1
|
Sallustio BC. Alternate Sampling Matrices for Therapeutic Drug Monitoring of Immunosuppressants. Ther Drug Monit 2025; 47:105-117. [PMID: 39592182 DOI: 10.1097/ftd.0000000000001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/08/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Immunosuppressant (IS) therapeutic drug monitoring (TDM) relies on measuring mostly pharmacologically inactive erythrocyte-bound and/or plasma protein-bound drug levels. Variations in hematocrit and plasma protein levels complicate interpretation of blood calcineurin inhibitor (CNI) and inhibitors of the molecular target of rapamycin (mTORi) concentrations. Variable binding of mycophenolic acid (MPA) to albumin similarly complicates its TDM in plasma. A different matrix may improve IS concentration-response relationships and better reflect exposures at sites of action. METHODS This review explores the evidence for IS TDM using peripheral blood mononuclear cell (PBMC), graft tissue, and total or unbound plasma concentrations. RESULTS Tandem mass spectrometry provides the sensitivity for assessing these matrices. But several challenges must be addressed, including minimizing hemolysis during blood collection, preventing IS efflux during PBMC preparation, and determining the need for further purification of the PBMC fraction. Assessing and reducing nonspecific binding during separation of unbound IS are also necessary, especially for lipophilic CNIs/mTORi. Although TDM using PBMC or unbound plasma concentrations may not be feasible due to increased costs, plasma CNI/mTORi levels may be more easily integrated into routine TDM. However, no validated TDM targets currently exist, and published models to adjust blood CNI/mTORi concentrations for hematocrit or to predict PBMC, and total and unbound plasma IS concentrations have yet to be validated in terms of measured concentrations or prediction of clinical outcomes. CONCLUSIONS Even if CNI/mTORi measurements in novel matrices do not become routine, they may help refine pharmacokinetic-pharmacodynamic relationships and improve mathematical models for TDM using whole blood. Notably, there is evidence to support measuring unbound MPA in patients with severe renal dysfunction, hypoalbuminemia, and hyperbilirubinemia, with some proposed TDM targets.
Collapse
Affiliation(s)
- Benedetta C Sallustio
- Department of Clinical Pharmacology, The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia ; and
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Smith CT, Wang Z, Lewis JS. Engineering antigen-presenting cells for immunotherapy of autoimmunity. Adv Drug Deliv Rev 2024; 210:115329. [PMID: 38729265 DOI: 10.1016/j.addr.2024.115329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/05/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Autoimmune diseases are burdensome conditions that affect a significant fraction of the global population. The hallmark of autoimmune disease is a host's immune system being licensed to attack its tissues based on specific antigens. There are no cures for autoimmune diseases. The current clinical standard for treating autoimmune diseases is the administration of immunosuppressants, which weaken the immune system and reduce auto-inflammatory responses. However, people living with autoimmune diseases are subject to toxicity, fail to mount a sufficient immune response to protect against pathogens, and are more likely to develop infections. Therefore, there is a concerted effort to develop more effective means of targeting immunomodulatory therapies to antigen-presenting cells, which are involved in modulating the immune responses to specific antigens. In this review, we highlight approaches that are currently in development to target antigen-presenting cells and improve therapeutic outcomes in autoimmune diseases.
Collapse
Affiliation(s)
- Clinton T Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhenyu Wang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jamal S Lewis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Biagiotti S, Perla E, Magnani M. Drug transport by red blood cells. Front Physiol 2023; 14:1308632. [PMID: 38148901 PMCID: PMC10750411 DOI: 10.3389/fphys.2023.1308632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
This review focuses on the role of human red blood cells (RBCs) as drug carriers. First, a general introduction about RBC physiology is provided, followed by the presentation of several cases in which RBCs act as natural carriers of drugs. This is due to the presence of several binding sites within the same RBCs and is regulated by the diffusion of selected compounds through the RBC membrane and by the presence of influx and efflux transporters. The balance between the influx/efflux and the affinity for these binding sites will finally affect drug partitioning. Thereafter, a brief mention of the pharmacokinetic profile of drugs with such a partitioning is given. Finally, some examples in which these natural features of human RBCs can be further exploited to engineer RBCs by the encapsulation of drugs, metabolites, or target proteins are reported. For instance, metabolic pathways can be powered by increasing key metabolites (i.e., 2,3-bisphosphoglycerate) that affect oxygen release potentially useful in transfusion medicine. On the other hand, the RBC pre-loading of recombinant immunophilins permits increasing the binding and transport of immunosuppressive drugs. In conclusion, RBCs are natural carriers for different kinds of metabolites and several drugs. However, they can be opportunely further modified to optimize and improve their ability to perform as drug vehicles.
Collapse
Affiliation(s)
| | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| |
Collapse
|
4
|
Liu Y, Xu H, Yan N, Tang Z, Wang Q. Research progress of ophthalmic preparations of immunosuppressants. Drug Deliv 2023; 30:2175925. [PMID: 36762580 DOI: 10.1080/10717544.2023.2175925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Immune ophthalmopathy is a collection of autoimmune eye diseases. Immunosuppressants are drugs that can inhibit the body's immune response. Considering drug side effects such as hepatorenal toxicity and the unique structure of the eye, incorporating immunosuppressants into ophthalmic nanodrug delivery systems, such as microparticles, nanoparticles, liposomes, micelles, implants, and in situ gels, has the advantages of improving solubility, increasing bioavailability, high eye-target specificity, and reducing side effects. This study reviews recent research and applications of this aspect to provide a reference for the development of an ophthalmic drug delivery system.
Collapse
Affiliation(s)
- Ye Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Haonan Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Na Yan
- Department of Pharmacy, Jin Hua Municipal Maternal and Child Health Care Hospital, Jinhua, Zhejiang, 321000, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| |
Collapse
|
5
|
Wadhawan M, Gupta C. Immunosuppression Monitoring-What Clinician Needs to Know? J Clin Exp Hepatol 2023; 13:691-697. [PMID: 37440936 PMCID: PMC10333948 DOI: 10.1016/j.jceh.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is well known for its immunotolerance, but rejection without immunosuppression is frequently encountered post liver transplantation, especially in humans.1 Indeed, the amount of immunosuppression required post liver transplant is less compared to other organ transplants like kidney, heart, and intestine.2 Reports of successful weaning of immunosuppression have been reported but are not practiced for fear of unwanted alloimmune response leading to rejection. Life-long immunosuppression is needed in most patients for graft survival but is associated with side effects like renal dysfunction, metabolic abnormalities, or risk of de novo malignancies. Also, the appropriate dose of immunosuppression to achieve adequate graft function and prevention of toxicities is very important. One shoe does not fit all. There are significant individual variations in response and side effect profile. Also, the level of immunosuppression varies with the underlying liver disease like autoimmune disease requires higher immunosuppression. Thus, monitoring the adequate immunosuppression with the minimization of drug toxicity is imperative post-transplant. Unfortunately, the current methods for immunosuppression monitoring rely on testing the immunosuppressive drug levels rather than the immune system activity. We have discussed the concept of alloreactivity, available methods of immunosuppression and drug monitoring and investigational methods in this review.
Collapse
Affiliation(s)
- Manav Wadhawan
- Institute of Digestive & Liver Diseases, BLK Superspeciality Hospital Delhi, India
| | - Charu Gupta
- Institute of Digestive & Liver Diseases, BLK Superspeciality Hospital Delhi, India
| |
Collapse
|
6
|
de Tonnerre DJ, Medina Torres CE, Stefanovski D, Robinson MA, Kemp KL, Bertin FR, van Eps AW. Effect of sirolimus on insulin dynamics in horses. J Vet Intern Med 2023; 37:703-712. [PMID: 36840433 DOI: 10.1111/jvim.16650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Sirolimus, a mechanistic target of rapamycin inhibitor, suppresses insulin production in other species and has therapeutic potential for hyperinsulinemia in horses. HYPOTHESIS/OBJECTIVE Determine the pharmacokinetics (PKs) of sirolimus and evaluate its effect on insulin dynamics in healthy and insulin dysregulation (ID) horses. ANIMALS Eight Standardbred geldings. METHODS A PK study was performed followed by a placebo-controlled, randomized, crossover study. Blood sirolimus concentrations were measured by liquid chromatography-mass-spectrometry. PK indices were estimated by fitting a 2-compartment model using nonlinear least squares regression. An oral glucose test (OGT) was conducted before and 4, 24, 72, and 144 hours after administration of sirolimus or placebo. Effects of time, treatment and animal on blood glucose and insulin concentrations were analyzed using mixed-effects linear regression. Sirolimus was then administered to 4 horses with dexamethasone-induced ID and an OGT was performed at baseline, after ID induction and after 7 days of treatment. RESULTS Median (range) maximum sirolimus concentration was 277.0 (247.5-316.06) ng/mL at 5 (5-10) min and half-life was 3552 (3248-4767) min. Mean (range) oral bioavailability was 9.5 (6.8-12.4)%. Sirolimus had a significant effect on insulin concentration 24 hours after a single dose: median (interquartile range) insulin at 60 min (5.0 [3.7-7.0] μIU/mL) was 37 (-5 to 54)% less than placebo (8.7 [5.8-13.7] μIU/mL, P = .03); and at 120 min (10.2 [8.4-12.2] μIU/mL) was 28 (-15 to 53)% less than placebo (14.9 [8.4-24.8] μIU/mL, P = .02). There was minimal effect on glucose concentration. Insulin responses decreased toward baseline in ID horses after 7 days of treatment. CONCLUSION AND CLINICAL IMPORTANCE Sirolimus decreased the insulinemic response to glucose and warrants further investigation.
Collapse
Affiliation(s)
- Demia J de Tonnerre
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | | | - Darko Stefanovski
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Mary A Robinson
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| | - Kate L Kemp
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - François-René Bertin
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Andrew W van Eps
- Department of Clinical Studies - New Bolton Center, University of Pennsylvania, Kennett Square, Pennsylvania, USA
| |
Collapse
|
7
|
Mohammadi M, Akhoundi M, Malih S, Mohammadi A, Sheykhhasan M. Therapeutic roles of CAR T cells in infectious diseases: Clinical lessons learnt from cancer. Rev Med Virol 2022; 32:e2325. [PMID: 35037732 DOI: 10.1002/rmv.2325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy has made improvements due to the advances in chimaeric antigen receptor (CAR) T cell development, offering a promising treatment option for patients who have failed to respond to traditional treatments. In light of the successful use of adoptive CAR T cell therapy for cancer, researchers have been inspired to develop CARs for the treatment of other diseases beyond cancers such as viral infectious diseases. Nonetheless, various obstacles limit the efficacy of CAR T cell therapies and prevent their widespread usage. Severe toxicities, poor in vivo persistence, antigen escape, and heterogeneity, as well as off-target effect, are key challenges that must all be addressed to broaden the application of CAR T cells to a wider spectrum of diseases. The key advances in CAR T cell treatment for cancer and viral infections are reviewed in this article. We will also discuss revolutionary CAR T cell products developed to improve and enhance the therapeutic advantages of these treatments.
Collapse
Affiliation(s)
- Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Maryam Akhoundi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Malih
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, The Academic Center for Education, Culture and Research, Qom, Iran
| |
Collapse
|
8
|
Burke JA, Zhang X, Bobbala S, Frey MA, Bohorquez Fuentes C, Freire Haddad H, Allen SD, Richardson RAK, Ameer GA, Scott EA. Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability. NATURE NANOTECHNOLOGY 2022; 17:319-330. [PMID: 35039683 PMCID: PMC8934301 DOI: 10.1038/s41565-021-01048-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/09/2021] [Indexed: 05/03/2023]
Abstract
Standard oral rapamycin (that is, Rapamune) administration is plagued by poor bioavailability and broad biodistribution. Thus, this pleotropic mammalian target of rapamycin (mTOR) inhibitor has a narrow therapeutic window and numerous side effects and provides inadequate protection to transplanted cells and tissues. Furthermore, the hydrophobicity of rapamycin limits its use in parenteral formulations. Here, we demonstrate that subcutaneous delivery via poly(ethylene glycol)-b-poly(propylene sulfide) polymersome nanocarriers significantly alters rapamycin's cellular biodistribution to repurpose its mechanism of action for tolerance, instead of immunosuppression, and minimize side effects. While oral rapamycin inhibits T cell proliferation directly, subcutaneously administered rapamycin-loaded polymersomes modulate antigen presenting cells in lieu of T cells, significantly improving maintenance of normoglycemia in a clinically relevant, major histocompatibility complex-mismatched, allogeneic, intraportal (liver) islet transplantation model. These results demonstrate the ability of a rationally designed nanocarrier to re-engineer the immunosuppressive mechanism of a drug by controlling cellular biodistribution.
Collapse
Affiliation(s)
- Jacqueline A Burke
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Xiaomin Zhang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Molly A Frey
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA
| | - Carolina Bohorquez Fuentes
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Helena Freire Haddad
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Sean D Allen
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA
| | - Reese A K Richardson
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA.
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
9
|
Séhédic D, Roncali L, Djoudi A, Buchtova N, Avril S, Chérel M, Boury F, Lacoeuille F, Hindré F, Garcion E. Rapamycin-Loaded Lipid Nanocapsules Induce Selective Inhibition of the mTORC1-Signaling Pathway in Glioblastoma Cells. Front Bioeng Biotechnol 2021; 8:602998. [PMID: 33718332 PMCID: PMC7947795 DOI: 10.3389/fbioe.2020.602998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/29/2020] [Indexed: 11/21/2022] Open
Abstract
Inhibition of the PI3K/Akt/mTOR signaling pathway represents a potential issue for the treatment of cancer, including glioblastoma. As such, rapamycin that inhibits the mechanistic target of rapamycin (mTOR), the downstream effector of this signaling pathway, is of great interest. However, clinical development of rapamycin has floundered due to the lack of a suitable formulation of delivery systems. In the present study, a novel method for the formulation of safe rapamycin nanocarriers is investigated. A phase inversion process was adapted to prepare lipid nanocapsules (LNCs) loaded with the lipophilic and temperature sensitive rapamycin. Rapamycin-loaded LNCs (LNC-rapa) are ~110 nm in diameter with a low polydispersity index (<0.05) and the zeta potential of about −5 mV. The encapsulation efficiency, determined by spectrophotometry conjugated with filtration/exclusion, was found to be about 69%, which represents 0.6 wt% of loading capacity. Western blot analysis showed that LNC-rapa do not act synergistically with X-ray beam radiation in U87MG glioblastoma model in vitro. Nevertheless, it demonstrated the selective inhibition of the phosphorylation of mTORC1 signaling pathway on Ser2448 at a concentration of 1 μM rapamycin in serum-free medium. Interestingly, cells cultivated in normoxia (21% O2) seem to be more sensitive to mTOR inhibition by rapamycin than those cultivated in hypoxia (0.4% O2). Finally, we also established that mTOR phosphorylation inhibition by LNC-rapa induced a negative feedback through the activation of Akt phosphorylation. This phenomenon was more noticeable after stabilization of HIF-1α in hypoxia.
Collapse
Affiliation(s)
- Delphine Séhédic
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Loris Roncali
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Amel Djoudi
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Nela Buchtova
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Sylvie Avril
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Michel Chérel
- Université de Nantes, Inserm, CNRS, CRCINA, Nantes, France
| | - Frank Boury
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Franck Lacoeuille
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - François Hindré
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Emmanuel Garcion
- Univ Angers, Université de Nantes, Inserm, CRCINA, SFR ICAT, Angers, France
| |
Collapse
|
10
|
Di Maira T, Little EC, Berenguer M. Immunosuppression in liver transplant. Best Pract Res Clin Gastroenterol 2020; 46-47:101681. [PMID: 33158467 DOI: 10.1016/j.bpg.2020.101681] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
The increasing potency of immunosuppression (IS) agents resulted in significantly decreased rates of steroid resistant rejection and rejection related graft loss in liver transplantation (LT). Currently, more than two thirds of late mortality after LT is unrelated to graft function. However, the increased benefit of more potent IS drugs, coupled with the prolonged survival of transplant recipients led to longer patients exposure to these drugs and their unwanted adverse effects, creating a double-edged sword. In this article the authors describe the mechanism of action and the adverse effects of the most commonly used immunosuppressed drugs, and the most commonly used IS regimens for both induction and maintenance regimens. The balance between the ideal IS regimen to prevent rejection and the need to minimize the dose of IS drugs in order to prevent the adverse effects related to its use requires the knowledge of the science and the experience with the art of medicine. The different protocols aimed at protecting renal function and preventing the development of de novo cancer and metabolic syndrome are discussed here. The main causes of mortality late after liver transplant are associated with prolonged use of IS medications, and clear evidence exists about over-immunosuppression of recipients of liver transplant. The current status of strategies of IS minimization and withdrawal are reviewed in this article, with evaluation of its benefits and pitfalls.
Collapse
Affiliation(s)
- Tommaso Di Maira
- Liver Transplantation and Hepatology Unit, Hospital Universitari I Politècnic La Fe, Avda Fernando Abril Martorell, 106 (Torre F5), Valencia, 46026, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, 28029, Spain; ISS La Fe, Valencia, 46026, Spain.
| | - Ester Coelho Little
- University of Arizona, College of Medicine, 3110 East Minnesona Avenue, Phoenix, AZ, 85016, USA.
| | - Marina Berenguer
- Liver Transplantation and Hepatology Unit, Hospital Universitari I Politècnic La Fe, Avda Fernando Abril Martorell, 106 (Torre F5), Valencia, 46026, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, 28029, Spain; ISS La Fe, Valencia, 46026, Spain; Universidad de Valencia, Facultad de Medicina, Valencia, 46010, Spain.
| |
Collapse
|
11
|
Ju Y, Guo H, Yarber F, Edman MC, Peddi S, Janga SR, MacKay JA, Hamm-Alvarez SF. Molecular Targeting of Immunosuppressants Using a Bifunctional Elastin-Like Polypeptide. Bioconjug Chem 2019; 30:2358-2372. [PMID: 31408605 DOI: 10.1021/acs.bioconjchem.9b00462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Elastin-Like Polypeptides (ELP) are environmentally responsive protein polymers which are easy to engineer and biocompatible, making them ideal candidates as drug carriers. Our team has recently utilized ELPs fused to FKBP12 to carry Rapamycin (Rapa), a potent immunosuppressant. Through high affinity binding to Rapa, FKBP carriers can yield beneficial therapeutic effects and reduce the off-site toxicity of Rapa. Since ICAM-1 is significantly elevated at sites of inflammation in diverse diseases, we hypothesized that a molecularly targeted ELP carrier capable of binding ICAM-1 might have advantageous properties. Here we report on the design, characterization, pharmacokinetics, and biodistribution of a new ICAM-1-targeted ELP Rapa carrier (IBPAF) and its preliminary characterization in a murine model exhibiting elevated ICAM-1. Lacrimal glands (LG) of male NOD mice, a disease model recapitulating the autoimmune dacryoadenitis seen in Sjögren's Syndrome patients, were analyzed to confirm that ICAM-1 was significantly elevated in the LG relative to control male BALB/c mice (3.5-fold, p < 0.05, n = 6). In vitro studies showed that IBPAF had significantly higher binding to TNF-α-stimulated bEnd.3 cells which overexpress surface ICAM-1, relative to nontargeted control ELP (AF)(4.0-fold, p < 0.05). A pharmacokinetics study in male NOD mice showed no significant differences between AF and IBPAF for plasma half-life, clearance, and volume of distribution. However, both constructs maintained a higher level of Rapa in systemic circulation compared to free Rapa. Interestingly, in the male NOD mouse, the accumulation of IBPAF was significantly higher in homogenized LG extracts compared to AF at 2 h (8.6 ± 6.6% versus 1.3 ± 1.3%, respectively, n = 5, p < 0.05). This accumulation was transient with no differences detected at 8 or 24 h. This study describes the first ICAM-1 targeted protein-polymer carrier for Rapa that specifically binds to ICAM-1 in vitro and accumulates in ICAM-1 overexpressing tissue in vivo, which may be useful for molecular targeting in diverse inflammatory diseases where ICAM-1 is elevated.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States.,Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Frances Yarber
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Maria C Edman
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States
| | - Srikanth Reddy Janga
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States.,Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States.,Department of Biomedical Engineering, Viterbi School of Engineering , University of Southern California , Los Angeles , California 90089 , United States
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy , University of Southern California , Los Angeles , California 90089 , United States.,Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
12
|
Kadakia E, Harpude P, Parayath N, Bottino D, Amiji M. Challenging the CNS Targeting Potential of Systemically Administered Nanoemulsion Delivery Systems: a Case Study with Rapamycin-Containing Fish Oil Nanoemulsions in Mice. Pharm Res 2019; 36:134. [DOI: 10.1007/s11095-019-2667-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
|
13
|
Leung WH, Gay J, Martin U, Garrett TE, Horton HM, Certo MT, Blazar BR, Morgan RA, Gregory PD, Jarjour J, Astrakhan A. Sensitive and adaptable pharmacological control of CAR T cells through extracellular receptor dimerization. JCI Insight 2019; 5:124430. [PMID: 31039141 DOI: 10.1172/jci.insight.124430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapies have achieved promising outcomes in several cancers, however more challenging oncology indications may necessitate advanced antigen receptor designs and functions. Here we describe a bipartite receptor system comprised of separate antigen targeting and signal transduction polypeptides, each containing an extracellular dimerization domain. We demonstrate that T cell activation remains antigen dependent but can only be achieved in the presence of a dimerizing drug, rapamycin. Studies performed in vitro and in xenograft mouse models illustrate equivalent to superior anti-tumor potency compared to currently used CAR designs, and at rapamycin concentrations well below immunosuppressive levels. We further show that the extracellular positioning of the dimerization domains enables the administration of recombinant re-targeting modules, potentially extending antigen targeting. Overall, this novel regulatable CAR design has exquisite drug sensitivity, provides robust anti-tumor responses, and is uniquely flexible for multiplex antigen targeting or retargeting, which may further assist the development of safe, potent and durable T cell therapeutics.
Collapse
Affiliation(s)
| | - Joel Gay
- bluebird bio, inc., Cambridge, Massachusetts, USA
| | - Unja Martin
- bluebird bio, inc., Cambridge, Massachusetts, USA
| | | | | | | | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
14
|
Verma B, Patel A, Katyal D, Singh VR, Singh AK, Singh A, Kumar M, Nagarkoti P. Real World Experience of a Biodegradable Polymer Sirolimus-Eluting Stent (Yukon Choice PC Elite) in Patients with Acute ST-Segment Elevation Myocardial Infarction Undergoing Primary Angioplasty: A Multicentric Observational Study (The Elite India Study). Open Access Maced J Med Sci 2019; 7:1103-1109. [PMID: 31049089 PMCID: PMC6490487 DOI: 10.3889/oamjms.2019.241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND: The durable polymer drug-eluting stents (DPDES) reduce the risk of repeated target vessel revascularisation (TLR) compared with BMS, but are associated with increased risk of late adverse events. In broadly inclusive populations, the biodegradable-polymer drug-eluting stents (BPDES) have favourable results compared with DPDES in the long term. However, its use in primary angioplasty has not been adequately studied, and data of real-world clinical experience is lacking. AIM: Aim of this study was to assess the safety and efficacy of Yukon Choice PC Elite sirolimus-eluting stent (a novel BPDES) in STEMI patients undergoing primary angioplasty. METHODS: We have presented here one-year clinical follow-up data of the Yukon Choice PC Elite sirolimus-eluting stent in patients undergoing primary angioplasty. A total of 636 patients were enrolled in this single arm, prospective observational study from five centres. RESULTS: This multicentric observational study showed excellent safety and efficacy profile of the novel device at one year follow up. The device-oriented composite endpoint (DOCE) of cardiac death, target-vessel reinfarction, and target-lesion revascularisation (TLR) was 2.7%, and the patient-oriented composite endpoint (POCE) of all-cause death, any myocardial infarction, and any revascularisation was 4.2% at one year. Definite or probable stent thrombosis rate was 0.6%, and no events were recorded beyond 6 months of follow up. CONCLUSIONS: In patients with STEMI undergoing primary angioplasty, the use of Yukon Choice PC Elite (biodegradable polymer sirolimus-eluting stent) has excellent results at one year. It, therefore, represents an attractive alternative to second generation DES in this high-risk population.
Collapse
Affiliation(s)
- Bhupendra Verma
- Department of Cardiology, Ujala Superspeciality Hospital, Kashipur, Uttarakhand, India
| | - Akhilesh Patel
- Abhigya Heart Care Centre, Gorakhpur, Uttar Pradesh, India
| | - Deepak Katyal
- Department of Cardiology, Columbia Asia Hospital, Patiala, Punjab, India
| | | | | | - Amrita Singh
- Department of Cardiology, Ujala Superspeciality Hospital, Kashipur, Uttarakhand, India
| | - Manu Kumar
- Department of Cardiology, Ujala Superspeciality Hospital, Kashipur, Uttarakhand, India
| | - Pratap Nagarkoti
- Department of Cardiology, Ujala Superspeciality Hospital, Kashipur, Uttarakhand, India
| |
Collapse
|
15
|
Tam YT, Repp L, Ma ZX, Feltenberger JB, Kwon GS. Oligo(Lactic Acid) 8-Rapamycin Prodrug-Loaded Poly(Ethylene Glycol)-block-Poly(Lactic Acid) Micelles for Injection. Pharm Res 2019; 36:70. [PMID: 30888509 DOI: 10.1007/s11095-019-2600-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE To prepare an oligo(lactic acid)8-rapamycin prodrug (o(LA)8-RAP)-loaded poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA) micelle for injection and characterize its compatibility and performance versus a RAP-loaded PEG-b-PLA micelle for injection in vitro and in vivo. METHODS Monodisperse o(LA)8 was coupled on RAP at the C-40 via DCC/DMAP chemistry, and conversion of o(LA)8-RAP prodrug into RAP was characterized in vitro. Physicochemical properties of o(LA)8-RAP- and RAP-loaded PEG-b-PLA micelles and their antitumor efficacies in a syngeneic 4 T1 breast tumor model were compared. RESULTS Synthesis of o(LA)8-RAP prodrug was confirmed by 1H NMR and mass spectroscopy. The o(LA)8-RAP prodrug underwent conversion in PBS and rat plasma by backbiting and esterase-mediated cleavage, respectively. O(LA)8-RAP-loaded PEG-b-PLA micelles increased water solubility of RAP equivalent to 3.3 mg/ml with no signs of precipitation. Further, o(LA)8-RAP was released more slowly than RAP from PEG-b-PLA micelles. With added physical stability, o(LA)8-RAP-loaded PEG-b-PLA micelles significantly inhibited tumor growth relative to RAP-loaded PEG-b-PLA micelles in 4 T1 breast tumor-bearing mice without signs of acute toxicity. CONCLUSIONS An o(LA)8-RAP-loaded PEG-b-PLA micelle for injection is more stable than a RAP-loaded PEG-b-PLA micelle for injection, and o(LA)8-RAP converts into RAP rapidly in rat plasma (t1/2 = 1 h), resulting in antitumor efficacy in a syngeneic 4 T1 breast tumor model.
Collapse
Affiliation(s)
- Yu Tong Tam
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA.,Discovery Pharmaceutical Sciences Merck Research Laboratories, South San Francisco, California, 94080, USA
| | - Lauren Repp
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA
| | - Zhi-Xiong Ma
- Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA
| | - John B Feltenberger
- Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705-2222, USA.
| |
Collapse
|
16
|
Abstract
Mycophenolic acid (MPA) is an immunosuppressant requiring therapeutic drug monitoring. Although immunoassays are commercially available, there is significant positive bias using this approach when compared to high-performance liquid chromatography or LC combined with mass spectrometry (LC/MS) or tandem mass spectrometry (LC/MS/MS). Positive bias is due to variable cross-reactivity of MPA acyl glucuronide with antibodies traditionally used in immunoassay formats. As can be expected, the magnitude of bias varies considerably. MPA strongly binds albumin and, as a result, disproportionate increases in free MPA occur in patients with uremia, hypoalbuminemia, and hepatic dysfunction. As such, monitoring free MPA poses additional challenges. Because MPA inhibits inosine monophosphate dehydrogenase, monitoring this enzyme may provide an alternative approach.
Collapse
|
17
|
Engelke MF, Winding M, Yue Y, Shastry S, Teloni F, Reddy S, Blasius TL, Soppina P, Hancock WO, Gelfand VI, Verhey KJ. Engineered kinesin motor proteins amenable to small-molecule inhibition. Nat Commun 2016; 7:11159. [PMID: 27045608 PMCID: PMC4822052 DOI: 10.1038/ncomms11159] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022] Open
Abstract
The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest.
Collapse
Affiliation(s)
- Martin F. Engelke
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - Michael Winding
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - Shankar Shastry
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, USA
| | - Federico Teloni
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - Sanjay Reddy
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - T. Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - Pushpanjali Soppina
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| | - William O. Hancock
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, USA
| | - Vladimir I. Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
18
|
Mika A, Stepnowski P. Current methods of the analysis of immunosuppressive agents in clinical materials: A review. J Pharm Biomed Anal 2016; 127:207-31. [PMID: 26874932 DOI: 10.1016/j.jpba.2016.01.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 12/24/2022]
Abstract
More than 100000 solid organ transplantations are performed every year worldwide. Calcineurin (cyclosporine A, tacrolimus), serine/threonine kinase (sirolimus, everolimus) and inosine monophosphate dehydrogenase inhibitor (mycophenolate mofetil), are the most common drugs used as immunosuppressive agents after solid organ transplantation. Immunosuppressive therapy, although necessary after transplantation, is associated with many adverse consequences, including the formation of secondary metabolites of drugs and the induction of their side effects. Calcineurin inhibitors are associated with nephrotoxicity, cardiotoxicity and neurotoxicity; moreover, they increase the risk of many diseases after transplantation. The review presents a study of the movement of drugs in the body, including the processes of absorption, distribution, localisation in tissues, biotransformation and excretion, and also their accompanying side effects. Therefore, there is a necessity to monitor immunosuppressants, especially because these drugs are characterised by narrow therapeutic ranges. Their incorrect concentrations in a patient's blood could result in transplant rejection or in the accumulation of toxic effects. Immunosuppressive pharmaceuticals are macrolide lactones, peptides, and high molecular weight molecules that can be metabolised to several metabolites. Therefore the two main analytical methods used for their determination are high performance liquid chromatography with various detection methods and immunoassay methods. Despite the rapid development of new analytical methods of analysing immunosuppressive agents, the application of the latest generation of detectors and increasing sensitivity of such methods, there is still a great demand for the development of highly selective, sensitive, specific, rapid and relatively simple methods of immunosuppressive drugs analysis.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
19
|
Sirolimus and everolimus in kidney transplantation. Drug Discov Today 2015; 20:1243-9. [DOI: 10.1016/j.drudis.2015.05.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/26/2015] [Accepted: 05/14/2015] [Indexed: 11/15/2022]
|
20
|
Sirolimus formulation with improved pharmacokinetic properties produced by a continuous flow method. Eur J Pharm Biopharm 2015; 94:135-40. [DOI: 10.1016/j.ejpb.2015.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/22/2015] [Accepted: 05/14/2015] [Indexed: 11/22/2022]
|
21
|
Cholkar K, Gunda S, Earla R, Pal D, Mitra AK. Nanomicellar Topical Aqueous Drop Formulation of Rapamycin for Back-of-the-Eye Delivery. AAPS PharmSciTech 2015; 16:610-22. [PMID: 25425389 DOI: 10.1208/s12249-014-0244-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to develop a clear, aqueous rapamycin-loaded mixed nanomicellar formulations (MNFs) for the back-of-the-eye delivery. MNF of rapamycin (0.2%) was prepared with vitamin E tocopherol polyethylene glycol succinate (TPGS) (Vit E TPGS) and octoxynol-40 (Oc-40) as polymeric matrix. MNF was characterized by various parameters such as size, charge, shape, and viscosity. Proton nuclear magnetic resonance ((1)H NMR) was used to identify unentrapped rapamycin in MNF. Cytotoxicity was evaluated in human retinal pigment epithelial (D407) and rabbit primary corneal epithelial cells (rPCECs). In vivo posterior ocular rapamycin distribution studies were conducted in male New Zealand white rabbits. The optimized MNF has excellent rapamycin entrapment and loading efficiency. The average size of MNF was 10.98 ± 0.089 and 10.84 ± 0.11 nm for blank and rapamycin-loaded MNF, respectively. TEM analysis revealed that nanomicelles are spherical in shape. Absence of free rapamycin in the MNF was confirmed by (1)H NMR studies. Neither placebo nor rapamycin-loaded MNF produced cytotoxicity on D407 and rPCECs indicating formulations are tolerable. In vivo studies demonstrated a very high rapamycin concentration in retina-choroid (362.35 ± 56.17 ng/g tissue). No drug was identified in the vitreous humor indicating the sequestration of rapamycin in lipoidal retinal tissues. In summary, a clear, aqueous MNF comprising of Vit E TPGS and Oc-40 loaded with rapamycin was successfully developed. Back-of-the-eye tissue distribution studies demonstrated a very high rapamycin levels in retina-choroid (place of drug action) with a negligible drug partitioning into vitreous humor.
Collapse
|
22
|
Microsphere-Based Rapamycin Delivery, Systemic Versus Local Administration in a Rat Model of Renal Ischemia/Reperfusion Injury. Pharm Res 2015; 32:3238-47. [PMID: 25957099 PMCID: PMC4577552 DOI: 10.1007/s11095-015-1700-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/17/2015] [Indexed: 11/29/2022]
Abstract
Purpose The increasing prevalence and treatment costs of kidney diseases call for innovative therapeutic strategies that prevent disease progression at an early stage. We studied a novel method of subcapsular injection of monodisperse microspheres, to use as a local delivery system of drugs to the kidney. Methods We generated placebo- and rapamycin monodisperse microspheres to investigate subcapsular delivery of drugs. Using a rat model of acute kidney injury, subcapsular injection of placebo and rapamycin monodisperse microspheres (monospheres) was compared to subcutaneous injection, mimicking systemic administration. Results We did not find any adverse effects related to the delivery method. Irrespective of the injection site, a similar low dose of rapamycin was present in the circulation. However, only local intrarenal delivery of rapamycin from monospheres led to decreased macrophage infiltration and a significantly lower amount of myofibroblasts in the kidney, where systemic administration did not. Local delivery of rapamycin did cause a transient increase in the deposition of collagen I, but not of collagen III. Conclusions We conclude that therapeutic effects can be increased when rapamycin is delivered subcapsularly by monospheres, which, combined with low systemic concentrations, may lead to an effective intrarenal delivery method. Electronic supplementary material The online version of this article (doi:10.1007/s11095-015-1700-8) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
The effects of drugs with immunosuppressive or immunomodulatory activities on xenobiotics-metabolizing enzymes expression in primary human hepatocytes. Toxicol In Vitro 2015; 29:1088-99. [PMID: 25929522 DOI: 10.1016/j.tiv.2015.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/02/2015] [Accepted: 04/22/2015] [Indexed: 11/22/2022]
Abstract
In this paper we investigated the effects of several drugs used in transplant medicine, i.e. cyclosporine A, tacrolimus, rapamycin, everolimus, mycophenolate mofetil, fluvastatin and rosuvastatin, on the expression of major drug-metabolizing enzymes in human hepatocytes. Moreover, we tested the ability of these drugs to affect transcriptional activity of glucocorticoid (GR) and aryl hydrocarbon receptor (AhR). We found that most of tested compounds did not induce expression of CYP1A1/1A2/3A4/2A6/2B6/2C9 mRNAs in human hepatocytes. Slight induction was observed for CYP2A6/2C9 mRNAs and CYP2A6 protein in the rapamycin-treated hepatocytes. Decrease of CYP2A6 and CYP2B6 proteins was observed in rosuvastatin-treated cells. Mycophenolate mofetil antagonized the effects of dexamethasone on GR but it potentiated the action of dioxin on AhR. Induction of CYP1A1 mRNA in HepG2 cells by dioxin was modestly antagonized by mycophenolate mofetil, while the induction by benzo[a]pyren or S-omeprazole was significantly potentiated by this drug. In general, tested compounds can be considered safe in the terms of possible drug-drug interaction caused by induction of drug-metabolizing cytochromes P450. Nevertheless, mycophenolate mofetil is of possible concern and its combination with drugs, environmental pollutants or food constituents, which activate AhR, may represent a significant toxicological risk.
Collapse
|
24
|
Khan S, Khan S, Baboota S, Ali J. Immunosuppressive drug therapy – biopharmaceutical challenges and remedies. Expert Opin Drug Deliv 2015; 12:1333-49. [DOI: 10.1517/17425247.2015.1005072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Galera P, Martin HC, Welch L, Sulmasy P, Cerny J, Greene M, Vauthrin M, Bailey JA, Weinstein R. Automated red blood cell exchange for acute drug removal in a patient with sirolimus toxicity. J Clin Apher 2015; 30:367-70. [DOI: 10.1002/jca.21381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 12/17/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Pallavi Galera
- Transfusion Medicine and Apheresis Service; UMass Memorial Medical Center; Worcester Massachusetts
- Department of Pathology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Hannah C. Martin
- Transfusion Medicine and Apheresis Service; UMass Memorial Medical Center; Worcester Massachusetts
- University of Massachusetts Medical School; Worcester Massachusetts
| | - Linda Welch
- Transfusion Medicine and Apheresis Service; UMass Memorial Medical Center; Worcester Massachusetts
| | - Paula Sulmasy
- Transfusion Medicine and Apheresis Service; UMass Memorial Medical Center; Worcester Massachusetts
| | - Jan Cerny
- University of Massachusetts Medical School; Worcester Massachusetts
- Division of Hematology/Oncology; UMass Memorial Medical Center; Worcester Massachusetts
- Department of Medicine; University of Massachusetts Medical School; Worcester Massachusetts
| | - Mindy Greene
- Transfusion Medicine and Apheresis Service; UMass Memorial Medical Center; Worcester Massachusetts
| | - Michelle Vauthrin
- Transfusion Medicine and Apheresis Service; UMass Memorial Medical Center; Worcester Massachusetts
| | - Jeffrey A. Bailey
- Transfusion Medicine and Apheresis Service; UMass Memorial Medical Center; Worcester Massachusetts
- Department of Pathology; University of Massachusetts Medical School; Worcester Massachusetts
- University of Massachusetts Medical School; Worcester Massachusetts
- Department of Medicine; University of Massachusetts Medical School; Worcester Massachusetts
- Division of Transfusion Medicine; UMass Memorial Medical Center; Worcester Massachusetts
| | - Robert Weinstein
- Transfusion Medicine and Apheresis Service; UMass Memorial Medical Center; Worcester Massachusetts
- Department of Pathology; University of Massachusetts Medical School; Worcester Massachusetts
- University of Massachusetts Medical School; Worcester Massachusetts
- Department of Medicine; University of Massachusetts Medical School; Worcester Massachusetts
- Division of Transfusion Medicine; UMass Memorial Medical Center; Worcester Massachusetts
| |
Collapse
|
26
|
Knight ZA, Schmidt SF, Birsoy K, Tan K, Friedman JM. A critical role for mTORC1 in erythropoiesis and anemia. eLife 2014; 3:e01913. [PMID: 25201874 PMCID: PMC4179304 DOI: 10.7554/elife.01913] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 09/04/2014] [Indexed: 12/31/2022] Open
Abstract
Red blood cells (RBC) must coordinate their rate of growth and proliferation with the availability of nutrients, such as iron, but the signaling mechanisms that link the nutritional state to RBC growth are incompletely understood. We performed a screen for cell types that have high levels of signaling through mTORC1, a protein kinase that couples nutrient availability to cell growth. This screen revealed that reticulocytes show high levels of phosphorylated ribosomal protein S6, a downstream target of mTORC1. We found that mTORC1 activity in RBCs is regulated by dietary iron and that genetic activation or inhibition of mTORC1 results in macrocytic or microcytic anemia, respectively. Finally, ATP competitive mTOR inhibitors reduced RBC proliferation and were lethal after treatment with phenylhydrazine, an inducer of hemolysis. These results identify the mTORC1 pathway as a critical regulator of RBC growth and proliferation and establish that perturbations in this pathway result in anemia. DOI:http://dx.doi.org/10.7554/eLife.01913.001 To multiply and grow, cells need to create more of the molecules—such as proteins—that make up their structure. This only happens if the cell has a good supply of the nutrients used to build the proteins. Red blood cells are particularly sensitive to the supply of nutrients, especially iron, which is a key component of the hemoglobin molecules that enable the cells to transport oxygen around the body. A lack of iron can lead to a shortage of red blood cells and a condition called anemia. People with mild forms of anemia may feel tired or weak, but more severe forms of anemia can cause heart problems and even death. A protein called mTOR forms part of a protein complex that helps alert the cells of many different organisms to the presence of nutrients. mTOR can add phosphate groups to ribosomes—the molecular machines that translate molecules of mRNA to build proteins. In 2012, researchers developed a technique called Phospho-Trap that can isolate these phosphorylated ribosomes from cells. Cells with an activated mTOR complex express more mTOR protein and in turn have more ribosomes that are modified. Examining the mRNA molecules associated with these ribosomes can reveal which proteins are produced in greater amounts in these cells. Previous experiments using Phospho-Trap found the proteins that make up hemoglobin in unexpectedly high amounts in the mouse brain. Now, Knight et al.—and other researchers involved in the 2012 work—have established that the hemoglobin was not coming from the brain cells but from immature red blood cells circulating within the brain. These immature blood cells were found to have a highly active mTOR complex that promotes the production of hemoglobin and new blood cells. Using genetic techniques in mice, Knight et al. found that the mTOR complex can cause anemia if it is underactive or overactive. Underactive mTOR complexes cause a type of anemia that produces small red blood cells and is usually triggered by a lack of iron. This made sense because mTOR is known to regulate both protein production and cell size. Boosting the activity of the mTOR complex leads to a type of anemia in which the cells are much larger than normal, and which is normally associated with inadequate amounts of folate and B12 vitamins. When Knight et al. gave mice a drug that inhibits the mTOR protein, the mice developed anemia that resolved when the treatment stopped. However, mice that were given the mTOR inhibitor at the same time as a drug that destroys red blood cells, all died within days. Clinical trials are currently testing mTOR inhibitors as a possible cancer treatment; however, a common side effect of chemotherapy is that it stops new red blood cells being produced. Knight et al. suggest that the red blood cells of patients in these clinical trials must be closely monitored before deciding whether to continue the treatment further. DOI:http://dx.doi.org/10.7554/eLife.01913.002
Collapse
Affiliation(s)
- Zachary A Knight
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Sarah F Schmidt
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Kivanc Birsoy
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Keith Tan
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
27
|
Single rapamycin administration induces prolonged downward shift in defended body weight in rats. PLoS One 2014; 9:e93691. [PMID: 24787262 PMCID: PMC4008417 DOI: 10.1371/journal.pone.0093691] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/08/2014] [Indexed: 11/19/2022] Open
Abstract
Manipulation of body weight set point may be an effective weight loss and maintenance strategy as the homeostatic mechanism governing energy balance remains intact even in obese conditions and counters the effort to lose weight. However, how the set point is determined is not well understood. We show that a single injection of rapamycin (RAP), an mTOR inhibitor, is sufficient to shift the set point in rats. Intraperitoneal RAP decreased food intake and daily weight gain for several days, but surprisingly, there was also a long-term reduction in body weight which lasted at least 10 weeks without additional RAP injection. These effects were not due to malaise or glucose intolerance. Two RAP administrations with a two-week interval had additive effects on body weight without desensitization and significantly reduced the white adipose tissue weight. When challenged with food deprivation, vehicle and RAP-treated rats responded with rebound hyperphagia, suggesting that RAP was not inhibiting compensatory responses to weight loss. Instead, RAP animals defended a lower body weight achieved after RAP treatment. Decreased food intake and body weight were also seen with intracerebroventricular injection of RAP, indicating that the RAP effect is at least partially mediated by the brain. In summary, we found a novel effect of RAP that maintains lower body weight by shifting the set point long-term. Thus, RAP and related compounds may be unique tools to investigate the mechanisms by which the defended level of body weight is determined; such compounds may also be used to complement weight loss strategy.
Collapse
|
28
|
Wang HF, Qiu F, Wu X, Fang J, Crownover P, Korth-Bradley J, Schulman S. Steady-state pharmacokinetics of sirolimus in stable adult Chinese renal transplant patients. Clin Pharmacol Drug Dev 2014; 3:235-41. [PMID: 27128614 DOI: 10.1002/cpdd.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 11/22/2013] [Indexed: 11/10/2022]
Abstract
This open-label, nonrandomized study was conducted to evaluate the steady-state pharmacokinetics of sirolimus in 24 stable Chinese renal transplant patients receiving daily oral maintenance doses of sirolimus (1-4 mg). Repeated trough and serial whole blood sirolimus concentrations over a 24-hour dosing interval were collected and assayed using high-performance liquid chromatography with tandem mass spectrometry (HPLC/MS/MS). Non-compartmental analysis (NCA) was employed to calculate sirolimus pharmacokinetic parameters. Cytochrome P450 (CYP) 3A5 genotyping was performed. Cyclosporine (CsA) levels were determined for patients who took concomitant CsA. Mean (±SD) sirolimus maximum concentration (Cmax ), area under the concentration-time curve within a dosing interval of τ (AUCτ ), oral clearance (CL/F), and trough concentration (Ctrough ) at steady state were: 14.1 ± 13.4 ng/mL, 199 ± 210 ng · h/mL, 10.1 ± 4.4 L/h, and 5.9 ± 6.3 ng/mL, respectively. Median tmax (range) was 2.49 hours (1-12 hours). A strong correlation was observed between Ctrough and AUCτ . Pharmacokinetics of sirolimus in patients with and without concomitant CsA were comparable. Allele frequency of CYP3A5*3 was 70.9% and a trend of higher oral clearance was observed in CYP3A5 expressers compared with non-expressers although the number of subjects in each genotype was small.
Collapse
Affiliation(s)
- Huifen Faye Wang
- Medical and Development, Emerging Market and Established Products Business Unit, Pfizer Inc, Groton, CT, USA
| | - Feng Qiu
- Center of Transplantation, Renji Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiongfe Wu
- Department of Nephrology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Juanzhi Fang
- Research and Development, Pfizer Inc, Groton, CT, USA
| | - Penelope Crownover
- Clinical Pharmacology/Clinical Assay Group, Pfizer Inc, New York, NY, USA
| | | | - Seth Schulman
- Medicines Development Group, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
29
|
Shah M, Edman MC, Janga SR, Shi P, Dhandhukia J, Liu S, Louie SG, Rodgers K, Mackay JA, Hamm-Alvarez SF. A rapamycin-binding protein polymer nanoparticle shows potent therapeutic activity in suppressing autoimmune dacryoadenitis in a mouse model of Sjögren's syndrome. J Control Release 2013; 171:269-79. [PMID: 23892265 DOI: 10.1016/j.jconrel.2013.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 11/25/2022]
Abstract
Sjögren's syndrome (SjS) is a chronic autoimmune disease characterized initially by lymphocytic infiltration and destruction of exocrine glands, followed by systemic organ damage and B-cell lymphoma. Conventional treatment is based on management of symptoms and there is a shortage of therapies that address the underlying causes of inflammation at source exocrine tissue. The aim of this study was to test a novel protein polymer-based platform consisting of diblock copolymers composed from Elastin-like Polypeptides (ELPs) fused with FKBP12, to deliver a potent immunosuppressant with dose-limiting toxicity, rapamycin (Rapa) also known as Sirolimus, and evaluate its effects on the inflamed lacrimal gland (LG) of non-obese diabetic mouse (NOD), a classic mouse model of SjS. Both soluble and diblock copolymer ELPs were fused to FKBP12 and characterized with respect to purity, hydrodynamic radii, drug entrapment and release. Both formulations showed successful association with Rapa; however, the nanoparticle formulation, FSI, released drug with nearly a 5 fold longer terminal half-life of 62.5h. The strong interaction of FSI nanoparticles with Rapa was confirmed in vivo by a shift in the monoexponential pharmacokinetic profile for free drug to a biexponential profile for the nanoparticle formulation. When acutely administered by injection into NOD mice via the tail vein, this FSI formulation significantly suppressed lymphocytic infiltration in the LG relative to the control group while reducing toxicity. There was also a significant effect on inflammatory and mammalian target of Rapamycin (mTOR) pathway genes in the LG and surprisingly, our nanoparticle formulation was significantly better at decreasing a proposed tear biomarker of SjS, cathepsin S (CATS) compared to free drug. These findings suggest that FSI is a promising tool for delivering Rapa for treatment of SjS in a murine model and may be further explored to meet the unmet medical challenge of SjS.
Collapse
Affiliation(s)
- Mihir Shah
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, Los Angeles, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo. J Control Release 2013; 171:330-8. [PMID: 23714121 DOI: 10.1016/j.jconrel.2013.05.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/09/2013] [Accepted: 05/18/2013] [Indexed: 11/22/2022]
Abstract
Numerous nanocarriers of small molecules depend on either non-specific physical encapsulation or direct covalent linkage. In contrast, this manuscript explores an alternative encapsulation strategy based on high-specificity avidity between a small molecule drug and its cognate protein target fused to the corona of protein polymer nanoparticles. With the new strategy, the drug associates tightly to the carrier and releases slowly, which may decrease toxicity and promote tumor accumulation via the enhanced permeability and retention effect. To test this hypothesis, the drug Rapamycin (Rapa) was selected for its potent anti-proliferative properties, which give it immunosuppressant and anti-tumor activity. Despite its potency, Rapa has low solubility, low oral bioavailability, and rapid systemic clearance, which make it an excellent candidate for nanoparticulate drug delivery. To explore this approach, genetically engineered diblock copolymers were constructed from elastin-like polypeptides (ELPs) that assemble small (<100nm) nanoparticles. ELPs are protein polymers of the sequence (Val-Pro-Gly-Xaa-Gly)n, where the identity of Xaa and n determine their assembly properties. Initially, a screening assay for model drug encapsulation in ELP nanoparticles was developed, which showed that Rose Bengal and Rapa have high non-specific encapsulation in the core of ELP nanoparticles with a sequence where Xaa=Ile or Phe. While excellent at entrapping these drugs, their release was relatively fast (2.2h half-life) compared to their intended mean residence time in the human body. Having determined that Rapa can be non-specifically entrapped in the core of ELP nanoparticles, FK506 binding protein 12 (FKBP), which is the cognate protein target of Rapa, was genetically fused to the surface of these nanoparticles (FSI) to enhance their avidity towards Rapa. The fusion of FKBP to these nanoparticles slowed the terminal half-life of drug release to 57.8h. To determine if this class of drug carriers has potential applications in vivo, FSI/Rapa was administered to mice carrying a human breast cancer model (MDA-MB-468). Compared to free drug, FSI encapsulation significantly decreased gross toxicity and enhanced the anti-cancer activity. In conclusion, protein polymer nanoparticles decorated with the cognate receptor of a high potency, low solubility drug (Rapa) efficiently improved drug loading capacity and its release. This approach has applications to the delivery of Rapa and its analogs; furthermore, this strategy has broader applications in the encapsulation, targeting, and release of other potent small molecules.
Collapse
|
31
|
Collins CR, Das S, Wong EH, Andenmatten N, Stallmach R, Hackett F, Herman JP, Müller S, Meissner M, Blackman MJ. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle. Mol Microbiol 2013; 88:687-701. [PMID: 23489321 PMCID: PMC3708112 DOI: 10.1111/mmi.12206] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 02/01/2023]
Abstract
Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes.
Collapse
Affiliation(s)
- Christine R Collins
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Sujaan Das
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Eleanor H Wong
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Nicole Andenmatten
- Wellcome Trust Centre for Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Robert Stallmach
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Jean-Paul Herman
- CRN2M – UMR 7286, Centre National de la Recherche Scientifique (CNRS), Aix Marseille UniversitéMarseille, France
| | - Sylke Müller
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Markus Meissner
- Wellcome Trust Centre for Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| |
Collapse
|
32
|
Wu K, Cohen EEW, House LK, Ramírez J, Zhang W, Ratain MJ, Bies RR. Nonlinear population pharmacokinetics of sirolimus in patients with advanced cancer. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2012; 1:e17. [PMID: 23887441 PMCID: PMC3600722 DOI: 10.1038/psp.2012.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/09/2012] [Indexed: 11/09/2022]
Abstract
Sirolimus, the prototypical inhibitor of the mammalian target of rapamycin, has substantial antitumor activity. In this study, sirolimus showed nonlinear pharmacokinetic characteristics over a wide dose range (from 1 to 60 mg/week). The objective of this study was to develop a population pharmacokinetic (PopPK) model to describe the nonlinearity of sirolimus. Whole blood concentration data, obtained from four phase I clinical trials, were analyzed using a nonlinear mixed-effects modeling (NONMEM) approach. The influence of potential covariates was evaluated. Model robustness was assessed using nonparametric bootstrap and visual predictive check approaches. The data were well described by a two-compartment model incorporating a saturable Michaelis–Menten kinetic absorption process. A covariate analysis identified hematocrit as influencing the oral clearance of sirolimus. The visual predictive check indicated that the final pharmacokinetic model adequately predicted observed concentrations. The pharmacokinetics of sirolimus, based on whole blood concentrations, appears to be nonlinear due to saturable absorption.
Collapse
Affiliation(s)
- K Wu
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kist A, Wakkie J, Madu M, Versteeg R, ten Berge J, Nikolic A, Nieuwenhuijs VB, Porte RJ, Padbury RT, Barritt GJ. Rapamycin Induces Heme Oxygenase-1 in Liver but Inhibits Bile Flow Recovery after Ischemia. J Surg Res 2012; 176:468-75. [DOI: 10.1016/j.jss.2011.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 01/15/2023]
|
34
|
Repeat-dose sirolimus pharmacokinetics and pharmacodynamics in patients with hepatic allografts. Eur J Clin Pharmacol 2011; 68:589-97. [DOI: 10.1007/s00228-011-1172-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022]
|
35
|
Sun M, Si L, Zhai X, Fan Z, Ma Y, Zhang R, Yang X. The influence of co-solvents on the stability and bioavailability of rapamycin formulated in self-microemulsifying drug delivery systems. Drug Dev Ind Pharm 2011; 37:986-94. [DOI: 10.3109/03639045.2011.553618] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Ikonen T, Gummert J, Serkova N, Hayase M, Honda Y, Kobayase Y, Hausen B, Yock P, Christians U, Morris R. Efficacies of sirolimus (rapamycin) and cyclosporine in allograft vascular disease in non-human primates: trough levels of sirolimus correlate with inhibition of progression of arterial intimal thickening. Transpl Int 2011. [DOI: 10.1111/j.1432-2277.2000.tb02049.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Rao RN, Maurya PK, Ramesh M, Srinivas R, Agwane SB. Development of a validated high-throughput LC-ESI-MS method for determination of sirolimus on dried blood spots. Biomed Chromatogr 2011; 24:1356-64. [PMID: 21077255 DOI: 10.1002/bmc.1450] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A high-throughput liquid chromatography-electrospray ionization mass spectrometric (LC-ESI-MS) method for screening of sirolimus on dried blood spots (DBS) was developed and validated. It involves solvent extraction of a punch of DBS followed by reversed-phase LC on a relatively new monolithic column consisting of a silica rod with bimodal pore structure and detection by ESI-MS. The run time was less than 3 min with a very low backpressure at a flow rate of 0.5 mL/min. The method can analyze more than 100 samples in an 8 h working day, including sample preparation. The assay was linear from 1 to 100 ng/mL. The mean recovery was 92.42%. The mean inter-day and intra-day precisions were 1.23 and 1.41%, respectively. The developed method is simple, rapid and useful for clinical applications.
Collapse
Affiliation(s)
- R Nageswara Rao
- HPLC Group, Analytical Chemistry Division, IICT, Tarnaka, Hyderabad-500007, India.
| | | | | | | | | |
Collapse
|
38
|
Nichols LA, Adang LA, Kedes DH. Rapamycin blocks production of KSHV/HHV8: insights into the anti-tumor activity of an immunosuppressant drug. PLoS One 2011; 6:e14535. [PMID: 21264294 PMCID: PMC3021514 DOI: 10.1371/journal.pone.0014535] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 12/15/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Infection with Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) often results in the development of fatal tumors in immunocompromised patients. Studies of renal transplant recipients show that use of the immunosuppressant drug rapamycin, an mTOR inhibitor, both prevents and can induce the regression of Kaposi's sarcoma (KS), an opportunistic tumor that arises within a subset of this infected population. In light of rapamycin's marked anti-KS activity, we tested whether the drug might directly inhibit the KSHV life cycle. We focused on the molecular switch that triggers this predominantly latent virus to enter the lytic (productive) replication phase, since earlier work links this transition to viral persistence and tumorigenesis. METHODS AND FINDINGS In latently infected human B cell lines, we found that rapamycin inhibited entry of the virus into the lytic replication cycle, marked by a loss of expression of the lytic switch protein, replication and transcription activator (RTA). To test for viral-specific effects of rapamycin, we focused our studies on a B cell line with resistance to rapamycin-mediated growth inhibition. Using this line, we found that the drug had minimal effect on cell cycle profiles, cellular proliferation, or the expression of other cellular or latent viral proteins, indicating that the RTA suppression was not a result of global cellular dysregulation. Finally, treatment with rapamycin blocked the production of progeny virions. CONCLUSIONS These results indicate that mTOR plays a role in the regulation of RTA expression and, therefore, KSHV production, providing a potential molecular explanation for the marked clinical success of rapamycin in the treatment and prevention of post-transplant Kaposi's sarcoma. The striking inhibition of rapamycin on KSHV lytic replication, thus, helps explain the apparent paradox of an immunosuppressant drug suppressing the pathogenesis of an opportunistic viral infection.
Collapse
Affiliation(s)
- Lisa A. Nichols
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Laura A. Adang
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Dean H. Kedes
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
39
|
Mechanistically probing lipid-siRNA nanoparticle-associated toxicities identifies Jak inhibitors effective in mitigating multifaceted toxic responses. Mol Ther 2010; 19:567-75. [PMID: 21179008 DOI: 10.1038/mt.2010.282] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A major hurdle for harnessing small interfering RNA (siRNA) for therapeutic application is an effective and safe delivery of siRNA to target tissues and cells via systemic administration. While lipid nanoparticles (LNPs) composed of a cationic lipid, poly-(ethylene glycol) lipid and cholesterol, are effective in delivering siRNA to hepatocytes via systemic administration, they may induce multi-faceted toxicities in a dose-dependent manner, independently of target silencing. To understand the underlying mechanism of toxicities, pharmacological probes including anti-inflammation drugs and specific inhibitors blocking different pathways of innate immunity were evaluated for their abilities to mitigate LNP-siRNA-induced toxicities in rodents. Three categories of rescue effects were observed: (i) pretreatment with a Janus kinase (Jak) inhibitor or dexamethasone abrogated LNP-siRNA-mediated lethality and toxicities including cytokine induction, organ impairments, thrombocytopenia and coagulopathy without affecting siRNA-mediated gene silencing; (ii) inhibitors of PI3K, mammalian target of rapamycin (mTOR), p38 and IκB kinase (IKK)1/2 exhibited a partial alleviative effect; (iii) FK506 and etoricoxib displayed no protection. Furthermore, knockout of Jak3, tumor necrosis factor receptors (Tnfr)p55/p75, interleukin 6 (IL-6) or interferon (IFN)-γ alone was insufficient to alleviate LNP-siRNA-associated toxicities in mice. These indicate that activation of innate immune response is a primary trigger of systemic toxicities and that multiple innate immune pathways and cytokines can mediate toxic responses. Jak inhibitors are effective in mitigating LNP-siRNA-induced toxicities.
Collapse
|
40
|
Development of an Abbott ARCHITECT cyclosporine immunoassay without metabolite cross-reactivity. Clin Biochem 2010; 43:1152-7. [DOI: 10.1016/j.clinbiochem.2010.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 11/24/2022]
|
41
|
Relevance of the mTOR signaling pathway in the pathophysiology of splenomegaly in rats with chronic portal hypertension. J Hepatol 2010; 52:529-39. [PMID: 20206401 DOI: 10.1016/j.jhep.2010.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/25/2009] [Accepted: 10/12/2009] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Splenomegaly is a frequent hallmark of portal hypertension that, in some cases, can be very prominent and cause symptoms like abdominal pain, splenic infarction, and cytopenia. This study characterizes the pathogenetic mechanisms leading to spleen enlargement in portal hypertensive rats and focuses on mTOR pathway as a potential modulator of splenomegaly in portal hypertension. METHODS Characterization of splenomegaly was performed by histological, hematological, immunohistochemical and Western blot analyses in rats with portal hypertension induced by portal vein ligation, and compared with sham-operated animals. The contribution of the mTOR signaling pathway to splenomegaly was determined in rats with fully developed portal hypertension and control rats by treatment with rapamycin or vehicle. RESULTS Our results illustrate that splenomegaly in portal hypertensive rats arises as a consequence of the interplay of several factors, including not only spleen congestion, as traditionally thought, but also enlargement and hyperactivation of the splenic lymphoid tissue, as well as increased angiogenesis and fibrogenesis. Since mTOR signaling plays a central role in immunological processes, angiogenesis and fibrogenesis, we next determined the involvement of mTOR in splenomegaly. Interestingly, mTOR signaling was overactivated in the spleen of portal hypertensive rats, and mTOR blockade by rapamycin profoundly ameliorated splenomegaly, causing a 44% decrease in spleen size. This effect was most likely accounted for the inhibitory action of rapamycin on lymphocyte proliferation, neovascularization and fibrosis. CONCLUSIONS These findings shed light on the pathogenesis of splenomegaly in portal hypertension, and identify mTOR signaling as a potential target for therapeutic intervention in this disease.
Collapse
|
42
|
Weir MR, Diekmann F, Flechner SM, Lebranchu Y, Mandelbrot DA, Oberbauer R, Kahan BD. mTOR inhibition: the learning curve in kidney transplantation. Transpl Int 2010; 23:447-60. [DOI: 10.1111/j.1432-2277.2010.01051.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Wei X, Gong C, Gou M, Fu S, Guo Q, Shi S, Luo F, Guo G, Qiu L, Qian Z. Biodegradable poly(ɛ-caprolactone)–poly(ethylene glycol) copolymers as drug delivery system. Int J Pharm 2009; 381:1-18. [DOI: 10.1016/j.ijpharm.2009.07.033] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/25/2009] [Accepted: 07/29/2009] [Indexed: 01/02/2023]
|
44
|
Multi-site analytical evaluation of a chemiluminescent magnetic microparticle immunoassay (CMIA) for sirolimus on the Abbott ARCHITECT analyzer. Clin Biochem 2009; 42:1543-8. [DOI: 10.1016/j.clinbiochem.2009.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/28/2009] [Accepted: 06/21/2009] [Indexed: 11/22/2022]
|
45
|
Cervinski MA, Duh SH, Hock KG, Gray J, Wei TQ, Kilgore DC, Christenson RH, Scott MG. Performance characteristics of a no-pretreatment, random access sirolimus assay for the Dimension® RxL clinical chemistry system. Clin Biochem 2009; 42:1123-7. [DOI: 10.1016/j.clinbiochem.2009.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 11/30/2022]
|
46
|
Anglicheau D, Legendre C, Beaune P, Thervet E. Cytochrome P450 3A polymorphisms and immunosuppressive drugs: an update. Pharmacogenomics 2008; 8:835-49. [PMID: 18240909 DOI: 10.2217/14622416.8.7.835] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Among the immunosuppressive drugs currently used in solid-organ transplantation, the calcineurin inhibitors cyclosporine and tacrolimus, and the mammalian target of rapamycin inhibitors sirolimus and everolimus, may be difficult to use because of large interindividual variability in their pharmacokinetic characteristics and a narrow therapeutic index. The promise of pharmacogenetics and pharmacogenomics is to elucidate the inherited basis of differences between individual responses to drugs, in order to identify the right drug and dose for each patient. As cytochrome P450 (CYP)3A4 and CYP3A5 are both involved in the metabolism of these drugs, the consequences of the polymorphism of these genes have been studied. It has been recently shown that the CYP3A5*3 polymorphism is associated with pharmacokinetics of tacrolimus and sirolimus. The association between the CYP3A4 and CYP3A5 polymorphisms and cyclosporine pharmacokinetics is more questionable. It is now of utmost importance to prospectively test these initial results to improve the individualized use of these drugs.
Collapse
Affiliation(s)
- Dany Anglicheau
- Université René Descartes, Service de Transplantation Rénale et de Soins Intensifs, Hôpital Necker, APHP, 149 rue de Sèvres, 75743, Cedex 15, Paris, France.
| | | | | | | |
Collapse
|
47
|
Marinec PS, Lancia JK, Gestwicki JE. Bifunctional molecules evade cytochrome P(450) metabolism by forming protective complexes with FK506-binding protein. MOLECULAR BIOSYSTEMS 2008; 4:571-8. [PMID: 18493655 DOI: 10.1039/b720011k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite their large size and complexity, the macrolide natural products rapamycin and FK506 have excellent pharmacological characteristics. We hypothesize that these unexpected properties may arise from protective, high affinity interactions with the cellular FK506-binding protein, FKBP. In this model, the drug-FKBP complex might sequester the small molecule and limit its degradation by restricting access to metabolic enzymes. In support of this idea, we found that adding FKBP blocks binding of FK506 to the common cytochrome P(450) enzyme CYP3A4 in vitro. To further test this idea, we have systematically modified a small collection of otherwise unrelated compounds, such that they acquire affinity for FKBP. Strikingly, we found that many of these synthetic derivatives, but not the unmodified parent compounds, are also protected from CYP3A4-mediated metabolism. Depending on the properties of the linker, the bifunctional molecules exhibited up to a 3.5-fold weaker binding to CYP3A4, and this protective effect was observed in the presence of either purified FKBP or FKBP-expressing cells. Together, these results suggest that the surprising pharmacology of rapamycin and FK506 might arise, in part, from binding to their abundant, intracellular target, FKBP. Furthermore, these findings provide a framework by which other small molecules might be systematically modified to impart this protective effect.
Collapse
Affiliation(s)
- Paul S Marinec
- University of Michigan, Department of Pathology and the Life Sciences Institute, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | | | | |
Collapse
|
48
|
Crossreactivity of Isolated Everolimus Metabolites With the Innofluor Certican Immunoassay for Therapeutic Drug Monitoring of Everolimus. Ther Drug Monit 2007; 29:743-9. [DOI: 10.1097/ftd.0b013e31815b3cbf] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Fernandez M, Mejias M, Garcia-Pras E, Mendez R, Garcia-Pagan JC, Bosch J. Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology 2007; 46:1208-17. [PMID: 17654489 DOI: 10.1002/hep.21785] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) pathways are crucial to angiogenesis, a process that contributes significantly to the pathogenesis of portal hypertension. This study determined the effects of inhibition of VEGF and/or PDGF signaling on hyperdynamic splanchnic circulation and portosystemic collateralization in rats with completely established portal hypertension, thus mimicking the situation in patients. Portal vein-ligated rats were treated with rapamycin (VEGF signaling inhibitor), Gleevec (PDGF signaling inhibitor), or both simultaneously when portal hypertension was already fully developed. Hemodynamic studies were performed by transit-time flowmetry. The extent of portosystemic collaterals was measured by radioactive microspheres. The expression of angiogenesis mediators was determined by Western blotting and immunohistochemistry. Combined inhibition of VEGF and PDGF signaling significantly reduced splanchnic neovascularization (i.e., CD31 and VEGFR-2 expression) and pericyte coverage of neovessels (that is, alpha-smooth muscle actin and PDGFR-beta expression) and translated into hemodynamic effects as marked as a 40% decrease in portal pressure, a 30% decrease in superior mesenteric artery blood flow, and a 63% increase in superior mesenteric artery resistance, yielding a significant reversal of the hemodynamic changes provoked by portal hypertension in rats. Portosystemic collateralization was reduced as well. CONCLUSIONS Our results provide new insights into how angiogenesis regulates portal hypertension by demonstrating that the maintenance of increased portal pressure, hyperkinetic circulation, splanchnic neovascularization, and portosystemic collateralization is regulated by VEGF and PDGF in portal hypertensive rats. Importantly, these findings also suggest that an extended antiangiogenic strategy (that is, targeting VEGF/endothelium and PDGF/pericytes) may be a novel approach to the treatment of portal hypertension.
Collapse
Affiliation(s)
- Mercedes Fernandez
- Hepatic Hemodynamic Laboratory, Liver Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Ciberehd, Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
50
|
Colantonio DA, Borden KK, Clarke W. Comparison of the CEDIA® and MEIA® assays for the measurement of sirolimus in organ transplant recipients. Clin Biochem 2007; 40:680-7. [PMID: 17428457 DOI: 10.1016/j.clinbiochem.2007.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 01/25/2007] [Accepted: 02/11/2007] [Indexed: 11/18/2022]
Abstract
OBJECTIVES This study evaluated two immunoassays, the CEDIA assay and the MEIA assay, used for the measurement of whole blood levels of sirolimus in organ transplant recipients. DESIGN AND METHODS We report on the performance characteristics (total precision, limit of quantitation (functional sensitivity), limit of detection (analytical sensitivity), linearity, accuracy) for each assay. Patient correlation studies were performed, and the results were analyzed using Bland-Altman plots and Passing-Bablok analysis. RESULTS Total precision for the MEIA assay, corresponding to three mean concentrations of 5.0, 10.6 and 20.2 ng/mL, was 10.5, 8.5, and 6.7%, respectively. The limit of detection was determined to be 1.1 ng/mL and the limit of quantitation was 1.5 ng/mL. The mean recovery for CEDIA was 105.4%, and analysis of proficiency material demonstrated a large negative bias with respect to the mass spectrometry peer mean-later determined to be due to matrix interference. Results for the CEDIA assay showed a total precision, corresponding to a mean concentration of 5.4, 10.5 and 20.7 ng/mL, of 13.5, 5.6, and 4.1%, respectively. The limit of detection was found to be 4.8 ng/mL, with a limit of quantitation of 5.2 ng/mL. The mean recovery for MEIA was 110.1%, and analysis of proficiency material demonstrated good agreement with the mass spectrometry peer mean with a slight positive bias. Both assays were acceptably linear over the reportable range of the assay. Patient correlation studies demonstrated a positive average bias for both assays versus results from LC-MS measurement (0.9 ng/mL for MEIA, 2.1 ng/mL for CEDIA). CONCLUSION Based on this evaluation, the MEIA demonstrated acceptable performance for use in clinical monitoring of sirolimus. However, based on a higher limit of quantitation that falls within the therapeutic interval, the CEDIA is not recommended for clinical monitoring of sirolimus.
Collapse
Affiliation(s)
- David A Colantonio
- Johns Hopkins University School of Medicine, Baltimore, MD 21287-7065, USA
| | | | | |
Collapse
|