St Andrews, St. Andrews, UK.
| | | | | | | |
Collapse
|
32
|
Jääskeläinen IP, Hirvonen J, Huttunen J, Kaakkola S, Pekkonen E. Scopolamine enhances middle-latency auditory evoked magnetic fields. Neurosci Lett 1999; 259:41-4. [PMID: 10027551 DOI: 10.1016/s0304-3940(98)00893-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To study the influence of central cholinergic muscarinic transmission on human cortical middle-latency auditory evoked magnetic fields (MAEF), centrally acting antagonist scopolamine hydrobromide (0.3 mg, i.v.), and peripheral muscarinic receptor antagonist glycopyrrolate (0.2 mg, i.v.), were administered to 13 healthy subjects in a double-blind randomized cross-over design. MAEF, measured with whole-head magnetoencephalography (MEG), were elicited with clicks applied at 10-Hz rate to the left ear. The amplitudes of N(b)m and P(a)m responses were augmented by scopolamine (P < 0.01 and P < 0.08). These effects were about equally strong for responses from ipsi- and contralateral auditory cortices. Thus, the present MEG findings revealed specific modulation of cortical generators of middle-latency auditory evoked responses by muscarinic transmission. These findings might be associated with auditory processing deficits observed in dementias with cholinergic disturbances.
Collapse
|
33
|
Tsukada H, Kakiuchi T, Shizuno H, Nishiyama S. Interactions of cholinergic and glutamatergic neuronal systems in the functional activation of cerebral blood flow response: a PET study in unanesthetized monkeys. Brain Res 1998; 796:82-90. [PMID: 9689457 DOI: 10.1016/s0006-8993(98)00321-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of somatosensory stimulation on the regional cerebral blood flow (rCBF) response were studied in unanesthetized monkeys under modulations of the glutamatergic and cholinergic systems using [15O]H2O and positron emission tomography (PET). Under a saline condition, vibrotactile stimulation elicited a significant increase in the rCBF response in the contralateral somatosensory cortex. The systemic administration of scopolamine, a muscarinic cholinergic receptor antagonist, resulted in the dose-dependent reduction of the rCBF response to the stimulation. The rCBF response abolished by scopolamine was recovered by the administration of physostigmine, a cholinesterase inhibitor in a dose-dependent manner. In addition, D-cycloserine, a partial agonist at the glycine site coupled to N-methyl-D-aspartate (NMDA) receptors, also restored the scopolamine-abolished rCBF response. The regional cerebral metabolic rate of glucose (rCMRglc) response, measured with [18F]-2-fluoro-2-deoxy-D-glucose, was not affected by the administration of scopolamine, physostigmine and/or D-cycloserine. The systemic administration of (+)-3-amino-1-hydroxy-2-pyrrolidone (HA-966), an antagonist of the glycine modulatory site on the NMDA receptors, induced the dose-dependent suppression of the rCBF response to the stimulation. The rCBF response abolished by HA-966 was restored by D-cycloserine, but not by physostigmine. The rCMRglc response was partially but significantly reduced by the administration of HA-966, and its reduction was restored by D-cycloserine, but not by physostigmine. These findings provided pharmacological evidence for an interaction between cholinergic and glutamatergic neuronal systems, the latter of which mediates the former by downstream regulation, in the functional rCBF response to somatosensory stimulation.
Collapse
Affiliation(s)
- H Tsukada
- Central Research Laboratory, Hamamatsu Photonics, Shizuoka, Japan.
| | | | | | | |
Collapse
|
34
|
Blin J, Ivanoiu A, Coppens A, De Volder A, Labar D, Michel C, Laterre EC. Cholinergic neurotransmission has different effects on cerebral glucose consumption and blood flow in young normals, aged normals, and Alzheimer's disease patients. Neuroimage 1997; 6:335-43. [PMID: 9417975 DOI: 10.1006/nimg.1997.0296] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cerebral blood flow (CBF) and glucose consumption (GC) are both tracers of brain metabolic activity used to image the human brain in vivo. To know if both tracers reacted in the same manner when brain cholinergic neurotransmission was activated, CBF and GC were measured in young normals (YN), aged normals (AN), and Alzheimer's Disease patients (AD) using positron emission tomography (PET), H2 15O, and 18F-FDG. Each subject was studied twice, under placebo and physostigmine, in randomized order and blind fashion using the maximal tolerated dose of physostigmine individually determined. Under physostigmine CBF increased significantly (P = 0.0007) in posterior regions of the cerebral cortex and in the subcortical structures. Inversely, GC was decreased significantly in most regions. The largest decrease was seen in the prefrontal region of the cerebral cortex (P < 0.0001). Significant regional decreases were registered in all three groups of subjects, but were larger in AD than in controls. Looking at the absolute values of prefrontal cortex metabolism we found no correlation (r = 0.04) between the responses of CBF and GC. After normalization of the regional values for the mean we found a significant positive correlation between the responses of CBF and GC (r = 0.71, P < 0.0001). These findings suggest two components in the CBF response to physostigmine: one metabolic, depressive, and regional which follows the GC response; and one vascular, larger, diffuse, and opposite in direction to the metabolic component. These results have implications for the interpretation of CBF values as tracer of brain metabolic activity when brain cholinergic neurotransmission is manipulated.
Collapse
Affiliation(s)
- J Blin
- Laboratory of Positron Emission Tomography, University of Louvain, Louvain-La-Neuve, Belgium
| | | | | | | | | | | | | |
Collapse
|