1
|
Avagimyan A, Kajaia N, Gabunia L, Trofimenko A, Sulashvili N, Sanikidze T, Gorgaslidze N, Challa A, Sheibani M. The place of beta-adrenergic receptor blockers in the treatment of arterial hypertension: From bench-to-bedside. Curr Probl Cardiol 2024; 49:102734. [PMID: 38944226 DOI: 10.1016/j.cpcardiol.2024.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Arterial hypertension is a multifaceted condition influenced by numerous pathophysiological factors. The key contributors to its pathogenesis encompass an unhealthy lifestyle, dysregulation of the sympathetic nervous system, alterations in the activity of adrenergic receptors, disruptions in sodium metabolism, structural and functional abnormalities in the vascular bed, as well as endothelial dysfunction, low-grade inflammation, oxidative stress etc. Despite extensive research into the mechanisms of arterial hypertension development over the centuries, its pathogenesis remains incompletely understood, and the selection of an effective treatment strategy continues to pose a significant challenge. Arterial hypertension is characterized by a diminished sensitivity of the β-adrenergic system, leading to the utilization of β-adrenergic blockers and other antihypertensive drugs in its treatment. This review delves into the mechanisms of action of beta-adrenergic receptor blockers in the treatment of hypertension and their respective effects.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Kajaia
- Tbilisi State Medical University, Tbilisi, Georgia
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Pan X, Giustarini D, Lang F, Rossi R, Wieder T, Köberle M, Ghashghaeinia M. Desipramine induces eryptosis in human erythrocytes, an effect blunted by nitric oxide donor sodium nitroprusside and N-acetyl-L-cysteine but enhanced by Calcium depletion. Cell Cycle 2023; 22:1827-1853. [PMID: 37522842 PMCID: PMC10599211 DOI: 10.1080/15384101.2023.2234177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background: Desipramine a representative of tricyclic antidepressants (TCAs) promotes recovery of depressed patients by inhibition of reuptake of neurotransmitters serotonin (SER) and norepinephrine (NE) in the presynaptic membrane by directly blocking their respective transporters SERT and NET.Aims: To study the effect of desipramine on programmed erythrocyte death (eryptosis) and explore the underlying mechanisms.Methods: Phosphatidylserine (PS) exposure on the cell surface as marker of cell death was estimated from annexin-V-binding, cell volume from forward scatter in flow cytometry. Hemolysis was determined photometrically, and intracellular glutathione [GSH]i from high performance liquid chromatography.Results: Desipramine dose-dependently significantly enhanced the percentage of annexin-V-binding cells and didn´t impact glutathione (GSH) synthesis. Desipramine-induced eryptosis was significantly reversed by pre-treatment of erythrocytes with either nitric oxide (NO) donor sodium nitroprusside (SNP) or N-acetyl-L-cysteine (NAC). The highest inhibitory effect was obtained by using both inhibitors together. Calcium (Ca2+) depletion aggravated desipramine-induced eryptosis. Changing the order of treatment, i.e. desipramine first followed by inhibitors, could not influence the inhibitory effect of SNP or NAC.Conclusion: Antidepressants-caused intoxication can be treated by SNP and NAC, respectively. B) Patients with chronic hypocalcemia should not be treated with tricyclic anti-depressants or their dose should be noticeably reduced.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Daniela Giustarini
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Florian Lang
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Ranieri Rossi
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Thomas Wieder
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Miljkovic M, Seguin A, Jia X, Cox JE, Catrow JL, Bergonia H, Phillips JD, Stephens WZ, Ward DM. Loss of the mitochondrial protein Abcb10 results in altered arginine metabolism in MEL and K562 cells and nutrient stress signaling through ATF4. J Biol Chem 2023; 299:104877. [PMID: 37269954 PMCID: PMC10316008 DOI: 10.1016/j.jbc.2023.104877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Abcb10 is a mitochondrial membrane protein involved in hemoglobinization of red cells. Abcb10 topology and ATPase domain localization suggest it exports a substrate, likely biliverdin, out of mitochondria that is necessary for hemoglobinization. In this study, we generated Abcb10 deletion cell lines in both mouse murine erythroleukemia and human erythroid precursor human myelogenous leukemia (K562) cells to better understand the consequences of Abcb10 loss. Loss of Abcb10 resulted in an inability to hemoglobinize upon differentiation in both K562 and mouse murine erythroleukemia cells with reduced heme and intermediate porphyrins and decreased levels of aminolevulinic acid synthase 2 activity. Metabolomic and transcriptional analyses revealed that Abcb10 loss gave rise to decreased cellular arginine levels, increased transcripts for cationic and neutral amino acid transporters with reduced levels of the citrulline to arginine converting enzymes argininosuccinate synthetase and argininosuccinate lyase. The reduced arginine levels in Abcb10-null cells gave rise to decreased proliferative capacity. Arginine supplementation improved both Abcb10-null proliferation and hemoglobinization upon differentiation. Abcb10-null cells showed increased phosphorylation of eukaryotic translation initiation factor 2 subunit alpha, increased expression of nutrient sensing transcription factor ATF4 and downstream targets DNA damage inducible transcript 3 (Chop), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), and arginyl-tRNA synthetase 1 (Rars). These results suggest that when the Abcb10 substrate is trapped in the mitochondria, the nutrient sensing machinery is turned on remodeling transcription to block protein synthesis necessary for proliferation and hemoglobin biosynthesis in erythroid models.
Collapse
Affiliation(s)
- Marisa Miljkovic
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexandra Seguin
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Xuan Jia
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - James E Cox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA; Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jonathan Leon Catrow
- Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Hector Bergonia
- Iron and Heme Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John D Phillips
- Division of Hematology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - W Zac Stephens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Diane M Ward
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| |
Collapse
|
4
|
Influence of cardiac function on intermittent hypoxia in rats fed with high-fat diet. Biochem Biophys Rep 2022; 32:101393. [DOI: 10.1016/j.bbrep.2022.101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
|
5
|
Biological Assessment of the NO-Dependent Endothelial Function. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227921. [PMID: 36432022 PMCID: PMC9698916 DOI: 10.3390/molecules27227921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is implicated in numerous physiological processes, including vascular homeostasis. Reduced NO bioavailability is a hallmark of endothelial dysfunction, a prequel to many cardiovascular diseases. Biomarkers of an early NO-dependent endothelial dysfunction obtained from routine venous blood sampling would be of great interest but are currently lacking. The direct measurement of circulating NO remains a challenge due by its high reactivity and short half-life. The current techniques measure stable products from the NO signaling pathway or metabolic end products of NO that do not accurately represent its bioavailability and, therefore, endothelial function per se. In this review, we will concentrate on an original technique of low temperature electron paramagnetic resonance spectroscopy capable to directly measure the 5-α-coordinated heme nitrosyl-hemoglobin in the T (tense) state (5-α-nitrosyl-hemoglobin or HbNO) obtained from fresh venous human erythrocytes. In humans, HbNO reflects the bioavailability of NO formed in the vasculature from vascular endothelial NOS or exogenous NO donors with minor contribution from erythrocyte NOS. The HbNO signal is directly correlated with the vascular endothelial function and inversely correlated with vascular oxidative stress. Pilot studies support the validity of HbNO measurements both for the detection of endothelial dysfunction in asymptomatic subjects and for the monitoring of such dysfunction in patients with known cardiovascular disease. The impact of therapies or the severity of diseases such as COVID-19 infection involving the endothelium could also be monitored and their incumbent risk of complications better predicted through serial measurements of HbNO.
Collapse
|
6
|
Ghashghaeinia M, Mrowietz U. Human erythrocytes, nuclear factor kappaB (NFκB) and hydrogen sulfide (H 2S) - from non-genomic to genomic research. Cell Cycle 2021; 20:2091-2101. [PMID: 34559024 PMCID: PMC8565816 DOI: 10.1080/15384101.2021.1972557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
Enucleated mature human erythrocytes possess NFĸBs and their upstream kinases. There is a negative correlation between eryptosis (cell death of erythrocytes) and the amount of NFĸB subunits p50 and Rel A (p65). This finding is based on the fact that young erythrocytes have the highest levels of NFĸBs and the lowest eryptosis rate, while in old erythrocytes the opposite ratio prevails. Human erythrocytes (hRBCs) effectively control the homeostasis of the cell membrane permeable anti-inflammatory signal molecule hydrogen sulfide (H2S). They endogenously produce H2S via both non-enzymic (glutathione-dependent) and enzymic processes (mercaptopyruvate sulfur transferase-dependent). They uptake H2S from diverse tissues and very effectively degrade H2S via methemoglobin (Hb-Fe3+)-catalyzed oxidation. Interestingly, a reciprocal correlation exists between the intensity of inflammatory diseases and endogenous levels of H2S. H2S deficiency has been observed in patients with diabetes, psoriasis, obesity, and chronic kidney disease (CKD). Furthermore, endogenous H2S deficiency results in impaired renal erythropoietin (EPO) production and EPO-dependent erythropoiesis. In general we can say: dynamic reciprocal interaction between tumor suppressor and oncoproteins, orchestrated and sequential activation of pro-inflammatory NFĸB heterodimers (RelA-p50) and the anti-inflammatory NFĸB-p50 homodimers for optimal inflammation response, appropriate generation, subsequent degradation of H2S etc., are prerequisites for a functioning cell and organism. Diseases arise when the fragile balance between different signaling pathways that keep each other in check is permanently disturbed. This work deals with the intact anti-inflammatory hRBCs and their role as guarantors to maintain the redox status in the physiological range, a basis for general health and well-being.
Collapse
Affiliation(s)
- Mehrdad Ghashghaeinia
- Physiological Institute I, Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
- Psoriasis-Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulrich Mrowietz
- Psoriasis-Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
7
|
Suriany S, Xu I, Liu H, Ulker P, Fernandez GE, Sposto R, Borzage M, Wenby R, Meiselman HJ, Forman HJ, Coates TD, Detterich JA. Individual red blood cell nitric oxide production in sickle cell anemia: Nitric oxide production is increased and sickle shaped cells have unique morphologic change compared to discoid cells. Free Radic Biol Med 2021; 171:143-155. [PMID: 33974976 DOI: 10.1016/j.freeradbiomed.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Sickle cell anemia (SCA) is characterized by decreased red blood cell (RBC) deformability due to polymerization of deoxygenated hemoglobin, leading to abnormal mechanical properties of RBC, increased cellular adhesion, and microcirculatory obstruction. Prior work has demonstrated that NO• influences RBC hydration and deformability and is produced at a basal rate that increases under shear stress in normal RBC. Nevertheless, the origin and physiological relevance of nitric oxide (NO•) production and scavenging in RBC remains unclear. We aimed to assess the basal and shear-mediated production of NO• in RBC from SCA patients and control (CTRL) subjects. RBCs loaded with a fluorescent NO• detector, DAF-FM (4-Amino-5-methylamino- 2',7'-difluorofluorescein diacetate), were imaged in microflow channels over 30-min without shear stress, followed by a 30-min period under 0.5Pa shear stress. We utilized non-specific nitric oxide synthase (NOS) blockade and carbon monoxide (CO) saturation of hemoglobin to assess the contribution of NOS and hemoglobin, respectively, to NO• production. Quantification of DAF-FM fluorescence intensity in individual RBC showed an increase in NO• in SCA RBC at the start of the basal period; however, both SCA and CTRL RBC increased NO• by a similar quantity under shear. A subpopulation of sickle-shaped RBC exhibited lower basal NO• production compared to discoid RBC from SCA group, and under shear became more circular in the direction of shear when compared to discoid RBC from SCA and CTRL, which elongated. Both CO and NOS inhibition caused a decrease in basal NO• production. Shear-mediated NO• production was decreased by CO in all RBC, but was decreased by NOS blockade only in SCA. In conclusion, total NO• production is increased and shear-mediated NO• production is preserved in SCA RBC in a NOS-dependent manner. Sickle shaped RBC with inclusions have higher NO• production and they become more circular rather than elongated with shear.
Collapse
Affiliation(s)
- Silvie Suriany
- Division of Cardiology, Children's Hospital of Los Angeles, USA
| | - Iris Xu
- Division of Hematology, Children's Hospital of Los Angeles, USA
| | - Honglei Liu
- Division of Cardiology, Children's Hospital of Los Angeles, USA
| | - Pinar Ulker
- Department of Physiology, Akdeniz University, Turkey
| | | | - Richard Sposto
- Division of Hematology, Children's Hospital of Los Angeles, USA
| | - Matthew Borzage
- Fetal and Neonatal Institute, Division of Neonatology Children's Hospital Los Angeles, USA
| | - Rosalinda Wenby
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, USA
| | - Herbert J Meiselman
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Thomas D Coates
- Division of Hematology, Children's Hospital of Los Angeles, USA
| | - Jon A Detterich
- Division of Cardiology, Children's Hospital of Los Angeles, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
8
|
Notariale R, Infantino R, Palazzo E, Manna C. Erythrocytes as a Model for Heavy Metal-Related Vascular Dysfunction: The Protective Effect of Dietary Components. Int J Mol Sci 2021; 22:6604. [PMID: 34203038 PMCID: PMC8235350 DOI: 10.3390/ijms22126604] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022] Open
Abstract
Heavy metals are toxic environmental pollutants associated with severe ecological and human health risks. Among them is mercury (Hg), widespread in air, soil, and water, due to its peculiar geo-biochemical cycle. The clinical consequences of Hg exposure include neurotoxicity and nephrotoxicity. Furthermore, increased risk for cardiovascular diseases is also reported due to a direct effect on cardiovascular tissues, including endothelial cells, recently identified as important targets for the harmful action of heavy metals. In this review, we will discuss the rationale for the potential use of erythrocytes as a surrogate model to study Hg-related toxicity on the cardiovascular system. The toxic effects of Hg on erythrocytes have been amply investigated in the last few years. Among the observed alterations, phosphatidylserine exposure has been proposed as an underlying mechanism responsible for Hg-induced increased proatherogenic and prothrombotic activity of these cells. Furthermore, following Hg-exposure, a decrease in NOS activity has also been reported, with consequent lowering of NO bioavailability, thus impairing endothelial function. An additional mechanism that may induce a decrease in NO availability is the generation of an oxidative microenvironment. Finally, considering that chronic Hg exposure mainly occurs through contaminated foods, the protective effect of dietary components is also discussed.
Collapse
Affiliation(s)
- Rosaria Notariale
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Enza Palazzo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.I.); (E.P.)
| | - Caterina Manna
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
9
|
Erkens R, Totzeck M, Brum A, Duse D, Bøtker HE, Rassaf T, Kelm M. Endothelium-dependent remote signaling in ischemia and reperfusion: Alterations in the cardiometabolic continuum. Free Radic Biol Med 2021; 165:265-281. [PMID: 33497796 DOI: 10.1016/j.freeradbiomed.2021.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Intact endothelial function plays a fundamental role for the maintenance of cardiovascular (CV) health. The endothelium is also involved in remote signaling pathway-mediated protection against ischemia/reperfusion (I/R) injury. However, the transfer of these protective signals into clinical practice has been hampered by the complex metabolic alterations frequently observed in the cardiometabolic continuum, which affect redox balance and inflammatory pathways. Despite recent advances in determining the distinct roles of hyperglycemia, insulin resistance (InR), hyperinsulinemia, and ultimately diabetes mellitus (DM), which define the cardiometabolic continuum, our understanding of how these conditions modulate endothelial signaling remains challenging. It is widely accepted that endothelial cells (ECs) undergo functional changes within the cardiometabolic continuum. Beyond vascular tone and platelet-endothelium interaction, endothelial dysfunction may have profound negative effects on outcome during I/R. In this review, we summarize the current knowledge of the influence of hyperglycemia, InR, hyperinsulinemia, and DM on endothelial function and redox balance, their influence on remote protective signaling pathways, and their impact on potential therapeutic strategies to optimize protective heterocellular signaling.
Collapse
Affiliation(s)
- Ralf Erkens
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Amanda Brum
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Dragos Duse
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hans Erik Bøtker
- Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Shear Stress and RBC-NOS Serine1177 Phosphorylation in Humans: A Dose Response. Life (Basel) 2021; 11:life11010036. [PMID: 33429979 PMCID: PMC7828091 DOI: 10.3390/life11010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
Red blood cells (RBC) express a nitric oxide synthase isoform (RBC-NOS) that appears dependent on shear stress for Serine1177 phosphorylation. Whether this protein is equally activated by varied shears in the physiological range is less described. Here, we explored RBC-NOS Serine1177 phosphorylation in response to shear stress levels reflective of in vivo conditions. Whole blood samples were exposed to specific magnitudes of shear stress (0.5, 1.5, 4.5, 13.5 Pa) for discrete exposure times (1, 10, 30 min). Thereafter, RBC-NOS Serine1177 phosphorylation was measured utilising immunofluorescence labelling. Shear stress exposure at 0.5, 1.5, and 13.5 Pa significantly increased RBC-NOS Serine1177 phosphorylation following 1 min (p < 0.0001); exposure to 4.5 Pa had no effect after 1 min. RBC-NOS Serine1177 phosphorylation was significantly increased following 10 min at each magnitude of shear stress (0.5, 1.5, 13.5 Pa, p < 0.0001; 4.5 Pa, p = 0.0042). Shear stress exposure for 30 min significantly increased RBC-NOS Serine1177 phosphorylation at 0.5 Pa and 13.5 Pa (p < 0.0001). We found that RBC-NOS phosphorylation via shear stress is non-linear and differs for a given magnitude and duration of exposure. This study provides a new understanding of the discrete relation between RBC-NOS and shear stress.
Collapse
|
11
|
Hervig TA, Doughty HA, Cardigan RA, Apelseth TO, Hess JR, Noorman F, Bohoněk M, Yazer MH, Lu J, Wendel S, Sparrow RL. Re-introducing whole blood for transfusion: considerations for blood providers. Vox Sang 2020; 116:167-174. [PMID: 32996604 DOI: 10.1111/vox.12998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022]
Abstract
Whole blood is the original blood preparation but disappeared from the blood bank inventories in the 1980s following the advent of component therapy. In the early 2000s, both military and civilian practice called for changes in the transfusion support for massive haemorrhage. The 'clear fluid' policy was abandoned and replaced by early balanced transfusion of platelets, plasma and red cells. Whole blood is an attractive alternative to multi-component therapy, which offers reduced hemodilution, lower donor exposure and simplified logistics. However, the potential for wider re-introduction of whole blood requires re-evaluation of haemolysins, storage conditions and shelf-life, the need for leucocyte depletion/ pathogen reduction and inventory management for blood providers. This review addresses these questions and calls for research to define the optimal whole blood product and the indications for its use.
Collapse
Affiliation(s)
- Tor A Hervig
- Blood Bank, Haugesund hospital, Haugesund, Norway
| | | | | | - Torunn O Apelseth
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - John R Hess
- Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Femke Noorman
- Quality, Research and Development, Military Blood Bank, Leiden, Netherlands
| | - Miloš Bohoněk
- Hematology, Biochemistry and Blood Transfusion, Central Military Hospital Prague, Prague, Czech Republic
| | - Mark H Yazer
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jia Lu
- Defence Medical & Environmental Research Institute, DSO National Laboratories (Kent Ridge), Singapore City, Singapore
| | | | - Rosemary L Sparrow
- Epidemiology and Preventive Medicine, Monash University, Melbourne, Vic, Australia
| | | |
Collapse
|
12
|
Wischmann P, Kuhn V, Suvorava T, Muessig JM, Fischer JW, Isakson BE, Haberkorn SM, Flögel U, Schrader J, Jung C, Cortese-Krott MM, Heusch G, Kelm M. Anaemia is associated with severe RBC dysfunction and a reduced circulating NO pool: vascular and cardiac eNOS are crucial for the adaptation to anaemia. Basic Res Cardiol 2020; 115:43. [PMID: 32533377 PMCID: PMC7293199 DOI: 10.1007/s00395-020-0799-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Anaemia is frequently present in patients with acute myocardial infarction (AMI) and contributes to an adverse prognosis. We hypothesised that, besides reduced oxygen carrying capacity, anaemia is associated with (1) red blood cell (RBC) dysfunction and a reduced circulating nitric oxide (NO) pool, (2) compensatory enhancement of vascular and cardiac endothelial nitric oxide synthase (eNOS) activity, and (3) contribution of both, RBC dysfunction and reduced circulatory NO pool to left ventricular (LV) dysfunction and fatal outcome in AMI. In mouse models of subacute and chronic anaemia from repeated mild blood loss the circulating NO pool, RBC, cardiac and vascular function were analysed at baseline and in reperfused AMI. In anaemia, RBC function resulted in profound changes in membrane properties, enhanced turnover, haemolysis, dysregulation of intra-erythrocytotic redox state, and RBC-eNOS. RBC from anaemic mice and from anaemic patients with acute coronary syndrome impaired the recovery of contractile function of isolated mouse hearts following ischaemia/reperfusion. In anaemia, the circulating NO pool was reduced. The cardiac and vascular adaptation to anaemia was characterised by increased arterial eNOS expression and activity and an eNOS-dependent increase of end-diastolic left ventricular volume. Endothelial dysfunction induced through genetic or pharmacologic reduction of eNOS-activity abrogated the anaemia-induced cardio-circulatory compensation. Superimposed AMI was associated with decreased survival. In summary, moderate blood loss anaemia is associated with severe RBC dysfunction and reduced circulating NO pool. Vascular and cardiac eNOS are crucial for the cardio-circulatory adaptation to anaemia. RBC dysfunction together with eNOS dysfunction may contribute to adverse outcomes in AMI.
Collapse
Affiliation(s)
- Patricia Wischmann
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Viktoria Kuhn
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Tatsiana Suvorava
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Johanna M Muessig
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Jens W Fischer
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Department of Pharmacology and Clinical Pharmacology, Heinrich-Heine University, Düsseldorf, Germany
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Centre, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sebastian M Haberkorn
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Ulrich Flögel
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Jung
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Miriam M Cortese-Krott
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany.,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Centre, University of Essen Medical School, Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonary Diseases, and Vascular Medicine, Medical Faculty, CARID Cardiovascular Research Institute of Duesseldorf, Heinrich Heine University of Duesseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany. .,Division of Cardiology, Pulmonary Diseases and Vascular Medicine, University Hospital of Duesseldorf, Düsseldorf, Germany. .,Cardiovascular Research Laboratory, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
13
|
Bahadoran Z, Carlström M, Mirmiran P, Ghasemi A. Nitric oxide: To be or not to be an endocrine hormone? Acta Physiol (Oxf) 2020; 229:e13443. [PMID: 31944587 DOI: 10.1111/apha.13443] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 01/02/2023]
Abstract
Nitric oxide (NO), a highly reactive gasotransmitter, is critical for a number of cellular processes and has multiple biological functions. Due to its limited lifetime and diffusion distance, NO has been mainly believed to act in autocrine/paracrine fashion. The increasingly recognized effects of pharmacologically delivered and endogenous NO at a distant site have changed the conventional wisdom and introduced NO as an endocrine signalling molecule. The notion is greatly supported by the detection of a number of NO adducts and their circulatory cycles, which in turn contribute to the transport and delivery of NO bioactivity, remote from the sites of its synthesis. The existence of endocrine sites of synthesis, negative feedback regulation of biosynthesis, integrated storage and transport systems, having an exclusive receptor, that is, soluble guanylyl cyclase (sGC), and organized circadian rhythmicity make NO something beyond a simple autocrine/paracrine signalling molecule that could qualify for being an endocrine signalling molecule. Here, we discuss hormonal features of NO from the classical endocrine point of view and review available knowledge supporting NO as a true endocrine hormone. This new insight can provide a new framework within which to reinterpret NO biology and its clinical applications.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mattias Carlström
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center Research Institute for Endocrine Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
14
|
Bae CR, Hino J, Hosoda H, Son C, Makino H, Tokudome T, Tomita T, Hosoda K, Miyazato M, Kangawa K. Adipocyte-specific expression of C-type natriuretic peptide suppresses lipid metabolism and adipocyte hypertrophy in adipose tissues in mice fed high-fat diet. Sci Rep 2018; 8:2093. [PMID: 29391544 PMCID: PMC5794866 DOI: 10.1038/s41598-018-20469-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023] Open
Abstract
C-type natriuretic peptide (CNP) is expressed in diverse tissues, including adipose and endothelium, and exerts its effects by binding to and activating its receptor, guanylyl cyclase B. Natriuretic peptides regulate intracellular cGMP and phosphorylated vasodilator-stimulated phosphoprotein (VASP). We recently revealed that overexpression of CNP in endothelial cells protects against high-fat diet (HFD)-induced obesity in mice. Given that endothelial CNP affects adipose tissue during obesity, CNP in adipocytes might directly regulate adipocyte function during obesity. Therefore, to elucidate the effect of CNP in adipocytes, we assessed 3T3-L1 adipocytes and transgenic (Tg) mice that overexpressed CNP specifically in adipocytes (A-CNP). We found that CNP activates the cGMP–VASP pathway in 3T3-L1 adipocytes. Compared with Wt mice, A-CNP Tg mice showed decreases in fat weight and adipocyte hypertrophy and increases in fatty acid β-oxidation, lipolysis-related gene expression, and energy expenditure during HFD-induced obesity. These effects led to decreased levels of the macrophage marker F4/80 in the mesenteric fat pad and reduced inflammation. Furthermore, A-CNP Tg mice showed improved glucose tolerance and insulin sensitivity, which were associated with enhanced insulin-stimulated Akt phosphorylation. Our results suggest that CNP overexpression in adipocytes protects against adipocyte hypertrophy, excess lipid metabolism, inflammation, and decreased insulin sensitivity during HFD-induced obesity.
Collapse
Affiliation(s)
- Cho-Rong Bae
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | - Hiroshi Hosoda
- Departments of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Cheol Son
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Omics Research Center and National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hisashi Makino
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takeshi Tokudome
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tsutomu Tomita
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kiminori Hosoda
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| |
Collapse
|
15
|
Erythrocyte Alterations and Increased Cardiovascular Risk in Chronic Renal Failure. Nephrourol Mon 2017. [DOI: 10.5812/numonthly.45866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Carelli-Alinovi C, Dinarelli S, Girasole M, Misiti F. Vascular dysfunction-associated with Alzheimer’s disease. Clin Hemorheol Microcirc 2017; 64:679-687. [DOI: 10.3233/ch-168047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Cristiana Carelli-Alinovi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, School of Medicine, Rome, Italy
| | - Simone Dinarelli
- Institute for the Structure of the Matter (ISM), National Research Council (CNR), Rome, Italy
| | - Marco Girasole
- Institute for the Structure of the Matter (ISM), National Research Council (CNR), Rome, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Latium, V. S. Angelo Th., Polo Didattico della Folcara, Cassino (FR), Italy
| |
Collapse
|
17
|
Tsikas D. WITHDRAWN: Editor's Forum. Redox Biol 2015; 5:151-152. [DOI: 10.1016/j.redox.2015.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
18
|
|
19
|
The red blood cell: a new key player in cardiovascular homoeostasis? Focus on the nitric oxide pathway. Biochem Soc Trans 2015; 42:996-1000. [PMID: 25109992 DOI: 10.1042/bst20140122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RBCs (red blood cells) have a fundamental role in the regulation of vascular homoeostasis thanks to the ability of these cells to carry O2 (oxygen) between respiratory surfaces and metabolizing tissues and to release vasodilator compounds, such as ATP and NO (nitric oxide), in response to tissue oxygenation. More recently it has been shown that RBCs are also able to produce NO endogenously as they express a functional NOS (nitric oxide synthase), similar to the endothelial isoform. In addition, RBCs carry important enzymes and molecules involved in L-arginine metabolism, such as arginase, NO synthesis inhibitors and the cationic amino acid transporters. Altogether these findings strongly support the role of these cells as producers, vehicles and scavengers of NO, therefore affecting several physiological processes such as blood rheology and cell adhesion. Consequently, the importance of alterations in the L-arginine/NO metabolic pathway induced by specific conditions, e.g. oxidative stress, in different pathological settings have been investigated. In the present review we discuss the role of RBCs in vascular homoeostasis, focusing our attention on the importance of the NO pathway alterations in cardiovascular diseases and their relationship to major risk factors.
Collapse
|
20
|
Harisa GI, Mariee AD, Abo-Salem OM, Attiaa SM. Erythrocyte nitric oxide synthase as a surrogate marker for mercury-induced vascular damage: the modulatory effects of naringin. ENVIRONMENTAL TOXICOLOGY 2014; 29:1314-1322. [PMID: 23650045 DOI: 10.1002/tox.21862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
In this study, endothelial nitric oxide synthase activity and nitric oxide (NO) production by human erythrocytes in the presence and absence of mercuric chloride (HgCl2 ), L-arginine (L-ARG), N ω- nitro-L-arginine methyl ester (L-NAME), and naringin (NAR) were investigated. In addition, the levels of reduced glutathione (GSH) and related enzymes were estimated in erythrocytes hemolysate. The protein carbonyl content (PCC) and thiobarbituric acid-reactive substances (TBARS) levels were also determined. The results of this study revealed that the treatment of erythrocytes with either HgCl2 or L-NAME induced a significant decrease in NOS activity and nitrite levels compared with control cells. Furthermore, mercury exposure significantly increased the levels of PCC and TBARS but reduced the GSH level. The activities of glucose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, and glutathione-S-transferase (GST) were inhibited. The exposure of erythrocytes to HgCl2 in combination with L-ARG, NAR, or both ameliorated the investigated parameters compared with erythrocytes incubated with HgCl2 alone. These results indicate that mercury exposure decreased both erythrocyte NOS activity and nitrite production, and that these parameters might be indicative of mercury exposure. The data also suggest that concomitant treatment with NAR can restore NO bioavailability through either its metal-chelating properties or its antioxidant activity.
Collapse
Affiliation(s)
- Gamaleldin I Harisa
- Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Biochemistry, College of Pharmacy, Al-Azhar University (Boys), Cairo, Egypt
| | | | | | | |
Collapse
|
21
|
Moyes AJ, Khambata RS, Villar I, Bubb KJ, Baliga RS, Lumsden NG, Xiao F, Gane PJ, Rebstock AS, Worthington RJ, Simone MI, Mota F, Rivilla F, Vallejo S, Peiró C, Sánchez Ferrer CF, Djordjevic S, Caulfield MJ, MacAllister RJ, Selwood DL, Ahluwalia A, Hobbs AJ. Endothelial C-type natriuretic peptide maintains vascular homeostasis. J Clin Invest 2014; 124:4039-51. [PMID: 25105365 PMCID: PMC4151218 DOI: 10.1172/jci74281] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 06/19/2014] [Indexed: 01/13/2023] Open
Abstract
The endothelium plays a fundamental role in maintaining vascular homeostasis by releasing factors that regulate local blood flow, systemic blood pressure, and the reactivity of leukocytes and platelets. Accordingly, endothelial dysfunction underpins many cardiovascular diseases, including hypertension, myocardial infarction, and stroke. Herein, we evaluated mice with endothelial-specific deletion of Nppc, which encodes C-type natriuretic peptide (CNP), and determined that this mediator is essential for multiple aspects of vascular regulation. Specifically, disruption of CNP leads to endothelial dysfunction, hypertension, atherogenesis, and aneurysm. Moreover, we identified natriuretic peptide receptor-C (NPR-C) as the cognate receptor that primarily underlies CNP-dependent vasoprotective functions and developed small-molecule NPR-C agonists to target this pathway. Administration of NPR-C agonists promotes a vasorelaxation of isolated resistance arteries and a reduction in blood pressure in wild-type animals that is diminished in mice lacking NPR-C. This work provides a mechanistic explanation for genome-wide association studies that have linked the NPR-C (Npr3) locus with hypertension by demonstrating the importance of CNP/NPR-C signaling in preserving vascular homoeostasis. Furthermore, these results suggest that the CNP/NPR-C pathway has potential as a disease-modifying therapeutic target for cardiovascular disorders.
Collapse
Affiliation(s)
- Amie J. Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Rayomand S. Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Inmaculada Villar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Kristen J. Bubb
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Reshma S. Baliga
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Natalie G. Lumsden
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Fang Xiao
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Paul J. Gane
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Anne-Sophie Rebstock
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Roberta J. Worthington
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Michela I. Simone
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Filipa Mota
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Fernando Rivilla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Susana Vallejo
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Concepción Peiró
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Carlos F. Sánchez Ferrer
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Snezana Djordjevic
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Mark J. Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Raymond J. MacAllister
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - David L. Selwood
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| | - Adrian J. Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom. Wolfson Institute for Biomedical Research, University College London, London, United Kingdom. División de Cirugía Pediátrica, Hospital Universitario Ramón y Cajal, Madrid, Spain. Departamento de Farmacologia, Facultad de Medicina, Universidad Autonoma de Madrid, Madrid, Spain. Structural and Molecular Biology and Clinical Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
22
|
Savu O, Iosif L, Bradescu OM, Serafinceanu C, Papacocea R, Stoian I. L-arginine catabolism is driven mainly towards nitric oxide synthesis in the erythrocytes of patients with type 2 diabetes at first clinical onset. Ann Clin Biochem 2014; 52:135-43. [PMID: 24675988 DOI: 10.1177/0004563214531739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We investigated the l-arginine (l-Arg)-nitric oxide (NO) metabolic pathway in the erythrocytes (RBCs) and plasma of subjects with type 2 diabetes at first clinical onset. METHODS RBCs and plasma were collected from 26 patients with type 2 diabetes at first clinical onset and 19 age-matched non-diabetes subjects as controls. l-Arg content was assayed by capillary electrophoresis. We measured arginase activity and nitrate/nitrite concentrations by spectrophotometry, and glycosylated haemoglobin (HbA1c) by standardized immunoturbidimetry. RESULTS We found that, when compared with controls, l-Arg content was similar in RBCs while decreased in the plasma of patients with type 2 diabetes. Interestingly, arginase activity was lower in RBCs and increased in plasma of patients with diabetes. NO production was higher in RBCs in patients with type 2 diabetes, while no difference was found in the plasma of our subjects. CONCLUSIONS l-Arg catabolism is driven mainly towards NO synthesis in RBCs of patients with type 2 diabetes at first clinical onset. The decreased RBC arginase activity could be considered a potential mechanism of increased RBC NO production in early diabetes. Therefore, the RBC pool would represent a potentially compensatory intravascular compartment for endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Octavian Savu
- National Institute of Diabetes, Nutrition and Metabolic Diseases 'N.C. Paulescu', Bucharest, Romania
| | | | - Ovidiu Marius Bradescu
- National Institute of Diabetes, Nutrition and Metabolic Diseases 'N.C. Paulescu', Bucharest, Romania
| | - Cristian Serafinceanu
- National Institute of Diabetes, Nutrition and Metabolic Diseases 'N.C. Paulescu', Bucharest, Romania
| | - Raluca Papacocea
- Physiology Department, University of Medicine and Pharmacy 'Carol Davila', Bucharest, Romania
| | - Irina Stoian
- R&D Irist Labmed SRL, Bucharest, Romania Biochemistry Department, University of Medicine and Pharmacy 'Carol Davila', Bucharest, Romania
| |
Collapse
|
23
|
Cortese-Krott MM, Kelm M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biol 2014; 2:251-8. [PMID: 24494200 PMCID: PMC3909820 DOI: 10.1016/j.redox.2013.12.027] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 02/06/2023] Open
Abstract
Red blood cells (RBC) have been considered almost exclusively as a transporter of metabolic gases and nutrients for the tissues. It is an accepted dogma that RBCs take up and inactivate endothelium-derived NO via rapid reaction with oxyhemoglobin to form methemoglobin and nitrate, thereby limiting NO available for vasodilatation. Yet it has also been shown that RBCs not only act as "NO sinks", but exert an erythrocrine function - i.e an endocrine function of RBC - by synthesizing, transporting and releasing NO metabolic products and ATP, thereby potentially controlling systemic NO bioavailability and vascular tone. Recent work from our and others laboratory demonstrated that human RBCs carry an active type 3, endothelial NO synthase (eNOS), constitutively producing NO under normoxic conditions, the activity of which is compromised in patients with coronary artery disease. In this review we aim to discuss the potential role of red cell eNOS in RBC signaling and function, and to critically revise evidence to this date showing a role of non-endothelial circulating eNOS in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Abstract
S-nitrosothiols (RSNO) are involved in post-translational modifications of many proteins analogous to protein phosphorylation. In addition, RSNO have many physiological roles similar to nitric oxide ((•)NO), which are presumably involving the release of (•)NO from the RSNO. However, the much longer life span in biological systems for RSNO than (•)NO suggests a dominant role for RSNO in mediating (•)NO bioactivity. RSNO are detected in plasma in low nanomolar levels in healthy human subjects. These RSNO are believed to be redirecting the (•)NO to the vasculature. However, the mechanism for the formation of RSNO in vivo has not been established. We have reviewed the reactions of (•)NO with oxygen, metalloproteins, and free radicals that can lead to the formation of RSNO and have evaluated the potential for each mechanism to provide a source for RSNO in vivo.
Collapse
Affiliation(s)
- Enika Nagababu
- Molecular Dynamics Section, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Rm No. 5B131, Baltimore, MD, 21224, USA,
| | | |
Collapse
|
25
|
Nitric oxide synthetic pathway in red blood cells is impaired in coronary artery disease. PLoS One 2013; 8:e66945. [PMID: 23940508 PMCID: PMC3734222 DOI: 10.1371/journal.pone.0066945] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/13/2013] [Indexed: 11/19/2022] Open
Abstract
Background All the enzymatic factors/cofactors involved in nitric oxide (NO) metabolism have been recently found in red blood cells. Increased oxidative stress impairs NO bioavailability and has been described in plasma of coronary artery disease (CAD) patients. The aim of the study was to highlight a potential dysfunction of the metabolic profile of NO in red blood cells and in plasma from CAD patients compared with healthy controls. Methods We determined L-arginine/NO pathway by liquid-chromatography tandem mass spectrometry and high performance liquid chromatography methods. The ratio of oxidized and reduced forms of glutathione, as index of oxidative stress, was measured by liquid-chromatography tandem mass spectrometry method. NO synthase expression and activity were evaluated by immunofluorescence staining and ex-vivo experiments of L-[15N2]arginine conversion to L-[15N]citrulline respectively. Results Increased amounts of asymmetric and symmetric dimethylarginines were found both in red blood cells and in plasma of CAD patients in respect to controls. Interestingly NO synthase expression and activity were reduced in CAD red blood cells. In contrast, oxidized/reduced glutathione ratio was increased in CAD and was associated to arginase activity. Conclusion Our study analyzed for the first time the whole metabolic pathway of L-arginine/NO, both in red blood cells and in plasma, highlighting an impairment of NO pathway in erythrocytes from CAD patients, associated with decreased NO synthase expression/activity and increased oxidative stress.
Collapse
|
26
|
Wood KC, Cortese-Krott MM, Kovacic JC, Noguchi A, Liu VB, Wang X, Raghavachari N, Boehm M, Kato GJ, Kelm M, Gladwin MT. Circulating blood endothelial nitric oxide synthase contributes to the regulation of systemic blood pressure and nitrite homeostasis. Arterioscler Thromb Vasc Biol 2013; 33:1861-71. [PMID: 23702660 PMCID: PMC3864011 DOI: 10.1161/atvbaha.112.301068] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/09/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Mice genetically deficient in endothelial nitric oxide synthase (eNOS(-/-)) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. Although the current paradigm holds that this bioactivity derives specifically from the expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. APPROACH AND RESULTS To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted wild-type and eNOS(-/-) mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NG-nitroarginine methyl ester and repristinated by the NOS substrate L-arginine and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert (14)C-arginine into (14)C-citrulline in NOS-dependent fashion. CONCLUSIONS These are the first studies to definitively establish a role for a blood-borne eNOS, using cross-transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect.
Collapse
Affiliation(s)
- Katherine C. Wood
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Miriam M. Cortese-Krott
- Cardiovascular Research Laboratory, Department of Internal Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich-Heine-University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Jason C. Kovacic
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
- Cardiovascular Institute, Mount Sinai Hospital, New York, NY, USA
| | - Audrey Noguchi
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Virginia B. Liu
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Xunde Wang
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Nalini Raghavachari
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Manfred Boehm
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Gregory J. Kato
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Malte Kelm
- Cardiovascular Research Laboratory, Department of Internal Medicine, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich-Heine-University of Düsseldorf, D-40225 Düsseldorf, Germany
| | - Mark T. Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Zhu XY, Li P, Yang YB, Liu ML. Xuezhikang, extract of red yeast rice, improved abnormal hemorheology, suppressed caveolin-1 and increased eNOS expression in atherosclerotic rats. PLoS One 2013; 8:e62731. [PMID: 23675421 PMCID: PMC3651163 DOI: 10.1371/journal.pone.0062731] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 03/24/2013] [Indexed: 11/25/2022] Open
Abstract
Background Xuezhikang is the extract of red yeast rice, which has been widely used for the management of atherosclerotic disease, but the molecular basis of its antiatherosclerotic effects has not yet been fully identified. Here we investigated the changes of eNOS in vascular endothelia and RBCs, eNOS regulatory factor Caveolin-1 in endothelia, and hemorheological parameters in atherosclerotic rats to explore the protective effects of Xuezhikang. Methodology/Principal Findings Wistar rats were divided into 4 groups (n = 12/group) group C, controls; group M, high-cholesterol diet (HCD) induced atherosclerotic models; group X, HCD+Xuezhikang; and group L, HCD +Lovastatin. In group X, Xuezhikang inhibited oxidative stress, down-regulated caveolin-1 in aorta wall (P<0.05), up-regulated eNOS expression in vascular endothelia and erythrocytes (P<0.05), increased NOx (nitrite and nitrate) in plasma and cGMP in erythrocyte plasma and aorta wall (P<0.05), increased erythrocyte deformation index (EDI), and decreased whole blood viscosity and plasma viscosity (P<0.05), with the improvement of arterial pathology. Conclusions/Significance Xuezhikang up-regulated eNOS expression in vascular endothelia and RBCs, increased plasma NOx and improved abnormal hemorheology in high cholesterol diet induced atherosclerotic rats. The elevated eNOS/NO and improved hemorheology may be beneficial to atherosclerotic disease.
Collapse
Affiliation(s)
- Xin-Yuan Zhu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | | | | | | |
Collapse
|
28
|
Jiang K, Shah K, Daniels L, Maisel AS. Review on natriuretic peptides: where we are, where we are going. ACTA ACUST UNITED AC 2013; 2:1137-53. [PMID: 23496424 DOI: 10.1517/17530059.2.10.1137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Tremendous advances have been made in our understanding of the pathophysiology and treatment of congestive heart failure. However, diagnosis of the disease still remains difficult, even with a comprehensive physical examination. Symptoms such as dyspnea are nonspecific and insensitive indicators for heart failure, which can go largely undetected. Several studies have suggested the need for new diagnostic capabilities, especially with the increasing prevalence of heart failure in the US. The discovery of natriuretic peptides as diagnostic biomarkers has been one of the most critical advances for the management of heart failure. Both B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide have the potential to diagnose heart failure, assess prognostic risk of rehospitalization and mortality, and even help guide treatment. Their relative cost-effectiveness and availability have also facilitated their acceptance into many emergency departments, clinics and in-patient units as standard care when evaluating patients with suspected heart failure. Our understanding of the natriuretic peptide system is still in its infancy, but natriuretic peptides have emerged as important diagnostic and prognostic tools that have generated interest in finding broader applications for their use. OBJECTIVE The purpose of this review is to discuss the clinical approaches and future applications of natriuretic peptides in diagnosing and managing treatment of congestive heart failure. METHOD A comprehensive review of studies to assess the utility of natriuretic peptides for diagnosis and prognosis of heart failure and other conditions. CONCLUSION Natriuretic peptides are powerful tools to aid the physician in the diagnosis, prognosis and management of heart failure in both in-patient and out-patient settings. However, natriuretic peptides should be used as an adjunct test as many circumstances can also influence changes in natriuretic peptide levels.
Collapse
Affiliation(s)
- Kevin Jiang
- VA San Diego Medical Center and the University of California, Division of Cardiology, Department of Medicine, VAMC, 3350 La Jolla Village Dr, San Diego, CA 92161, USA +1 858 552 8585 ; +1 858 552 7490 ;
| | | | | | | |
Collapse
|
29
|
Ghyasi R, Mohammadi M, Badalzadeh R, Rashidi B, Sepehri G. The effect of mebudipine on cardiac function and activity of the myocardial nitric oxide system in ischaemia-reperfusion injury in rats. Cardiovasc J Afr 2013; 22:319-23. [PMID: 22159320 PMCID: PMC3721931 DOI: 10.5830/cvja-2010-078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Accepted: 08/31/2010] [Indexed: 11/17/2022] Open
Abstract
Objectives Previous studies have suggested that failure of the synthesis of nitric oxide is involved in the pathophysiology of myocardial ischaemia–reperfusion injury. In this study, we investigated the effect of mebudipine, a new dihydropyridine calcium channel blocker, on cardiac function and activity of the myocardial nitric oxide system in ischaemia–reperfusion injury in isolated rat hearts. Methods Forty male Wistar rats (250–300 g) were divided into four groups (n = 10): sham, control, vehicle and drug groups. The animals were anesthetised with sodium pentobarbital (6 mg/kg intraperitoneal). The hearts were quickly removed, mounted on a Longendorff apparatus and perfused with Krebs-Henseleit solution under constant pressure at 37°C. After 20 min stabilisation period, the ischaemic groups received 30 min global ischaemia and 120 min reperfusion. For the drug and vehicle groups, before ischaemia the hearts were perfused with mebudipine (10-3 µM) or ethanol-enriched solution (0.01%) for 25 min, respectively. Myocardial function, and creatine kinase, lactate dehydogenase and total nitric oxide metabolite (nitrite and nitrate) levels were analysed. Results Cardiac functions had recovered significantly in the mebudipine group (p < 0.01). Furthermore, mebudipine remarkably reduced the levels of lactate dehydogenase and creatine kinase in the coronary effluent and increased myocardial nitric oxide metabolite levels compared with the control group. Conclusion Our results indicate that mebudipine reduced the intensity of myocardial ischaemia–reperfusion injury, and that activation of the myocardial nitric oxide system played an important role in this regard.
Collapse
Affiliation(s)
- R Ghyasi
- Physiology and Neuroscience Research Centre, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | | | | |
Collapse
|
30
|
Horn P, Cortese-Krott MM, Amabile N, Hundsdörfer C, Kröncke KD, Kelm M, Heiss C. Circulating microparticles carry a functional endothelial nitric oxide synthase that is decreased in patients with endothelial dysfunction. J Am Heart Assoc 2012; 2:e003764. [PMID: 23525410 PMCID: PMC3603231 DOI: 10.1161/jaha.112.003764] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Microparticles (MPs) are circulating membrane particles of less than a micrometer in diameter shed from endothelial and blood cells. Recent literature suggests that MPs are not just functionally inert cell debris but may possess biological functions and mediate the communication between vascular cells. As a significant proportion of MPs originate from platelets and endothelial cells, we hypothesized that MPs may harbor functional enzymes including an endothelial NO synthase (eNOS). Methods and Results Using immunoprecipitation and Western blot analysis, we found that human circulating MPs carry an eNOS. Ca2+ and l‐arginine‐dependent NOS activity of crude enzyme extract from MPs was determined by measuring the conversion of [3H]‐L‐arginine to [3H]‐citrulline and NOS‐dependent nitrite production. NOS‐dependent NO production in intact MPs was assessed by the NO‐specific fluorescent probe MNIP‐Cu. In patients with cardiovascular disease, endothelial dysfunction was associated with an increase in the total number of circulating MPs as well as a significant decrease in the expression and activity of eNOS in MPs. No difference in reactive oxygen species was noted in MPs isolated from either group. Conclusions Our data further support the concept that circulating MPs may not only retain phenotypic markers but also preserve the functionality of enzymes of the cells they originate from, including eNOS.
Collapse
Affiliation(s)
- Patrick Horn
- Division of Cardiology, Pulmonology, and Vascular Medicine, University Duesseldorf, Duesseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease. Blood 2012; 120:4229-37. [PMID: 23007404 DOI: 10.1182/blood-2012-07-442277] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the nitric oxide (NO)-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Using immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-(3)H-arginine to L-(3)H-citrulline in a Ca(2+)/calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform, the activity of which is compromised in patients with coronary artery disease.
Collapse
|
32
|
Kanias T, Wang L, Lippert A, Kim-Shapiro DB, Gladwin MT. Red blood cell endothelial nitric oxide synthase does not modulate red blood cell storage hemolysis. Transfusion 2012; 53:981-9. [PMID: 22897637 DOI: 10.1111/j.1537-2995.2012.03850.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The red blood cell (RBC) endothelial nitric oxide synthase (eNOS) has been shown to regulate intrinsic RBC rheologic properties, such as membrane deformability, suggesting that a functional eNOS could be important in RBC viability and function during storage. This study examines the correlation between RBC eNOS deficiency and the propensity of RBCs to hemolyze under selected stress conditions including prolonged hypothermic storage. STUDY DESIGN AND METHODS Fresh or stored RBCs from normal and eNOS knockout (KO) mice or from healthy human volunteers were subjected to selected hemolytic stress conditions including mechanical stress hemolysis, osmotic stress hemolysis, and oxidation stress hemolysis and evaluated during standard storage in CPDA-1 solutions. RESULTS Fresh RBCs from normal and eNOS KO mice demonstrated comparable susceptibility to hemolysis triggered by mechanical stress (mechanical fragility index 6.5 ± 0.5 in eNOS KO vs. 6.4 ± 0.4 for controls; n = 8-9), osmotic stress, and oxidative stress. Additionally, RBCs from both mouse groups exhibited similar hemolytic profile at the end of 14-day hypothermic storage, analogous to 42 days of human RBC storage. Storage of human RBCs (28 days in CPDA-1) in the presence of NOS cofactors (L-arginine and tetrahydro-L-biopterin) or inhibitor (N(5) -[imino(methylamino)methyl]-L-ornithine monoacetate) did not affect cell recovery or hemolytic response to the selected stressors. CONCLUSION These studies suggest that RBC eNOS does not modulate susceptibility to hemolysis in response to selected stress conditions or prolonged hypothermic storage. Other strategies to increase nitric oxide (NO) bioactivity after prolonged storage utilizing NOS-independent pathways such as the nitrate-nitrite-NO pathway may prove a more promising approach.
Collapse
Affiliation(s)
- Tamir Kanias
- Vascular Medicine Institute and the Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Abstract
Several apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered. This review describes model predictions and relevant experimental data with respect to several signaling pathways in the microcirculation that involve NO.
Collapse
|
36
|
Mak MC, Cheing GL. Immediate Effects of Monochromatic Infrared Energy on Microcirculation in Healthy Subjects. Photomed Laser Surg 2012; 30:193-9. [DOI: 10.1089/pho.2011.3012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michael C.H. Mak
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Physiotherapy Department, Tuen Mun Hospital, Hong Kong SAR, China
| | - Gladys L.Y. Cheing
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
37
|
Misiti F, Carelli-Alinovi C, Sampaolese B, Giardina B. β-amyloid decreases detectable endothelial nitric oxide synthase in human erythrocytes: a role for membrane acetylcholinesterase. Cell Biochem Funct 2012; 30:474-9. [PMID: 22431227 DOI: 10.1002/cbf.2822] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/17/2012] [Accepted: 02/28/2012] [Indexed: 01/08/2023]
Abstract
Until few years ago, many studies of Alzheimer's disease investigated the effects of this syndrome in the central nervous system. Only recently, the detection of amyloid beta peptide (Aβ) in the blood has evidenced the necessity to extend studies on extraneuronal cells, particularly on erythrocytes. Aβ is also present in brain capillaries, where it interacts with the erythrocytes, inducing several metabolic and functional alterations. Recently, functionally active endothelial type nitric oxide synthase (eNOS) was discovered in human erythrocytes. The goal of the present study was to evidence the effect of Aβ on erythrocyte eNOS. We found that Aβ following to 24-h exposure causes a decrease in the immune staining of erythrocyte eNOS. Concurrently, Aβ alters erythrocyte cell morphology, decreases nitrites and nitrates levels, and affects membrane acetylcholinesterase activity. Propidium, an acetylcholinesterase inhibitor, was able to reverse the effects elicited by Aβ. These events could contribute to the vascular alterations associated with Alzheimer's disease disease.
Collapse
Affiliation(s)
- Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Italy.
| | | | | | | |
Collapse
|
38
|
Matsuura C, Moraes TL, Barbosa JB, Moss MB, Siqueira MAS, Mann GE, Neto ML, Brunini TMC, Mendes-Ribeiro AC. Nitric oxide activity in platelets of dengue haemorrhagic fever patients: the apparent paradoxical role of ADMA and l-NMMA. Trans R Soc Trop Med Hyg 2012; 106:174-9. [PMID: 22284722 DOI: 10.1016/j.trstmh.2011.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 11/29/2022] Open
Abstract
Dengue haemorrhagic fever (DHF) is a prevalent acute disease that occurs in patients infected by an arbovirus in tropical and subtropical regions. We have previously shown increased intraplatelet nitric oxide (NO) production in patients with dengue fever associated with reduced platelet aggregation. In this study, l-arginine transport as well as expression and activity of nitric oxide synthase (NOS) isoforms in the presence or absence of l-arginine analogues were examined in 23 DHF patients. l-arginine transport and NOS activity in platelets were increased in patients with DHF compared with controls. However, platelet endothelial NOS (eNOS) and inducible (iNOS) protein levels did not differ between healthy controls and DHF patients. Endogenous or exogenous analogues did not inhibit platelet NOS activity from DHF patients. In contrast, endogenous l-arginine analogues [N(G)-monomethyl-l-arginine (l-NMMA) and asymmetric dimethylarginine (ADMA)] inhibited NOS activity in platelets from healthy subjects. These results show the first evidence that the intraplatelet l-arginine-NO pathway is activated in DHF patients. The lack of inhibition of NO formation in vitro by all l-arginine analogues tested in DHF platelets may suggest another mechanism by which NOS activity can be regulated.
Collapse
Affiliation(s)
- Cristiane Matsuura
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Av. 28 de Setembro 87, Rio de Janeiro 22551-030, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Horn P, Cortese-Krott MM, Keymel S, Kumara I, Burghoff S, Schrader J, Kelm M, Kleinbongard P. Nitric oxide influences red blood cell velocity independently of changes in the vascular tone. Free Radic Res 2011; 45:653-61. [PMID: 21480762 DOI: 10.3109/10715762.2011.574288] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nitric oxide (NO) plays a key role in regulation of vascular tone and blood flow. In the microcirculation blood flow is strongly dependent on red blood cells (RBC) deformability. In vitro NO increases RBC deformability. This study hypothesized that NO increases RBC velocity in vivo not only by regulating vascular tone, but also by modifying RBC deformability. The effects of NO on RBC velocity were analysed by intra-vital microscopy in the microcirculation of the chorioallantoic membrane (CAM) of the avian embryo at day 7 post-fertilization, when all vessels lack smooth muscle cells and vascular tone is not affected by NO. It was found that inhibition of enzymatic NO synthesis and NO scavenging decreased intracellular NO levels and avian RBC deformability in vitro. Injection of a NO synthase-inhibitor or a NO scavenger into the microcirculation of the CAM decreased capillary RBC velocity and deformation, while the diameter of the vessels remained constant. The results indicate that scavenging of NO and inhibition of NO synthesis decrease RBC velocity not only by regulating vascular tone but also by decreasing RBC deformability.
Collapse
Affiliation(s)
- Patrick Horn
- Division of Cardiology, Pneumology and Angiology, Medical Faculty of the Heinrich Heine University of Duesseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tsuda K. Roles of adiponectin and oxidative stress in the regulation of membrane microviscosity of red blood cells in hypertensive men-an electron spin resonance study. J Obes 2011; 2011:548140. [PMID: 20871823 PMCID: PMC2943124 DOI: 10.1155/2011/548140] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/18/2010] [Indexed: 02/07/2023] Open
Abstract
This study was undertaken to investigate possible relationships among plasma adiponectin, 8-iso-prostaglandin F2α (8-iso-PG F2α: an index of oxidative stress), and membrane fluidity (a reciprocal value of microviscosity) in hypertensive and normotensive men using an electron spin resonance-method. The order parameter (S) for the spin-label agent (5-nitroxide stearate) in red blood cell (RBC) membranes was higher in hypertensive men than in normotensive men, indicating that membrane fluidity was decreased in hypertension. Plasma adiponectin and NO metabolites levels were lower in hypertensive men than in normotensive men. In contrast, plasma 8-iso-PG F2α levels were increased in hypertensive men compared with normotensive men. Plasma adiponectin concentration was correlated with plasma NO-metabolites, and inversely correlated with plasma 8-iso-PG F2α. The order parameter (S) of RBCs was inversely correlated with plasma adiponectin and plasma NO metabolite levels, and positively correlated with plasma 8-iso-PG F2α, suggesting that the reduced membrane fluidity of RBCs might be associated with hypoadiponectinemia, endothelial dysfunction, and increased oxidative stress. In a multivariate regression analysis, adiponectin and 8-iso-PG F2α were significant determinants of membrane fluidity of RBCs after adjustment for general risk factors. These results suggest that adiponectin and oxidative stress might have a close correlation with rheologic behavior and microcirculation in hypertension.
Collapse
Affiliation(s)
- Kazushi Tsuda
- Cardiovascular and Metabolic Research Center, Kansai University of Health Sciences, Senn-nann-gunn, Kumatori-cho, Wakaba 2-11-1, Osaka 590-0482, Japan
- Division of Cardiology, Department of Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
- *Kazushi Tsuda:
| |
Collapse
|
41
|
Martins MA, Catta-Preta M, Mandarim-de-Lacerda CA, Aguila MB, Brunini TCM, Mendes-Ribeiro AC. High fat diets modulate nitric oxide biosynthesis and antioxidant defence in red blood cells from C57BL/6 mice. Arch Biochem Biophys 2010; 499:56-61. [PMID: 20450877 DOI: 10.1016/j.abb.2010.04.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 04/29/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
The consumption of a high fat (HF) diet is considered a risk factor for the development of obesity. On the other hand, a monounsaturated HF diet has beneficial cardiometabolic effects. Since nitric oxide (NO) modulates vascular homeostasis, we investigate whether HF diets that vary in fatty acid composition have a different effect on theL-arginine-NO pathway and oxidative stress in C57BL/6 mice red blood cells (RBC). The olive oil diet induced an activation of L-arginine transport compared to other diets. NO synthase (NOS) activity was increased in all unsaturated HF diets (olive, sunflower and canola oils). Moreover, the expression of endothelial NOS (eNOS) and inducible NOS (iNOS) was increased in the olive oil group. In contrast, NOS activity from the lard group was decreased associated with diminished l-arginine transport. Olive oil also induced superoxide dismutase activation. Inhibition of the L-arginine-NO pathway in the lard group could contribute to cardiovascular diseases, while unsaturated HF diets may have a protector effect via enhanced NO bioavailability.
Collapse
Affiliation(s)
- M A Martins
- Departamento de Farmacologia e Psicobiologia, Universidade do Estado do Rio de Janeiro, Instituto de Biologia, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Nitric oxide dysfunction in vascular endothelium and platelets: role in essential hypertension. J Hypertens 2009; 27:2310-20. [DOI: 10.1097/hjh.0b013e328330e89a] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Gkaliagkousi E, Corrigall V, Becker S, de Winter P, Shah A, Zamboulis C, Ritter J, Ferro A. Decreased platelet nitric oxide contributes to increased circulating monocyte-platelet aggregates in hypertension. Eur Heart J 2009; 30:3048-54. [DOI: 10.1093/eurheartj/ehp330] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
44
|
Venkateswaran L, Scaglia F, McLin V, Hertel P, Shchelochkov OA, Karpen S, Mahoney D, Yee DL. Ornithine transcarbamylase deficiency: a possible risk factor for thrombosis. Pediatr Blood Cancer 2009; 53:100-2. [PMID: 19343772 PMCID: PMC4869977 DOI: 10.1002/pbc.22016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ornithine transcarbamylase (OTC) deficiency is the most common urea cycle defect. Thromboembolic complications have not heretofore been linked with this diagnosis. We describe four patients with neonatal-onset OTC deficiency who developed vascular thromboses. One patient had arterial thrombosis; the rest developed venous thromboses. Multiple pro-thrombotic risk factors were identified. Low plasma arginine levels were observed in all patients at the time of thrombosis. Arginine deficiency and the resultant nitric oxide insufficiency may contribute to thrombotic risk. Careful normalization of plasma arginine and citrulline levels and increased surveillance for thrombotic complications should be considered in patients with OTC deficiency.
Collapse
Affiliation(s)
- Lakshmi Venkateswaran
- Department of Hematology/Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas 77030-2399, USA.
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Valerie McLin
- Department of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Paula Hertel
- Department of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Oleg A. Shchelochkov
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Saul Karpen
- Department of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Donald Mahoney
- Department of Hematology/Oncology, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| | - Donald L. Yee
- Department of Hematology/Oncology, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
45
|
Chen K, Pittman RN, Popel AS. Hemorrhagic shock and nitric oxide release from erythrocytic nitric oxide synthase: a quantitative analysis. Microvasc Res 2009; 78:107-18. [PMID: 19285090 PMCID: PMC2782400 DOI: 10.1016/j.mvr.2009.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 02/21/2009] [Accepted: 02/23/2009] [Indexed: 01/15/2023]
Abstract
A large loss of blood during hemorrhage can result in profound shock, a state of hypotension associated with hemodynamic abnormalities. One of the hypotheses to account for this collapse of homeostasis is that the production of nitric oxide (NO), a gas molecule that dilates blood vessels, is significantly impaired during hemorrhage, resulting in a mismatch between O(2) delivery and the metabolic activity in the tissues. NO can be released from multiple sources in the vasculature. Recent studies have shown that erythrocytes express functional endothelial nitric oxide synthase (NOS3), which potentially serves as an intraluminal NO source. NO delivery from this source is complex: erythrocytes are not only NO producers but also act as potent sinks because of the high affinity of NO for hemoglobin. To test our hypothesis that the loss of erythrocytic NOS3 during hemorrhage contributes to NO deficiency-related shock, we have constructed a multicellular computational model that simulates NO production and transport to allow us to quantify the loss of NO under different hemorrhagic conditions. Our model shows that: (1) during mild hemorrhage and subsequent hemodilution (hematocrit >30%), NO from this intraluminal source is only slightly decreased in the vascular smooth muscle, but the NO level is significantly reduced under severe hemorrhagic conditions (hematocrit <30%); (2) whether a significant amount of NO from this source can be delivered to vascular smooth muscle is strongly dependent on the existence of a protective mechanism for NO delivery; (3) if the expression level of NOS3 on erythrocytes is similar to that on endothelial cells, we estimate approximately 13 pM NO at the vascular smooth muscle from this source when such a protective mechanism is involved. This study provides a basis for detailed studies to characterize the impairment of NO release pathways during hemorrhage and yield important insights for the development of resuscitation methods.
Collapse
Affiliation(s)
- Kejing Chen
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, 613 Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
46
|
Abstract
Nitric oxide (NO) is a potent regulator of vascular tone and hemorheology. The signaling function of NO was largely unappreciated until approximately 30 years ago, when the endothelium-derived relaxing factor (EDRF) was identified as NO. Since then, NO from the endothelium has been considered the major source of NO in the vasculature and a contributor to the paracrine regulation of blood hemodynamics. Because NO is highly reactive, and its half-life in vivo is only a few seconds (even less in the bloodstream), any NO bioactivity derived from the intraluminal region has traditionally been considered insignificant. However, the availability and significance of NO signaling molecules derived from intraluminal sources, particularly erythrocytes, have gained attention in recent years. Multiple potential sources of NO bioactivity have been identified in the blood, but unresolved questions remain concerning these proposed sources and how the NO released via these pathways actually interacts with intravascular and extravascular targets. Here we review the hypotheses that have been put forward concerning blood-borne NO and its contribution to hemorheological properties and the regulation of vascular tone, with an emphasis on the quantitative aspects of these processes.
Collapse
Affiliation(s)
- Kejing Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
47
|
Intensive exercise induces changes of endothelial nitric oxide synthase pattern in human erythrocytes. Nitric Oxide 2008; 20:95-103. [PMID: 18977310 DOI: 10.1016/j.niox.2008.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/16/2008] [Accepted: 10/07/2008] [Indexed: 11/22/2022]
Abstract
The synthesis of nitric oxide (NO) in the circulation has been attributed exclusively to the vascular endothelium, especially to endothelial cells. Recently, it has been demonstrated that red blood cells (RBCs) express the endothelial NOS isoform (eNOS). In addition, RBCs have been assumed to metabolize large quantities of NO due to their high content of hemoglobin. In addition to its known action on endothelial cells, NO seems to possess cardiovascular effects via regulation of RBC deformability. To get a better understanding of the question whether RBCs endothelial NOS (eNOS) is affected by intensive exercise undertaken by elite athletes, the present study aimed to investigate eNOS content, activated eNOS, phosphorylation states of eNOS (eNOSSer(116), eNOSSer(1177), eNOSThr(495)) and nitrotyrosine in erythrocytes of international-class field hockey players following a two-day long intensive training camp. Blood samples were taken before and immediately after the training camp. The athletes were required to complete at least two training sessions per day. The results showed that eNOS content, activated eNOS, eNOSSer(1177), and nitrotyrosine were significantly (p<0.05) down-regulated after the training camp. In contrast, eNOSSer(116), and eNOSThr(495) did not show significant changes, although eNOSThr(495) (p=0.081) tended to decrease. Hemoglobin and hematocrit were significantly decreased after training camp. In conclusion, this study gains new insights into a possible down-regulation of eNOS and NO production in human RBCs following high intensity exercises. It can be speculated that the reduction of eNOS and the combined reduction of eNOS activity influence erythrocyte deformability and lead subsequently to a rheological impairment.
Collapse
|
48
|
Webb AJ, Milsom AB, Rathod KS, Chu WL, Qureshi S, Lovell MJ, Lecomte FMJ, Perrett D, Raimondo C, Khoshbin E, Ahmed Z, Uppal R, Benjamin N, Hobbs AJ, Ahluwalia A. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: role for xanthine oxidoreductase and endothelial nitric oxide synthase. Circ Res 2008; 103:957-64. [PMID: 18818408 DOI: 10.1161/circresaha.108.175810] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reduction of nitrite (NO(2)(-)) provides a major source of nitric oxide (NO) in the circulation, especially in hypoxemic conditions. Our previous studies suggest that xanthine oxidoreductase (XOR) is an important nitrite reductase in the heart and kidney. Herein, we have demonstrated that conversion of nitrite to NO by blood vessels and RBCs was enhanced in the presence of the XOR substrate xanthine (10 micromol/L) and attenuated by the XOR inhibitor allopurinol (100 micromol/L) in acidic and hypoxic conditions only. Whereas endothelial nitric oxide synthase (eNOS) inhibition had no effect on vascular nitrite reductase activity, in RBCs L-NAME, L-NMMA, and L-arginine inhibited nitrite-derived NO production by >50% (P<0.01) at pH 7.4 and 6.8 under hypoxic conditions. Western blot and immunohistochemical analysis of RBC membranes confirmed the presence of eNOS and abundant XOR on whole RBCs. Thus, XOR and eNOS are ideally situated on the membranes of RBCs and blood vessels to generate intravascular vasodilator NO from nitrite during ischemic episodes. In addition to the proposed role of deoxyhemoglobin, our findings suggest that the nitrite reductase activity within the circulation, under hypoxic conditions (at physiological pH), is mediated by eNOS; however, as acidosis develops, a substantial role for XOR becomes evident.
Collapse
Affiliation(s)
- Andrew J Webb
- William Harvey Research Institute, Centre for Clinical Pharmacology, Barts and the London, Charterhouse Square, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ozüyaman B, Grau M, Kelm M, Merx MW, Kleinbongard P. RBC NOS: regulatory mechanisms and therapeutic aspects. Trends Mol Med 2008; 14:314-22. [PMID: 18539530 DOI: 10.1016/j.molmed.2008.05.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 05/01/2008] [Accepted: 05/01/2008] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO), one of the most important vascular signaling molecules, is primarily produced by endothelial NO synthase (eNOS). eNOS is tightly regulated by its substrate l-arginine, cofactors and diverse interacting proteins. Interestingly, an NO synthase (NOS) was described within red blood cells (RBC NOS), and it was recently shown to significantly contribute to the intravascular NO pool and to regulate physiologically relevant mechanisms. However, the regulatory mechanisms and clinical implications of RBC NOS are unknown. The aim of this review is to highlight intracellular RBC NOS interactions and the role of RBC NOS in RBC homeostasis. Furthermore, macro- and microvascular diseases affected by RBC-derived NO are discussed.
Collapse
Affiliation(s)
- Burcin Ozüyaman
- Department of Medicine, Medical Clinic I, University Hospital RTWH, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
50
|
Abstract
To explore the functional significance of cGMP-dependent protein kinase type I (cGKI) in the regulation of erythrocyte survival, gene-targeted mice lacking cGKI were compared with their control littermates. By the age of 10 weeks, cGKI-deficient mice exhibited pronounced anemia and splenomegaly. Compared with control mice, the cGKI mutants had significantly lower red blood cell count, packed cell volume, and hemoglobin concentration. Anemia was associated with a higher reticulocyte number and an increase of plasma erythropoietin concentration. The spleens of cGKI mutant mice were massively enlarged and contained a higher fraction of Ter119(+) erythroid cells, whereas the relative proportion of leukocyte subpopulations was not changed. The Ter119(+) cGKI-deficient splenocytes showed a marked increase in annexin V binding, pointing to phosphatidylserine (PS) exposure at the outer membrane leaflet, a hallmark of suicidal erythrocyte death or eryptosis. Compared with control erythrocytes, cGKI-deficient erythrocytes exhibited in vitro a higher cytosolic Ca(2+) concentration, a known trigger of eryptosis, and showed increased PS exposure, which was paralleled by a faster clearance in vivo. Together, these results identify a role of cGKI as mediator of erythrocyte survival and extend the emerging concept that cGMP/cGKI signaling has an antiapoptotic/prosurvival function in a number of cell types in vivo.
Collapse
|