1
|
Zafer MM, Mohamed GA, Ibrahim SRM, Ghosh S, Bornman C, Elfaky MA. Biofilm-mediated infections by multidrug-resistant microbes: a comprehensive exploration and forward perspectives. Arch Microbiol 2024; 206:101. [PMID: 38353831 PMCID: PMC10867068 DOI: 10.1007/s00203-023-03826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024]
Abstract
A biofilm is a collection of microorganisms organized in a matrix of extracellular polymeric material. Biofilms consist of microbial cells that attach to both surfaces and each other, whether they are living or non-living. These microbial biofilms can lead to hospital-acquired infections and are generally detrimental. They possess the ability to resist the human immune system and antibiotics. The National Institute of Health (NIH) states that biofilm formation is associated with 65% of all microbial illnesses and 80% of chronic illnesses. Additionally, non-device-related microbial biofilm infections include conditions like cystic fibrosis, otitis media, infective endocarditis, and chronic inflammatory disorders. This review aims to provide an overview of research on chronic infections caused by microbial biofilms, methods used for biofilm detection, recent approaches to combat biofilms, and future perspectives, including the development of innovative antimicrobial strategies such as antimicrobial peptides, bacteriophages, and agents that disrupt biofilms.
Collapse
Affiliation(s)
- Mai M Zafer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Soumya Ghosh
- Natural and Medical Science Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Charné Bornman
- Department of Engineering Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Mahmoud A Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Center for Artificial Intelligence in Precision Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Wang S, Zhao Y, Breslawec AP, Liang T, Deng Z, Kuperman LL, Yu Q. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023; 9:63. [PMID: 37679355 PMCID: PMC10485009 DOI: 10.1038/s41522-023-00427-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial biofilms, which consist of three-dimensional extracellular polymeric substance (EPS), not only function as signaling networks, provide nutritional support, and facilitate surface adhesion, but also serve as a protective shield for the residing bacterial inhabitants against external stress, such as antibiotics, antimicrobials, and host immune responses. Biofilm-associated infections account for 65-80% of all human microbial infections that lead to serious mortality and morbidity. Tremendous effort has been spent to address the problem by developing biofilm-dispersing agents to discharge colonized microbial cells to a more vulnerable planktonic state. Here, we discuss the recent progress of enzymatic eradicating strategies against medical biofilms, with a focus on dispersal mechanisms. Particularly, we review three enzyme classes that have been extensively investigated, namely glycoside hydrolases, proteases, and deoxyribonucleases.
Collapse
Affiliation(s)
- Shaochi Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanteng Zhao
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus, 475004, Kaifeng, Henan, China
| | - Zhifen Deng
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
- Mirimus Inc., 760 Parkside Avenue, Brooklyn, NY, 11226, USA.
| | - Qiuning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
3
|
Won J, Monroy GL, Khampang P, Barkalifa R, Hong W, Chaney EJ, Aksamitiene E, Porter RG, Novak MA, Spillman DR, Kerschner JE, Boppart SA. In Vivo Optical Characterization of Middle Ear Effusions and Biofilms During Otitis Media. J Assoc Res Otolaryngol 2023; 24:325-337. [PMID: 37253962 PMCID: PMC10335988 DOI: 10.1007/s10162-023-00901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
Otitis media (OM), a common ear infection, is characterized by the presence of an accumulated middle ear effusion (MEE) in a normally air-filled middle ear cavity. While assessing the MEE plays a critical role in the overall management of OM, identifying and examining the MEE is challenging with the current diagnostic tools since the MEE is located behind the semi-opaque eardrum. The objective of this cross-sectional, observational study is to non-invasively visualize and characterize MEEs and bacterial biofilms in the middle ear. A portable, handheld, otoscope-integrated optical coherence tomography (OCT) system combined with novel analytical methods has been developed. In vivo middle ear OCT images were acquired from 53 pediatric subjects (average age of 3.9 years; all awake during OCT imaging) diagnosed with OM and undergoing a surgical procedure (ear tube surgery) to aspirate the MEE and aerate the middle ear. In vivo middle ear OCT acquired prior to the surgery was compared with OCT of the freshly extracted MEEs, clinical diagnosis, and post-operative evaluations. Among the subjects who were identified with the presence of MEEs, 89.6% showed the presence of the TM-adherent biofilm in in vivo OCT. This study provides an atlas of middle ear OCT images exhibiting a range of depth-resolved MEE features, which can only be visualized and assessed non-invasively through OCT. Quantitative metrics of OCT images acquired prior to the surgery were statistically correlated with surgical evaluations of MEEs. Measurements of MEE characteristics will provide new readily available information that can lead to improved diagnosis and management strategies for the highly prevalent OM in children.
Collapse
Affiliation(s)
- Jungeun Won
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, Urbana, IL, 61801, USA
| | - Guillermo L Monroy
- Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, Urbana, IL, 61801, USA
| | - Pawjai Khampang
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ronit Barkalifa
- Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, Urbana, IL, 61801, USA
| | - Wenzhou Hong
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, Urbana, IL, 61801, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, Urbana, IL, 61801, USA
| | - Ryan G Porter
- Department of Otolaryngology, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Michael A Novak
- Department of Otolaryngology, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Darold R Spillman
- Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, Urbana, IL, 61801, USA
| | - Joseph E Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Division of Otolaryngology and Pediatric Otolaryngology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Stephen A Boppart
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Michael, Waturangi DE. Antibiofilm activity from endophyte bacteria, Vibrio cholerae strains, and actinomycetes isolates in liquid and solid culture. BMC Microbiol 2023; 23:83. [PMID: 36991312 PMCID: PMC10053847 DOI: 10.1186/s12866-023-02829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Abstract
Background
Biofilm-associated infections are a global threat to our economy and human health; as such, development of antibiofilm compounds is an urgent need. Our previous study identified eleven environmental isolates of endophyte bacteria, actinomycetes, and two strains of Vibrio cholerae as having strong antibiofilm activity, but only tested crude extracts from liquid culture. Here we grew the same bacteria in solid culture to induce the formation of colony biofilms and the expression of genes that may ultimately produce antibiofilm compounds. This research aimed to compare antibiofilm inhibition and destruction activities between liquid and solid cultures of these eleven environmental isolates against the biofilms of representative pathogenic bacteria.
Results
We measured antibiofilm activity using the static antibiofilm assay and crystal violet staining. The majority of our isolates exhibited higher inhibitory antibiofilm activity in liquid media, including all endophyte bacteria, V. cholerae V15a, and actinomycetes strains (CW01, SW03, CW17). However, for V. cholerae strain B32 and two actinomycetes bacteria (TB12 and SW12), the solid crude extracts showed higher inhibitory activity. Regarding destructive antibiofilm activity, many endophyte isolates and V. cholerae strains showed no significant difference between culture methods; the exceptions were endophyte bacteria isolate JerF4 and V. cholerae B32. The liquid extract of isolate JerF4 showed higher destructive activity relative to the corresponding solid culture extract, while for V. cholerae strain B32 the solid extract showed higher activity against some biofilms of pathogenic bacteria.
Conclusions
Culture conditions, namely solid or liquid culture, can influence the activity of culture extracts against biofilms of pathogenic bacteria. We compared the antibiofilm activity and presented the data that majority of isolates showed a higher antibiofilm activity in liquid culture. Interestingly, solid extracts from three isolates (B32, TB12, and SW12) have a better inhibition or/and destruction antibiofilm activity compared to their liquid culture. Further research is needed to characterize the activities of specific metabolites in solid and liquid culture extracts and to determine the mechanisms of their antibiofilm actions.
Collapse
|
5
|
Biofilm-Forming Bacteria Implicated in Complex Otitis Media in Children in the Post-Heptavalent Pneumococcal Conjugate Vaccine (PCV7) Era. Microorganisms 2023; 11:microorganisms11030545. [PMID: 36985119 PMCID: PMC10056165 DOI: 10.3390/microorganisms11030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Background: Chronic media with effusion (COME) and recurrent acute otitis media (RAOM) are closely related clinical entities that affect childhood. The aims of the study were to investigate the microbiological profile of otitis-prone children in the post-PCV7 era and, to examine the biofilm-forming ability in association with clinical history and outcome during a two-year post-operative follow-up. Methods: In this prospective study, pathogens from patients with COME and RAOM were isolated and studied in vitro for their biofilm-forming ability. The minimum inhibitory concentrations (MIC) of both the planktonic and the sessile forms were compared. The outcome of the therapeutic method used in each case and patient history were correlated with the pathogens and their ability to form biofilms. Results: Haemophilus influenzae was the leading pathogen (35% in COME and 40% in RAOM), and Streptococcus pneumoniae ranked second (12% in COME and 24% in RAOM). Polymicrobial infections were identified in 5% of COME and 19% of RAOM cases. Of the isolated otopathogens, 94% were positive for biofilm formation. Conclusions: This is the first Greek research studying biofilm formation in complex otitis media-prone children population in the post-PCV7 era. High rates of polymicrobial infections, along with treatment failure in biofilms, may explain the lack of antimicrobial efficacy in otitis-prone children.
Collapse
|
6
|
Kuten Pella O, Hornyák I, Horváthy D, Fodor E, Nehrer S, Lacza Z. Albumin as a Biomaterial and Therapeutic Agent in Regenerative Medicine. Int J Mol Sci 2022; 23:10557. [PMID: 36142472 PMCID: PMC9502107 DOI: 10.3390/ijms231810557] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 02/07/2023] Open
Abstract
Albumin is a constitutional plasma protein, with well-known biological functions, e.g., a nutrient for stem cells in culture. However, albumin is underutilized as a biomaterial in regenerative medicine. This review summarizes the advanced therapeutic uses of albumin, focusing on novel compositions that take advantage of the excellent regenerative potential of this protein. Albumin coating can be used for enhancing the biocompatibility of various types of implants, such as bone grafts or sutures. Albumin is mainly known as an anti-attachment protein; however, using it on implantable surfaces is just the opposite: it enhances stem cell adhesion and proliferation. The anticoagulant, antimicrobial and anti-inflammatory properties of albumin allow fine-tuning of the biological reaction to implantable tissue-engineering constructs. Another potential use is combining albumin with natural or synthetic materials that results in novel composites suitable for cardiac, neural, hard and soft tissue engineering. Recent advances in materials have made it possible to electrospin the globular albumin protein, opening up new possibilities for albumin-based scaffolds for cell therapy. Several described technologies have already entered the clinical phase, making good use of the excellent biological, but also regulatory, manufacturing and clinical features of serum albumin.
Collapse
Affiliation(s)
| | - István Hornyák
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Dénes Horváthy
- Department of Interventional Radiology, Semmelweis University, 1122 Budapest, Hungary
| | - Eszter Fodor
- Institute for Sports and Health Sciences, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Stefan Nehrer
- Center for Regenerative Medicine, Danube University Krems, 3500 Krems an der Donau, Austria
| | - Zsombor Lacza
- Orthosera GmbH, 3500 Krems an der Donau, Austria
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary
- Institute for Sports and Health Sciences, Hungarian University of Sports Science, 1123 Budapest, Hungary
| |
Collapse
|
7
|
Silva MD, Lima A, Marçal N, Dias L, Gama M, Sillankorva S. Identification of the Bacterial Pathogens in Children with Otitis Media: A Study in the Northwestern Portuguese District of Braga. Microorganisms 2021; 10:microorganisms10010054. [PMID: 35056502 PMCID: PMC8779683 DOI: 10.3390/microorganisms10010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding the bacterial etiology of otitis media (OM) is important when designing and evaluating the best course of treatment. This study analyzed middle ear fluid (MEF) and nasopharynx (NP) samples collected from 49 children with OM undergoing myringotomy in the northwestern Portuguese district of Braga. A correlation between species in the NP and MEF was observed following pathogen detection by culture and quantitative polymerase chain reaction (qPCR) methods. Bacterial identification using culturing methods showed that Moraxella catarrhalis was the most representative in NP and MEF, followed by Streptococcus pneumoniae. However, qPCR of MEF showed a higher prevalence (61%) of Haemophilus influenzae. S. pneumoniae was not the most frequently identified species, but it still remains one of the leading causes of OM in this region despite 93.9% of the children being vaccinated with the pneumococcal conjugate vaccine. Furthermore, 46% of the samples analyzed by qPCR identified more than two bacterial species. M. catarrhalis and S. pneumoniae were the most frequent combination identified in NP and MEF samples by culturing methods. Additionally, a few NP and MEF samples simultaneously presented the three main otopathogens. These results point out that polymicrobial infections play an important role in OM. Further studies characterizing the serotypes of the strains isolated, their resistance profile, and their biofilm forming ability would help in the development of more targeted strategies against otitis media.
Collapse
Affiliation(s)
- Maria Daniela Silva
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.D.S.); (M.G.)
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - António Lima
- Department of Otolaryngology, Hospital de Braga, 4710-243 Braga, Portugal; (A.L.); (L.D.)
| | - Nuno Marçal
- Department of Otolaryngology, Trofa Saúde Hospital, 4715-196 Braga, Portugal;
| | - Luís Dias
- Department of Otolaryngology, Hospital de Braga, 4710-243 Braga, Portugal; (A.L.); (L.D.)
| | - Miguel Gama
- CEB—Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal; (M.D.S.); (M.G.)
| | - Sanna Sillankorva
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal
- Correspondence: ; Tel.: +351-253-140112
| |
Collapse
|
8
|
Won J, Monroy GL, Dsouza RI, Spillman DR, McJunkin J, Porter RG, Shi J, Aksamitiene E, Sherwood M, Stiger L, Boppart SA. Handheld Briefcase Optical Coherence Tomography with Real-Time Machine Learning Classifier for Middle Ear Infections. BIOSENSORS-BASEL 2021; 11:bios11050143. [PMID: 34063695 PMCID: PMC8147830 DOI: 10.3390/bios11050143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
A middle ear infection is a prevalent inflammatory disease most common in the pediatric population, and its financial burden remains substantial. Current diagnostic methods are highly subjective, relying on visual cues gathered by an otoscope. To address this shortcoming, optical coherence tomography (OCT) has been integrated into a handheld imaging probe. This system can non-invasively and quantitatively assess middle ear effusions and identify the presence of bacterial biofilms in the middle ear cavity during ear infections. Furthermore, the complete OCT system is housed in a standard briefcase to maximize its portability as a diagnostic device. Nonetheless, interpreting OCT images of the middle ear more often requires expertise in OCT as well as middle ear infections, making it difficult for an untrained user to operate the system as an accurate stand-alone diagnostic tool in clinical settings. Here, we present a briefcase OCT system implemented with a real-time machine learning platform for middle ear infections. A random forest-based classifier can categorize images based on the presence of middle ear effusions and biofilms. This study demonstrates that our briefcase OCT system coupled with machine learning can provide user-invariant classification results of middle ear conditions, which may greatly improve the utility of this technology for the diagnosis and management of middle ear infections.
Collapse
Affiliation(s)
- Jungeun Won
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
| | - Guillermo L. Monroy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
| | - Roshan I. Dsouza
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
| | - Darold R. Spillman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
| | - Jonathan McJunkin
- Department of Otolaryngology, Carle Foundation Hospital, Champaign, IL 61822, USA; (J.M.); (R.G.P.)
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Ryan G. Porter
- Department of Otolaryngology, Carle Foundation Hospital, Champaign, IL 61822, USA; (J.M.); (R.G.P.)
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Jindou Shi
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
| | - MaryEllen Sherwood
- Stephens Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; (M.S.); (L.S.)
| | - Lindsay Stiger
- Stephens Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; (M.S.); (L.S.)
| | - Stephen A. Boppart
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (G.L.M.); (R.I.D.); (D.R.S.J.); (J.S.); (E.A.)
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:
| |
Collapse
|
9
|
Aboutalebian S, Ahmadikia K, Fakhim H, Chabavizadeh J, Okhovat A, Nikaeen M, Mirhendi H. Direct Detection and Identification of the Most Common Bacteria and Fungi Causing Otitis Externa by a Stepwise Multiplex PCR. Front Cell Infect Microbiol 2021; 11:644060. [PMID: 33842390 PMCID: PMC8027314 DOI: 10.3389/fcimb.2021.644060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Considering the importance of differential diagnosis of infectious otitis externa (OE), a stepwise PCR-based assay using universal and genus- or species-specific primers for the detection/identification of the most prevalent bacterial and fungal OE was developed and evaluated on the ear aspiration specimens of clinically suspected patients. Methods and Materials A total of 120 ear aspiration specimens with otomycosis suspicion were subjected to manual DNA extraction using phenol–chloroform extraction after tissue digestion with a lysis buffer. The multiplex PCR was initially performed using pan-fungal and bacterial homemade primers. Pseudomonas and Staphylococcus specific primers were simultaneously used in one reaction mixture to identify the bacterial genera. Furthermore, for the identification of fungal agents, Candida species-specific multiplex primers targeting the most clinically important Candida species causing OE (i.e., C. albicans, C. parapsilosis, and C. auris), as well as Aspergillus related multiplex PCR identifying the most prevalent Aspergillus species were used in two separate reaction mixtures. All the results of multiplex PCR were interpreted based on the amplicon size. Results The overall multiplex PCR-based detection rate of bacterial (n = 88; 73.3%) and fungal (n = 97; 81%) OE was documented to be 100% along with and complete consistency with the results of direct examination and Giemsa staining. Double amplicon bands of bacterial and fungal pathogens were evidenced in 76 specimens (63.3%). Moreover, the positivity rate of pan-fungal PCR was higher than that of the culture result. Out of 88 pan-bacterial positive PCR specimens, 66 and 47 ones were positive for Staphylococcus and Pseudomonas, respectively. In addition, 30 samples exhibited mixed infection of both, and five specimens remained negative. Out of 97 pan-fungal positive PCR specimens, 67 and 51 ones contained Candida and Aspergillus species, respectively. It should be noted that dual amplicon bands of Candida and Aspergillus-related multiplex PCR were yielded in 30 specimens. Conclusion The stepwise multiplex PCR assay proved to be more sensitive, more rapid, as well as less cumbersome in detection and identification of fungal and bacterial OE, compared to culture.
Collapse
Affiliation(s)
- Shima Aboutalebian
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kazem Ahmadikia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javaher Chabavizadeh
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ahmadreza Okhovat
- Department of Otolaryngology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Mirhendi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Core Facilities Laboratory (CFL), Mycology Reference Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Won J, Hong W, Khampang P, Spillman DR, Marshall S, Yan K, Porter RG, Novak MA, Kerschner JE, Boppart SA. Longitudinal optical coherence tomography to visualize the in vivo response of middle ear biofilms to antibiotic therapy. Sci Rep 2021; 11:5176. [PMID: 33664323 PMCID: PMC7933323 DOI: 10.1038/s41598-021-84543-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Studying the impact of antibiotic treatment on otitis media (OM), the leading cause of primary care office visits during childhood, is critical to develop appropriate treatment strategies. Tracking dynamic middle ear conditions during antibiotic treatment is not readily applicable in patients, due to the limited diagnostic techniques available to detect the smaller amount and variation of middle ear effusion (MEE) and middle ear bacterial biofilm, responsible for chronic and recurrent OM. To overcome these challenges, a handheld optical coherence tomography (OCT) system has been developed to monitor in vivo response of biofilms and MEEs in the OM-induced chinchilla model, the standard model for human OM. As a result, the formation of MEE as well as biofilm adherent to the tympanic membrane (TM) was longitudinally assessed as OM developed. Various types of MEEs and biofilms in the chinchilla model were identified, which showed comparable features as those in humans. Furthermore, the effect of antibiotics on the biofilm as well as the amount and type of MEEs was investigated with low-dose and high-dose treatment (ceftriaxone). The capability of OCT to non-invasively track and examine middle ear conditions is highly beneficial for therapeutic OM studies and will lead to improved management of OM in patients.
Collapse
Affiliation(s)
- Jungeun Won
- grid.35403.310000 0004 1936 9991Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Wenzhou Hong
- grid.30760.320000 0001 2111 8460Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI USA
| | - Pawjai Khampang
- grid.30760.320000 0001 2111 8460Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI USA
| | - Darold R. Spillman
- grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Samuels Marshall
- grid.30760.320000 0001 2111 8460Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI USA
| | - Ke Yan
- grid.30760.320000 0001 2111 8460Section of Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI USA
| | - Ryan G. Porter
- grid.413441.70000 0004 0476 3224Department of Otolaryngology, Carle Foundation Hospital, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL USA
| | - Michael A. Novak
- grid.413441.70000 0004 0476 3224Department of Otolaryngology, Carle Foundation Hospital, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL USA
| | - Joseph E. Kerschner
- grid.30760.320000 0001 2111 8460Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, WI USA ,grid.30760.320000 0001 2111 8460Division of Otolaryngology and Pediatric Otolaryngology, Medical College of Wisconsin, Milwaukee, WI USA
| | - Stephen A. Boppart
- grid.35403.310000 0004 1936 9991Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL USA ,grid.35403.310000 0004 1936 9991Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL USA ,grid.35403.310000 0004 1936 9991Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
11
|
Ranpariya B, Salunke G, Karmakar S, Babiya K, Sutar S, Kadoo N, Kumbhakar P, Ghosh S. Antimicrobial Synergy of Silver-Platinum Nanohybrids With Antibiotics. Front Microbiol 2021; 11:610968. [PMID: 33597929 PMCID: PMC7882503 DOI: 10.3389/fmicb.2020.610968] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Various bacterial pathogens are responsible for nosocomial infections resulting in critical pathophysiological conditions, mortality, and morbidity. Most of the bacterial infections are associated with biofilm formation, which is resistant to the available antimicrobial drugs. As a result, novel bactericidal agents need to be fabricated, which can effectively combat the biofilm-associated bacterial infections. Herein, for the first time we report the antimicrobial and antibiofilm properties of silver-platinum nanohybrids (AgPtNHs), silver nanoparticles (AgNPs), and platinum nanoparticles (PtNPs) against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The AgPtNHs were synthesized by a green route using Dioscorea bulbifera tuber extract at 100°C for 5 h. The AgPtNHs ranged in size from 20 to 80 nm, with an average of ∼59 nm. AgNPs, PtNPs, and AgPtNHs showed a zeta potential of -14.46, -1.09, and -11.39 mV, respectively. High antimicrobial activity was observed against P. aeruginosa and S. aureus and AgPtNHs exhibited potent antimicrobial synergy in combination with antibiotics such as streptomycin, rifampicin, chloramphenicol, novobiocin, and ampicillin up to variable degrees. Interestingly, AgPtNHs could inhibit bacterial biofilm formation significantly. Hence, co-administration of AgPtNHs and antibiotics may serve as a powerful strategy to treat bacterial infections.
Collapse
Affiliation(s)
- Bansi Ranpariya
- Department of Microbiology, School of Science, RK University, Rajkot, India
| | - Gayatri Salunke
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Srikanta Karmakar
- Nanoscience Laboratory, Department of Physics, National Institute of Technology Durgapur, Durgapur, India
| | - Kaushik Babiya
- Department of Microbiology, School of Science, RK University, Rajkot, India
| | - Santosh Sutar
- Yashwantrao Chavan School of Rural Development, Shivaji University, Kolhapur, India
| | - Narendra Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Pathik Kumbhakar
- Nanoscience Laboratory, Department of Physics, National Institute of Technology Durgapur, Durgapur, India
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, India
| |
Collapse
|
12
|
Spoială EL, Stanciu GD, Bild V, Ababei DC, Gavrilovici C. From Evidence to Clinical Guidelines in Antibiotic Treatment in Acute Otitis Media in Children. Antibiotics (Basel) 2021; 10:52. [PMID: 33419114 PMCID: PMC7825459 DOI: 10.3390/antibiotics10010052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Acute otitis media (AOM) in children represents a public health concern, being one of the leading causes of health care visits and antibiotic prescriptions worldwide. The overall aim of this paper is to unravel the major current insights into the antibiotic treatment of AOM in children. Our approach is three-fold: 1. a preclinical evaluation of antibiotics in animal models of AOM stressing on the advantages of different species when testing for different schemes of antibiotics; 2. an overview on the new antimicrobial agents whose efficacy has been demonstrated in refractory cases of AOM in children; and 3. an analysis of the different guidelines stressing on the differences and similarities between the various schemes of antibiotic treatment. The preferred therapeutic agents remain amoxicillin and the amoxicillin-clavulanate combination for AOM caused by Streptococcus pneumoniae, whereas oral cephalosporin is preferred in AOM due to Moraxella catarrhalis and Haemophilus influenzae. As for the second and third line antimicrobial treatments, there is a wide variety of suggested antibiotic classes with variations in duration and posology. The decision to prescribe antimicrobial treatment as a first-line choice is based on the severity of the symptoms in 16 of the guidelines included in this review.
Collapse
Affiliation(s)
- Elena Lia Spoială
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (E.L.S.); (C.G.)
| | - Gabriela Dumitrita Stanciu
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Veronica Bild
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela Carmen Ababei
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cristina Gavrilovici
- Pediatrics Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (E.L.S.); (C.G.)
| |
Collapse
|
13
|
Kjeldsen M, Homøe P, Kirstine Nielsen A, Crone S, Nørskov Kragh K, Bjarnsholt T. Eradication of biofilms on tympanostomy tubes with acetic acid treatment: an in vitro study. APMIS 2020; 128:445-450. [PMID: 32277844 DOI: 10.1111/apm.13044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/01/2020] [Indexed: 11/26/2022]
Abstract
The purpose was to evaluate the eradicative effect of acetic acid on bacterial biofilm grown on tympanostomy tubes by an in vitro experiment. Biofilms of Pseudomonas aeruginosa and Staphylococcus aureus were grown on sterile tympanostomy tubes for 24 h. The tubes were treated with acetic acid solutions at various concentrations for 24 h. Main outcome was viability of bacteria after treatment. The presence of consistently attached biofilm was examined on selected tympanostomy tubes with confocal laser scanning microscopy. Both pH-adjusted and non-pH-adjusted media solutions were applied as control groups. Results showed complete eradication of P. aeruginosa biofilm with 0.50% v/v acetic acid. Biofilm of S. aureus was eradicated with 1.25% v/v acetic acid. Low pH value alone led to decreased growth of already established biofilm, but not eradication. In conlusion, acetic acid showed an eradicating effect on biofilm established on sterile tympanostomy tubes in vitro.
Collapse
Affiliation(s)
- Mathilde Kjeldsen
- Costerton Biofilm Center, University of Copenhagen, Copenhagen N, Denmark.,Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, Køge, Denmark
| | - Preben Homøe
- Department of Otorhinolaryngology and Maxillofacial Surgery, Zealand University Hospital, Køge, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| | | | - Stephanie Crone
- Costerton Biofilm Center, University of Copenhagen, Copenhagen N, Denmark
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, University of Copenhagen, Copenhagen N, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, University of Copenhagen, Copenhagen N, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen Ø, Denmark
| |
Collapse
|
14
|
Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics (Basel) 2020; 9:E59. [PMID: 32028684 PMCID: PMC7167820 DOI: 10.3390/antibiotics9020059] [Citation(s) in RCA: 507] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Recognition of the fact that bacterial biofilm may play a role in the pathogenesis of disease has led to an increased focus on identifying diseases that may be biofilm-related. Biofilm infections are typically chronic in nature, as biofilm-residing bacteria can be resilient to both the immune system, antibiotics, and other treatments. This is a comprehensive review describing biofilm diseases in the auditory, the cardiovascular, the digestive, the integumentary, the reproductive, the respiratory, and the urinary system. In most cases reviewed, the biofilms were identified through various imaging technics, in addition to other study approaches. The current knowledge on how biofilm may contribute to the pathogenesis of disease indicates a number of different mechanisms. This spans from biofilm being a mere reservoir of pathogenic bacteria, to playing a more active role, e.g., by contributing to inflammation. Observations also indicate that biofilm does not exclusively occur extracellularly, but may also be formed inside living cells. Furthermore, the presence of biofilm may contribute to development of cancer. In conclusion, this review shows that biofilm is part of many, probably most chronic infections. This is important knowledge for development of effective treatment strategies for such infections.
Collapse
Affiliation(s)
- Lene K. Vestby
- Department of Immunology and Virology, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway;
| | - Torstein Grønseth
- Department of Otolaryngology, Head and Neck Surgery, Oslo University Hospital HF, Postboks 4950 Nydalen, 0424 Oslo, Norway;
| | - Roger Simm
- Institute of Oral Biology, University of Oslo, P.O. Box 1052, Blindern, 0316 Oslo, Norway;
| | - Live L. Nesse
- Department of Food Safety and Animal Health Research, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| |
Collapse
|
15
|
Verderosa AD, Totsika M, Fairfull-Smith KE. Bacterial Biofilm Eradication Agents: A Current Review. Front Chem 2019; 7:824. [PMID: 31850313 PMCID: PMC6893625 DOI: 10.3389/fchem.2019.00824] [Citation(s) in RCA: 313] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Most free-living bacteria can attach to surfaces and aggregate to grow into multicellular communities encased in extracellular polymeric substances called biofilms. Biofilms are recalcitrant to antibiotic therapy and a major cause of persistent and recurrent infections by clinically important pathogens worldwide (e.g., Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus). Currently, most biofilm remediation strategies involve the development of biofilm-inhibition agents, aimed at preventing the early stages of biofilm formation, or biofilm-dispersal agents, aimed at disrupting the biofilm cell community. While both strategies offer some clinical promise, neither represents a direct treatment and eradication strategy for established biofilms. Consequently, the discovery and development of biofilm eradication agents as comprehensive, stand-alone biofilm treatment options has become a fundamental area of research. Here we review our current understanding of biofilm antibiotic tolerance mechanisms and provide an overview of biofilm remediation strategies, focusing primarily on the most promising biofilm eradication agents and approaches. Many of these offer exciting prospects for the future of biofilm therapeutics for a large number of infections that are currently refractory to conventional antibiotics.
Collapse
Affiliation(s)
- Anthony D Verderosa
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kathryn E Fairfull-Smith
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Hong W, Khampang P, Kerschner AR, Mackinnon AC, Yan K, Simpson PM, Kerschner JE. Antibiotic modulation of mucins in otitis media; should this change our approach to watchful waiting? Int J Pediatr Otorhinolaryngol 2019; 125:134-140. [PMID: 31302575 PMCID: PMC6742428 DOI: 10.1016/j.ijporl.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/05/2019] [Accepted: 07/02/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Gel-forming mucins (GFMs) play important roles in otitis media (OM) pathogenesis. Increased mucin expression is activated by pathogens and proinflammatory cytokines. Bacterial biofilms influence inflammation and resolution of OM and may contribute to prolonged mucin production. The influence of specific pathogens on mucin expression and development of chronic OM with effusion (OME) remains an area of significant knowledge deficit. OBJECTIVES To assess the relationship between GFM expression, specific pathogens, middle ear mucosal (MEM) changes, biofilm formation, and antibiotic utilization. METHODS Mixed gender chinchillas were inoculated with nontypeable Haemophilus influenzae (NTHi) strain 86028NP or Streptococcus pneumoniae (SP) strain TIGR4 via transbulla injection. Antibiotic was administered on day 3-5 post inoculation. GFM expression was measured by quantitative PCR. Biofilm formation was identified and middle ear histologic changes were measured. RESULTS SP infection resulted in higher incidence of biofilm and ME effusion compared with NTHi infection. However, NTHi persisted in the ME longer than SP with no substantive bacterial clearance detected on day 10 compared with complete bacterial clearance on day 10 for 50-60% of the SP-infected chinchillas. Both infections increased MEM inflammatory cell infiltration and thickening. NTHi upregulated the Muc5AC, Muc5B and Muc19 expression on day 10 (p = 0.0004, 0.003, and 0.002 respectively). SP-induced GFM upregulations were trended toward significant. In both NTHi and SP infections, the degree of GFM upregulation had a direct relationship to increased MEM hypertrophy, inflammatory cell infiltration and biofilm formation. Antibiotic treatment reduced the incidence of ME effusion and biofilm, limited the MEM changes and reversed the GFM upregulation. In NTHi infection, the rate of returning to baseline level of GFMs in treated chinchillas was quicker than those without treatment. CONCLUSIONS In an animal model of OM, GFM genes are upregulated in conjunction with MEM hypertrophy and biofilm formation. This upregulation is less robust and more quickly ameliorated to a significant degree in the NTHi infection with appropriate antibiotic therapy. These findings contribute to the understanding of pathogen specific influences on mucin expression during OM pathogenesis and provide new data which may have implications in clinical approach for OM treatment.
Collapse
Affiliation(s)
- Wenzhou Hong
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, USA
| | - Pawjai Khampang
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, USA
| | - Abigail R Kerschner
- Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, USA
| | | | - Ke Yan
- Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin, USA
| | - Pippa M Simpson
- Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin, USA
| | - Joseph E Kerschner
- Division of Pediatric Otolaryngology, Medical College of Wisconsin, USA; Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, USA.
| |
Collapse
|
17
|
van den Broek MFL, De Boeck I, Kiekens F, Boudewyns A, Vanderveken OM, Lebeer S. Translating Recent Microbiome Insights in Otitis Media into Probiotic Strategies. Clin Microbiol Rev 2019; 32:e00010-18. [PMID: 31270125 PMCID: PMC6750133 DOI: 10.1128/cmr.00010-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The microbiota of the upper respiratory tract (URT) protects the host from bacterial pathogenic colonization by competing for adherence to epithelial cells and by immune response regulation that includes the activation of antimicrobial and (anti-)inflammatory components. However, environmental or host factors can modify the microbiota to an unstable community that predisposes the host to infection or inflammation. One of the URT diseases most often encountered in children is otitis media (OM). The role of pathogenic bacteria like Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the pathogenesis of OM is well documented. Results from next-generation-sequencing (NGS) studies reveal other bacterial taxa involved in OM, such as Turicella and Alloiococcus Such studies can also identify bacterial taxa that are potentially protective against URT infections, whose beneficial action needs to be substantiated in relevant experimental models and clinical trials. Of note, lactic acid bacteria (LAB) are members of the URT microbiota and associated with a URT ecosystem that is deemed healthy, based on NGS and some experimental and clinical studies. These observations have formed the basis of this review, in which we describe the current knowledge of the molecular and clinical potential of LAB in the URT, which is currently underexplored in microbiome and probiotic research.
Collapse
Affiliation(s)
- Marianne F L van den Broek
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Ilke De Boeck
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Olivier M Vanderveken
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Lebeer
- Environmental Ecology and Applied Microbiology Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Silva MD, Sillankorva S. Otitis media pathogens – A life entrapped in biofilm communities. Crit Rev Microbiol 2019; 45:595-612. [DOI: 10.1080/1040841x.2019.1660616] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Maria Daniela Silva
- CEB – Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Sanna Sillankorva
- CEB – Centre of Biological Engineering, LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
19
|
Gilbertie JM, Schnabel LV, Hickok NJ, Jacob ME, Conlon BP, Shapiro IM, Parvizi J, Schaer TP. Equine or porcine synovial fluid as a novel ex vivo model for the study of bacterial free-floating biofilms that form in human joint infections. PLoS One 2019; 14:e0221012. [PMID: 31415623 PMCID: PMC6695105 DOI: 10.1371/journal.pone.0221012] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/30/2019] [Indexed: 12/14/2022] Open
Abstract
Bacterial invasion of synovial joints, as in infectious or septic arthritis, can be difficult to treat in both veterinary and human clinical practice. Biofilms, in the form of free-floating clumps or aggregates, are involved with the pathogenesis of infectious arthritis and periprosthetic joint infection (PJI). Infection of a joint containing an orthopedic implant can additionally complicate these infections due to the presence of adherent biofilms. Because of these biofilm phenotypes, bacteria within these infected joints show increased antimicrobial tolerance even at high antibiotic concentrations. To date, animal models of PJI or infectious arthritis have been limited to small animals such as rodents or rabbits. Small animal models, however, yield limited quantities of synovial fluid making them impractical for in vitro research. Herein, we describe the use of ex vivo equine and porcine models for the study of synovial fluid induced biofilm aggregate formation and antimicrobial tolerance. We observed Staphylococcus aureus and other bacterial pathogens adapt the same biofilm aggregate phenotype with significant antimicrobial tolerance in both equine and porcine synovial fluid, analogous to human synovial fluid. We also demonstrate that enzymatic dispersal of synovial fluid aggregates restores the activity of antimicrobials. Future studies investigating the interaction of bacterial cell surface proteins with host synovial fluid proteins can be readily carried out in equine or porcine ex vivo models to identify novel drug targets for treatment of prevention of these difficult to treat infectious diseases.
Collapse
Affiliation(s)
- Jessica M. Gilbertie
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
- Department of Clinical Studies New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States of America
| | - Lauren V. Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
| | - Noreen J. Hickok
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Megan E. Jacob
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States of America
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States of America
| | - Irving M. Shapiro
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Javad Parvizi
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Thomas P. Schaer
- Department of Clinical Studies New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States of America
| |
Collapse
|
20
|
A Protein E-PilA Fusion Protein Shows Vaccine Potential against Nontypeable Haemophilus influenzae in Mice and Chinchillas. Infect Immun 2019; 87:IAI.00345-19. [PMID: 31109946 PMCID: PMC6652774 DOI: 10.1128/iai.00345-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 11/21/2022] Open
Abstract
PE-PilA is a fusion protein composed of immunologically relevant parts of protein E (PE) and the majority subunit of the type IV pilus (PilA), two major antigens of nontypeable Haemophilus influenzae (NTHi). Here we report on the preclinical evaluation of PE-PilA as a vaccine antigen. The immunogenic potential of the PE and PilA within the fusion was compared with that of isolated PE and PilA antigens. PE-PilA is a fusion protein composed of immunologically relevant parts of protein E (PE) and the majority subunit of the type IV pilus (PilA), two major antigens of nontypeable Haemophilus influenzae (NTHi). Here we report on the preclinical evaluation of PE-PilA as a vaccine antigen. The immunogenic potential of the PE and PilA within the fusion was compared with that of isolated PE and PilA antigens. When injected intramuscularly into mice, the immunogenicity of PE within the fusion was equivalent to that of isolated PE, except when it was formulated with alum. In contrast, in our murine models PilA was consistently found to be more immunogenic as a subentity of the PE-PilA fusion protein than when it was injected as an isolated antigen. Following immunization with PE-PilA, anti-PE antibodies demonstrated the same capacity to inhibit the binding of PE to vitronectin as those induced after PE immunization. Likewise, PE-PilA-induced anti-PilA antibodies inhibited the formation of NTHi biofilms and disrupted established biofilms in vitro. These experiments support the immunogenic equivalence between fused PE-PilA and isolated PE and PilA. Further, the potential of PE-PilA immunization against NTHi-induced disease was evaluated. After intranasal NTHi challenge, colonization of the murine nasopharynx significantly dropped in animals formerly immunized with PE-PilA, and in chinchillas, signs of otitis media were significantly reduced in animals that had received anti-PE-PilA antibodies. Taken together, our data support the use of PE-PilA as an NTHi vaccine antigen.
Collapse
|
21
|
Comparison of extrusion and patency of silicon versus thermoplastic elastomer tympanostomy tubes. Auris Nasus Larynx 2019; 46:311-318. [DOI: 10.1016/j.anl.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/23/2018] [Accepted: 09/02/2018] [Indexed: 11/17/2022]
|
22
|
|
23
|
Current Status of In Vitro Models and Assays for Susceptibility Testing for Wound Biofilm Infections. Biomedicines 2019; 7:biomedicines7020034. [PMID: 31052271 PMCID: PMC6630351 DOI: 10.3390/biomedicines7020034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Biofilm infections have gained recognition as an important therapeutic challenge in the last several decades due to their relationship with the chronicity of infectious diseases. Studies of novel therapeutic treatments targeting infections require the development and use of models to mimic the formation and characteristics of biofilms within host tissues. Due to the diversity of reported in vitro models and lack of consensus, this review aims to provide a summary of in vitro models currently used in research. In particular, we review the various reported in vitro models of Pseudomonas aeruginosa biofilms due to its high clinical impact in chronic wounds and in other chronic infections. We assess advances in in vitro models that incorporate relevant multispecies biofilms found in infected wounds, such as P. aeruginosa with Staphylococcus aureus, and additional elements such as mammalian cells, simulating fluids, and tissue explants in an attempt to better represent the physiological conditions found at an infection site. It is hoped this review will aid researchers in the field to make appropriate choices in their proposed studies with regards to in vitro models and methods.
Collapse
|
24
|
Cole LK, Rajala-Schultz PJ, Lorch G, Daniels JB. Bacteriology and cytology of otic exudates in 41 cavalier King Charles spaniels with primary secretory otitis media. Vet Dermatol 2019; 30:151-e44. [PMID: 30644141 DOI: 10.1111/vde.12724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Primary secretory otitis media (PSOM) in the cavalier King Charles spaniel (CKCS) is similar to otitis media with effusion (OME) in humans. A proposed aetiology of OME is inflammation of the middle ear mucosa, usually due to bacterial infection, leading to auditory tube dysfunction. HYPOTHESIS/OBJECTIVES Our objective was to characterize the microbiological and cytological findings of otic exudates from the external ear canal (EEC) (n = 68) and middle ear (ME) (n = 69) from 41 CKCSs with PSOM. METHODS AND MATERIALS Swab samples from the EEC and mucus aspirated from the ME after performing a myringotomy were obtained for bacterial culture and cytological analysis. RESULTS Fifty-five of 68 (81%) EEC and 46 of 69 (67%) ME yielded no bacterial growth. Thirty-eight of the 68 (56%) ears had no microbial growth from neither the EEC nor ME; seven (10%) had bacteria isolated from the EEC only; 17 (25%) had bacteria isolated from the ME only, and six (8%) had bacteria isolated from both EEC and ME. Thirty-four total bacterial isolates were cultured from ME. The most common bacterial species isolated were coagulase-negative staphylococci, followed by Staphylococcus pseudintermedius. Otic cytology identified coccoid organisms in only three of 68 EEC and four of 69 ME. CONCLUSIONS The role of bacteria in the pathogenesis of PSOM in CKCS is unclear. The majority of the EEC and ME of the CKCS with PSOM were negative by conventional bacterial culture and the cytological presence of bacteria was not correlated with culture positives. The potential role of noncultivable microbiota in PSOM requires exploration using molecular methods.
Collapse
Affiliation(s)
- Lynette K Cole
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Päivi J Rajala-Schultz
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 04920, Saarentaus, Finland
| | - Gwendolen Lorch
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Joshua B Daniels
- Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
25
|
Joe H, Seo YJ. A newly designed tympanostomy stent with TiO2 coating to reduce Pseudomonas aeruginosa biofilm formation. J Biomater Appl 2018; 33:599-605. [DOI: 10.1177/0885328218802103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biofilm formation has been implicated as a cause of post-tympanostomy tube otorrhea in patients suffering from otitis media with effusion, and biofilms have been found to adhere to all available types of tympanostomy tubes (TT) made from silicone. In this study, we present a novel stent designed with a reduced surface area and a titanium dioxide (TiO2) coating to prevent biofilm formation. Using a radio frequency power supply, tympanostomy stents (TS) made from Nitinol (Nikel-titanium) were coated with TiO2 to form an oxide layer on the metallic target. We successfully reproduced biofilms with carbenicillin-resistant Pseudomonas aeruginosa strain, PAO1-GFP (green fluorescent protein) on the tubes in vitro. We then compared the levels of biofilm formation by this strain on the two types of implants using several methods, including bacterial quantification, electron microscopy, and confocal laser fluorescent microscopy. Our results provide definitive evidence that the combination of the TiO2 coating and minimized surface area of the Nitinol stent inhibited the P. aeruginosa biofilm formation. The ability of the TS to prevent viable bacteria colonization (over 10 folds, compared to silicone TT) was verified by anti-biofilm test. Future studies will reveal more useful in reducing otorrhea and plugging complications as a novel tympanostomy tube.
Collapse
Affiliation(s)
| | - Young Joon Seo
- Department of otorhinolaryngology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
26
|
Yao W, Kuan EC, Chung YH, Francis NC, St John MA, Taylor ZD, Grundfest WS. In-depth analysis of antibacterial mechanisms of laser generated shockwave treatment. Lasers Surg Med 2018; 51:339-344. [PMID: 30152534 DOI: 10.1002/lsm.23018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2018] [Indexed: 12/27/2022]
Abstract
Background and Objectives Laser generated shockwave (LGS) is a novel modality for minimally invasive disruption of bacterial biofilms. The objectives of this study are to determine the mechanisms behind LGS treatment and non-biofilm effects on bacterial disruption, including (1) comparing bacterial load with and without LGS in its planktonic form and (2) estimating bacterial cell permeability following LGS. Study Design/Materials and Methods For the first study, planktonic S. epidermidis were treated with gentamicin (0, 8, 16, 32, 64 μg/ml) with and without LGS (1064 nm Nd:YAG laser, 110.14 mJ/mm2 , pulse duration 9 ns, spot size 3 mm, n = 8/group), and absorbances at 600 nm compared. For the second study, four samples of planktonic S. epidermidis were treated with LGS (same settings). Propidium iodide (PI) uptake via flow cytometry as a measure of cell permeability was measured at 0, 10, and 20 minutes following LGS. RESULTS: In comparing corresponding gentamicin concentrations within both LGS-treated samples and controls at 0 hours, there were no differences in absorbance (P = 0.923 and P = 0.814, respectively). Flow cytometry found modest PI uptake (10.4 ± 2.5%) immediately following LGS treatment, with time-dependent increase and persistence of the signal at 20 minutes (R2 = 0.449, P = 0.048). CONCLUSION: Taken together, LGS does not appear to have direct bacteriocidal properties, but rather by allowing for biofilm disruption and bacterial cell membrane permeabilization, both of which likely increase topical antibiotic delivery to pathogenic organisms. Insight into the mechanisms of LGS will allow for improved clinical applications and facilitate safe and effective translation of this technology. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- William Yao
- Department of Bioengineering, University of California, Los Angeles (UCLA) Henry Samueli School of Engineering and Applied Science, Los Angeles, California
| | - Edward C Kuan
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine Medical Center, Orange, California
| | - Young Hun Chung
- Department of Bioengineering, University of California, Los Angeles (UCLA) Henry Samueli School of Engineering and Applied Science, Los Angeles, California
| | - Nathan C Francis
- Department of Bioengineering, University of California, Los Angeles (UCLA) Henry Samueli School of Engineering and Applied Science, Los Angeles, California
| | - Maie A St John
- Department of Head and Neck Surgery, UCLA Medical Center, Los Angeles, California.,UCLA Head and Neck Cancer Program, Los Angeles, California
| | - Zachary D Taylor
- Department of Bioengineering, University of California, Los Angeles (UCLA) Henry Samueli School of Engineering and Applied Science, Los Angeles, California
| | - Warren S Grundfest
- Department of Bioengineering, University of California, Los Angeles (UCLA) Henry Samueli School of Engineering and Applied Science, Los Angeles, California
| |
Collapse
|
27
|
Mittal R, Parrish JM, Soni M, Mittal J, Mathee K. Microbial otitis media: recent advancements in treatment, current challenges and opportunities. J Med Microbiol 2018; 67:1417-1425. [PMID: 30084766 DOI: 10.1099/jmm.0.000810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Otitis media (OM) is a common disease affecting humans, especially paediatric populations. OM refers to inflammation of the middle ear and can be broadly classified into two types, acute and chronic. Bacterial infection is one of the most common causes of OM. Despite the introduction of vaccines, the incidence of OM remains significantly high worldwide. In this mini-review article, we discuss the recent treatment modalities for OM, such as suspension gel, transcutaneous immunization, and intranasal and transtympanic drug delivery, including therapies that are currently undergoing clinical trials. We provide an overview of how these recent advancements in therapeutic strategies can facilitate the circumvention of current treatment challenges involving preadolescence soft palate dysfunction, biofilm formation, tympanic membrane (ear drum) barrier and the attainment of efficacious drug concentrations in the middle ear. While traditional first-line immunization strategies are generally not very efficacious against biofilms, new technologies that use transdermal or intranasal drug delivery via chitosan-PsaA nanoparticles have shown promising results in experimental animal models of OM. Sustained drug delivery systems such as penta-block copolymer poloxamer 407-polybutylphosphoester (P407-PBP) or poloxamer 407 (e.g. OTO-201, with the brand name 'OTIPRIO') have demonstrated that treatments can be reduced to a single topical application. The emergence of effective new treatment modalities opens up promising new avenues for the treatment of OM that could lead to improved quality of life for many children and their families.
Collapse
Affiliation(s)
- Rahul Mittal
- 1Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James M Parrish
- 1Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Manasi Soni
- 1Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeenu Mittal
- 1Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kalai Mathee
- 2Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,3Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| |
Collapse
|
28
|
Abi Hachem R, Goncalves S, Walker T, Angeli S. Middle ear irrigation using a hydrodebrider decreases biofilm surface area in an animal model of otitis media. Laryngoscope Investig Otolaryngol 2018; 3:231-237. [PMID: 30062140 PMCID: PMC6057225 DOI: 10.1002/lio2.164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/15/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022] Open
Abstract
Objective To compare the safety and efficacy of manual and powered irrigation of the middle ear using saline or 1% baby shampoo to treat biofilm‐forming bacterial middle ear infections. Background Biofilms play a major role in recalcitrant otitis media and are challenging to treat. Many therapeutic strategies have been attempted and the role of topical therapies is still being investigated. Topical irrigation using saline or 1% baby shampoo and the use of a hydrodebrider have been investigated in biofilms involved in chronic rhinosinusitis and their role within the middle ear is yet to be determined. Methods Twenty‐two adult chinchillas underwent bilateral trans‐bullar inoculation of non‐typable biofilm forming Haemophilus influenza followed by unilateral middle ear irrigation 5 days later using saline administered via a powered hydrodebrider or manual irrigation of saline or 1% baby shampoo. Contralateral inoculated ears served as control and were not irrigated. Two days following irrigation, the bullae were harvested and processed for scanning electron microscopy to assess biofilm surface area. Auditory brainstem responses were performed before bacterial inoculation and prior to euthanasia. Results Manual and powered irrigation were effective in reducing the surface area of biofilm when compared to the control group. The hydrodebrider demonstrated to be more effective at eradicating biofilm than manual irrigation, especially in areas of difficult access, such as the ventral portion of the chinchillas' bullae. There was no difference in manual irrigation of saline when compared to 1% baby shampoo. Irrigations either manually or using the hydrodebrider did not affect hearing, the vestibular system or facial function. Conclusion Middle ear biofilms can be treated safely and effectively with rinses using either normal saline or 1% baby shampoo administered manually or with a powered hydrodebrider. Level of Evidence NA.
Collapse
Affiliation(s)
- Ralph Abi Hachem
- Department of Otolaryngology-Head and Neck Surgery University of Miami Miller School of Medicine Miami Florida U.S.A
| | - Stefania Goncalves
- Department of Otolaryngology-Head and Neck Surgery University of Miami Miller School of Medicine Miami Florida U.S.A
| | - Thomas Walker
- Department of Otolaryngology-Head and Neck Surgery University of Miami Miller School of Medicine Miami Florida U.S.A
| | - Simon Angeli
- Department of Otolaryngology-Head and Neck Surgery University of Miami Miller School of Medicine Miami Florida U.S.A
| |
Collapse
|
29
|
Cho C, Chande AT, Gakhar L, Hunt J, Ketterer MR, Apicella MA. Characterization of a nontypeable Haemophilus influenzae thermonuclease. PLoS One 2018; 13:e0197010. [PMID: 29746527 PMCID: PMC5944969 DOI: 10.1371/journal.pone.0197010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/24/2018] [Indexed: 01/28/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) has been shown to form biofilms, comprised of extracellular DNA (eDNA), in the middle ear and bronchus during clinical infections. Studies in our laboratory have shown that NTHi possesses a homolog of Staphylococcus aureus thermonuclease (staphylococcal thermonuclease), NTHi nuclease (NTHi Nuc, HI_1296). This enzyme had similar size, heat stability, and divalent cation requirements to those of the staphylococcal homolog as determined by light scattering and circular dichroism spectroscopy. Small angle X-ray scattering (SAXS) analysis suggested an overall shape and substrate-binding site comparable to those of staphylococcal nuclease. However, NTHi Nuc was approximately 25-fold more active in fluorescence resonance energy transfer (FRET) activity assay than staphylococcal thermonuclease. Homology modeling implicates shorter NTHi Nuc loops near the active site for this enhanced activity.
Collapse
Affiliation(s)
- Christine Cho
- Iowa Inflammation Program, The University of Iowa, Iowa City, Iowa City, IA, United States of America
- Department of Infectious Disease, University of Iowa Hospitals, Iowa City, IA, United States of America
- Physician Scientist Training Pathway, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Aroon T. Chande
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, Georgia, United States of America
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Columbia
| | - Lokesh Gakhar
- Department of Biochemistry, The University of Iowa, Iowa City, IA, United States of America
- Protein Crystallography Facility, The University of Iowa, Iowa City, IA, United States of America
| | - Jason Hunt
- Institute for Environmental Studies, Western Illinois University, Macomb, IL, United States of America
| | - Margaret R. Ketterer
- Department of Microbiology, The University of Iowa, Iowa City, IA, United States of America
| | - Michael A. Apicella
- Department of Microbiology, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
30
|
Animal models of acute otitis media - A review with practical implications for laboratory research. Eur Ann Otorhinolaryngol Head Neck Dis 2018; 135:183-190. [PMID: 29656888 DOI: 10.1016/j.anorl.2017.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 11/23/2022]
Abstract
Considerable animal research has focused on developing new strategies for the prevention and treatment of acute otitis media (AOM). Several experimental models of AOM have thus been developed. A PubMed search of the English literature was conducted from 1975 to July 2016 using the search terms "animal model" and "otitis media" from which 91 published studies were included for analysis, yielding 123 animal models. The rat, mouse and chinchilla are the preferred animals for experimental AOM models with their individual advantages and disadvantages. The most common pathogens used to create AOM are Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis. Streptococcus pneumoniae (types 3, 23 and 6A) and non-typeable Haemophilus influenzae (NTHi) are best options for inoculation into rat and mouse models. Adding viral pathogens such as RSV and Influenza A virus, along with creating ET dysfunction, are useful adjuncts in animal models of AOM. Antibiotic prophylaxis may interfere with the inflammatory response without a significant reduction in animal mortality.
Collapse
|
31
|
Abstract
Background Bacterial biofilms have been documented on middle ear mucosa, tonsils, and cholesteatoma. In addition, we have described previously bacterial biofilms on frontal recess stents placed during surgery for chronic sinusitis. We hypothesize that bacterial biofilms are present on the mucosa of animals with sinuses experimentally infected with Pseudomonas aeruginosa. Methods We instilled Pseudomonas aeruginosa at log phase growth into the right maxillary sinus in 22 New Zealand white rabbits and harvested specimens 1–20 days later. We then examined the tissues with scanning electron microscopy (SEM) and light microscopy. Mucosa from the middle turbinate on the contralateral side was used as a control. Results We identified evidence of bacterial biofilms on the mucosa of all 22 animals under SEM. Twenty-one of 22 animals had sinus cultures positive for Pseudomonas. Bacterial biofilms were identified by evidence of glycocalyx, water channels, and three-dimensional structure. These images were similar to other images of known biofilms. Conclusion This is evidence of the presence of bacterial biofilms in an animal model of sinusitis. This model may serve as a means to study the efficacy and safety of pharmacologic and surgical treatments on the disruption and elimination of bacterial biofilms. Additional study into the role of bacterial biofilms in perpetuating chronic sinusitis is warranted.
Collapse
Affiliation(s)
- Joel R. Perloff
- Department of Otorhinolaryngology–Head and Neck Surgery, Philadelphia, Pennsylvania
| | - James N. Palmer
- Department of Otorhinolaryngology–Head and Neck Surgery, Philadelphia, Pennsylvania
- Division of Rhinology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Perloff JR, Palmer JN. Evidence of Bacterial Biofilms on Frontal Recess Stents in Patients with Chronic Rhinosinusitis. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/194589240401800607] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Bacterial biofilms have been documented on middle ear mucosa, tonsils, and cholesteatoma. We hypothesize that bacterial biofilms are present in mucosa of patients with chronic sinusitis. We believe that frontal sinus stents may serve as a reservoir for biofilms. Experiment We studied silicone frontal sinus stents removed from six patients 1 to 4 weeks after FESS with scanning electron microscopy (SEM). Results We identified evidence of bacterial biofilms on the frontal recess stents in six of six patients under SEM. Five of these patients had sinus cultures positive for Staphylococcus aureus. Bacterial biofilms were identified by evidence of glycocalyx, water channels, and three-dimensional structure. These images were similar to other images of known biofilms. Conclusions This is evidence of the possible presence of bacterial biofilms on frontal sinus stents in patients with chronic sinusitis. Further study into the role of bacterial biofilms in perpetuating chronic sinusitis is warranted.
Collapse
Affiliation(s)
- Joel R. Perloff
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - James N. Palmer
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Abstract
Background Bacterial biofilms may explain why some patients with bacterial chronic rhinosinusitis (CRS) improve while on antibiotics but relapse after completion of the antibiotic. In the human host, biofilms exist as a community of bacteria surrounded by a glycocalyx that is adherent to a foreign body or a mucosal surface with impaired host defense. Biofilms generate planktonic, nonadherent bacterial forms that may metastasize infection and generate systemic illness. These planktonic bacteria are susceptible to antibiotics, unlike the adherent biofilm. Methods We reviewed four cases of CRS using transmission electron microscopy (TEM) to assay for typical colony architecture of biofilms. Bacterial communities surrounded by a glycocalyx of inert cellular membrane materials consistent with a biofilm were shown in two patients. Results In the two patients without biofilm, a nonbacterial etiology was discovered (allergic fungal sinusitis) in one and in the other there was scant anaerobic growth on culture and the Gram stain was negative. Culture of the material from the biofilm grew Pseudomonas aeruginosa in both patients. Pseudomonas from the biofilm showed a glycocalyx, not present in Pseudomonas cultured for 72 hours on culture media. Both patients’ symptoms with bacterial biofilms were refractory to culture-directed antibiotics, topical steroids, and nasal lavages. Surgery resulted in cure or significant improvement. Conclusion Biofilms are refractory to antibiotics and often only cured by mechanical debridement. We believe this is the first TEM documentation of bacterial biofilms in CRS in humans.
Collapse
Affiliation(s)
- Berrylin J. Ferguson
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Donna B. Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh; Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Aliashkevich A, Alvarez L, Cava F. New Insights Into the Mechanisms and Biological Roles of D-Amino Acids in Complex Eco-Systems. Front Microbiol 2018; 9:683. [PMID: 29681896 PMCID: PMC5898190 DOI: 10.3389/fmicb.2018.00683] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023] Open
Abstract
In the environment bacteria share their habitat with a great diversity of organisms, from microbes to humans, animals and plants. In these complex communities, the production of extracellular effectors is a common strategy to control the biodiversity by interfering with the growth and/or viability of nearby microbes. One of such effectors relies on the production and release of extracellular D-amino acids which regulate diverse cellular processes such as cell wall biogenesis, biofilm integrity, and spore germination. Non-canonical D-amino acids are mainly produced by broad spectrum racemases (Bsr). Bsr’s promiscuity allows it to generate high concentrations of D-amino acids in environments with variable compositions of L-amino acids. However, it was not clear until recent whether these molecules exhibit divergent functions. Here we review the distinctive biological roles of D-amino acids, their mechanisms of action and their modulatory properties of the biodiversity of complex eco-systems.
Collapse
Affiliation(s)
- Alena Aliashkevich
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Laura Alvarez
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Monroy GL, Hong W, Khampang P, Porter RG, Novak MA, Spillman DR, Barkalifa R, Chaney EJ, Kerschner JE, Boppart SA. Direct Analysis of Pathogenic Structures Affixed to the Tympanic Membrane during Chronic Otitis Media. Otolaryngol Head Neck Surg 2018; 159:117-126. [PMID: 29587128 DOI: 10.1177/0194599818766320] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective To characterize otitis media-associated structures affixed to the mucosal surface of the tympanic membrane (TM) in vivo and in surgically recovered in vitro samples. Study Design Prospective case series without comparison. Setting Outpatient surgical care center. Subjects and Methods Forty pediatric subjects scheduled for tympanostomy tube placement surgery were imaged intraoperatively under general anesthesia. Postmyringotomy, a portable optical coherence tomography (OCT) imaging system assessed for the presence of any biofilm affixed to the mucosal surface of the TM. Samples of suspected microbial infection-related structures were collected through the myringotomy incision. The sampled site was subsequently reimaged with OCT to confirm collection from the original image site on the TM. In vitro analysis based on confocal laser scanning microscope (CLSM) images of fluorescence in situ hybridization-tagged samples and polymerase chain reaction (PCR) provided microbiological characterization and verification of biofilm activity. Results OCT imaging was achieved for 38 of 40 subjects (95%). Images from 38 of 38 (100%) of subjects observed with OCT showed the presence of additional microbial infection-related structures. Thirty-four samples were collected from these 38 subjects. CLSM images provided evidence of clustered bacteria in 32 of 33 (97%) of samples. PCR detected the presence of active bacterial DNA signatures in 20 of 31 (65%) of samples. Conclusion PCR and CLSM analysis of fluorescence in situ hybridization-stained samples validates the presence of active bacteria that have formed into a middle ear biofilm that extends across the mucosal layer of the TM. OCT can rapidly and noninvasively identify middle ear biofilms in subjects with severe and persistent cases of otitis media.
Collapse
Affiliation(s)
- Guillermo L Monroy
- 1 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,2 Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Wenzhou Hong
- 3 Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Ryan G Porter
- 4 Department of Otolaryngology-Head and Neck Surgery, Carle Foundation Hospital, Urbana, Illinois, USA.,5 Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael A Novak
- 4 Department of Otolaryngology-Head and Neck Surgery, Carle Foundation Hospital, Urbana, Illinois, USA.,5 Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Darold R Spillman
- 2 Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Ronit Barkalifa
- 2 Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Eric J Chaney
- 2 Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | | | - Stephen A Boppart
- 1 Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,2 Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA.,5 Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
36
|
Li P, Chen D, Huang Y. Fisetin administration improves LPS-induced acute otitis media in mouse in vivo. Int J Mol Med 2018; 42:237-247. [PMID: 29568876 PMCID: PMC5979934 DOI: 10.3892/ijmm.2018.3585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Acute otitis media is one of the most common infectious diseases worldwide in spite of the widespread vaccination. The present study was conducted to explore the effects of fisetin on mouse acute otitis media models. The animal models were established by lipopolysaccharide (LPS) injection into the middle ear of mice via the tympanic membrane. Fisetin was administered to mice for ten days through intragastric administration immediate after LPS application. Hematoxylin and eosin (H&E) staining was performed and the pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and VEGF, were measured through enzyme-linked immunosorbent assay (ELISA) method and RT-qPCR analysis. Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was detected by immunoblotting assays. Reactive oxygen species (ROS) generated levels were determined through assessment of anti-oxidants, and TXNIP/MAPKs signaling pathways were explored to reveal the possible molecular mechanism for acute otitis media progression and the function of fisetin. Fisetin reduced mucosal thickness caused by LPS. In fisetin-treated animals, pro-inflammatory cytokine release was downregulated accompanied with TLR4/NF-κB inactivation. ROS production was significantly decreased in comparison to the LPS-treated group. The TXNIP/MAPKs signaling pathway was inactivated for fisetin treatment in LPS-induced mice with acute otitis media. The above results indicated that fisetin improved acute otitis media through inflammation and ROS suppression via inactivating TLR4/NF-κB and TXNIP/MAPKs signaling pathways.
Collapse
Affiliation(s)
- Peng Li
- Department of Otorhinolaryngology, The Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Dan Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yang Huang
- Department of Otolaryngology, The First People's Hospital of Yunnan Province, Xishan, Kunming 650032, P.R. China
| |
Collapse
|
37
|
Ma YK, Chen YB, Li P. Quercetin inhibits NTHi-triggered CXCR4 activation through suppressing IKKα/NF-κB and MAPK signaling pathways in otitis media. Int J Mol Med 2018; 42:248-258. [PMID: 29568908 PMCID: PMC5979834 DOI: 10.3892/ijmm.2018.3577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
Otitis media is one of the most common bacterial infections in children, contributing to hearing loss. A vital bacterial pathogen leading to otitis media development is the nontypeable Haemophilus influenzae (NTHi). Inflammation response is reported as an important characristic for otitis media. Chemokine CXC receptor 4 (CXCR4) is a 352-amino acid seven-span transmembrane G-protein coupled receptor, essential for inflammatory response. However, the possible molecular mechanism indicating the alteration of CXCR4 modulated by NTHi is poorly known. In the present study, NTHi enhanced CXCR4 expression through phosphorylation of IKKα and p38, which relied on nuclear factor-κB (NF-κB) translocation in vitro as well as in the middle ear of mice in vivo. Previously, quercetin, a natural production mainly isolated from rutin, has shown anti-inflammatory effects. Here, we report that quercetin suppressed NTHi-induced CXCR4 expression levels in vitro and in vivo. Quercetin blocked CXCR4 activation through direct IKKβ phosphorylation inhibition, as well as of p38 MAPK restraining. Hence, identification of quercetin may be a potential therapeutic strategy for treating otitis media induced by NTHi through inflammation suppression.
Collapse
Affiliation(s)
- Yu-Kun Ma
- Department of Otorhinolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630 P.R. China
| | - Yu-Bin Chen
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630 P.R. China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630 P.R. China
| |
Collapse
|
38
|
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 2017; 9:28-63. [PMID: 28960132 PMCID: PMC6067836 DOI: 10.1080/21505594.2017.1371897] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in living experimental animal models of infections have mostly relied on sacrificing the animals, dissociating the tissue and counting the number of colony forming units. However, the discovery of several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria, fungi, parasites and mice to make them emit light, either after administration of the luciferase substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI technology has been used to follow bacterial infections in traumatic skin wounds and burns, osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied using BLI. This rapidly growing technology is expected to continue to provide much useful information, while drastically reducing the numbers of animals needed in experimental studies.
Collapse
Affiliation(s)
- Pinar Avci
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA
| | - Mahdi Karimi
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,c Department of Medical Nanotechnology , School of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran.,d Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Magesh Sadasivam
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,e Amity Institute of Nanotechnology, Amity University Uttar Pradesh , Noida , India
| | - Wanessa C Antunes-Melo
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,f University of Sao Paulo , Sao Carlos-SP , Brazil
| | - Elisa Carrasco
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,g Department of Biosciences , Durham University , Durham , United Kingdom
| | - Michael R Hamblin
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA.,h Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
39
|
Jakobsen TH, Tolker-Nielsen T, Givskov M. Bacterial Biofilm Control by Perturbation of Bacterial Signaling Processes. Int J Mol Sci 2017; 18:ijms18091970. [PMID: 28902153 PMCID: PMC5618619 DOI: 10.3390/ijms18091970] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 01/20/2023] Open
Abstract
The development of effective strategies to combat biofilm infections by means of either mechanical or chemical approaches could dramatically change today’s treatment procedures for the benefit of thousands of patients. Remarkably, considering the increased focus on biofilms in general, there has still not been invented and/or developed any simple, efficient and reliable methods with which to “chemically” eradicate biofilm infections. This underlines the resilience of infective agents present as biofilms and it further emphasizes the insufficiency of today’s approaches used to combat chronic infections. A potential method for biofilm dismantling is chemical interception of regulatory processes that are specifically involved in the biofilm mode of life. In particular, bacterial cell to cell signaling called “Quorum Sensing” together with intracellular signaling by bis-(3′-5′)-cyclic-dimeric guanosine monophosphate (cyclic-di-GMP) have gained a lot of attention over the last two decades. More recently, regulatory processes governed by two component regulatory systems and small non-coding RNAs have been increasingly investigated. Here, we review novel findings and potentials of using small molecules to target and modulate these regulatory processes in the bacterium Pseudomonas aeruginosa to decrease its pathogenic potential.
Collapse
Affiliation(s)
- Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
40
|
Haemophilus parainfluenzae Strain ATCC 33392 Forms Biofilms In Vitro and during Experimental Otitis Media Infections. Infect Immun 2017; 85:IAI.01070-16. [PMID: 28674033 DOI: 10.1128/iai.01070-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/28/2017] [Indexed: 12/31/2022] Open
Abstract
Haemophilus parainfluenzae is a nutritionally fastidious, Gram-negative bacterium with an oropharyngeal/nasopharyngeal carriage niche that is associated with a range of opportunistic infections, including infectious endocarditis and otitis media (OM). These infections are often chronic/recurrent in nature and typically involve bacterial persistence within biofilm communities that are highly resistant to host clearance. This study addresses the primary hypothesis that H. parainfluenzae forms biofilm communities that are important determinants of persistence in vivo The results from in vitro biofilm studies confirmed that H. parainfluenzae formed biofilm communities within which the polymeric matrix was mainly composed of extracellular DNA and proteins. Using a chinchilla OM infection model, we demonstrated that H. parainfluenzae formed surface-associated biofilm communities containing bacterial and host components that included neutrophil extracellular trap (NET) structures and that the bacteria mainly persisted in these biofilm communities. We also used this model to examine the possible interaction between H. parainfluenzae and its close relative Haemophilus influenzae, which is also commonly carried within the same host environments and can cause OM. The results showed that coinfection with H. influenzae promoted clearance of H. parainfluenzae from biofilm communities during OM infection. The underlying mechanisms for bacterial persistence and biofilm formation by H. parainfluenzae and knowledge about the survival defects of H. parainfluenzae during coinfection with H. influenzae are topics for future work.
Collapse
|
41
|
Chan CL, Richter K, Wormald PJ, Psaltis AJ, Vreugde S. Alloiococcus otitidis Forms Multispecies Biofilm with Haemophilus influenzae: Effects on Antibiotic Susceptibility and Growth in Adverse Conditions. Front Cell Infect Microbiol 2017; 7:344. [PMID: 28824879 PMCID: PMC5539592 DOI: 10.3389/fcimb.2017.00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
Otitis media with effusion (OME) is a biofilm driven disease and commonly accepted otopathogens, such as Haemophilus influenzae, Streptococcus pneumonia, and Moraxella catarrhalis, have been demonstrated to form polymicrobial biofilms within the middle ear cleft. However, Alloiococcus otitidis (A. otitidis), which is one of the most commonly found bacteria within middle ear aspirates of children with OME, has not been described to form biofilms. The aim of this study was to investigate whether A. otitidis can form biofilms and investigate the impact on antibiotic susceptibility and survivability in polymicrobial biofilms with H. influenzae in vitro. The ability of A. otitidis to form single-species and polymicrobial biofilms with H. influenzae was explored. Clinical and commercial strains of A. otitidis and H. influenzae were incubated in brain heart infusion with and without supplementation. Biofilm was imaged using confocal laser scanning microscopy and scanning electron microscopy. Quantification of biofilm biomass and viable bacterial number was assessed using crystal violet assays and viable cell counting in both optimal growth conditions and in adverse growth conditions (depleted media and sub-optimal growth temperature). Antimicrobial susceptibility and changes in antibiotic resistance of single-species and multi-species co-culture were assessed using a microdilution method to assess minimal bactericidal concentration and E-test for amoxicillin and ciprofloxacin. A. otitidis formed single-species and polymicrobial biofilms with H. influenzae. Additionally, whilst strain dependent, combinations of polymicrobial biofilms decreased antimicrobial susceptibility, albeit a small magnitude, in both planktonic and polymicrobial biofilms. Moreover, A. otitidis promoted H. influenzae survival by increasing biofilm production in depleted media and at suboptimal growth temperature. Our findings suggest that A. otitidis may play an indirect pathogenic role in otitis media by altering H. influenzae antibiotic susceptibility and enhancing growth under adverse conditions.
Collapse
Affiliation(s)
- Chun L Chan
- Department of Surgery, Otolaryngology-Head and Neck Surgery, Adelaide UniversityAdelaide, SA, Australia
| | - Katharina Richter
- Department of Surgery, Otolaryngology-Head and Neck Surgery, Adelaide UniversityAdelaide, SA, Australia
| | - Peter-John Wormald
- Department of Surgery, Otolaryngology-Head and Neck Surgery, Adelaide UniversityAdelaide, SA, Australia
| | - Alkis J Psaltis
- Department of Surgery, Otolaryngology-Head and Neck Surgery, Adelaide UniversityAdelaide, SA, Australia
| | - Sarah Vreugde
- Department of Surgery, Otolaryngology-Head and Neck Surgery, Adelaide UniversityAdelaide, SA, Australia
| |
Collapse
|
42
|
Ahearn CP, Gallo MC, Murphy TF. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog Dis 2017; 75:3753446. [PMID: 28449098 PMCID: PMC5437125 DOI: 10.1093/femspd/ftx042] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is the most common bacterial cause of infection of the lower airways in adults with chronic obstructive pulmonary disease (COPD). Infection of the COPD airways causes acute exacerbations, resulting in substantial morbidity and mortality. NTHi has evolved multiple mechanisms to establish infection in the hostile environment of the COPD airways, allowing the pathogen to persist in the airways for months to years. Persistent infection of the COPD airways contributes to chronic airway inflammation that increases symptoms and accelerates the progressive loss of pulmonary function, which is a hallmark of the disease. Persistence mechanisms of NTHi include the expression of multiple redundant adhesins that mediate binding to host cellular and extracellular matrix components. NTHi evades host immune recognition and clearance by invading host epithelial cells, forming biofilms, altering gene expression and displaying surface antigenic variation. NTHi also binds host serum factors that confer serum resistance. Here we discuss the burden of COPD and the role of NTHi infections in the course of the disease. We provide an overview of NTHi mechanisms of persistence that allow the pathogen to establish a niche in the hostile COPD airways.
Collapse
Affiliation(s)
- Christian P. Ahearn
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Mary C. Gallo
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Timothy F. Murphy
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Clinical and Translational Research Center, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
- Division of Infectious Disease, Department of Medicine, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
43
|
Bacterial Lysis through Interference with Peptidoglycan Synthesis Increases Biofilm Formation by Nontypeable Haemophilus influenzae. mSphere 2017; 2:mSphere00329-16. [PMID: 28124027 PMCID: PMC5244263 DOI: 10.1128/msphere.00329-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/31/2016] [Indexed: 11/20/2022] Open
Abstract
Most, if not all, bacteria form a biofilm, a multicellular structure that protects them from antimicrobial actions of the host immune system and affords resistance to antibiotics. The latter is especially disturbing with the increase in multiresistant bacterial clones worldwide. Bacterial biofilm formation is a multistep process that starts with surface adhesion, after which attached bacteria divide and give rise to biomass. The actual steps required for Haemophilus influenzae biofilm formation are largely not known. We show that interference with peptidoglycan biosynthesis increases biofilm formation because of the release of bacterial genomic DNA. Subinhibitory concentrations of β-lactam antibiotics, which are often prescribed to treat H. influenzae infections, increase biofilm formation through a similar mechanism. Therefore, when β-lactam antibiotics do not reach their MIC in vivo, they might not only drive selection for β-lactam-resistant clones but also increase biofilm formation and resistance to other antimicrobial compounds. Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that mainly causes otitis media in children and community-acquired pneumonia or exacerbations of chronic obstructive pulmonary disease in adults. A large variety of studies suggest that biofilm formation by NTHi may be an important step in the pathogenesis of this bacterium. However, the underlying mechanisms involved in this process are poorly elucidated. In this study, we used a transposon mutant library to identify bacterial genes involved in biofilm formation. The growth and biofilm formation of 4,172 transposon mutants were determined, and the involvement of the identified genes in biofilm formation was validated in in vitro experiments. Here, we present experimental data showing that increased bacterial lysis, through interference with peptidoglycan synthesis, results in elevated levels of extracellular DNA, which increased biofilm formation. Interestingly, similar results were obtained with subinhibitory concentrations of β-lactam antibiotics, known to interfere with peptidoglycan synthesis, but such an effect does not appear with other classes of antibiotics. These results indicate that treatment with β-lactam antibiotics, especially for β-lactam-resistant NTHi isolates, might increase resistance to antibiotics by increasing biofilm formation. IMPORTANCE Most, if not all, bacteria form a biofilm, a multicellular structure that protects them from antimicrobial actions of the host immune system and affords resistance to antibiotics. The latter is especially disturbing with the increase in multiresistant bacterial clones worldwide. Bacterial biofilm formation is a multistep process that starts with surface adhesion, after which attached bacteria divide and give rise to biomass. The actual steps required for Haemophilus influenzae biofilm formation are largely not known. We show that interference with peptidoglycan biosynthesis increases biofilm formation because of the release of bacterial genomic DNA. Subinhibitory concentrations of β-lactam antibiotics, which are often prescribed to treat H. influenzae infections, increase biofilm formation through a similar mechanism. Therefore, when β-lactam antibiotics do not reach their MIC in vivo, they might not only drive selection for β-lactam-resistant clones but also increase biofilm formation and resistance to other antimicrobial compounds.
Collapse
|
44
|
Park HJ, Kim YS, Yoon TK, Lee WS. Chronic endometritis and infertility. Clin Exp Reprod Med 2016; 43:185-192. [PMID: 28090456 PMCID: PMC5234283 DOI: 10.5653/cerm.2016.43.4.185] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/09/2016] [Accepted: 06/30/2016] [Indexed: 11/22/2022] Open
Abstract
Chronic endometritis (CE) is a condition involving the breakdown of the peaceful co-existence between microorganisms and the host immune system in the endometrium. A majority of CE cases produce no noticeable signs or mild symptoms, and the prevalence rate of CE has been found to be approximately 10%. Gynecologists and pathologists often do not focus much clinical attention on CE due to the time-consuming microscopic examinations necessary to diagnose CE, its mild clinical manifestations, and the benign nature of the disease. However, the relationship between CE and infertility-related conditions such as repeated implantation failure and recurrent miscarriage has recently emerged as an area of inquiry. In this study, we reviewed the literature on the pathophysiology of CE and how it may be associated with infertility, as well as the literature regarding the diagnosis and treatment of CE. In addition, we discuss the value of hysteroscopic procedures in the diagnosis and treatment of CE.
Collapse
Affiliation(s)
- Hyun Jong Park
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gumi Medical Center, CHA University, Gumi, Korea
| | - You Shin Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Tae Ki Yoon
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Woo Sik Lee
- Department of Obstetrics and Gynecology, Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul, Korea
| |
Collapse
|
45
|
Bluestone CD, Hebda PA, Alper CM, Sando I, Buchman CA, Stangerup SE, Felding JU, Swarts JD, Ghadiali SN, Takahashi H. 2. Eustachian Tube, Middle Ear, and Mastoid Anatomy; Physiology, Pathophysiology, and Pathogenesis. Ann Otol Rhinol Laryngol 2016; 194:16-30. [PMID: 15700932 DOI: 10.1177/00034894051140s105] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Charles D Bluestone
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Giebink GS, Bakaletz LO, Barenkamp SJ, Green B, Gu XX, Heikkinen T, Hotomi M, Karma P, Kurono Y, Kyd JM, Murphy TF, Ogra PL, Patel JA, Pelton SI. 6. Vaccine. Ann Otol Rhinol Laryngol 2016. [DOI: 10.1177/00034894051140s110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Roland PS, Dohar JE, Lanier BJ, Hekkenburg R, Lane EM, Conroy PJ, Wall GM, Dupre SJ, Potts SL. Topical Ciprofloxacin/Dexamethasone Otic Suspension is Superior to Ofloxacin Otic Solution in the Treatment of Granulation Tissue in Children with Acute Otitis Media With Otorrhea Through Tympanostomy Tubes. Otolaryngol Head Neck Surg 2016; 130:736-41. [PMID: 15195060 DOI: 10.1016/j.otohns.2004.02.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE: Comparison of topical ciprofloxacin/dexamethasone otic suspension (CIP/DEX) to ofloxacin otic solution (OFL) for treatment of granulation tissue in children with AOMT. STUDY DESIGN: 599 children aged ≥6 months to 12 years with AOMT of up to 3 weeks' duration were enrolled. Patients received either CIP/DEX 4 drops twice daily for 7 days or OFL 5 drops twice daily for 10 days. Granulation tissue severity was graded at clinic visits on days 1, 3, 11, and 18. RESULTS: Granulation tissue was present in 90 of 599 AOMT patients (15.0%) at baseline. CIP/DEX treatment was superior to OFL for reduction of granulation tissue at the day 11 visit (81.3% compared with 56.1%, P = 0.0067) and the day 18 visit (91.7% compared with 73.2%, P = 0.0223). Both topical otic preparations are safe and well tolerated in pediatric patients. CONCLUSION: CIP/DEX was superior to OFL in the treatment of granulation tissue in children with AOMT. (Otolaryngol Head Neck Surg 2004;130: 736-41.)
Collapse
Affiliation(s)
- Peter S Roland
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9035, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
A randomized study of four different types of tympanostomy ventilation tubes - One-year follow-up. Int J Pediatr Otorhinolaryngol 2016; 89:159-63. [PMID: 27619049 DOI: 10.1016/j.ijporl.2016.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To compare four different types of tympanostomy ventilation tubes (VT); long-shaft and short-shaft silicone tubes and long-shaft and short-shaft fluoroplastic tubes, regarding time to extrusion and events of otorrhea. METHODS A prospective randomized controlled trial in children with bilateral recurrent acute otitis media or secretory otitis media; four hundred children were randomized to receive one type of VT in the right ear and another type in the left ear. Postoperatively the children were assessed every third month by an otolaryngologist to monitor the incidence of otorrhea and tube extrusion. RESULTS Out of the 400 children, 22 were excluded during surgery. Mean age was 35.3 months. A majority (63.8%) were boys. Forty-eight children were lost to follow up during the first year. Significantly more short-shaft VTs were extruded after 12 months compared to long-shaft VTs, regardless of material. Significantly higher incidence of otorrhea was found in the fluoroplastic VT ears compared to the silicone ones, regardless of length of tube. CONCLUSION Long-shaft VTs last longer in the eardrum during the first year of treatment. Silicone tubes render a reduced risk of otorrhea during the first year of treatment.
Collapse
|
49
|
Current Trends in Development of Liposomes for Targeting Bacterial Biofilms. Pharmaceutics 2016; 8:pharmaceutics8020018. [PMID: 27231933 PMCID: PMC4932481 DOI: 10.3390/pharmaceutics8020018] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022] Open
Abstract
Biofilm targeting represents a great challenge for effective antimicrobial therapy. Increased biofilm resistance, even with the elevated concentrations of very potent antimicrobial agents, often leads to failed therapeutic outcome. Application of biocompatible nanomicrobials, particularly liposomally-associated nanomicrobials, presents a promising approach for improved drug delivery to bacterial cells and biofilms. Versatile manipulations of liposomal physicochemical properties, such as the bilayer composition, membrane fluidity, size, surface charge and coating, enable development of liposomes with desired pharmacokinetic and pharmacodynamic profiles. This review attempts to provide an unbiased overview of investigations of liposomes destined to treat bacterial biofilms. Different strategies including the recent advancements in liposomal design aiming at eradication of existing biofilms and prevention of biofilm formation, as well as respective limitations, are discussed in more details.
Collapse
|
50
|
Mehta AJ, Stevens GR, Antonelli PJ. Opening plugged tympanostomy tubes: Effect of inner diameter and shaft length. Otolaryngol Head Neck Surg 2016; 132:322-6. [PMID: 15692548 DOI: 10.1016/j.otohns.2004.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE: To determine whether tympanostomy tube (TT) inner diameter or shaft length impacts the rate of mucoid plug clearance. STUDY DESIGN AND SETTING: Ex vivo model. Silicone TTs with different inner-diameters (ID) and shaft-length (SL) pairings (1.14 mm ID × 12 mm SL versus 1.14 mm ID × 1 mm SL; 1.14 mm ID × 4.8 mm SL versus 1.32 mm ID × 4.8 mm SL) were plugged with middle-ear mucus (n = 15 per group) and placed in a model ear chamber. Ofloxacin otic solution was instilled into the chamber to cover the plugged TT, and the time to clearance of each plug was recorded. RESULTS: TTs with larger IDs ( P = 0.019) and greater SLs ( P = 0.033) cleared plugs more rapidly. However, the difference in the percentage of tubes that unplugged was not significant ( P = 0.151). CONCLUSIONS: Rate of ex vivo TT plug clearance may be altered by changing TT ID and SL.
Collapse
Affiliation(s)
- Ajay J Mehta
- Department of Otolaryngology, University of Florida, Gainesville 32610-0264, USA
| | | | | |
Collapse
|