1
|
Rink-Notzon S, Reuscher J, Wollny L, Sarikcioglu L, Bilmen S, Manthou M, Gordon T, Angelov DN. Appropriate dosage, timing, and site of intramuscular injections of brain-derived neurotrophic factor (BDNF) promote motor recovery after facial nerve injury in rats. Muscle Nerve 2024; 69:490-497. [PMID: 38328996 DOI: 10.1002/mus.28051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
INTRODUCTION/AIMS Daily intramuscular injections of fibroblast growth factor 2 (FGF2) but not of brain-derived neurotrophic factor (BDNF) significantly improve whisking behavior and mono-innervation of the rat levator labii superioris (LLS) muscle 56 days after buccal nerve transection and suture (buccal-buccal anastomosis, BBA). We explored the dose-response of BDNF, FGF2, and insulin growth factor 2 (IGF2) on the same parameters, asking whether higher doses of BDNF would promote recovery. METHODS After BBA, growth factors were injected (30 μL volume) daily into the LLS muscle over 14, 28, or 56 days. At 56 days, video-based motion analysis of vibrissal whisking was performed and the extent of mono- and poly-reinnervation of the reinnervated neuromuscular junctions (NMJs) of the muscle determined with immunostaining of the nerve with β-tubulin and histochemical staining of the endplates with Alexa Fluor 488-conjugated α-bungarotoxin. RESULTS The dose-response curve demonstrated significantly higher whisking amplitudes and corresponding increased mono-innervation of the NMJ in the reinnervated LLS muscle at concentrations of 20-30 μg/mL BDNF administered daily for 14-28 days after BBA surgery. In contrast, high doses of IGF2 and FGF2, or doses of 20 and 40 μg/mL of BDNF administered for 14-56 days had no effect on either whisking behavior or in reducing poly-reinnervation of endplates in the muscle. DISCUSSION These data suggest that the re-establishment of mono-innervation of whiskerpad muscles and the improved motor function by injections of BDNF into the paralyzed vibrissal musculature after facial nerve injury have translation potential and promote clinical application.
Collapse
Affiliation(s)
- Svenja Rink-Notzon
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany
| | - Jannika Reuscher
- Department of Anatomy II, University of Cologne, Cologne, Germany
| | - Laura Wollny
- Department of Anatomy II, University of Cologne, Cologne, Germany
| | | | - Süreyya Bilmen
- Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | - Marilena Manthou
- Department of Histology and Embryology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Tessa Gordon
- Department of Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Montes-Lourido P, Kar M, Pernia M, Parida S, Sadagopan S. Updates to the guinea pig animal model for in-vivo auditory neuroscience in the low-frequency hearing range. Hear Res 2022; 424:108603. [PMID: 36099806 PMCID: PMC9922531 DOI: 10.1016/j.heares.2022.108603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 02/08/2023]
Abstract
For gaining insight into general principles of auditory processing, it is critical to choose model organisms whose set of natural behaviors encompasses the processes being investigated. This reasoning has led to the development of a variety of animal models for auditory neuroscience research, such as guinea pigs, gerbils, chinchillas, rabbits, and ferrets; but in recent years, the availability of cutting-edge molecular tools and other methodologies in the mouse model have led to waning interest in these unique model species. As laboratories increasingly look to include in-vivo components in their research programs, a comprehensive description of procedures and techniques for applying some of these modern neuroscience tools to a non-mouse small animal model would enable researchers to leverage unique model species that may be best suited for testing their specific hypotheses. In this manuscript, we describe in detail the methods we have developed to apply these tools to the guinea pig animal model to answer questions regarding the neural processing of complex sounds, such as vocalizations. We describe techniques for vocalization acquisition, behavioral testing, recording of auditory brainstem responses and frequency-following responses, intracranial neural signals including local field potential and single unit activity, and the expression of transgenes allowing for optogenetic manipulation of neural activity, all in awake and head-fixed guinea pigs. We demonstrate the rich datasets at the behavioral and electrophysiological levels that can be obtained using these techniques, underscoring the guinea pig as a versatile animal model for studying complex auditory processing. More generally, the methods described here are applicable to a broad range of small mammals, enabling investigators to address specific auditory processing questions in model organisms that are best suited for answering them.
Collapse
Affiliation(s)
- Pilar Montes-Lourido
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manaswini Kar
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marianny Pernia
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Satyabrata Parida
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Srivatsun Sadagopan
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Zhang L, Chen S, Sun Y. Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea. Front Cell Neurosci 2022; 15:814891. [PMID: 35069120 PMCID: PMC8766678 DOI: 10.3389/fncel.2021.814891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most prevalent sensory deficits in humans, and approximately 360 million people worldwide are affected. The current treatment option for severe to profound hearing loss is cochlear implantation (CI), but its treatment efficacy is related to the survival of spiral ganglion neurons (SGNs). SGNs are the primary sensory neurons, transmitting complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus. In mammals, SGNs have very limited regeneration ability, and SGN loss causes irreversible hearing loss. In most cases of SNHL, SGN damage is the dominant pathogenesis, and it could be caused by noise exposure, ototoxic drugs, hereditary defects, presbycusis, etc. Tremendous efforts have been made to identify novel treatments to prevent or reverse the damage to SGNs, including gene therapy and stem cell therapy. This review summarizes the major causes and the corresponding mechanisms of SGN loss and the current protection strategies, especially gene therapy and stem cell therapy, to promote the development of new therapeutic methods.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Szeto B, Valentini C, Aksit A, Werth EG, Goeta S, Brown LM, Olson ES, Kysar JW, Lalwani AK. Impact of Systemic versus Intratympanic Dexamethasone Administration on the Perilymph Proteome. J Proteome Res 2021; 20:4001-4009. [PMID: 34291951 DOI: 10.1021/acs.jproteome.1c00322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucocorticoids are the first-line treatment for sensorineural hearing loss, but little is known about the mechanism of their protective effect or the impact of route of administration. The recent development of hollow microneedles enables safe and reliable sampling of perilymph for proteomic analysis. Using these microneedles, we investigate the effect of intratympanic (IT) versus intraperitoneal (IP) dexamethasone administration on guinea pig perilymph proteome. Guinea pigs were treated with IT dexamethasone (n = 6), IP dexamethasone (n = 8), or untreated for control (n = 8) 6 h prior to aspiration. The round window membrane (RWM) was accessed via a postauricular approach, and hollow microneedles were used to perforate the RWM and aspirate 1 μL of perilymph. Perilymph samples were analyzed by liquid chromatography-mass spectrometry-based label-free quantitative proteomics. Mass spectrometry raw data files have been deposited in an international public repository (MassIVE proteomics repository at https://massive.ucsd.edu/) under data set # MSV000086887. In the 22 samples of perilymph analyzed, 632 proteins were detected, including the inner ear protein cochlin, a perilymph marker. Of these, 14 proteins were modulated by IP, and three proteins were modulated by IT dexamethasone. In both IP and IT dexamethasone groups, VGF nerve growth factor inducible was significantly upregulated compared to control. The remaining adjusted proteins modulate neurons, inflammation, or protein synthesis. Proteome analysis facilitated by the use of hollow microneedles shows that route of dexamethasone administration impacts changes seen in perilymph proteome. Compared to IT administration, the IP route was associated with greater changes in protein expression, including proteins involved in neuroprotection, inflammatory pathway, and protein synthesis. Our findings show that microneedles can mediate safe and effective intracochlear sampling and hold promise for inner ear diagnostics.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Chris Valentini
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States
| | - Aykut Aksit
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Emily G Werth
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Shahar Goeta
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, New York 10027, United States
| | - Elizabeth S Olson
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jeffrey W Kysar
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Anil K Lalwani
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, United States.,Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
6
|
Valentini C, Szeto B, Kysar JW, Lalwani AK. Inner Ear Gene Delivery: Vectors and Routes. HEARING BALANCE AND COMMUNICATION 2020; 18:278-285. [PMID: 33604229 DOI: 10.1080/21695717.2020.1807261] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives Current treatments for hearing loss offer some functional improvements in hearing, but do not restore normal hearing. The aim of this review is to highlight recent advances in viral and non-viral vectors for gene therapy and to discuss approaches for overcoming barriers inherent to inner ear delivery of gene products. Data Sources The databases used were Medline, EMBASE, Web of Science, and Google Scholar. Search terms were [("cochlea*" or "inner ear" or "transtympanic" or "intratympanic" or "intracochlear" or "hair cells" or "spiral ganglia" or "Organ of Corti") and ("gene therapy" or "gene delivery")]. The references section of resulting articles was also used to identify relevant studies. Results Both viral and non-viral vectors play important roles in advancing gene delivery to the inner ear. The round window membrane is one significant barrier to gene delivery that intratympanic delivery methods attempt to overcome through diffusion and intracochlear delivery methods bypass completely. Conclusions Gene therapy for hearing loss is a promising treatment for restoring hearing function by addressing innate defects. Recent technological advances in inner ear drug delivery techniques pose exciting opportunities for progress in gene therapy.
Collapse
Affiliation(s)
- Chris Valentini
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Betsy Szeto
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Jeffrey W Kysar
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.,Department of Mechanical Engineering, School of Engineering, Columbia University, New York, New York
| | - Anil K Lalwani
- Department of Otolaryngology -- Head and Neck Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY.,Department of Mechanical Engineering, School of Engineering, Columbia University, New York, New York
| |
Collapse
|
7
|
Rink S, Chatziparaskeva C, Elles L, Pavlov S, Nohroudi K, Bendella H, Sarikcioglu L, Manthou M, Dunlop S, Gordon T, Angelov DN. Neutralizing
BDNF
and
FGF2
injection into denervated skeletal muscle improve recovery after nerve repair. Muscle Nerve 2020; 62:404-412. [DOI: 10.1002/mus.26991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/22/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral MedicineUniversity of Cologne Germany
| | | | - Luisa Elles
- Department of Anatomy IUniversity of Cologne Germany
| | - Stoyan Pavlov
- Department of Anatomy, Histology and EmbryologyMedical University Varna Bulgaria
| | | | - Habib Bendella
- Department of NeurosurgeryUniversity of Witten/Herdecke, Cologne Merheim Medical Center (CMMC) Cologne Germany
| | | | - Marilena Manthou
- Department of Histology and EmbryologyAristotle University Thessaloniki Greece
| | - Sarah Dunlop
- School of Biological SciencesThe University of Western Australia Australia
| | - Tessa Gordon
- Department of SurgeryThe Hospital for Sick Children Toronto Ontario Canada
| | | |
Collapse
|
8
|
Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. Emerging approaches for restoration of hearing and vision. Physiol Rev 2020; 100:1467-1525. [DOI: 10.1152/physrev.00035.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Impairments of vision and hearing are highly prevalent conditions limiting the quality of life and presenting a major socioeconomic burden. For long, retinal and cochlear disorders have remained intractable for causal therapies, with sensory rehabilitation limited to glasses, hearing aids, and electrical cochlear or retinal implants. Recently, the application of gene therapy and optogenetics to eye and ear has generated hope for a fundamental improvement of vision and hearing restoration. To date, one gene therapy for the restoration of vision has been approved and undergoing clinical trials will broaden its application including gene replacement, genome editing, and regenerative approaches. Moreover, optogenetics, i.e. controlling the activity of cells by light, offers a more general alternative strategy. Over little more than a decade, optogenetic approaches have been developed and applied to better understand the function of biological systems, while protein engineers have identified and designed new opsin variants with desired physiological features. Considering potential clinical applications of optogenetics, the spotlight is on the sensory systems. Multiple efforts have been undertaken to restore lost or hampered function in eye and ear. Optogenetic stimulation promises to overcome fundamental shortcomings of electrical stimulation, namely poor spatial resolution and cellular specificity, and accordingly to deliver more detailed sensory information. This review aims at providing a comprehensive reference on current gene therapeutic and optogenetic research relevant to the restoration of hearing and vision. We will introduce gene-therapeutic approaches and discuss the biotechnological and optoelectronic aspects of optogenetic hearing and vision restoration.
Collapse
Affiliation(s)
| | | | | | | | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Goettingen, Germany
| |
Collapse
|
9
|
Van De Water TR. Historical Aspects of Gene Therapy and Stem Cell Therapy in the Treatment of Hearing and Balance Disorder. Anat Rec (Hoboken) 2020; 303:390-407. [DOI: 10.1002/ar.24332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas R. Van De Water
- Cochlear Implant Research Program, Department of Otolaryngology, University of Miami Ear InstituteUniversity of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
10
|
Gu X, Chai R, Guo L, Dong B, Li W, Shu Y, Huang X, Li H. Transduction of Adeno-Associated Virus Vectors Targeting Hair Cells and Supporting Cells in the Neonatal Mouse Cochlea. Front Cell Neurosci 2019; 13:8. [PMID: 30733670 PMCID: PMC6353798 DOI: 10.3389/fncel.2019.00008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/10/2019] [Indexed: 02/05/2023] Open
Abstract
Adeno-associated virus (AAV) is the preferred vector for gene therapy of hereditary deafness, and different viral serotypes, promoters and transduction pathways can influence the targeting of AAV to different types of cells and the expression levels of numerous exogenous genes. To determine the transduction and expression patterns of AAV with different serotypes or promoters in hair cells and supporting cells in the neonatal mouse cochlea, we examined the expression of enhanced green fluorescent protein (eGFP) for five different types of AAV vectors [serotypes 2, 9, and Anc80L65 with promoter cytomegalovirus (CMV)-beta-Globin and serotypes 2 and 9 with promoter chicken beta-actin (CBA)] in in vitro cochlear explant cultures and we tested the transduction of AAV2/2-CBA, AAV2/9-CBA, and AAV2/Anc80L65-CMV by in vivo microinjection into the scala media of the cochlea. We found that each AAV vector had its own transduction and expression characteristics in hair cells and supporting cells in different regions of the cochlea. There was a tonotopic gradient for the in vitro transduction of AAV2/2-CBA, AAV2/9-CBA, AAV2/2-CMV, and AAV2/9-CMV in outer hair cells (OHCs), with more OHCs expressing eGFP at the base of the cochlea than at the apex. AAV2/2-CBA in vitro and AAV2/Anc80L65-CMV in vivo induced more supporting cells expressing eGFP at the apex than in the base. We found that AAV vectors with different promoters had different expression efficacies in hair cells and supporting cells of the auditory epithelium. The CMV-beta-Globin promoter could drive the expression of the delivered construct more efficiently in hair cells, while the CBA promoter was more efficient in supporting cells. The in vitro and in vivo experiments both demonstrated that AAV2/Anc80L65-CMV was a very promising vector for gene therapy of deafness because of its high transduction rates in hair cells. These results might be useful for selecting the appropriate vectors for gene delivery into different types of inner ear cells and thus improving the effectiveness of gene therapy.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenyan Li
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Cochlear Implant, Shanghai, China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Kim YR, Baek JI, Kim SH, Kim MA, Lee B, Ryu N, Kim KH, Choi DG, Kim HM, Murphy MP, Macpherson G, Choo YS, Bok J, Lee KY, Park JW, Kim UK. Therapeutic potential of the mitochondria-targeted antioxidant MitoQ in mitochondrial-ROS induced sensorineural hearing loss caused by Idh2 deficiency. Redox Biol 2018; 20:544-555. [PMID: 30508699 PMCID: PMC6279977 DOI: 10.1016/j.redox.2018.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial NADP+-dependent isocitrate dehydrogenase 2 (IDH2) is a major NADPH-producing enzyme which is essential for maintaining the mitochondrial redox balance in cells. We sought to determine whether IDH2 deficiency induces mitochondrial dysfunction and modulates auditory function, and investigated the protective potential of an antioxidant agent against reactive oxygen species (ROS)-induced cochlear damage in Idh2 knockout (Idh2−/−) mice. Idh2 deficiency leads to damages to hair cells and spiral ganglion neurons (SGNs) in the cochlea and ultimately to apoptotic cell death and progressive sensorineural hearing loss in Idh2−/− mice. Loss of IDH2 activity led to decreased levels of NADPH and glutathione causing abnormal ROS accumulation and oxidative damage, which might trigger apoptosis signal in hair cells and SGNs in Idh2−/− mice. We performed ex vivo experiments to determine whether administration of mitochondria-targeted antioxidants might protect or induce recovery of cells from ROS-induced apoptosis in Idh2-deficient mouse cochlea. MitoQ almost completely neutralized the H2O2-induced ototoxicity, as the survival rate of Idh2−/− hair cells were restored to normal levels. In addition, the lack of IDH2 led to the accumulation of mitochondrial ROS and the depolarization of ΔΨm, resulting in hair cell loss. In the present study, we identified that IDH2 is indispensable for the functional maintenance and survival of hair cells and SGNs. Moreover, the hair cell degeneration caused by IDH2 deficiency can be prevented by MitoQ, which suggests that Idh2−/− mice could be a valuable animal model for evaluating the therapeutic effects of various antioxidant candidates to overcome ROS-induced hearing loss.
Collapse
Affiliation(s)
- Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-In Baek
- Department of Aroma-Applied Industry, College of Herbal Bio-industry, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Sung Hwan Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Min-A Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Byeonghyeon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Nari Ryu
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Hee Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Deok-Gyun Choi
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Min Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea
| | - Michael P Murphy
- Medical Research Council (MRC)-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Greg Macpherson
- Antipodean Pharmaceuticals Inc, L2 14 Viaduct Harbour Rd, Auckland, New Zealand
| | - Yeon-Sik Choo
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea; BK21PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Jeen-Woo Park
- School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea; Department of Biochemistry, School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
12
|
Gao K, Ding D, Sun H, Roth J, Salvi R. Kanamycin Damages Early Postnatal, but Not Adult Spiral Ganglion Neurons. Neurotox Res 2017; 32:603-613. [PMID: 28656549 PMCID: PMC5711550 DOI: 10.1007/s12640-017-9773-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 01/13/2023]
Abstract
Although aminoglycoside antibiotics such as kanamycin are widely used clinically to treat life-threatening bacterial infections, ototoxicity remains a significant dose-limiting side effect. The prevailing view is that the hair cells are the primary ototoxic target of aminoglycosides and that spiral ganglion neurons begin to degenerate weeks or months after the hair cells have died due to lack of neurotrophic support. To test the early developmental aspects of this issue, we compared kanamycin-induced hair cell and spiral ganglion pathology in rat postnatal day 3 cochlear organotypic cultures with adult whole cochlear explants. In both adult and postnatal day 3 cultures, hair cell damage began at the base of the cochleae and progressed toward the apex in a dose-dependent manner. In postnatal day 3 cultures, spiral ganglion neurons were rapidly destroyed by kanamycin prior to hair cell loss. In contrast, adult spiral ganglion neurons were resistant to kanamycin damage even at the highest concentration, consistent with in vivo models of delayed SGN degeneration. In postnatal day 3 cultures, kanamycin preferentially damaged type I spiral ganglion neurons, whereas type II neurons were resistant. Spiral ganglion degeneration of postnatal day 3 neurons was associated with upregulation of the superoxide radical and caspase-3-mediated cell death. These results show for the first time that kanamycin is toxic to postnatal day 3 spiral ganglion neurons, but not adult neurons.
Collapse
Affiliation(s)
- Kelei Gao
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, Buffalo, NY, 14214, USA
| | - Jerome Roth
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan
| | - Richard Salvi
- Department of Otolaryngology Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, 410013, China.
- Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan.
| |
Collapse
|
13
|
Ahmed H, Shubina-Oleinik O, Holt JR. Emerging Gene Therapies for Genetic Hearing Loss. J Assoc Res Otolaryngol 2017; 18:649-670. [PMID: 28815315 PMCID: PMC5612923 DOI: 10.1007/s10162-017-0634-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
Gene therapy, or the treatment of human disease using genetic material, for inner ear dysfunction is coming of age. Recent progress in developing gene therapy treatments for genetic hearing loss has demonstrated tantalizing proof-of-principle in animal models. While successful translation of this progress into treatments for humans awaits, there is growing interest from patients, scientists, clinicians, and industry. Nonetheless, it is clear that a number of hurdles remain, and expectations for total restoration of auditory function should remain tempered until these challenges have been overcome. Here, we review progress, prospects, and challenges for gene therapy in the inner ear. We focus on technical aspects, including routes of gene delivery to the inner ear, choice of vectors, promoters, inner ear targets, therapeutic strategies, preliminary success stories, and points to consider for translating of these successes to the clinic.
Collapse
Affiliation(s)
- Hena Ahmed
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Olga Shubina-Oleinik
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Jin Y, Lyu AR, Park SJ, Xu J, Cui J, Sohn KC, Hur GM, Jin Y, Park YH. Early Postnatal NT-3 Gene Delivery Enhances Hearing Acquisition in the Developmental Period. Laryngoscope 2016; 126:E379-E385. [DOI: 10.1002/lary.26130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Yongde Jin
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Ah-Ra Lyu
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
- Department of Medical Science; Chungnam National University; Daejeon Republic of Korea
| | - Sung-Jae Park
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Jun Xu
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Jie Cui
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Kyung-Cheol Sohn
- Department of Dermatology , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| | - Yulian Jin
- Department of Otolaryngology-Head and Neck Surgery; Yanbian University Hospital; Yanji China
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery , College of Medicine; Chungnam National University; Daejeon Republic of Korea
- Brain Research Institute , College of Medicine; Chungnam National University; Daejeon Republic of Korea
| |
Collapse
|
15
|
Rahmani S, Ross AM, Park TH, Durmaz H, Dishman AF, Prieskorn DM, Jones N, Altschuler RA, Lahann J. Dual Release Carriers for Cochlear Delivery. Adv Healthc Mater 2016; 5:94-100. [PMID: 26178272 PMCID: PMC5550902 DOI: 10.1002/adhm.201500141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/03/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Sahar Rahmani
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
| | - Astin M Ross
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tae-Hong Park
- Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hakan Durmaz
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Acacia F Dishman
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Diane M Prieskorn
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nathan Jones
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Richard A Altschuler
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joerg Lahann
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany
- Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
16
|
Kelly KM, Lalwani AK. On the Distant Horizon--Medical Therapy for Sensorineural Hearing Loss. Otolaryngol Clin North Am 2015; 48:1149-65. [PMID: 26409822 DOI: 10.1016/j.otc.2015.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hearing loss is the most common sensory deficit in developed societies. Hearing impairment in children, particularly of prelingual onset, has been shown to negatively affect educational achievement, future employment and earnings, and even life expectancy. Sensorineural hearing loss (SNHL), which refers to defects within the cochlea or auditory nerve itself, far outweighs conductive causes for permanent hearing loss in both children and adults. The causes of SNHL in children are heterogeneous, including both congenital and acquired causes. This article identifies potential mechanisms of intervention both at the level of the hair cell and the spiral ganglion neurons.
Collapse
Affiliation(s)
- Kathleen M Kelly
- Department of Otolaryngology - Head and Neck Surgery, University of Texas Southwestern Medical Center, 5323 Harry Hinds Blvd, Dallas, TX 75390, USA
| | - Anil K Lalwani
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Medical Center, Harkness Pavilion, 180 Fort Washington Avenue, Floor 7, New York, NY 10032, USA.
| |
Collapse
|
17
|
Gillespie LN, Richardson RT, Nayagam BA, Wise AK. Treating hearing disorders with cell and gene therapy. J Neural Eng 2015; 11:065001. [PMID: 25420002 DOI: 10.1088/1741-2560/11/6/065001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of paramount importance to address this unmet clinical need. Most forms of hearing loss are progressive in nature and therefore an opportunity exists to develop novel therapeutic approaches to slow or halt hearing loss progression, or even repair or replace lost hearing function. Numerous emerging technologies have potential as therapeutic options. This paper details the potential of cell- and gene-based therapies to provide therapeutic agents to protect sensory and neural cells from various insults known to cause hearing loss; explores the potential of replacing lost sensory and nerve cells using gene and stem cell therapy; and describes the considerations for clinical translation and the challenges that need to be overcome.
Collapse
|
18
|
Sameer Mallick A, Qureishi A, Pearson R, O'Donoghue G. Neurotrophins and cochlear implants: a solution to sensorineural deafness? Cochlear Implants Int 2015; 14:158-64. [PMID: 22889496 DOI: 10.1179/1754762812y.0000000013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To review current trends for treating sensorineural deafness by enhancing spiral ganglion neuron (SGN) survival using neurotrophins combined with cochlear implants and identify areas for future research and development. METHODS A literature search was undertaken on PubMed and Google scholar using terms: neurotrophins, cochlear implants (CIs), and sensorineural to identify the most recent and significant publications. The abstracts were read to identify relevant papers; these were accessed in full and analysed for this review. RESULTS Neurotrophins have a known role in cochlear development and the maintenance of SGNs. So far experiments using osmotic pumps to deliver neurotrophins have been successful for short-term enhanced survival of SGN's following aminoglycoside ototoxicity in animal models. They have demonstrated the re-sprouting of radial nerve fibres from SGN's towards the source of delivery. In addition electrical stimulation, gene and cell-based therapy have increased SGN survival to varying degrees. DISCUSSION Osmotic pumps carry a high risk of infection therefore CIs coated in a drug containing polymer or hydrogel are a realistic alternative for sustained delivery of neurotrophins. Increased SGN survival combined with neuronal re-growth raises the possibility for CIs to stimulate discrete SGN populations. Unfortunately, the duration of treatment needed for long-term survival still remains unclear and further work is needed. Nevertheless the combination of regenerative medicine to CI technology presents a novel approach to developing CI technology.
Collapse
|
19
|
Khalin I, Alyautdin R, Kocherga G, Bakar MA. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness. Int J Nanomedicine 2015; 10:3245-67. [PMID: 25995632 PMCID: PMC4425321 DOI: 10.2147/ijn.s77480] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF) has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF) from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration.
Collapse
Affiliation(s)
- Igor Khalin
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Renad Alyautdin
- Scientific Centre for Expertise of Medical Application Products, Moscow, Russia
| | - Ganna Kocherga
- Ophthalmic Microsurgery Department, International Medical Center Oftalmika, Kharkiv, Ukraine
| | - Muhamad Abu Bakar
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Kim ES, Gustenhoven E, Mescher MJ, Pararas EEL, Smith KA, Spencer AJ, Tandon V, Borenstein JT, Fiering J. A microfluidic reciprocating intracochlear drug delivery system with reservoir and active dose control. LAB ON A CHIP 2014; 14:710-21. [PMID: 24302432 PMCID: PMC3902088 DOI: 10.1039/c3lc51105g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Reciprocating microfluidic drug delivery, as compared to steady or pulsed infusion, has unique features which may be advantageous in many therapeutic applications. We have previously described a device, designed for wearable use in small animal models, that periodically infuses and then withdraws a sub-microliter volume of drug solution to and from the endogenous fluid of the inner ear. This delivery approach results in zero net volume of liquid transfer while enabling mass transport of compounds to the cochlea by means of diffusion and mixing. We report here on an advanced wearable delivery system aimed at further miniaturization and complex dosing protocols. Enhancements to the system include the incorporation of a planar micropump to generate reciprocating flow and a novel drug reservoir that maintains zero net volume delivery and permits programmable modulation of the drug concentration in the infused bolus. The reciprocating pump is fabricated from laminated polymer films and employs a miniature electromagnetic actuator to meet the size and weight requirements of a head-mounted in vivo guinea pig testing system. The reservoir comprises a long microchannel in series with a micropump, connected in parallel with the reciprocating flow network. We characterized in vitro the response and repeatability of the planar pump and compared the results with a lumped element simulation. We also characterized the performance of the reservoir, including repeatability of dosing and range of dose modulation. Acute in vivo experiments were performed in which the reciprocating pump was used to deliver a test compound to the cochlea of anesthetized guinea pigs to evaluate short-term safety and efficacy of the system. These advances are key steps toward realization of an implantable device for long-term therapeutic applications in humans.
Collapse
Affiliation(s)
- Ernest S Kim
- The Charles Stark Draper Laboratory, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Warnecke A, Sasse S, Wenzel GI, Hoffmann A, Gross G, Paasche G, Scheper V, Reich U, Esser KH, Lenarz T, Stöver T, Wissel K. Stable release of BDNF from the fibroblast cell line NIH3T3 grown on silicone elastomers enhances survival of spiral ganglion cells in vitro and in vivo. Hear Res 2012; 289:86-97. [PMID: 22564255 DOI: 10.1016/j.heares.2012.04.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 04/04/2012] [Accepted: 04/09/2012] [Indexed: 12/23/2022]
Abstract
The treatment of choice for profound sensorineural hearing loss (SNHL) is direct electrical stimulation of spiral ganglion cells (SGC) via a cochlear implant (CI). The number and excitability of SGC seem to be critical for the success that can be achieved via CI treatment. However, SNHL is associated with degeneration of SGC. Long-term drug delivery to the inner ear for improving SGC survival may be achieved by functionalisation of CI electrodes with cells providing growth factors. Therefore, the capacity of brain-derived neurotrophic factor (BDNF)-secreting NIH3T3 cells grown on cylindrically shaped silicone elastomers (SE) to exert local and sustained neuroprotective effects was assessed in vitro and in vivo. An in vitro model to investigate adhesion and cell growth of lentivirally modified NIH3T3 cells synthesising BDNF on SE was established. The bioactivity of BDNF was characterised by co-cultivation of SGC with cell-coated SE. In addition, cell-coated SE were implanted into deafened guinea pigs. The recombinant NIH3T3 cells proliferated on silicone surfaces during 14 days of cultivation and expressed significantly increasing BDNF levels. Enhanced survival rates and neurite outgrowth of SGC demonstrated the bioactivity of BDNF in vitro. Implantation of SE with adhering BDNF-secreting NIH3T3 cells into the cochleae of systemically deafened guinea pigs induced a significant increase in SGC survival in comparison to SE without cell coating. Our data demonstrate a novel approach of cell-based long-term drug delivery to support SGC survival in vitro and in vivo. This therapeutic strategy--once transferred to cells suitable for clinical application--may improve CI performance.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wise AK, Tu T, Atkinson PJ, Flynn BO, Sgro BE, Hume C, O'Leary SJ, Shepherd RK, Richardson RT. The effect of deafness duration on neurotrophin gene therapy for spiral ganglion neuron protection. Hear Res 2011; 278:69-76. [PMID: 21557994 PMCID: PMC3152700 DOI: 10.1016/j.heares.2011.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/17/2011] [Accepted: 04/22/2011] [Indexed: 01/31/2023]
Abstract
A cochlear implant can restore hearing function by electrically exciting spiral ganglion neurons (SGNs) in the deaf cochlea. However, following deafness SGNs undergo progressive degeneration ultimately leading to their death. One significant cause of SGN degeneration is the loss of neurotrophic support that is normally provided by cells within the organ of Corti (OC). The administration of exogenous neurotrophins (NTs) can protect SGNs from degeneration but the effects are short-lived once the source of NTs has been exhausted. NT gene therapy, whereby cells within the cochlea are transfected with genes enabling them to produce NTs, is one strategy for providing a cellular source of NTs that may provide long-term support for SGNs. As the SGNs normally innervate sensory cells within the OC, targeting residual OC cells for gene therapy in the deaf cochlea may provide a source of NTs for SGN protection and targeted regrowth of their peripheral fibers. However, the continual degeneration of the OC over extended periods of deafness may deplete the cellular targets for NT gene therapy and hence limit the effectiveness of this method in preventing SGN loss. This study examined the effects of deafness duration on the efficacy of NT gene therapy in preventing SGN loss in guinea pigs that were systemically deafened with aminoglycosides. Adenoviral vectors containing green fluorescent protein (GFP) with or without genes for Brain Derived Neurotrophic Factor (BDNF) and Neurotrophin-3 (NT3) were injected into the scala media (SM) compartment of cochleae that had been deafened for one, four or eight weeks prior to the viral injection. The results showed that viral transfection of cells within the SM was still possible even after severe degeneration of the OC. Supporting cells (pillar and Deiters' cells), cells within the stria vascularis, the spiral ligament, endosteal cells lining the scala compartments and interdental cells in the spiral limbus were transfected. However, the level of transfection was remarkably lower following longer durations of deafness. There was a significant increase in SGN survival in the entire basal turn for cochleae that received NT gene therapy compared to the untreated contralateral control cochleae for the one week deaf group. In the four week deaf group significant SGN survival was observed in the lower basal turn only. There was no increase in SGN survival for the eight week deaf group in any cochlear region. These findings indicated that the efficacy of NT gene therapy diminished with increasing durations of deafness leading to reduced benefits in terms of SGN protection. Clinically, there remains a window of opportunity in which NT gene therapy can provide ongoing trophic support for SGNs.
Collapse
Affiliation(s)
- Andrew K Wise
- The Bionic Ear Institute, 384-388 Albert Street, East Melbourne, Victoria 3002, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pettingill LN, Wise AK, Geaney MS, Shepherd RK. Enhanced auditory neuron survival following cell-based BDNF treatment in the deaf guinea pig. PLoS One 2011; 6:e18733. [PMID: 21525998 PMCID: PMC3078134 DOI: 10.1371/journal.pone.0018733] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/14/2011] [Indexed: 12/20/2022] Open
Abstract
Exogenous neurotrophin delivery to the deaf cochlea can prevent deafness-induced auditory neuron degeneration, however, we have previously reported that these survival effects are rapidly lost if the treatment stops. In addition, there are concerns that current experimental techniques are not safe enough to be used clinically. Therefore, for such treatments to be clinically transferable, methods of neurotrophin treatment that are safe, biocompatible and can support long-term auditory neuron survival are necessary. Cell transplantation and gene transfer, combined with encapsulation technologies, have the potential to address these issues. This study investigated the survival-promoting effects of encapsulated BDNF over-expressing Schwann cells on auditory neurons in the deaf guinea pig. In comparison to control (empty) capsules, there was significantly greater auditory neuron survival following the cell-based BDNF treatment. Concurrent use of a cochlear implant is expected to result in even greater auditory neuron survival, and provide a clinically relevant method to support auditory neuron survival that may lead to improved speech perception and language outcomes for cochlear implant patients.
Collapse
|
24
|
Havenith S, Versnel H, Agterberg MJH, de Groot JCMJ, Sedee RJ, Grolman W, Klis SFL. Spiral ganglion cell survival after round window membrane application of brain-derived neurotrophic factor using gelfoam as carrier. Hear Res 2010; 272:168-77. [PMID: 20969940 DOI: 10.1016/j.heares.2010.10.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 09/17/2010] [Accepted: 10/08/2010] [Indexed: 01/29/2023]
Abstract
Several studies have shown that treatment with various neurotrophins protects spiral ganglion cells (SGCs) from degeneration in hair-cell deprived cochleas. In most of these studies the neurotrophins are delivered by means of intracochlear delivery methods. Recently, other application methods that might be more suited in cochlear implant patients have been developed. We have examined if round window membrane application of gelfoam infiltrated with a neurotrophin resulted in SGC survival in deafened guinea pigs. Two weeks after deafening, gelfoam cubes infiltrated with 6 μg of brain-derived neurotrophic factor (BDNF) were deposited onto the round window membrane of the right cochleas. Electric pulses were delivered through an electrode positioned within the round window niche to electrically evoke auditory brainstem responses (eABRs). Two or four weeks after deposition of the gelfoam all cochleas were histologically examined. We found that local BDNF treatment enhances the survival of SGCs in the basal cochlear turn after two and four weeks. The treatment had no effect on SGC size or shape. In animals treated with BDNF, eABR amplitudes were smaller than in normal-hearing control animals and similar to those in deafened controls. We conclude that BDNF delivered by means of local gelfoam application provides a protective effect, which is limited compared to intracochlear delivery methods.
Collapse
Affiliation(s)
- Sarah Havenith
- Department of Otorhinolaryngology and Head & Neck Surgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Wise AK, Hume CR, Flynn BO, Jeelall YS, Suhr CL, Sgro BE, O'Leary SJ, Shepherd RK, Richardson RT. Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther 2010; 18:1111-22. [PMID: 20216530 DOI: 10.1038/mt.2010.28] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A cochlear implant may be used to electrically stimulate spiral ganglion neurons (SGNs) in people with severe sensorineural hearing loss (SNHL). However, these neurons progressively degenerate after SNHL due to loss of neurotrophins normally supplied by sensory hair cells (HCs). Experimentally, exogenous neurotrophin administration prevents SGN degeneration but can also result in abnormal resprouting of their peripheral fibers. This study aimed to create a target-derived neurotrophin source to increase neuron survival and redirect fiber resprouting following SNHL. Adenoviral (Ad) vectors expressing green fluorescent protein (GFP) alone or in combination with brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT3) were injected into the cochlear scala tympani or scala media of guinea-pigs (GPs) deafened via aminoglycosides for 1 week. After 3 weeks, cochleae were examined for gene expression, neuron survival, and the projection of peripheral fibers in response to gene expression. Injection of vectors into the scala media resulted in more localized gene expression than scala tympani injection with gene expression consistently observed within the partially degenerated organ of Corti. There was also greater neuron survival and evidence of localized fiber responses to neurotrophin-expressing cells within the organ of Corti from scala media injections (P < 0.05), a first step in promoting organized resprouting of auditory peripheral fibers via gene therapy.
Collapse
Affiliation(s)
- Andrew K Wise
- Bionic Ear Institute, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW In evaluating strategies to preserve or regenerate the cochlea, understanding the process of labyrinthine injury on a cellular and molecular level is crucial. Examination of inner ear injury reveals mechanism-specific types of damage, often at specific areas within the cochlea. Site-specific interventions can then be considered. RECENT FINDINGS The review will briefly summarize the historical perspective of advancements in hearing science through 2006. Areas of research covered include hair cell protection, hair cell regeneration, spiral ganglion cell regeneration, and stria vascularis metabolic regulation. SUMMARY The review will briefly summarize the early development of a few such site-specific interventions for inner ear functional rehabilitation, for work done prior to 2006. The outstanding reviews of cutting edge research from this year's and last year's Hearing Science section of Current Opinion in Otolaryngology - Head and Neck Surgery can then be understood and appreciated in a more informed manner.
Collapse
|
27
|
Sun W, Salvi RJ. Brain derived neurotrophic factor and neurotrophic factor 3 modulate neurotransmitter receptor expressions on developing spiral ganglion neurons. Neuroscience 2009; 164:1854-66. [PMID: 19778585 DOI: 10.1016/j.neuroscience.2009.09.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 12/25/2022]
Abstract
Cochlear spiral ganglion neurons (SGN) provide the only pathway for transmitting sound evoked activity from the hair cells to the central auditory system. Neurotrophic factor 3 (NT-3) and brain derived neurotrophic factor (BDNF) released from hair cells and supporting cells exert a profound effect on SGN survival and neural firing patterns; however, it is unclear what the effects NT-3 and BDNF have on the type of neurotransmitter receptors expressed on SGN. To address this question, the whole-cell patch clamp recording technique was used to determine what effect NT-3 and BDNF had on the function and expression of glutamate, GABA and glycine receptors (GlyR) on SGN of cochlea from postnatal C57 mouse. Receptor currents induced by the agonist of each receptor were recorded from SGN cultured with or without BDNF or NT-3. NT-3 and BDNF exerted different effects. NT-3, and to a lesser extent BDNF, enhanced the expression of GABA receptors and had comparatively little effect on glutamate receptors. Absence of BDNF and NT-3 resulted in the emergence of glycine-induced currents; however, GlyR currents were absent from the short term cultured SGN. In contrast, NT-3 and BDNF suppressed GlyR expression on SGN. These results indicate that NT-3 and BDNF exert a profound effect on the types of neurotransmitter receptors expressed on postnatal SGN, results that may have important implications for neural development and plasticity.
Collapse
Affiliation(s)
- W Sun
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, 137 Cary Hall, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | | |
Collapse
|
28
|
Richardson RT, Wise AK, Andrew JK, O'Leary SJ. Novel drug delivery systems for inner ear protection and regeneration after hearing loss. Expert Opin Drug Deliv 2009; 5:1059-76. [PMID: 18817513 DOI: 10.1517/17425247.5.10.1059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND A cochlear implant, the only current treatment for restoring auditory perception after severe or profound sensorineural hearing loss (SNHL), works by electrically stimulating spiral ganglion neurons (SGNs). However, gradual degeneration of SGNs associated with SNHL can compromise the efficacy of the device. OBJECTIVE To review novel drug delivery systems for preserving and/or regenerating sensory cells in the cochlea after SNHL. METHODS The effectiveness of traditional cochlear drug delivery systems is compared to newer techniques such as cell, polymer and gene transfer technologies. Special requirements for local drug delivery to the cochlea are discussed, such as protecting residual hearing and site-specific drug delivery for cell preservation and regeneration. RESULTS/CONCLUSIONS Drug delivery systems with the potential for immediate clinical translation, as well as those that will contribute to the future of hearing preservation or cochlear cellular regeneration, are identified.
Collapse
Affiliation(s)
- Rachael T Richardson
- Bionic Ear Institute, 384 Albert Street, East Melbourne, Victoria 3002, Australia.
| | | | | | | |
Collapse
|
29
|
Abstract
OBJECTIVE To assess the biocompatibility of different biopolymers with cochlea implant. MATERIALS AND METHODS Six bioabsorbable polymers and biostable silicone were used for testing histologic reactions in the cochlea of the rat. The samples were prepared from three 50/50 poly(DL-lactide-co-glycolide) PDLLGA having different inherent viscosity (IV) values and 75/25 poly(DL-lactide-co-epsilon-caprolactone) P(DLLA/CL), poly-epsilon-caprolactone PCL, silicone, and chitosan by extruding the biomaterial as a rod using melt molding (for 50/50 PDLLGAs and 75/25 P(DLLA/CL) and PCL), blending (for silicone), and solving (for chitosan). The rods were cut into samples of diameter of 0.5 mm and length of 2 mm. All the samples were packed and sterilized by gamma irradiation (18 kGy, less than 42 degrees C). Twenty-two male and female Sprague-Dawley rats were used in the study. Four months after the implantation, the animals were killed for histologic observation. RESULTS Chitosan does not degrade in the cochlea 4 months after implantation and, therefore, stimulates very weak inflammatory reaction. The 50/50 PDLLGA (IV, 0.83 dL/g) degrades in the cochlea 4 months after implantation and does not stimulate inflammatory reaction. The 50/50 PDLLGA (IV, 0.41 dL/g; IV, 0.37 dL/g), 75/25 P(DLLA/CL), PCL, and silicone might induce strong inflammatory reaction in the cochlea. CONCLUSION Different degradation property of biomaterials in the cochlea indicates diverse drug releasing time in a controlled way. Chitosan is suitable for long-lasting drug delivery, whereas 50/50 PDLLGA (IV, 0.83 dL/g) favors quicker releasing. Both chitosan and 50/50 PDLLGA (IV, 0.83 dL/g) are ideal materials for cochlear drug delivery.
Collapse
|
30
|
Swan EEL, Mescher MJ, Sewell WF, Tao SL, Borenstein JT. Inner ear drug delivery for auditory applications. Adv Drug Deliv Rev 2008; 60:1583-99. [PMID: 18848590 PMCID: PMC2657604 DOI: 10.1016/j.addr.2008.08.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/21/2008] [Indexed: 02/07/2023]
Abstract
Many inner ear disorders cannot be adequately treated by systemic drug delivery. A blood-cochlear barrier exists, similar physiologically to the blood-brain barrier, which limits the concentration and size of molecules able to leave the circulation and gain access to the cells of the inner ear. However, research in novel therapeutics and delivery systems has led to significant progress in the development of local methods of drug delivery to the inner ear. Intratympanic approaches, which deliver therapeutics to the middle ear, rely on permeation through tissue for access to the structures of the inner ear, whereas intracochlear methods are able to directly insert drugs into the inner ear. Innovative drug delivery systems to treat various inner ear ailments such as ototoxicity, sudden sensorineural hearing loss, autoimmune inner ear disease, and for preserving neurons and regenerating sensory cells are being explored.
Collapse
Affiliation(s)
- Erin E Leary Swan
- Charles Stark Draper Laboratory, 555 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Transfer of exogenous genetic material into the mammalian inner ear using viral vectors has been characterized over the last decade. A number of different viral vectors have been shown to transfect the varying cell types of the nonprimate mammalian inner ear. Several routes of delivery have been identified for introduction of vectors into the inner ear while minimizing injury to existing structures and at the same time ensuring widespread distribution of the agent throughout the cochlea and the rest of the inner ear. These studies raise the possibility that gene transfer may be developed as a potential strategy for treating inner ear dysfunction in humans. Furthermore, a recent report showing successful transfection of excised human vestibular epithelia offers proof of principle that viral gene transfer is a viable strategy for introduction and expression of exogenous genetic material to restore function to the inner ear. Human vestibular epithelia were harvested from patients undergoing labyrinthectomy, either for intractable Ménière's disease or vestibular schwannoma resection, and cultured for as long as 5 days. In those experiments, recombinant, multiply-deleted, replication-deficient adenoviral vectors were used to transfect and express a reporter gene as well as the functionally relevant gene, wild-type KCNQ4, a potassium channel gene that when mutated causes the autosomal dominant HL DFNA2.Here, we review the current state of viral-mediated gene transfer in the inner ear and discuss different viral vectors, routes of delivery, and potential applications of gene therapy. Emphasis is placed on experiments demonstrating viral transfection of human inner ear tissue and implications of these findings and for the future of gene therapy in the human inner ear.
Collapse
|
32
|
Hendricks JL, Chikar JA, Crumling MA, Raphael Y, Martin DC. Localized cell and drug delivery for auditory prostheses. Hear Res 2008; 242:117-31. [PMID: 18573323 DOI: 10.1016/j.heares.2008.06.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 05/09/2008] [Accepted: 06/02/2008] [Indexed: 12/20/2022]
Abstract
Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness.
Collapse
Affiliation(s)
- Jeffrey L Hendricks
- Department of Biomedical Engineering, The University of Michigan, 1107 Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA.
| | | | | | | | | |
Collapse
|
33
|
Pettingill LN, Minter RL, Shepherd RK. Schwann cells genetically modified to express neurotrophins promote spiral ganglion neuron survival in vitro. Neuroscience 2008; 152:821-8. [PMID: 18304740 DOI: 10.1016/j.neuroscience.2007.11.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/26/2007] [Accepted: 01/09/2008] [Indexed: 01/16/2023]
Abstract
The intracochlear infusion of neurotrophic factors via a mini-osmotic pump has been shown to prevent deafness-induced spiral ganglion neuron (SGN) degeneration; however, the use of pumps may increase the incidence of infection within the cochlea, making this technique unsuitable for neurotrophin administration in a clinical setting. Cell- and gene-based therapies are potential therapeutic options. This study investigated whether Schwann cells which were genetically modified to over-express the neurotrophins brain-derived neurotrophic factor (BDNF) or neurotrophin 3 (Ntf3, formerly NT-3) could support SGN survival in an in vitro model of deafness. Co-culture of either BDNF over-expressing Schwann cells or Ntf3 over-expressing Schwann cells with SGNs from early postnatal rats significantly enhanced neuronal survival in comparison to both control Schwann cells and conventional recombinant neurotrophin proteins. Transplantation of neurotrophin over-expressing Schwann cells into the cochlea may provide an alternative means of delivering neurotrophic factors to the deaf cochlea for therapeutic purposes.
Collapse
Affiliation(s)
- L N Pettingill
- The Bionic Ear Institute, 384 Albert Street, East Melbourne, Australia 3002.
| | | | | |
Collapse
|
34
|
Alam SA, Robinson BK, Huang J, Green SH. Prosurvival and proapoptotic intracellular signaling in rat spiral ganglion neurons in vivo after the loss of hair cells. J Comp Neurol 2007; 503:832-52. [PMID: 17570507 DOI: 10.1002/cne.21430] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurons depend on afferent input for survival. Rats were given daily kanamycin injections from P8 to P16 to destroy hair cells, the sole afferent input to spiral ganglion neurons (SGNs). Most SGNs die over an approximately 14-week period after deafferentation. During this period, the SGN population is heterogeneous. At any given time, some SGNs exhibit apoptotic markers--TUNEL and cytochrome c loss--whereas others appear nonapoptotic. We asked whether differences among SGNs in intracellular signaling relevant to apoptotic regulation could account for this heterogeneity. cAMP response element binding protein (CREB) phosphorylation, which reflects neurotrophic signaling, is reduced in many SGNs at P16, P23, and P32, when SGNs begin to die. In particular, nearly all apoptotic SGNs exhibit reduced phospho-CREB, implying that apoptosis is due to insufficient neurotrophic support. However, >32% of SGNs maintain high phospho-CREB levels, implying access to neurotrophic support. By P60, when approximately 50% of the SGNs have died, phospho-CREB levels in surviving neurons are not reduced, and SGN death is no longer correlated with reduced phospho-CREB. Activity in the proapoptotic Jun N-terminal kinase (JNK)-Jun signaling pathway is elevated in SGNs during the cell death period. This too is heterogeneous: <42% of the SGNs exhibited high phospho-Jun levels, but nearly all SGNs undergoing apoptosis exhibited elevated phospho-Jun. Thus, heterogeneity among SGNs in prosurvival and proapoptotic signaling is correlated with apoptosis. SGN death following deafferentation has an early phase in which apoptosis is correlated with reduced phospho-CREB and a later phase in which it is not. Proapoptotic JNK-Jun signaling is tightly correlated with SGN apoptosis.
Collapse
Affiliation(s)
- Shaheen A Alam
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
35
|
Miller JM, Le Prell CG, Prieskorn DM, Wys NL, Altschuler RA. Delayed neurotrophin treatment following deafness rescues spiral ganglion cells from death and promotes regrowth of auditory nerve peripheral processes: effects of brain-derived neurotrophic factor and fibroblast growth factor. J Neurosci Res 2007; 85:1959-69. [PMID: 17492794 DOI: 10.1002/jnr.21320] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The extent to which neurotrophic factors are able to not only rescue the auditory nerve from deafferentation-induced degeneration but also promote process regrowth is of basic and clinical interest, as regrowth may enhance the therapeutic efficacy of cochlear prostheses. The use of neurotrophic factors is also relevant to interventions to promote regrowth and repair at other sites of nerve trauma. Therefore, auditory nerve survival and peripheral process regrowth were assessed in the guinea pig cochlea following chronic infusion of BDNF + FGF(1) into scala tympani, with treatment initiated 4 days, 3 weeks, or 6 weeks after deafferentation from deafening. Survival of auditory nerve somata (spiral ganglion neurons) was assessed from midmodiolar sections. Peripheral process regrowth was assessed using pan-Trk immunostaining to selectively label afferent fibers. Significantly enhanced survival was seen in each of the treatment groups compared to controls receiving artificial perilymph. A large increase in peripheral processes was found with BDNF + FGF(1) treatment after a 3-week delay compared to the artificial perilymph controls and a smaller enhancement after a 6-week delay. Neurotrophic factor treatment therefore has the potential to improve the benefits of cochlear implants by maintaining a larger excitable population of neurons and inducing neural regrowth.
Collapse
Affiliation(s)
- Josef M Miller
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0506, USA.
| | | | | | | | | |
Collapse
|
36
|
Pettingill LN, Richardson RT, Wise AK, O'Leary SJ, Shepherd RK. Neurotrophic factors and neural prostheses: potential clinical applications based upon findings in the auditory system. IEEE Trans Biomed Eng 2007; 54:1138-48. [PMID: 17551571 PMCID: PMC1886005 DOI: 10.1109/tbme.2007.895375] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spiral ganglion neurons (SGNs) are the target cells of the cochlear implant, a neural prosthesis designed to provide important auditory cues to severely or profoundly deaf patients. The ongoing degeneration of SGNs that occurs following a sensorineural hearing loss is, therefore, considered a limiting factor in cochlear implant efficacy. We review neurobiological techniques aimed at preventing SGN degeneration using exogenous delivery of neurotrophic factors. Application of these proteins prevents SGN degeneration and can enhance neurite outgrowth. Furthermore, chronic electrical stimulation of SGNs increases neurotrophic factor-induced survival and is correlated with functional benefits. The application of neurotrophic factors has the potential to enhance the benefits that patients can derive from cochlear implants; moreover, these techniques may be relevant for use with neural prostheses in other neurological conditions.
Collapse
MESH Headings
- Animals
- Cell Survival/drug effects
- Cell Survival/physiology
- Cochlea/drug effects
- Cochlea/physiopathology
- Cochlear Implants/trends
- Combined Modality Therapy
- Disease Models, Animal
- Electric Stimulation Therapy/instrumentation
- Electric Stimulation Therapy/methods
- Electrodes, Implanted
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Hearing Loss, Sensorineural/pathology
- Hearing Loss, Sensorineural/physiopathology
- Hearing Loss, Sensorineural/therapy
- Membrane Potentials/physiology
- Nerve Degeneration/drug therapy
- Nerve Degeneration/physiopathology
- Nerve Degeneration/prevention & control
- Nerve Growth Factors/administration & dosage
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Recovery of Function/drug effects
- Recovery of Function/physiology
- Spiral Ganglion/drug effects
- Spiral Ganglion/physiology
- Treatment Outcome
Collapse
|
37
|
Steinbach S, Lutz J. Glutamate induces apoptosis in cultured spiral ganglion explants. Biochem Biophys Res Commun 2007; 357:14-9. [PMID: 17418815 DOI: 10.1016/j.bbrc.2007.03.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Traumatic sound exposure, aminoglycoside antibiotics, cochlea ischemia or traumatic stress leads to an excessive release of glutamate from inner hair cells into the synaptic cleft. The high glutamate concentration can cause a swelling and destruction of the dendrites of spiral ganglion neurons of type I as well as a reduction in the number of neurons. This may be a cause of hearing loss. The mechanism causing the reduction of neurons is still not known. Apoptosis, also called programmed cell death, could be involved. In this study, cultured spiral ganglion explants were incubated with glutamate in high concentrations. Neurite outgrowth was determined and additionally a new method was established for studying the morphology of single spiral ganglion neurons. For the first time it was shown that glutamate induces apoptosis of spiral ganglion neurons, which could be blocked selectively by a caspase-3 inhibitor. This could offer a new therapeutic strategy for hearing disorders.
Collapse
Affiliation(s)
- Silke Steinbach
- Department of Otolaryngology-Head and Neck Surgery, Technical University of Munich, Germany.
| | | |
Collapse
|
38
|
Rejali D, Lee VA, Abrashkin KA, Humayun N, Swiderski DL, Raphael Y. Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons. Hear Res 2007; 228:180-7. [PMID: 17416474 PMCID: PMC2692458 DOI: 10.1016/j.heares.2007.02.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 02/21/2007] [Accepted: 02/21/2007] [Indexed: 02/07/2023]
Abstract
Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival.
Collapse
Affiliation(s)
- Darius Rejali
- Kresge Hearing Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA, and University Hospitals Warwickshire and Coventry NHS Trust, Coventry CV2 2DX, UK
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Degeneration of spiral ganglion neurons following hair cell loss carries critical implications for efforts to rehabilitate severe cases of hearing loss with cochlear implants or hair cell regeneration. This review considers recently identified neurotrophic factors and therapeutic strategies which promote spiral ganglion neuron survival and neurite growth. Replacement of these factors may help preserve or regenerate the auditory nerve in patients with extensive hair cell loss. RECENT FINDINGS Spiral ganglion neurons depend on neurotrophic factors supplied by hair cells and other targets for their development and continued survival. Loss of this trophic support leads to spiral ganglion neuron death via apoptosis. Hair cells support spiral ganglion neuron survival by producing several peptide neurotrophic factors such as neurotrophin-3 and glial derived neurotrophic factor. In addition, neurotransmitter release from the hair cells drives membrane electrical activity in spiral ganglion neurons which also supports their survival. In animal models, replacement of peptide neurotrophic factors or electrical stimulation with an implanted electrode attenuates spiral ganglion neuron degeneration following deafferentation. Cell death inhibitors can also preserve spiral ganglion neuron populations. Preliminary studies show that transfer of stem cells or neurons from other ganglia are two potential strategies to replace lost spiral ganglion neurons. Inducing the regrowth of spiral ganglion neuron peripheral processes to approximate or contact cochlear implant electrodes may help optimize signaling from a diminished population of neurons. SUMMARY Recent studies of spiral ganglion neuron development and survival have identified several trophic and neuritogenic factors which protect these specialized cells from degeneration following hair cell loss. While still preliminary, such strategies show promise for future clinical applications.
Collapse
Affiliation(s)
- Pamela C Roehm
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
40
|
Affiliation(s)
- David W Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, 94143, USA
| | | |
Collapse
|