1
|
Consonni FM, Incerti M, Bertolotti M, Ballerini G, Garlatti V, Sica A. Heme catabolism and heme oxygenase-1-expressing myeloid cells in pathophysiology. Front Immunol 2024; 15:1433113. [PMID: 39611159 PMCID: PMC11604077 DOI: 10.3389/fimmu.2024.1433113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024] Open
Abstract
Although the pathological significance of myeloid cell heterogeneity is still poorly understood, new evidence indicates that distinct macrophage subsets are characterized by specific metabolic programs that influence disease onset and progression. Within this scenario, distinct subsets of macrophages, endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), play critical roles in physiologic and pathological conditions. Of relevance, the substrates of HO-1 activity are the heme groups that derive from cellular catabolism and are converted into carbon monoxide (CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory activities and control oxidative damage. While high levels of expression of HO-1 enzyme by specialized macrophage populations (erythrophagocytes) guarantee the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the action of HO-1 takes on pathological significance in various diseases, and abnormal CO metabolism has been observed in cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration. Modulation of heme catabolism and CO production is therefore a feasible therapeutic opportunity in various diseases. In this review we discuss the role of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular, immune-mediated and neurodegenerative diseases) and highlight new therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
Collapse
Affiliation(s)
- Francesca Maria Consonni
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Incerti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Milena Bertolotti
- Navita S.r.l., University of Eastern Piedmont A. Avogadro, Novara, Italy
| | - Giulia Ballerini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Sica
- Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
2
|
Yamamoto M, Shimizu T, Shimizu N, Fujieda M, Saito M. Brain carbon monoxide can suppress the rat micturition reflex through brain γ-aminobutyric acid receptors. Int J Urol 2024; 31:1052-1060. [PMID: 38884570 PMCID: PMC11524119 DOI: 10.1111/iju.15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES To investigate roles of brain carbon monoxide (CO), an endogenous gasotransmitter, in regulation of the rat micturition reflex. METHODS In urethane-anesthetized (0.8 g/kg, ip) male rats, evaluation of urodynamic parameters was started 1 h before intracerebroventricular administration of CORM-3 (CO donor) or ZnPP (non-selective inhibitor of heme oxygenase, a CO producing enzyme) and continued for 2 h after the administration. We also investigated effects of centrally pretreated SR95531 (GABAA receptor antagonist) or SCH50911 (GABAB receptor antagonist) on the CORM-3-induced response. RESULTS CORM-3 significantly prolonged intercontraction intervals (ICIs) without changing maximal voiding pressure (MVP), while ZnPP significantly shortened ICI and reduced single-voided volume and bladder capacity without affecting MVP, post-voided residual volume, or voiding efficiency. The ZnPP-induced ICI shortening was reversed by CORM-3. The CORM-3-induced ICI prolongation was significantly attenuated by centrally pretreated SR95531 or SCH50911, respectively. CONCLUSIONS Brain CO can suppress the rat micturition reflex through brain γ-aminobutyric acid (GABA) receptors.
Collapse
Affiliation(s)
- Masaki Yamamoto
- Department of Pediatrics, Kochi Medical SchoolKochi UniversityNankokuKochiJapan
| | - Takahiro Shimizu
- Department of Pharmacology, Kochi Medical SchoolKochi UniversityNankokuKochiJapan
| | - Nobutaka Shimizu
- Pelvic Floor Center, Kochi Medical SchoolKochi UniversityNankokuKochiJapan
| | - Mikiya Fujieda
- Department of Pediatrics, Kochi Medical SchoolKochi UniversityNankokuKochiJapan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical SchoolKochi UniversityNankokuKochiJapan
| |
Collapse
|
3
|
Wei D, Qu C, Zhao N, Li S, Pu N, Song Z, Tao Y. The significance of precisely regulating heme oxygenase-1 expression: Another avenue for treating age-related ocular disease? Ageing Res Rev 2024; 97:102308. [PMID: 38615894 DOI: 10.1016/j.arr.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Aging entails the deterioration of the body's organs, including overall damages at both the genetic and cellular levels. The prevalence of age-related ocular disease such as macular degeneration, dry eye diseases, glaucoma and cataracts is increasing as the world's population ages, imposing a considerable economic burden on individuals and society. The development of age-related ocular disease is predominantly triggered by oxidative stress and chronic inflammatory reaction. Heme oxygenase-1 (HO-1) is a crucial antioxidant that mediates the degradative process of endogenous iron protoporphyrin heme. It catalyzes the rate-limiting step of the heme degradation reaction, and releases the metabolites such as carbon monoxide (CO), ferrous, and biliverdin (BV). The potent scavenging activity of these metabolites can help to defend against peroxides, peroxynitrite, hydroxyl, and superoxide radicals. Other than directly decomposing endogenous oxidizing substances (hemoglobin), HO-1 is also a critical regulator of inflammatory cells and tissue damage, exerting its anti-inflammation activity through regulating complex inflammatory networks. Therefore, promoting HO-1 expression may act as a promising therapeutic strategy for the age-related ocular disease. However, emerging evidences suggest that the overexpression of HO-1 significantly contributes to ferroptosis due to its dual nature. Surplus HO-1 leads to excessive Fe2+ and reactive oxygen species, thereby causing lipid peroxidation and ferroptosis. In this review, we elucidate the role of HO-1 in countering age-related disease, and summarize recent pharmacological trials that targeting HO-1 for disease management. Further refinements of the knowledge would position HO-1 as a novel therapeutic target for age-related ocular disease.
Collapse
Affiliation(s)
- Dong Wei
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Chengkang Qu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, China
| | - Ning Pu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Zongming Song
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Ye Tao
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
4
|
Li J, Wang J, Xu L, Chi H, Liang X, Yoon J, Lin W. A Class of Activatable NIR-II Photoacoustic Dyes for High-Contrast Bioimaging. Angew Chem Int Ed Engl 2024; 63:e202312632. [PMID: 37849219 DOI: 10.1002/anie.202312632] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Photoacoustic (PA) imaging is emerging as one of the important non-invasive imaging techniques in biomedical research. Small molecule- second near-infrared window (NIR-II) PA dyes combined with imaging data can provide comprehensive and in-depth in vivo physiological and pathological information. However, the NIR-II PA dyes usually exhibit "always-on" properties due to the lack of a readily optically tunable group, which hinders the further applications in vivo. Herein, a novel class of dyes GX have been designed and synthesized as an activatable NIR-II PA platform, in which the absorption/emission wavelength of GX-5 extends up to 1082/1360 nm. Importantly, the GX dyes have a strong tissue penetration depth and high-resolution for the mouse vasculature structures in NIR-II PA 3D imaging and high signal-to-noise ratio in NIR-II fluorescence (FL) imaging. Furthermore, to demonstrate the applicability of GX dyes, the first NIR-II PA probe GX-5-CO activated by carbon monoxide (CO) was engineered and employed to reveal the enhancement of the CO levels in the hypertensive mice by high-contrast NIR-II PA and FL imaging. We expect that many derivatives of GX dyes will be developed to afford versatile NIR-II PA platforms for designing a wide variety activatable NIR-II PA probes as biomedical tools.
Collapse
Affiliation(s)
- Jiangfeng Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiangyan Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Lizhen Xu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Hanwen Chi
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xing Liang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
5
|
Ross RL, Mavria G, Del Galdo F, Elies J. Downregulation of Vascular Hemeoxygenase-1 Leads to Vasculopathy in Systemic Sclerosis. Front Physiol 2022; 13:900631. [PMID: 35600300 PMCID: PMC9117635 DOI: 10.3389/fphys.2022.900631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a terminal disease characterized by vasculopathy, tissue fibrosis, and autoimmunity. Although the exact etiology of SSc remains unknown, endothelial dysfunction, oxidative stress, and calcium handling dysregulation have been associated with a large number of SSc-related complications such as neointima formation, vasculogenesis, pulmonary arterial hypertension, impaired angiogenesis, and cardiac arrhythmias. Hemeoxygenase-1 (HO-1) is an antioxidant enzyme involved in multiple biological actions in the cardiovascular system including vascular tone, angiogenesis, cellular proliferation, apoptosis, and oxidative stress. The aim of this work was to investigate the physiological role of HO-1 and its relevance in the cardiovascular complications occurring in SSc. We found that, in early phases of SSc, the expression of HO-1 in dermal fibroblast is lower compared to those isolated from healthy control individuals. This is particularly relevant as reduction of the HO-1/CO signaling pathway is associated with endothelial dysfunction and vasculopathy. We show evidence of the role of HO-1/carbon monoxide (CO) signaling pathway in calcium handling. Using an in vitro model of pulmonary arterial hypertension (PAH) we investigated the role of HO-1 in Ca2+ mobilization from intracellular stores. Our results indicate that HO-1 regulates calcium release from intracellular stores of human pulmonary arterial endothelial cells. We interrogated the activity of HO-1 in angiogenesis using an organotypic co-culture of fibroblast-endothelial cell. Inhibition of HO-1 significantly reduced the ability of endothelial cells to form tubules. We further investigated if this could be associated with cell motility or migration of endothelial cells into the extracellular matrix synthesized by fibroblasts. By mean of holographic imaging, we studied the morphological and functional features of endothelial cells in the presence of an HO-1 activator and selective inhibitors. Our results demonstrate that inhibition of HO-1 significantly reduces cell proliferation and cell motility (migration) of cultured endothelial cells, whilst activation of HO-1 does not modify either morphology, proliferation or motility. In addition, we investigated the actions of CO on the Kv7.1 (KCQN1) channel current, an important component of the cardiac action potential repolarization. Using electrophysiology (whole-cell patch-clamp in a recombinant system overexpressing the KCQN1 channel), we assessed the regulation of KCQN1 by CO. CORM-2, a CO donor, significantly reduced the Kv7.1 current, suggesting that HO-1/CO signaling may play a role in the modulation of the cardiac action potential via regulation of this ion channel. In summary, our results indicate a clear link between: 1) downregulation of HO-1/CO signaling; and 2) pathophysiological processes occurring in early phases of SSc, such as calcium homeostasis dysregulation, impaired angiogenesis and cardiac arrhythmias. A better understanding of the canonical actions (mainly due to the biological actions of CO), and non-canonical actions of HO-1, as well as the interaction of HO-1/CO signaling with other gasotransmitters in SSc will contribute to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Georgia Mavria
- Signal Transduction and Tumour Microenvironment Group, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds, United Kingdom
| | - Jacobo Elies
- Cardiovascular Research Group, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
- *Correspondence: Jacobo Elies,
| |
Collapse
|
6
|
Lu W, Yang X, Wang B. Carbon monoxide signaling and soluble guanylyl cyclase: Facts, myths, and intriguing possibilities. Biochem Pharmacol 2022; 200:115041. [PMID: 35447132 DOI: 10.1016/j.bcp.2022.115041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
The endogenous signaling roles of carbon monoxide (CO) have been firmly established at the pathway level. For CO's molecular mechanism(s) of actions, hemoproteins are generally considered as possible targets. Importantly, soluble guanylyl cyclase (sGC) is among the most widely referenced molecular targets. However, the affinity of CO for sGC (Kd: 240 μM) is much lower than for other highly abundant hemoproteins in the body, such as myoglobin (Kd: 29 nM) and hemoglobin (Kd: 0.7 nM-4.5 μM), which serve as CO reservoirs. Further, most of the mechanistic studies involving sGC activation by CO were based on in-vitro or ex-vivo studies using CO concentrations not readily attenable in vivo and in the absence of hemoglobin as a competitor in binding. As such, whether such in-vitro/ex-vivo results can be directly extrapolated to in-vivo studies is not clear because of the need for CO to be transferred from a high-affinity binder (e.g., hemoglobin) to a low-affinity target if sGC is to be activated in vivo. In this review, we discuss literature findings of sGC activation by CO and the experimental conditions; examine the myths in the disconnect between the low affinity of sGC for CO and the reported activation of sGC by CO; and finally present several possibilities that may lead to additional studies to improve our understanding of this direct CO-sGC axis, which is yet to be convincingly established as playing generally critical roles in CO signaling in vivo.
Collapse
Affiliation(s)
- Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
7
|
Hsu CN, Tain YL. Gasotransmitters for the Therapeutic Prevention of Hypertension and Kidney Disease. Int J Mol Sci 2021; 22:ijms22157808. [PMID: 34360574 PMCID: PMC8345973 DOI: 10.3390/ijms22157808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), three major gasotransmitters, are involved in pleiotropic biofunctions. Research on their roles in hypertension and kidney disease has greatly expanded recently. The developing kidney can be programmed by various adverse in utero conditions by so-called renal programming, giving rise to hypertension and kidney disease in adulthood. Accordingly, early gasotransmitter-based interventions may have therapeutic potential to revoke programming processes, subsequently preventing hypertension and kidney disease of developmental origins. In this review, we describe the current knowledge of NO, CO, and H2S implicated in pregnancy, including in physiological and pathophysiological processes, highlighting their key roles in hypertension and kidney disease. We summarize current evidence of gasotransmitter-based interventions for prevention of hypertension and kidney disease in animal models. Continued study is required to assess the interplay among the gasotransmitters NO, CO, and H2S and renal programming, as well as a greater focus on further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, College of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-975-056-995; Fax: +886-7733-8009
| |
Collapse
|
8
|
Yang XX, Ke BW, Lu W, Wang BH. CO as a therapeutic agent: discovery and delivery forms. Chin J Nat Med 2021; 18:284-295. [PMID: 32402406 DOI: 10.1016/s1875-5364(20)30036-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Carbon monoxide (CO) as one of the three important endogenously produced signaling molecules, termed as "gasotransmitter," has emerged as a promising therapeutic agent for treating various inflammation and cellular-stress related diseases. In this review, we discussed CO's evolution from a well-recognized toxic gas to a signaling molecule, and the effort to develop different approaches to deliver it for therapeutic application. We also summarize recently reported chemistry towards different CO delivery forms.
Collapse
Affiliation(s)
- Xiao-Xiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta GA 30303, USA
| | - Bo-Wen Ke
- Department of Anesthesiology, West China Hospital, Chengdu 610000, China
| | - Wen Lu
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta GA 30303, USA
| | - Bing-He Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta GA 30303, USA.
| |
Collapse
|
9
|
Reyes RV, Herrera EA, Ebensperger G, Sanhueza EM, Giussani DA, Llanos AJ. Perinatal cardiopulmonary adaptation to the thin air of the Alto Andino by a native Altiplano dweller, the llama. J Appl Physiol (1985) 2020; 129:152-161. [PMID: 32584666 DOI: 10.1152/japplphysiol.00800.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most mammals have a poor tolerance to hypoxia, and prolonged O2 restriction can lead to organ injury, particularly during fetal and early postnatal life. Nevertheless, the llama (Lama Glama) has evolved efficient mechanisms to adapt to acute and chronic perinatal hypoxia. One striking adaptation is the marked peripheral vasoconstriction measured in the llama fetus in response to acute hypoxia, which allows efficient redistribution of cardiac output toward the fetal heart and adrenal glands. This strong peripheral vasoconstrictor tone is triggered by a carotid body reflex and critically depends on α-adrenergic signaling. A second adaptation is the ability of the llama fetus to protect its brain against hypoxic damage. During hypoxia, in the llama fetus there is no significant increase in brain blood flow. Instead, there is a fall in brain O2 consumption and temperature, together with a decrease of Na+-K+-ATPase activity and Na+ channels expression, protecting against seizures and neuronal death. Finally, the newborn llama does not develop pulmonary hypertension in response to chronic hypoxia. In addition to maintaining basal pulmonary arterial pressure at normal levels the pulmonary arterial pressor response to acute hypoxia is lower in highland than in lowland llamas. The protection against hypoxic pulmonary arterial hypertension and pulmonary contractile hyperreactivity is partly due to increased hemoxygenase-carbon monoxide signaling and decreased Ca2+ sensitization in the newborn llama pulmonary vasculature. These three striking physiological adaptations of the llama allow this species to live and thrive under the chronic influence of the hypobaric hypoxia of life at high altitude.
Collapse
Affiliation(s)
- R V Reyes
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - E A Herrera
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - G Ebensperger
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - E M Sanhueza
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - D A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - A J Llanos
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Wang A, Li X, Ju Y, Chen D, Lu J. Bioluminescence imaging of carbon monoxide in living cells based on a selective deiodination reaction. Analyst 2020; 145:550-556. [DOI: 10.1039/c9an02107h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Modification of a heavy iodine atom for d-Luciferin was explored as a “turn-on” transduction scheme for CO detection. This new probe could image exogenous and endogenous CO in the luciferase-transfected cancer cells.
Collapse
Affiliation(s)
- Anni Wang
- School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Xuewei Li
- School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Yong Ju
- School of Pharmacy
- Fudan University
- Shanghai
- China
| | - Dongying Chen
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
- China
| | | |
Collapse
|
11
|
Chen Y, Park HJ, Park J, Song HC, Ryter SW, Surh YJ, Kim UH, Joe Y, Chung HT. Carbon monoxide ameliorates acetaminophen-induced liver injury by increasing hepatic HO-1 and Parkin expression. FASEB J 2019; 33:13905-13919. [PMID: 31645120 DOI: 10.1096/fj.201901258rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acetaminophen (APAP) is widely used as an antifebrile and analgesic drug at recommended doses, whereas an overdose of APAP can cause severe liver damage. The molecular mechanisms underlying APAP-induced liver damage remain incompletely understood. Carbon monoxide (CO), an end-product of heme oxygenase (HO)-1 activity, can confer anti-inflammatory and antiapoptotic properties in cellular models of toxicity via regulation of mitochondrial function. The objective of this study was to evaluate the effects of CO on APAP-induced hepatotoxicity and CO's relationship to regulation of endoplasmic reticulum (ER) stress and mitochondrial signaling using CO-releasing molecules or low concentrations of CO applied as pretreatment or posttreatment. Using genetic deletion or knockdown approaches in alpha mouse liver cells or primary hepatocytes, respectively, we investigated the role of HO-1 and the mitophagy regulator protein Parkin on APAP-induced expression of the ER stress-associated apoptosis regulator cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer-binding protein homologous protein (CHOP). We found that CO induced Parkin expression in hepatocytes via the protein kinase RNA-like ER kinase/eukaryotic translation initiation factor 2-α/activating transcription factor-4 signaling pathway. Additionally, CO gas inhalation significantly alleviated APAP-induced liver damage in vivo and correspondingly reduced serum alanine aminotransferase and aspartate aminotransferase levels as well as proinflammatory cytokines and reduced the expression of CHOP in liver tissues while dramatically increasing hepatic HO-1 and Parkin expression. We found that the protective effects of CO on APAP-induced liver damage were mediated by down-regulation of CHOP at a transcriptional and post-translational level via induction of HO-1 and Parkin, respectively, and associated with decreases in reactive oxygen species production and JNK phosphorylation. We conclude that CO may represent a promising therapeutic agent for APAP-induced liver injury.-Chen, Y., Park, H.-J., Park, J., Song, H.-C., Ryter, S. W., Surh, Y.-J., Kim, U.-H., Joe, Y., Chung, H. T. Carbon monoxide ameliorates acetaminophen-induced liver injury by increasing hepatic HO-1 and Parkin expression.
Collapse
Affiliation(s)
- Yingqing Chen
- National Creative Research Laboratory for Ca2+ Signaling Network, Chonbuk National University Medical School, Jeonju, South Korea.,Department of Pharmacology, Dalian University Medical College, Dalian, China
| | - Hyeok-Jun Park
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyun-Chul Song
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical Center, New York, New York, USA
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Uh-Hyun Kim
- National Creative Research Laboratory for Ca Signaling Network, Chonbuk National University Medical School, Jeonju, South Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
12
|
Bihari A, Chung KA, Cepinskas G, Sanders D, Schemitsch E, Lawendy AR. Carbon monoxide-releasing molecule-3 (CORM-3) offers protection in an in vitro model of compartment syndrome. Microcirculation 2019; 26:e12577. [PMID: 31230399 DOI: 10.1111/micc.12577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Limb compartment syndrome (CS), a complication of trauma, results in muscle necrosis and cell death; ischemia and inflammation contribute to microvascular dysfunction and parenchymal injury. Carbon monoxide-releasing molecule-3 (CORM-3) has been shown to protect microvascular perfusion and reduce inflammation in animal models of CS. The purpose of the study was to test the effect of CORM-3 in human in vitro CS model, allowing exploration of the mechanism(s) of CO protection and potential development of pharmacologic treatment. METHODS Confluent human vascular endothelial cells (HUVECs) were stimulated for 6 h with serum isolated from patients with CS. Intracellular oxidative stress (production of reactive oxygen species (ROS)) apoptosis, transendothelial resistance (TEER), polymorphonuclear leukocyte (PMN) activation and transmigration across the monolayer in response to the CS stimulus were assessed. All experiments were performed in the presence of CORM-3 (100 μM) or its inactive form, iCORM-3. RESULTS CS serum induced a significant increase in ROS, apoptosis and endothelial monolayer breakdown; it also increased PMN superoxide production, leukocyte rolling and adhesion/transmigration. CORM-3 completely prevented CS-induced ROS production, apoptosis, PMN adhesion, rolling and transmigration, while improving monolayer integrity. CONCLUSION CORM-3 offers potent anti-oxidant and anti-inflammatory effects, and may have a potential application to patients at risk of developing CS.
Collapse
Affiliation(s)
- Aurelia Bihari
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Kyukwang Akira Chung
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - David Sanders
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Emil Schemitsch
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada
| | - Abdel-Rahman Lawendy
- Division of Orthopaedic Surgery, Department of Surgery, The University of Western Ontario, London, Ontario, Canada.,Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Abdulle AE, van Goor H, Mulder DJ. Hydrogen Sulfide: A Therapeutic Option in Systemic Sclerosis. Int J Mol Sci 2018; 19:E4121. [PMID: 30572591 PMCID: PMC6320961 DOI: 10.3390/ijms19124121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a lethal disease that is characterized by auto-immunity, vascular injury, and progressive fibrosis of multiple organ systems. Despite the fact that the exact etiology of SSc remains unknown, oxidative stress has been associated with a large range of SSc-related complications. In addition to the well-known detrimental properties of reactive oxygen species (ROS), gasotransmitters (e.g., nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H₂S)) are also thought to play an important role in SSc. Accordingly, the diverse physiologic actions of NO and CO and their role in SSc have been previously studied. Recently, multiple studies have also shown the importance of the third gasotransmitter H₂S in both vascular physiology and pathophysiology. Interestingly, homocysteine (which is converted into H₂S through the transsulfuration pathway) is often found to be elevated in SSc patients; suggesting defects in the transsulfuration pathway. Hydrogen sulfide, which is known to have several effects, including a strong antioxidant and vasodilator effect, could potentially play a prominent role in the initiation and progression of vasculopathy. A better understanding of the actions of gasotransmitters, like H₂S, in the development of SSc-related vasculopathy, could help to create early interventions to attenuate the disease course. This paper will review the role of H₂S in vascular (patho-)physiology and potential disturbances in SSc. Moreover, current data from experimental animal studies will be reviewed. Lastly, we will evaluate potential interventional strategies.
Collapse
Affiliation(s)
- Amaal Eman Abdulle
- Department of Internal Medicine, Division Vascular Medicine, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Harry van Goor
- Department of Pathology and Medical Biology, Section Pathology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Douwe J Mulder
- Department of Internal Medicine, Division Vascular Medicine, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
14
|
Nrf2 in aging - Focus on the cardiovascular system. Vascul Pharmacol 2018; 112:42-53. [PMID: 30170173 DOI: 10.1016/j.vph.2018.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023]
Abstract
Aging is the most critical risk factor for the development of cardiovascular diseases and their complications. Therefore, the fine-tuning of cellular response to getting older is an essential target for prospective therapies in cardiovascular medicine. One of the most promising targets might be the transcription factor Nrf2, which drives the expression of cytoprotective and antioxidative genes. Importantly, Nrf2 expression correlates with potential lifespan in rodents. However, the effect of Nrf2 activity in vascular diseases might be ambiguous and strongly depend on the cell type. On the one hand, the Nrf2 activity may protect cells from oxidative stress and senescence, on the other hand, total lack of Nrf2 is protective against atherosclerosis development. Therefore, this review aims to discuss the current knowledge on the role played by the transcription factor Nrf2 in cardiovascular diseases and its potential effects on aging.
Collapse
|
15
|
Koçer G, Nasircilar Ülker S, Şentürk ÜK. The contribution of carbon monoxide to vascular tonus. Microcirculation 2018; 25:e12495. [PMID: 30040171 DOI: 10.1111/micc.12495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The aim of this descriptive study was to examine the contribution of CO in the maintenance of vascular tonus in different organs and different vessel segments; the underlying mechanism of CO-induced vasodilation was investigated. METHODS Sixty Wistar albino rats, aged 6-8 months, were used in this study. Response to CO by isolated arteries from the thoracic and abdominal aorta and mesenteric, renal, gastrocnemius, and gracilis muscles as well as heart, lung, and brain vascular beds was endogenously and exogenously studied using organ baths or myograph. In addition, HO-2 protein expression was assessed using Western blot analysis in isolated vessel segments. RESULTS Although CO was shown to contribute to the regulation of vascular tonus in all feed arteries except those of the gracilis vascular bed, no effect was observed in the resistance arteries, with the sole exception of the pial artery. No relationship between HO-2 protein level and CO contribution to endogenous vascular tonus was observed. CONCLUSIONS While the vasodilator effect of CO in vessels smaller than 600 μm in diameter was found to be mediated via potassium channels, in vessels larger than 600 μm in diameter, the effect was through both the potassium channels and the cGMP pathway.
Collapse
Affiliation(s)
- Günnur Koçer
- Department of Physiology, Medical Faculty, Near East University, Nicosia, Cyprus
| | | | - Ümit Kemal Şentürk
- Department of Physiology, Medical Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
16
|
Kilic-Toprak E, Kilic-Erkek O, Abban-Mete G, Caner V, Baris IC, Turhan G, Kucukatay V, Senol H, Kuru O, Bor-Kucukatay M. Contribution of Heme Oxygenase 2 to Blood Pressure Regulation in Response to Swimming Exercise and Detraining in Spontaneously Hypertensive Rats. Med Sci Monit 2018; 24:5851-5859. [PMID: 30132448 PMCID: PMC6116639 DOI: 10.12659/msm.908992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background We aimed to determine the effects of exercise followed by detraining on systolic blood pressure (SBP), heme oxygenase 2 (HO-2) expression, and carboxyhemoglobin (COHb) concentration in spontaneously hypertensive rats (SHR) to explain the role of carbon monoxide (CO) in this process. Material/Methods Animals were randomized into exercised and detrained groups. Corresponding sedentary rats were grouped as Time 1–2. Swimming of 60 min/5 days/week for 10 weeks was applied. Detraining rats discontinued training for an additional 5 weeks. Gene and protein expressions were determined by real-time PCR and immunohistochemistry. Results Aorta HO-2 histological scores (HSCORE) of hypertensive rats were lower, while SBP was higher. Swimming caused enhancement of HO-2 immunostaining in aorta endothelium and adventitia of SHR. Exercise induced elevation of blood COHb index in SHR. Synchronous BP lowering effect of exercise was observed. HO-2 mRNA expression, HSCORE, and blood COHb index were unaltered during detraining, while SBP was still low in SHR. Conclusions CO synthesized by HO-2 at least partly plays a role in SBP regulation in the SHR- and BP-lowering effect of exercise. Regular exercise with short-term pauses may be advised to both hypertensives and individuals who are at risk.
Collapse
Affiliation(s)
- Emine Kilic-Toprak
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ozgen Kilic-Erkek
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulcin Abban-Mete
- Department of Histology-Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Vildan Caner
- Department of Medical Genetics, Faculty of Medicine Kinikli, Pamukkale University, Denizli, Turkey
| | - Ikbal Cansu Baris
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Gurkan Turhan
- Department of Histology-Embryology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Vural Kucukatay
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Hande Senol
- Department of Biostatistics, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Oktay Kuru
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Melek Bor-Kucukatay
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
17
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
18
|
Ghaffari S, Hajizadeh R, Pourafkari L, Shokouhi B, Tajlil A, Mazani S, Kavandi H, Ansari H, Nader ND. Air pollution and admissions due to ST elevation myocardial infarction-a time-series study from northwest of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27469-27475. [PMID: 28980195 DOI: 10.1007/s11356-017-0343-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
We investigated the association between the levels of air pollutants and the number of daily admissions due to ST segment elevation myocardial infarction (STEMI) in a metropolitan in the northwest of Iran. Daily concentrations of common air pollutants were obtained for the greater city of Tabriz for a period of 2 years. These reports included sulfur dioxide (SO2), nitrogen dioxide (NO2), nitric oxide (NO), nitrogen byproducts (NOx), carbon monoxide (CO), ozone (O3), and particulate matters < 10 μm (PM10). The census of admissions for STEMI was retrieved for the same period from hospital registries. The association of daily variations in air pollutant levels and the daily number of STEMI admissions were investigated in a time-series analysis. In the multi-pollutant model adjusting for long-term trend, seasonality, and temperature, a significant association was found for 1-h [NO2] and 24-h [CO]. A marginally significant association was observed for 24-h [NO2] and 8-h [CO]. The 24-h [CO] had the strongest association with the number of admissions with STEMI. Maximum 1-h concentrations of NO2 on the same day and on the prior day as well as 24-h concentrations of CO on the prior day were independently associated with increased number of STEMI admissions. However, daily concentrations of SO2, NO, O3, and PM10 were not associated with the frequency of hospital admissions for STEMI.
Collapse
Affiliation(s)
- Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hajizadeh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Pourafkari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street, Suite #550, Buffalo, NY, 14203, USA
| | - Behrouz Shokouhi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Tajlil
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Mazani
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadiseh Kavandi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hosein Ansari
- Health Promotion Research Center, Department of Epidemiology and Biostatistics, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street, Suite #550, Buffalo, NY, 14203, USA.
| |
Collapse
|
19
|
Pinto MN, Chakraborty I, Sandoval C, Mascharak PK. Eradication of HT-29 colorectal adenocarcinoma cells by controlled photorelease of CO from a CO-releasing polymer (photoCORP-1) triggered by visible light through an optical fiber-based device. J Control Release 2017; 264:192-202. [PMID: 28866022 DOI: 10.1016/j.jconrel.2017.08.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/06/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
The gaseous signaling molecule carbon monoxide (CO) has recently been recognized for its wide range of physiological activity as well as its antineoplastic properties. However, site-specific delivery of this noxious gas presents a major challenge in hospital settings. In this work, a visible light-sensitive CO-releasing molecule (photoCORM) derived from manganese(I) and 2-(quinolyl)benzothiazole (qbt) namely, [Mn(CO)3(qbt)(4-vpy)](CF3SO3) (1), has been co-polymerized within a gas-permeable HEMA/EGDMA hydrogel. The resulting photoactive CO-releasing polymer (photoCORP-1) incorporates 1 such that neither the carbonyl complex nor its photoproduct(s) exits the polymer at any time. The material can be triggered to photorelease CO remotely by low-power broadband visible light (<1mWcm-2) with the aid of fiber optics technology. The CO photorelease rates of photoCORP-1 (determined by spectrophotometry) can be modulated by both the concentration of 1 in the hydrogel and the intensity of the light. A CO-delivery device has been assembled to deliver CO to a suspension of human colorectal adenocarcinoma cells (HT-29) under the control of visible light and the extent of CO-induced apoptotic death of the cancer cells has been determined via Annexin V/Propidium iodide stain and flow cytometry. This photoactive CO-releasing polymer could find use in delivering controlled doses of CO to cellular targets such as malignant tissues in remote parts of the body.
Collapse
Affiliation(s)
- Miguel N Pinto
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Indranil Chakraborty
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Cosme Sandoval
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Pradip K Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
20
|
Yamamoto-Oka H, Mizuguchi S, Toda M, Minamiyama Y, Takemura S, Shibata T, Cepinskas G, Nishiyama N. Carbon monoxide-releasing molecule, CORM-3, modulates alveolar macrophage M1/M2 phenotype in vitro. Inflammopharmacology 2017; 26:435-445. [PMID: 28674739 DOI: 10.1007/s10787-017-0371-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/25/2017] [Indexed: 01/28/2023]
Abstract
Alveolar macrophages are key contributors to both the promotion and resolution of inflammation in the lung and are categorized into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. The change in M1/M2 balance has been reported in various pulmonary diseases and is a target for therapeutic intervention. The aim of this study was to assess the modulation of M1/M2 phenotype in alveolar macrophages by water-soluble carbon monoxide-releasing molecule-3 (CORM-3). Rat alveolar macrophages (AM) (NR8383) in culture were stimulated with LPS (5 ng/ml)/IFN-γ (10 U/ml) or IL-4 (10 ng/ml)/IL-13 (10 ng/ml) to induce M1 and M2 phenotypes, respectively. Expression of M1 phenotype markers, iNOS and TNF-α, and M2 phenotype markers, CD206 and Ym-1, was assessed by western blotting after 1, 3, 6, or 24 h in the absence or presence of CORM-3 (0.15 mM) treatment. Inactive CORM-3 (iCORM-3) was used as a control. Treatment of naïve (unstimulated) AM with CORM-3 promoted progression of the M2 phenotype as evidenced by the increased expression of CD206 (at 1 h; 1.8-fold) and Ym-1 (at 3 h; 1.9-fold), respectively. Surprisingly, CORM-3 treatment also upregulated the expression of iNOS protein as assessed 6 h following stimulation of AM with CORM-3 (2.6-fold). On the contrary, CORM-3 effectively reduced LPS/IFN-γ-induced expression of iNOS protein (0.6-fold); however, it had no effect on TNF-α expression. Finally, CORM-3 acutely (1-3 h) upregulated CD206 (1.4-fold) and Ym-1 (1.6-fold) levels in IL-4-/IL-13-treated (M2-stimulus) macrophages. These findings indicate that CORM-3 modulates macrophage M1 and M2 phenotypes in vitro with respect to continuous suppression of iNOS expression in M1-polarized macrophages and transient (early-phase) upregulation of CD206 and Ym-1 proteins in M2-polarized macrophages.
Collapse
Affiliation(s)
- Hiroko Yamamoto-Oka
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shinjiro Mizuguchi
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Michihito Toda
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yukiko Minamiyama
- Department of Food Science and Nutrition Health, Kyoto Prefectural University, Kyoto, Japan
| | - Shigekazu Takemura
- Department Hepato-Biliary-Pancreatic Surgery, Osaka City University, Osaka, Japan
| | - Toshihiko Shibata
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.,Department of Food Science and Nutrition Health, Kyoto Prefectural University, Kyoto, Japan.,Department Hepato-Biliary-Pancreatic Surgery, Osaka City University, Osaka, Japan
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Noritoshi Nishiyama
- Department of General Thoracic Surgery, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
21
|
Carbon monoxide does not contribute to vascular tonus improvement in exercise-trained rats with chronic nitric oxide synthase inhibition. Nitric Oxide 2017; 65:60-67. [DOI: 10.1016/j.niox.2017.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 11/20/2022]
|
22
|
Cebová M, Košútová M, Pecháňová O. Cardiovascular effects of gasotransmitter donors. Physiol Res 2017; 65:S291-S307. [PMID: 27775418 DOI: 10.33549/physiolres.933441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gasotransmitters represent a subfamily of the endogenous gaseous signaling molecules that include nitric oxide (NO), carbon monoxide (CO), and hydrogen sulphide (H(2)S). These particular gases share many common features in their production and function, but they fulfill their physiological tasks in unique ways that differ from those of classical signaling molecules found in tissues and organs. These gasotransmitters may antagonize or potentiate each other's cellular effects at the level of their production, their downstream molecular targets and their direct interactions. All three gasotransmitters induce vasodilatation, inhibit apoptosis directly or by increasing the expression of anti-apoptotic genes, and activate antioxidants while inhibiting inflammatory actions. NO and CO may concomitantly participate in vasorelaxation, anti-inflammation and angiogenesis. NO and H(2)S collaborate in the regulation of vascular tone. Finally, H(2)S may upregulate the heme oxygenase/carbon monoxide (HO/CO) pathway during hypoxic conditions. All three gasotransmitters are produced by specific enzymes in different cell types that include cardiomyocytes, endothelial cells and smooth muscle cells. As translational research on gasotransmitters has exploded over the past years, drugs that alter the production/levels of the gasotransmitters themselves or modulate their signaling pathways are now being developed. This review is focused on the cardiovascular effects of NO, CO, and H(2)S. Moreover, their donors as drug targeting the cardiovascular system are briefly described.
Collapse
Affiliation(s)
- M Cebová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
23
|
Serizawa F, Patterson E, Potter RF, Fraser DD, Cepinskas G. Pretreatment of human cerebrovascular endothelial cells with CO-releasing molecule-3 interferes with JNK/AP-1 signaling and suppresses LPS-induced proadhesive phenotype. Microcirculation 2015; 22:28-36. [PMID: 25098198 DOI: 10.1111/micc.12161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Exogenously administered CO interferes with PMN recruitment to the inflamed organs. The mechanisms of CO-dependent modulation of vascular proadhesive phenotype, a key step in PMN recruitment, are unclear. METHODS We assessed the effects/mechanisms of CO liberated from a water-soluble CORM-3 on modulation of the proadhesive phenotype in hCMEC/D3 in an in vitro model of endotoxemia. To this end, hCMEC/D3 were stimulated with LPS (1 μg/mL) for six hours. In some experiments hCMEC/D3 were pretreated with CORM-3 (200 μmol/L) before LPS-stimulation. PMN rolling/adhesion to hCMEC/D3 were assessed under conditions of laminar shear stress (0.7 dyn/cm(2) ). In parallel, expression of adhesion molecules E-selectin, ICAM-1, and VCAM-1 (qPCR), activation of transcription factors, NF-κB and AP-1 (ELISA), and MAPK-signaling (expression/phosphorylation of p38, ERK1/2, and JNK1/2; western blot) were assessed. RESULTS The obtained results indicate that CORM-3 pretreatment reduces PMN rolling/adhesion to LPS-stimulated hCMEC/D3 (p < 0.05). Decreased PMN rolling/adhesion to hCMEC/D3 was associated with CORM-3-dependent inhibition of MAPK JNK1/2 activation (Tyr-phosphorylation), inhibition of transcription factor, AP-1 (c-Jun phosphorylation), and subsequent suppression of VCAM-1 expression (p < 0.05). CONCLUSIONS These findings indicate that CORM-3 pretreatment interferes with JNK/AP-1 signaling and suppresses LPS-induced upregulation of the proadhesive phenotype in hCMEC/D3.
Collapse
Affiliation(s)
- Fukashi Serizawa
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
24
|
Ndisang JF, Chibbar R. Heme Oxygenase Improves Renal Function by Potentiating Podocyte-Associated Proteins in Nω-Nitro-l-Arginine-Methyl Ester (l-NAME)-Induced Hypertension. Am J Hypertens 2015; 28:930-42. [PMID: 25498996 DOI: 10.1093/ajh/hpu240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/04/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Although heme-oxygenase (HO) is cytoprotective, its effects on podocyte regulators like podocalyxin, podocin, CD2-associated protein (CD2AP) in renal dysfunction in N (ω)-nitro-l-arginine-methyl ester (l-NAME) hypertension are largely unclear. METHODS Hypertension was induced in normotensive Sprague Dawley rats by administering l-NAME for 4 weeks. Enzyme immunoassay, enzyme-linked immunosorbent, histology/morphology, spectrophotometry, and western immunoblotting were used. HO was enhanced with heme-arginate (HA) or inhibited with chromium mesoporphyrin (CrMP). RESULTS Treatment with heme-arginate reduced several renal histo-pathological lesions including renal arteriolar thickening, glomerular abnormalities, tubular cast, tubular atrophy/fibrosis, and mononuclear cell infiltration in l-NAME-hypertensive rats. Similarly, HA abated the elevated levels of renal extracellular matrix/profibrotic proteins like collagen and fibronectin that deplete nephrin, a fundamental transmembrane protein that forms the scaffoldings of the podocyte slit diaphragm permitting small ions to filter, but not massive excretion of proteins, hence proteinuria. Correspondingly, HA enhanced the aberrant expression of nephrin alongside other important regulators of podocyte like podocalyxin, podocin, and CD2AP, and improved renal function by reducing albuminuria/proteinuria, while increasing creatinine clearance. The renoprotection by HA were accompanied by significant reduction of inflammatory/oxidative mediators including nuclear factor-kappaB, macrophage inflammatory protein-1-alpha, macrophage chemoattractant protein-1, tumor necrosis factor-alpha, interleukin (IL)-6, IL1β, 8-isoprostane, endothelin-1, and aldosterone. These were associated with increased levels of adiponectin, HO-1, HO activity, cyclic guanosine monophosphate, and atrial natriuretic peptide (ANP), whereas the HO inhibitor, CrMP annulled the renoprotection and exacerbated renal dysfunction. CONCLUSIONS HA improves renal function by attenuating histopathological lesions, suppressing inflammatory/oxidative mediators, abating profibrotic/extracellular matrix proteins, and reducing albuminuria/proteinuria, while concomitantly potentiating the HO-adiponectin-ANP axis, enhancing nephrin, podocin, podocalyxin, CD2AP and increasing creatinine clearance. Our study underscores the benefit of potentiating the HO-adiponectin-ANP against nephropathy.
Collapse
Affiliation(s)
- Joseph Fomusi Ndisang
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, SK, Canada S7N 5E5;
| | - Rajni Chibbar
- Department of Pathology & Laboratory Medicine, University of Saskatchewan College of Medicine, Saskatoon, SK, Canada S7N 5E5
| |
Collapse
|
25
|
Nagy L, Filotás D, Boros M, Pozsgai G, Pintér E, Nagy G. Amperometric cell for subcutaneous detection of hydrogen sulfide in anesthetized experimental animals. Physiol Meas 2014; 35:2475-87. [DOI: 10.1088/0967-3334/35/12/2475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Li H, Zhou X, Zhang J. Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced inflammasome activation in human gingival epithelial cells. Int J Mol Med 2014; 34:1039-44. [PMID: 25069505 DOI: 10.3892/ijmm.2014.1865] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/15/2014] [Indexed: 11/06/2022] Open
Abstract
Interleukin-1β (IL-1β) is a pathogenic factor for the destruction of periodontal tissue in periodontitis. The processing of IL-1β is regulated by cytosolic machinery termed as the inflammasome, which recruits and activates caspase-1 and then cleaves pro-IL-1β to produce mature IL-1β. Porphyromonas gingivalis (P. gingivalis) infection and lipopolysaccharide (LPS) have been shown to activate the NLRP3 inflammasome and stimulate IL-1β production in human oral cells. Heme oxygenase-1 (HO-1) is an ubiquitous cytoprotective enzyme. The products of HO-1 exhibit protective biological activities, including antioxidant and anti-inflammatory effects. In the present study, we investigated the hypothesis that the induction of HO-1 inhibits the activation of the inflammasome and protects against LPS-induced inflammatory damage in cultured human gingival epithelial cells (GECs). Our results revealed that LPS induced the overexpression of the inflammasome components, NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1, by western blot analysis. Co-immunoprecipitation analysis indicated that LPS increased the binding of NLRP3 and ASC, and confocal imaging revealed that LPS increased the immunostaining and co-localization of ASC and caspase-1, indicating that LPS enhanced the assembly/formation of the inflammasome components. Hemin, a potent HO-1 inducer, blocked the LPS-induced overexpression and the formation of the NLRP3 inflammasome. Furthermore, hemin also inhibited the LPS-induced increase in the production of IL-1β, as shown by enzyme-linked immunosorbent assay and blocked the nuclear translocation of pro-inflammatory nuclear factor-κB (NF-κB), as shown by confocal assays. As a result, hemin protected the cells from LPS-induced damage, which was demonstrated by the immunostaining pattern of the cell junction protein, E-cadherin. LPS produced a disturbed staining pattern of E-cadherin, suggesting the disruption of epithelial integrity, which was abolished in the hemin-treated cells. In conclusion, our data demonstrate that the induction of HO-1 by hemin attenuates LPS-induced inflammatory damage in human GECs through the inhibition of inflammasome activation.
Collapse
Affiliation(s)
- Hong Li
- Department of Stomatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Xiaoli Zhou
- Department of Stomatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jianli Zhang
- Department of Stomatology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
27
|
Ndisang JF, Tiwari S. Featured article: induction of heme oxygenase with hemin improves pericardial adipocyte morphology and function in obese Zucker rats by enhancing proteins of regeneration. Exp Biol Med (Maywood) 2014; 240:45-57. [PMID: 25053781 DOI: 10.1177/1535370214544268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and inflammation are implicated in tissue remodeling, hypertrophy, and organ malfunction. Since heme-oxygenase (HO) is a cytoprotective enzyme with effects against oxidative stress and inflammation, we investigated the effects of upregulating HO with hemin on adipocyte hypertrophy, proteins of repair/regeneration including beta-catenin, Oct3/4 and Pax2 as well as pro-fibrotic/remodeling proteins like osteopontin and transforming growth factor-beta (TGF-β) in pericardial adipose tissue from obese Zucker rats (ZRs). Treatment with hemin significantly reduced pericardial adipose tissue inflammation/oxidative stress, suppressed osteopontin and TGF-β, and attenuated pericardial adipocyte hypertrophy in obese ZRs. These were associated with enhanced expression of the stem/progenitor-cell marker cKit; the potentiation of several proteins of regeneration including beta-catenin, Oct3/4, Pax2; and improved pericardial adipocyte morphology. Interestingly, the amelioration of adipocyte hypertrophy in hemin-treated animals was accompanied by improved adipocyte function, evidenced by increased levels of pericardial adipose tissue adiponectin. Furthermore, hemin significantly reduced hypertriglyceridemia and hypercholesteromia in obese ZRs. The protective effects of hemin were accompanied by robust potentiation HO activity and the total antioxidant capacity, whereas the co-administration of hemin with the HO inhibitor, stannous mesoporphyrin abolished the effects of hemin. These data suggest that hemin improves pericardial adipocyte morphology and function by enhancing proteins of repair and regeneration, while concomitantly abating inflammatory/oxidative insults and suppressing extracellular-matrix/profibrotic and remodeling proteins. The reduction of hypertriglyceridemia, hypercholesteromia, pericardial adiposity, and pericardial adipocyte hypertrophy with corresponding improvement of adipocyte morphology/function in hemin-treated animals suggests that HO inducers may be explored for the design of novel remedies against cardiac complications arising from excessive adiposity.
Collapse
Affiliation(s)
- Joseph Fomusi Ndisang
- Department of Physiology, College of Medicine, University of Saskatchewan College of Medicine, Saskatoon, SK, Canada S7N 5E5
| | - Shuchita Tiwari
- Department of Physiology, College of Medicine, University of Saskatchewan College of Medicine, Saskatoon, SK, Canada S7N 5E5
| |
Collapse
|
28
|
Cheng S, Enserro D, Xanthakis V, Sullivan LM, Murabito JM, Benjamin EJ, Polak JF, O'Donnell CJ, Wolf PA, O'Connor GT, Keaney JF, Vasan RS. Association of exhaled carbon monoxide with subclinical cardiovascular disease and their conjoint impact on the incidence of cardiovascular outcomes. Eur Heart J 2014; 35:2980-7. [PMID: 24574370 DOI: 10.1093/eurheartj/ehu052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Whereas endogenous carbon monoxide (CO) is cytoprotective at physiologic levels, excess CO concentrations are associated with cardiometabolic risk and may represent an important marker of progression from subclinical to clinical cardiovascular disease (CVD). METHODS AND RESULTS In 1926 participants of the Framingham Offspring Study (aged 57 ± 10 years, 46% women), we investigated the relationship of exhaled CO, a surrogate of blood CO concentration, with both prevalent subclinical CVD and incident clinical CVD events. Presence of subclinical CVD was determined using a comprehensive panel of diagnostic tests used to assess cardiac and vascular structure and function. Individuals with the highest (>5 p.p.m.) compared with lowest (≤4 p.p.m.) CO exposure were more likely to have subclinical CVD [odds ratios (OR): 1.67, 95% CI: 1.32-2.12; P < 0.001]. During the follow-up period (mean 5 ± 3 years), 193 individuals developed overt CVD. Individuals with both high CO levels and any baseline subclinical CVD developed overt CVD at an almost four-fold higher rate compared with those with low CO levels and no subclinical disease (22.1 vs. 6.3%). Notably, elevated CO was associated with incident CVD in the presence [hazards ration (HR): 1.83, 95% CI: 1.08-3.11; P = 0.026] but not in the absence (HR: 0.80, 95% CI: 0.42-1.53; P = 0.51) of subclinical CVD (Pinteraction = 0.019). Similarly, subclinical CVD was associated with incident CVD in the presence of high but not low CO exposure. CONCLUSION Our findings in a community-based sample suggest that elevated CO is a marker of greater subclinical CVD burden and, furthermore, a potential key component in the progression from subclinical to clinical CVD.
Collapse
Affiliation(s)
- Susan Cheng
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Vanessa Xanthakis
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Department of Biostatistics, Boston University, Boston, MA, USA Sections of Preventive Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Lisa M Sullivan
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Joanne M Murabito
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA General Internal Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Emelia J Benjamin
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Department of Cardiology, Boston University School of Medicine, Boston, MA, USA
| | - Joseph F Polak
- Department of Radiology, New England Medical Center, Boston, MA, USA
| | - Christopher J O'Donnell
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Center for Population Studies, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Philip A Wolf
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - George T O'Connor
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - John F Keaney
- Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Boston, MA, USA
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, USA Sections of Preventive Medicine, Boston University School of Medicine, Boston, MA, USA Department of Cardiology, Boston University School of Medicine, Boston, MA, USA Department of Epidemiology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
29
|
A hypothesis: hydrogen sulfide might be neuroprotective against subarachnoid hemorrhage induced brain injury. ScientificWorldJournal 2014; 2014:432318. [PMID: 24707204 PMCID: PMC3953624 DOI: 10.1155/2014/432318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/15/2014] [Indexed: 12/21/2022] Open
Abstract
Gases such as nitric oxide (NO) and carbon monoxide (CO) play important roles both in normal physiology and in disease. Recent studies have shown that hydrogen sulfide (H2S) protects neurons against oxidative stress and ischemia-reperfusion injury and attenuates lipopolysaccharides (LPS) induced neuroinflammation in microglia, exhibiting anti-inflammatory and antiapoptotic activities. The gas H2S is emerging as a novel regulator of important physiologic functions such as arterial diameter, blood flow, and leukocyte adhesion. It has been known that multiple factors, including oxidative stress, free radicals, and neuronal nitric oxide synthesis as well as abnormal inflammatory responses, are involved in the mechanism underlying the brain injury after subarachnoid hemorrhage (SAH). Based on the multiple physiologic functions of H2S, we speculate that it might be a promising, effective, and specific therapy for brain injury after SAH.
Collapse
|
30
|
Ndisang JF, Jadhav A, Mishra M. The heme oxygenase system suppresses perirenal visceral adiposity, abates renal inflammation and ameliorates diabetic nephropathy in Zucker diabetic fatty rats. PLoS One 2014; 9:e87936. [PMID: 24498225 PMCID: PMC3907578 DOI: 10.1371/journal.pone.0087936] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/04/2014] [Indexed: 12/14/2022] Open
Abstract
The growing incidence of chronic kidney disease remains a global health problem. Obesity is a major risk factor for type-2 diabetes and renal impairment. Perirenal adiposity, by virtue of its anatomical proximity to the kidneys may cause kidney disease through paracrine mechanisms that include increased production of inflammatory cytokines. Although heme-oxygenase (HO) is cytoprotective, its effects on perirenal adiposity and diabetic nephropathy in Zucker-diabetic fatty rats (ZDFs) remains largely unclear. Upregulating the HO-system with hemin normalised glycemia, reduced perirenal adiposity and suppressed several pro-inflammatory/oxidative mediators in perirenal fat including macrophage-inflammatory-protein-1α (MIP-1α), endothelin (ET-1), 8-isoprostane, TNF-α, IL-6 and IL-1β. Furthermore, hemin reduced ED1, a marker of pro-inflammatory macrophage-M1-phenotype, but interestingly, enhanced markers associated with anti-inflammatory M2-phenotype such as ED2, CD206 and IL-10, suggesting that hemin selectively modulates macrophage polarization towards the anti-inflammatory M2-phenotype. These effects were accompanied by increased adiponectin, HO-1, HO-activity, atrial-natriuretic peptide (ANP), and its surrogate marker, urinary-cGMP. Furthermore, hemin reduced renal histological lesions and abated pro-fibrotic/extracellular-matrix proteins like collagen and fibronectin that deplete nephrin, an important transmembrane protein which forms the scaffolding of the podocyte slit-diaphragm allowing ions to filter but not massive excretion of proteins, hence proteinuria. Correspondingly, hemin increased nephrin expression in ZDFs, reduced markers of renal damage including, albuminuria/proteinuria, but increased creatinine-clearance, suggesting improved renal function. Conversely, the HO-blocker, stannous-mesoporphyrin nullified the hemin effects, aggravating glucose metabolism, and exacerbating renal injury and function. The hemin effects were less-pronounced in Zucker-lean controls with healthy status, suggesting greater selectivity of HO in ZDFs with disease. We conclude that the concomitant reduction of pro-inflammatory/oxidative mediators, macrophage infiltration and profibrotic/extracellular-matrix proteins, coupled to increased nephrin, adiponectin, ANP, cGMP and creatinine clearance may account for improved renal function in hemin-treated ZDFs. These findings suggest that HO-inducers like hemin may be explored against the co-morbidity of perirenal adiposity and diabetic nephropathy.
Collapse
Affiliation(s)
- Joseph Fomusi Ndisang
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Ashok Jadhav
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| | - Manish Mishra
- Department of Physiology, University of Saskatchewan College of Medicine, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
31
|
The risk of heart failure and cardiometabolic complications in obesity may be masked by an apparent healthy status of normal blood glucose. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:253657. [PMID: 24454978 PMCID: PMC3876462 DOI: 10.1155/2013/253657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/12/2013] [Indexed: 11/18/2022]
Abstract
Although many obese individuals are normoglycemic and asymptomatic of cardiometabolic complications, this apparent healthy state may be a misnomer. Since heart failure is a major cause of mortality in obesity, we investigated the effects of heme-oxygenase (HO) on heart failure and cardiometabolic complications in obese normoglycemic Zucker-fatty rats (ZFs). Treatment with the HO-inducer, hemin, reduced markers of heart failure, such as osteopontin and osteoprotegerin, abated left-ventricular (LV) hypertrophy/fibrosis, extracellular matrix/profibrotic proteins including collagen IV, fibronectin, TGF-β1, and reduced cardiac lesions. Furthermore, hemin suppressed inflammation by abating macrophage chemoattractant protein-1, macrophage-inflammatory protein-1 alpha, TNF-α, IL-6, and IL-1β but enhanced adiponectin, atrial-natriuretic peptide (ANP), HO activity, insulin sensitivity, and glucose metabolism. Correspondingly, hemin improved several hemodynamic/echocardiographic parameters including LV-diastolic wall thickness, LV-systolic wall thickness, mean-arterial pressure, arterial-systolic pressure, arterial-diastolic pressure, LV-developed pressure, +dP/dt, and cardiac output. Contrarily, the HO-inhibitor, stannous mesoporphyrin nullified the hemin effect, exacerbating inflammatory/oxidative insults and aggravated insulin resistance (HOMA-index). We conclude that perturbations in insulin signaling and cardiac function may be forerunners to overt hyperglycemia and heart failure in obesity. Importantly, hemin improves cardiac function by suppressing markers of heart failure, LV hypertrophy, cardiac lesions, extracellular matrix/profibrotic proteins, and inflammatory/oxidative mediators, while concomitantly enhancing the HO-adiponectin-ANP axis.
Collapse
|
32
|
Sexual dimorphism of cardiovascular ischemia susceptibility is mediated by heme oxygenase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:521563. [PMID: 24163720 PMCID: PMC3791627 DOI: 10.1155/2013/521563] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 06/25/2013] [Indexed: 01/03/2023]
Abstract
We investigated the gender differences in heme-oxygenase (HO) enzyme, which produces endogenous vascular protective carbon monoxide (CO). We studied (1) the activity and expression of HO enzymes in the left ventricle (LV) and aorta, (2) basal increase in basal blood pressure provoked by arginine vasopressine (AVP) in vivo, (3) the heart perfusion induced by AVP, (4) the ST segment depression provoked by adrenaline and 30 seconds later phentolamine, and (5) the aorta ring contraction induced by AVP in female and male Wistar rats. We found that HO activity and the expression of HO-1 and HO-2 were increased in female rat aorta and LV. We demonstrated that the basal blood pressure and administration of AVP provoked blood pressure response are increased in the males; the female myocardium was less sensitive towards angina. Both differences could be aggravated by the inhibition of HO. The aorta rings were more susceptible towards vasoconstriction by AVP in males; isolated heart perfusion decrease was higher in males. The HO inhibition aggravated the heart perfusion in both sexes. In conclusion, the increased HO activity and expression in females might play a role in the sexual dimorphism of cardiovascular ischemia susceptibility during the reproductive age.
Collapse
|
33
|
Ndisang JF, Mishra M. The heme oxygenase system selectively suppresses the proinflammatory macrophage m1 phenotype and potentiates insulin signaling in spontaneously hypertensive rats. Am J Hypertens 2013; 26:1123-31. [PMID: 23757400 DOI: 10.1093/ajh/hpt082] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The mechanisms by which heme oxygenase (HO) improves glucose metabolism in essential hypertension are not completely understood. Because dysfunctional insulin signaling is associated with elevated inflammation and high cholesterol and triglycerides, we investigated the effects of HO on the proinflammatory macrophage M1 phenotype and the anti-inflammatory macrophage M2 phenotype in spontaneously hypertensive rats (SHRs). SHRs are a model of human essential hypertension with features of metabolic syndrome, including impaired glucose metabolism. METHODS Spectrophotometric analysis, enzyme immunoassay, enzyme-linked immunosorbent assay, and Western immunoblotting were used. HO was enhanced with hemin or inhibited with chromium-mesoporphyrin (CrMP). RESULTS Hemin suppressed inflammation by abating proinflammatory macro phage M1 phenotype (ED1) and chemokines such as macrophage chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein 1 alpha (MIP-1α) while enhancing anti-inflammatory macrophage M2 phenotype by potentiating ED2, CD206, and CD14. Similarly, hemin improved insulin signaling by enhancing insulin receptor substrate 1 (IRS-1), IRS-2, phosphatidylinositol 3 kinase (PI3K), and glucose transporter 4 (GLUT4) but reduced total cholesterol and triglycerides. These effects were accompanied by increased HO-1, HO activity, and cyclic guanosine monophosphate (cGMP), whereas the HO inhibitor CrMP nullified the hemin effects. Importantly, the effects of the HO system on ED1, ED2, CD206, and CD14 in SHRs are novel. CONCLUSIONS Hemin abated inflammation in SHRs by selectively enhancing the anti-inflammatory macrophage M2 phenotype that dampens inflammation while suppressing the pronflammatory macrophage M1 phenotype and related chemokines such as MCP-1 and MIP-1α. Importantly, the reduction of inflammation, total cholesterol, and triglycerides was accompanied by the enhancement of important proteins implicated in insulin signaling, including IRS-1, IRS-2, PI3K, and GLUT4. Thus, the concomitant reduction of inflammation, total cholesterol and triglycerides and the corresponding potentiation of insulin signaling are among the multifaceted mechanisms by which the HO system improves glucose metabolism in essential hypertension.
Collapse
Affiliation(s)
- Joseph Fomusi Ndisang
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
34
|
Zhang CY, Li XH, Zhang T, Fu J, Cui XD. Hydrogen sulfide upregulates heme oxygenase-1 expression in rats with volume overload-induced heart failure. Biomed Rep 2013; 1:454-458. [PMID: 24648967 DOI: 10.3892/br.2013.87] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/25/2013] [Indexed: 01/16/2023] Open
Abstract
The present study investigated the role of hydrogen sulfide (H2S), a novel gaseous transmitter, in chronic heart failure (CHF) induced by left-to-right shunt, leading to volume overload. Thirty male Sprague-Dawley rats were randomly divided into four groups: the shunt group, the sham group, the shunt + sodium hydrosulfide (NaHS) group and the sham + NaHS group. CHF was induced in the rats by abdominal aorta-inferior vena cava shunt operation. Rats in the shunt + NaHS and sham + NaHS groups were injected intraperitoneally with NaHS (H2S donor). Haemodynamic parameters were measured 8 weeks after surgery. In addition, left ventricular heme oxygenase (HO)-1 mRNA expression was measured by real-time PCR. Protein expression of HO-1 was evaluated by western blot analysis. Eight weeks after surgery, compared to the sham group, the left ventricular systolic pressure (LVSP) and left ventricular peak rate of contraction and relaxation (LV±dp/dtmax) were significantly reduced; the left ventricular end-diastolic pressure (LVEDP) was significantly increased in the shunt group (all P<0.05). However, NaHS increased LVSP and LV±dp/dtmax (all P<0.05) and decreased LVEDP (P<0.05). Protein expression of HO-1 was significantly decreased in the shunt group compared to that in the sham group (P<0.05). NaHS increased protein expression of HO-1 compared to that in the shunt group (P<0.05). HO-1 mRNA expression was significantly increased in the shunt + NaHS group compared to that in the shunt group (P<0.01). The present study demonstrated that H2S may play a protective role in volume overload-induced CHF by upregulating protein and mRNA expression of HO-1.
Collapse
Affiliation(s)
- Chao-Ying Zhang
- Department of Cardiovascular Diseases, Children's Hospital Affiliated to the Capital Institute of Pediatrics, ChaoYang, Beijing 100020, P.R. China
| | - Xiao-Hui Li
- Department of Cardiovascular Diseases, Children's Hospital Affiliated to the Capital Institute of Pediatrics, ChaoYang, Beijing 100020, P.R. China
| | - Ting Zhang
- Central Laboratory of Infection and Immunity, Capital Institute of Pediatrics, ChaoYang, Beijing 100020, P.R. China
| | - Jin Fu
- Central Laboratory for Clinical Research, Children's Hospital Affiliated to the Capital Institute of Pediatrics, ChaoYang, Beijing 100020, P.R. China
| | - Xiao-Dai Cui
- Central Laboratory for Clinical Research, Children's Hospital Affiliated to the Capital Institute of Pediatrics, ChaoYang, Beijing 100020, P.R. China
| |
Collapse
|
35
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
36
|
Failli P, Vannacci A, Di Cesare Mannelli L, Motterlini R, Masini E. Relaxant effect of a water soluble carbon monoxide-releasing molecule (CORM-3) on spontaneously hypertensive rat aortas. Cardiovasc Drugs Ther 2012; 26:285-92. [PMID: 22766583 DOI: 10.1007/s10557-012-6400-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Both carbon monoxide (CO) and nitric oxide (NO) are two gaseous molecules performing relevant functions in mammals. In order to better understand their actions in the cardiovascular system, we have investigated the effects of CORM-3, (tricarbonylchloro(glycinato)ruthenium(II), a water soluble CO-releasing molecule and SNAP (S-nitroso-N-acetyl-DL-penicillamine, a well known NO-releasing molecule) on aortas of normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). METHODS The isometric contraction of angiotensin II (AT-II) and endothelin-1 (ET-1) was evaluated in endothelium-denuded aortic strips. RESULTS In control conditions, AT-II induced a similar concentration-dependent contraction in both WKY and SHR, while ET-1 was more effective in SHR aortic strips. CORM-3 or SNAP (10(-7)-3 × 10(-4) M) reduced the contraction induced by AT-II or ET-1 in a concentration-dependent way. Whereas the median inhibitory concentration of SNAP was significantly lower in WKY than in SHR, CORM-3 had a similar effect in both strains. The scaffold compound iCORM-3 was ineffective. Pretreatment with an inhibitor of soluble guanylyl cyclase (ODQ, 3 × 10(-6) M) marginally reduced CORM-3 relaxation in both strains, whereas it reduced relaxation induced by SNAP in WKY and, to a lesser extent, in SHR. The benzylindazole derivative YC-1 (10(-6) M), a sensitizer of soluble guanylate cyclase to the action of NO, significantly increased the relaxant effect of SNAP in AT-II precontracted aortic strips. The blocker of calcium-activated potassium channels, charybdotoxin (10(-8) M), reduced the relaxation induced by CORM-3 in both strains. CONCLUSIONS Different mechanisms seem to be implicated in CO- and NO-mediated vascular relaxation. Since the relaxant properties of CO are conserved in SHR aortas, CORM-3 could be a new potential agent for the treatment of hypertension, when NO donors show sub-optimal or absent responses.
Collapse
Affiliation(s)
- Paola Failli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy.
| | | | | | | | | |
Collapse
|
37
|
Reboul C, Thireau J, Meyer G, André L, Obert P, Cazorla O, Richard S. Carbon monoxide exposure in the urban environment: An insidious foe for the heart? Respir Physiol Neurobiol 2012; 184:204-12. [DOI: 10.1016/j.resp.2012.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/20/2022]
|
38
|
Gonzalez MA, Carrington SJ, Fry NL, Martinez JL, Mascharak PK. Syntheses, Structures, and Properties of New Manganese Carbonyls as Photoactive CO-Releasing Molecules: Design Strategies That Lead to CO Photolability in the Visible Region. Inorg Chem 2012; 51:11930-40. [DOI: 10.1021/ic3018216] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Margarita A. Gonzalez
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Samantha J. Carrington
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Nicole L. Fry
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Jose L. Martinez
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Pradip K. Mascharak
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
39
|
Activation of heme oxygenase and suppression of cGMP are associated with impaired endothelial function in obstructive sleep apnea with hypertension. Am J Hypertens 2012; 25:854-61. [PMID: 22647785 DOI: 10.1038/ajh.2012.56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a highly prevalent disorder that increases the risk of systemic hypertension and cardiovascular diseases. Heme oxygenase (HO) has been shown to be upregulated in patients with OSA and its overexpression in mice causes hypertension. End products of HO are carbon monoxide (CO) and bilirubin. CO exerts a pleiotropic action on vasoregulation. Despite high prevalence and incident of hypertension in OSA, its pathophysiology is not well-understood, particularly in regard to varying susceptibility of patients to hypertension. We investigated the role of HO in endothelial dysfunction and hypertension in OSA. METHODS We determined flow-mediated vasodilatation (FMD) as a measure of endothelial-dependent vasodilatory capacity, exhaled CO, bilirubin, and guanosine 3',5'-cyclic monophosphate (cGMP) in 63 subjects with OSA (normotensive 27, hypertensive 36) and in 32 subjects without OSA (normotensive 19, hypertensive 13). RESULTS Hypertensive OSA demonstrated marked impairment in FMD (8.0 ± 0.5% vasodilatation) compared to 10.5 ± 0.8% in hypertensives non-OSA (P < 0.01) and 13.5 ± 0.5% in normotensive OSA (P < 0.001) and 16.1 ± 1.1% in normotensive non-OSA (P < 0.0001). HO was upregulated and plasma nitric oxide (NO) was significantly increased in hypertensive OSA compared to normotensive OSA and hypertensive non-OSA. Conversely, serum cGMP was markedly decreased in hypertensive OSA (12.9 ± 1.8 pmol/ml vs. 20.6 ± 3.7 in normotensive OSA, P = 0.032). There was an inverse relationship between FMD and CO and bilirubin concentrations (r = 0.43, P = 0.0001 and r = 0.28, P = 0.01, respectively). CONCLUSIONS These data show that increased CO in the setting of elevated NO concentrations is associated with decreased cGMP, impaired FMD, and hypertension in patient with OSA.
Collapse
|
40
|
Wong RJ, Zhao H, Stevenson DK. A deficiency in haem oxygenase-1 induces foetal growth restriction by placental vasculature defects. Acta Paediatr 2012; 101:827-34. [PMID: 22594519 DOI: 10.1111/j.1651-2227.2012.02729.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UNLABELLED Haem oxygenase-1 (HO-1), the rate-limiting enzyme in haem degradation, plays a role in angiogenesis and vasculogenesis and is highly expressed in the placenta. Deficiencies in HO-1 are associated with several pregnancy disorders, such as recurrent miscarriages and pre-eclampsia. The unique combination of tissue protective, smooth muscle relaxing and angiogenesis regulatory properties makes HO-1 a key player in the maintenance of a healthy pregnancy through a direct effect on placental structural and vascular development, thus affecting foetal development. CONCLUSION Therefore, we conclude that HO-1 plays an important role in placental vasculature development and a deficiency in HO-1 may contribute to pregnancy complications, such as pre-eclampsia, spontaneous abortions and premature births.
Collapse
Affiliation(s)
- Ronald J Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305-5208, USA.
| | | | | |
Collapse
|
41
|
Rochette L, Vergely C, Rochette F, Girard C. Carbon monoxide: a new pharmaceutical agent? MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-011-0430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Decaluwé K, Pauwels B, Verpoest S, Van de Voorde J. Divergent mechanisms involved in CO and CORM-2 induced vasorelaxation. Eur J Pharmacol 2011; 674:370-7. [PMID: 22108549 DOI: 10.1016/j.ejphar.2011.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 11/18/2022]
Abstract
Carbon monoxide (CO) may play an important physiological role in regulation of the vascular tone. CO-releasing molecule (CORM-2) is frequently used as a CO-donor to evaluate (patho)physiological properties of CO and its potential therapeutic applications. The aim of this study was to examine the molecular mechanisms underlying the vasodilatory properties of CORM-2 as this has not yet been extensively explored. Isometric tension recordings were performed using mice and rat isolated aortic ring segments as well as mice femoral artery ring segments. Responses to CO (10 μmol/l-300 μmol/l) and CORM-2 (30 μmol/l-600 μmol/l) were evaluated in the presence/absence of activators/inhibitors of different molecular pathways. CO was unable to relax mice blood vessels, whereas it induced concentration-dependent relaxations in rat aorta. The response to CO was inhibited by both the soluble guanylyl cyclase (sGC) inhibitor ODQ (10 μmol/l) and potassium (K(+)) channel blocker tetraethyl-ammonium chloride (3 mmol/l). CORM-2 relaxed both mice and rat isolated blood vessels in a concentration-dependent manner, however this response was only partially blocked by ODQ and tetraethyl-ammonium chloride. Interestingly, 4-aminopyridine (3 mmol/l) inhibited the CORM-2 induced vasodilatation whereas iberiotoxin (100 nmol/l) had no influence. The molecular mechanisms underlying CORM-2 induced relaxation differ from those of CO-induced relaxation. While CO relaxes vessels through activation of sGC and/or calcium-activated K(+)-channels, CORM-2 exerts its vasodilatory properties only partially through sGC or K(+)-channels activation. CORM-2 induced vasodilatation seems to involve voltage-dependent rather than calcium-activated K(+)-channels.
Collapse
Affiliation(s)
- Kelly Decaluwé
- Department of Pharmacology, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
43
|
Buehler PW, Karnaukhova E, Gelderman MP, Alayash AI. Blood aging, safety, and transfusion: capturing the "radical" menace. Antioxid Redox Signal 2011; 14:1713-28. [PMID: 20954814 DOI: 10.1089/ars.2010.3447] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Throughout their life span, circulating red blood cells (RBCs) transport oxygen (O(2)) primarily from the lungs to tissues and return with carbon dioxide (CO(2)) from respiring tissues for final elimination by lungs. This simplistic view of RBCs as O(2) transporter has changed in recent years as other gases, for example, nitric oxide (NO), and small molecules, such as adenosine triphosphate (ATP), have been shown to either be produced and/or carried by RBCs to perform other signaling and O(2) sensing functions. In spite of the numerous biochemical and metabolic changes occurring within RBCs during storage, prior to, and after transfusion, perturbations of RBC membrane are likely to affect blood flow in the microcirculation. Subsequent hemolysis due to storage conditions and/or hemolytic disorders may have some pathophysiological consequences as a result of the release of Hb. In this review, we show that evolution has provided a multitude of protection and intervention strategies against free Hb from "cradle" to "death"; from early biosynthesis to its final degradation and a lot more in between. Furthermore, some of the same naturally occurring protective mechanisms can potentially be employed to oxidatively inactivate this redox active protein and control its damaging side reactions when released outside of the RBC.
Collapse
Affiliation(s)
- Paul W Buehler
- Division of Hematology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
44
|
Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS, Kim SR, Chung HT. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 14:137-67. [PMID: 20624029 PMCID: PMC2988629 DOI: 10.1089/ars.2010.3153] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heme oxygenases (HOs) are the rate-limiting enzymes in the catabolism of heme into biliverdin, free iron, and carbon monoxide. Two genetically distinct isoforms of HO have been characterized: an inducible form, HO-1, and a constitutively expressed form, HO-2. HO-1 is a kind of stress protein, and thus regarded as a sensitive and reliable indicator of cellular oxidative stress. The HO system acts as potent antioxidants, protects endothelial cells from apoptosis, is involved in regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in angiogenesis and vasculogenesis. Endothelial integrity and activity are thought to occupy the central position in the pathogenesis of cardiovascular diseases. Cardiovascular disease risk conditions converge in the contribution to oxidative stress. The oxidative stress leads to endothelial and vascular smooth muscle cell dysfunction with increases in vessel tone, cell growth, and gene expression that create a pro-thrombotic/pro-inflammatory environment. Subsequent formation, progression, and obstruction of atherosclerotic plaque may result in myocardial infarction, stroke, and cardiovascular death. This background provides the rationale for exploring the potential therapeutic role for HO system in the amelioration of vascular inflammation and prevention of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS, Kim SR, Chung HT. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2010. [PMID: 20624029 DOI: 10.1089/ars.2010.31532988629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heme oxygenases (HOs) are the rate-limiting enzymes in the catabolism of heme into biliverdin, free iron, and carbon monoxide. Two genetically distinct isoforms of HO have been characterized: an inducible form, HO-1, and a constitutively expressed form, HO-2. HO-1 is a kind of stress protein, and thus regarded as a sensitive and reliable indicator of cellular oxidative stress. The HO system acts as potent antioxidants, protects endothelial cells from apoptosis, is involved in regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in angiogenesis and vasculogenesis. Endothelial integrity and activity are thought to occupy the central position in the pathogenesis of cardiovascular diseases. Cardiovascular disease risk conditions converge in the contribution to oxidative stress. The oxidative stress leads to endothelial and vascular smooth muscle cell dysfunction with increases in vessel tone, cell growth, and gene expression that create a pro-thrombotic/pro-inflammatory environment. Subsequent formation, progression, and obstruction of atherosclerotic plaque may result in myocardial infarction, stroke, and cardiovascular death. This background provides the rationale for exploring the potential therapeutic role for HO system in the amelioration of vascular inflammation and prevention of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ibrahim M, Derbyshire ER, Marletta MA, Spiro TG. Probing soluble guanylate cyclase activation by CO and YC-1 using resonance Raman spectroscopy. Biochemistry 2010; 49:3815-23. [PMID: 20353168 DOI: 10.1021/bi902214j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Soluble guanylate cyclase (sGC) is weakly activated by carbon monoxide (CO) but is significantly activated by the binding of YC-1 to the sGC-CO complex. In this report, resonance Raman (RR) spectroscopy was used to study selected sGC variants. Addition of YC-1 to the sGC-CO complex alters the intensity pattern of RR bands assigned to the vinyl and propionate heme substituents, suggesting changes in the tilting of the pyrrole rings to which they are attached. YC-1 also shifts the RR intensity of the nu(FeC) and nu(CO) bands from 473 and 1985 cm(-1) to 487 and 1969 cm(-1), respectively, and induces an additional nu(FeC) band, at 521 cm(-1), assigned to five-coordinate heme-CO. Site-directed variants in the proximal heme pocket (P118A) or in the distal heme pocket (V5Y and I149Y) reduce the extent of YC-1 activation, along with the 473 cm(-1) band intensity. These lower-activity sGC variants display another nu(FeC) band at 493 cm(-1) which is insensitive to YC-1 addition and is attributed to protein that cannot be activated by the allosteric activator. The results are consistent with a model in which YC-1 binding to the sGC-CO complex results in a conformational change that activates the protein. Specifically, YC-1 binding alters the heme geometry via peripheral nonbonded contacts and also relieves an intrinsic electronic effect that weakens FeCO backbonding in the native, YC-1 responsive protein. This electronic effect might involve neutralization of the heme propionates via H-bond contacts or negative polarization by a distal cysteine residue. YC-1 binding also strains the Fe-histidine bond, leading to a population of the five-coordinate sGC-CO complex in addition to a conformationally distinct population of the six-coordinate sGC-CO complex. The loss of YC-1 activation in the sGC variants might involve a weakening of the heme-protein contacts that are thought to be critical to a YC-1-induced conformational change.
Collapse
Affiliation(s)
- Mohammed Ibrahim
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | | | | | |
Collapse
|
47
|
Role of heme oxygenase in inflammation, insulin-signalling, diabetes and obesity. Mediators Inflamm 2010; 2010:359732. [PMID: 20508722 PMCID: PMC2872759 DOI: 10.1155/2010/359732] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/15/2010] [Accepted: 02/24/2010] [Indexed: 12/19/2022] Open
Abstract
Diabetes and obesity are chronic conditions associated with elevated oxidative/inflammatory activities with a continuum of tissue insults leading to more severe cardiometabolic and renal complications including myocardial infarction and end-stage-renal damage. A common denominator of these chronic conditions is the enhanced the levels of cytokines like tumour necrosis factor-alpha (TNF-α), interleukin (IL-6), IL-1β and resistin, which in turn activates the c-Jun-N-terminal kinase (JNK) and NF-κB pathways, creating a vicious cycle that exacerbates insulin resistance, type-2 diabetes and related complications. Emerging evidence indicates that heme oxygenase (HO) inducers are endowed with potent anti-diabetic and insulin sensitizing effects besides their ability to suppress immune/inflammatory response. Importantly, the HO system abates inflammation through several mechanisms including the suppression of macrophage-infiltration and abrogation of oxidative/inflammatory transcription factors like NF-κB, JNK and activating protein-1. This review highlights the mechanisms by which the HO system potentiates insulin signalling, with particular emphasis on HO-mediated suppression of oxidative and inflammatory insults. The HO system could be explored in the search for novel remedies against cardiometabolic diseases and their complications.
Collapse
|
48
|
Ndisang JF, Jadhav A. Heme-arginate suppresses phospholipase C and oxidative stress in the mesenteric arterioles of mineralcorticoid-induced hypertensive rats. Hypertens Res 2010; 33:338-47. [PMID: 20203687 DOI: 10.1038/hr.2010.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Induction of heme-oxygenase (HO) is an important cellular defense mechanism against oxidative and inflammatory insults. We analyzed the effects of the HO inducer, heme-arginate, on the phospholipase C (PLC)/inositol-triphosphate (IP(3)) pathway in the mesenteric arterioles of uninephrectomized (UnX) deoxycorticosterone acetate (DOCA)-salt hypertensive rats, which is a volume-overload model characterized by elevated endothelin (ET-1) and mineralocorticoid-induced oxidative/inflammatory insults. Our study included the following groups: (A) controls [(i) surgery-free Sprague-Dawley (SD) rats, (ii) UnX-Sham, (iii) UnX-Salt (0.9% NaCl+0.2% KCl) and (iv) UnX-DOCA)]; (B) UnX-DOCA-salt hypertensive rats; (C) UnX-DOCA-salt+heme-arginate; (D) UnX-DOCA-salt+heme-arginate+chromium mesoporphyrin (CrMP), the HO inhibitor; (E) UnX-DOCA-salt+CrMP (F); SD+heme-arginate, (G) UnX-DOCA-salt+vehicle dissolving heme-arginate and CrMP and (H) normal-SD+heme-arginate. Quantitative reverse transcriptase PCR, western blot, enzyme immunoassay and spectrophotometric analyses were used. Heme-arginate enhanced mesenteric arteriole HO-1, HO activity, cyclic guanosine monophosphate (cGMP) and anti-oxidants including bilirubin, ferritin, superoxide dismutase with potentiation of the total anti-oxidant capacity. Correspondingly, oxidative/inflammatory mediators such as 8-isoprostane, nuclear-factor kappaB (NF-kappaB) and ET-1 were markedly reduced. Furthermore, heme-arginate suppressed PLC activity, attenuated IP(3) and reduced resting intracellular calcium. The effects of heme-arginate were nullified by the HO inhibitor, with aggravation of oxidative/inflammatory insults. In heme-arginate-treated SD rats, the HO system was potentiated to a lesser magnitude and the suppression of ET-1, PLC, IP(3) and NF-kappaB were less accentuated, suggesting greater selectivity of HO against the ET-1-PLC-IP(3)-NF-kappaB destructive axis in the pathological condition of mineralocorticoid-induced hypertension. Given that ET-1 stimulates PLC and IP(3), which in turn activates NF-kappaB, the concomitant reduction of ET-1, PLC, IP(3) and NF-kappaB alongside the corresponding decline of resting intracellular calcium may account for the reduction of blood pressure and attenuation of oxidative/inflammatory injury by heme-arginate.
Collapse
Affiliation(s)
- Joseph Fomusi Ndisang
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada. joseph.ndisang@.usask.ca
| | | |
Collapse
|
49
|
Garcia-Santos D, Chies JAB. HO-1 polymorphism as a genetic determinant behind the malaria resistance afforded by haemolytic disorders. Med Hypotheses 2010; 74:807-13. [PMID: 20106603 DOI: 10.1016/j.mehy.2009.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/09/2009] [Indexed: 12/20/2022]
Abstract
Malaria affects thousands of people around the world representing a critical issue regarding health policies in tropical countries. Similarly, also haemolytic diseases such as sickle cell disease and thalassemias are a concern in different parts of the globe. It is well established that haemolytic diseases, such as sickle cell disease (SCD) and thalassemias, represent a resistance factor to malaria, which explains the high frequencies of such genetic variants in malaria endemic areas. In this context, it has been shown that the rate limiting enzyme heme oxygenase I (HO-1), responsible for the catabolism of the free heme in the body, is an important resistance factor in malaria and is also important in the physiopathology of haemolytic diseases. Here, we suggest that allelic variants of HO-1, which display significant differences in terms of protein expression, have been selected in endemic malaria areas since the HO-1 enzyme can enhance the protection against malaria conferred by haemolytic diseases This protection apply mainly in what concerns protection against severe malaria forms. Therefore, HO-1 genotyping would be fundamental to determine resistance of a given individual to lethal forms of malaria as well as to common clinical complications typical to haemolytic diseases and would be helpful in the establishment of public health politics.
Collapse
Affiliation(s)
- D Garcia-Santos
- Pós-Graduação em Genética e Biologia Molecular (PPGBM), Laboratório de Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | |
Collapse
|
50
|
Carbon monoxide in biology and microbiology: surprising roles for the "Detroit perfume". Adv Microb Physiol 2009; 56:85-167. [PMID: 20943125 DOI: 10.1016/s0065-2911(09)05603-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) is a colorless, odorless gas with a reputation for being an anthropogenic poison; there is extensive documentation of the modes of human exposure, toxicokinetics, and health effects. However, CO is also generated endogenously by heme oxygenases (HOs) in mammals and microbes, and its extraordinary biological activities are now recognized and increasingly utilized in medicine and physiology. This review introduces recent advances in CO biology and chemistry and illustrates the exciting possibilities that exist for a deeper understanding of its biological consequences. However, the microbiological literature is scant and is currently restricted to: 1) CO-metabolizing bacteria, CO oxidation by CO dehydrogenase (CODH) and the CO-sensing mechanisms that enable CO oxidation; 2) the use of CO as a heme ligand in microbial biochemistry; and 3) very limited information on how microbes respond to CO toxicity. We demonstrate how our horizons in CO biology have been extended by intense research activity in recent years in mammalian and human physiology and biochemistry. CO is one of several "new" small gas molecules that are increasingly recognized for their profound and often beneficial biological activities, the others being nitric oxide (NO) and hydrogen sulfide (H2S). The chemistry of CO and other heme ligands (oxygen, NO, H2S and cyanide) and the implications for biological interactions are briefly presented. An important advance in recent years has been the development of CO-releasing molecules (CO-RMs) for aiding experimental administration of CO as an alternative to the use of CO gas. The chemical principles of CO-RM design and mechanisms of CO release from CO-RMs (dissociation, association, reduction and oxidation, photolysis, and acidification) are reviewed and we present a survey of the most commonly used CO-RMs. Amongst the most important new applications of CO in mammalian physiology and medicine are its vasoactive properties and the therapeutic potentials of CO-RMs in vascular disease, anti-inflammatory effects, CO-mediated cell signaling in apoptosis, applications in organ preservation, and the effects of CO on mitochondrial function. The very limited literature on microbial growth responses to CO and CO-RMs in vitro, and the transcriptomic and physiological consequences of microbial exposure to CO and CO-RMs are reviewed. There is current interest in CO and CO-RMs as antimicrobial agents, particularly in the control of bacterial infections. Future prospects are suggested and unanswered questions posed.
Collapse
|