1
|
Choi EY, Choi K, Nam G, Kim W, Chung M. H60: A Unique Murine Hematopoietic Cell-Restricted Minor Histocompatibility Antigen for Graft-versus-Leukemia Effect. Front Immunol 2020; 11:1163. [PMID: 32587590 PMCID: PMC7297985 DOI: 10.3389/fimmu.2020.01163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an important treatment for many types of hematological malignancies. Matching of donor and recipient for the major histocompatibility complex (MHC) improves the HSCT reconstitution, but donor-derived T cells reactive to non-MHC encoded minor histocompatibility antigens (MiHAs) can induce graft-versus-host disease (GVHD) while also being needed for graft-versus-leukemia (GVL) effects. MiHAs are allelically variant self-peptides presented conventionally on MHC molecules, but are alloantigenic in transplantation settings. Immunodominant MiHAs are most strongly associated with GVHD and GVL. There is need for mouse paradigms to understand these contradictory effects. H60 is a highly immunodominant mouse MiHA with hematopoietic cell-restricted expression. Immunodominance of H60 is tightly associated with its allelic nature (presence vs. absence of the transcripts), and the qualitative (TCR diversity) and quantitative (frequency) traits of the reactive T cells. The identity as a hematopoietic cell-restricted antigen (HRA) of H60 assists the appearance of the immunodominace in allo-HSCT circumstances, and generation of GVL effects without induction of serious GVHD after adoptive T cell transfer. Also it allows the low avidity T cells to escape thymic negative selection and exert GVL effect in the periphery, which is a previously unevaluated finding related to HRAs. In this review, we describe the molecular features and immunobiology in detail through which H60 selectively exerts its potent GVL effect. We further describe how lessons learned can be extrapolated to human allo-HCST.
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyungho Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Giri Nam
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Woojin Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Minho Chung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Manzo T, Sturmheit T, Basso V, Petrozziello E, Hess Michelini R, Riba M, Freschi M, Elia AR, Grioni M, Curnis F, Protti MP, Schumacher TN, Debets R, Swartz MA, Corti A, Bellone M, Mondino A. T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. Cancer Res 2016; 77:658-671. [PMID: 27872095 DOI: 10.1158/0008-5472.can-16-0725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 10/31/2016] [Accepted: 11/09/2016] [Indexed: 11/16/2022]
Abstract
Donor-derived allogeneic T cells evoke potent graft versus tumor (GVT) effects likely due to the simultaneous recognition of tumor-specific and host-restricted minor histocompatibility (H) antigens. Here we investigated whether such effects could be reproduced in autologous settings by TCR gene-engineered lymphocytes. We report that T cells redirected either to a broadly expressed Y-encoded minor H antigen or to a tumor-associated antigen, although poorly effective if individually transferred, when simultaneously administered enabled acute autochthonous tumor debulking and resulted in durable clinical remission. Y-redirected T cells proved hyporesponsive in peripheral lymphoid organs, whereas they retained effector function at the tumor site, where in synergy with tumor-redirected lymphocytes, they instructed TNFα expression, endothelial cell activation, and intratumoral T-cell infiltration. While neutralizing TNFα hindered GVT effects by the combined T-cell infusion, a single injection of picogram amounts of NGR-TNF, a tumor vessel-targeted TNFα derivative currently in phase III clinical trials, substituted for Y-redirected cells and enabled tumor debulking by tumor-redirected lymphocytes. Together, our results provide new mechanistic insights into allogeneic GVT, validate the importance of targeting the tumor and its associated stroma, and prove the potency of a novel combined approach suitable for immediate clinical implementation. Cancer Res; 77(3); 658-71. ©2016 AACR.
Collapse
Affiliation(s)
- Teresa Manzo
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Tabea Sturmheit
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Veronica Basso
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Petrozziello
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Rodrigo Hess Michelini
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Michela Riba
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Freschi
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Angela R Elia
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Grioni
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Flavio Curnis
- Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Protti
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Ton N Schumacher
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Melody A Swartz
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Angelo Corti
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Bellone
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Mondino
- Division of Immunology, Transplantation and Infectious Disease, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
3
|
Tsirigotis P, Shimoni A, Nagler A. The expanding horizon of immunotherapy in the treatment of malignant disorders: allogeneic hematopoietic stem cell transplantation and beyond. Ann Med 2014; 46:384-96. [PMID: 24888385 DOI: 10.3109/07853890.2014.918463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-SCT) is a very effective therapeutic modality with curative potential in patients with hematological malignancies. The therapeutic efficacy is mainly based on the alloreactive reaction of donor lymphocytes against malignant cells of the recipient named as 'graft-versus-leukemia' or 'graft-versus-tumor' (GVL, GVT) effect. However, besides the beneficial GVL effect, alloreactive reaction attacks normal cells and provokes the deleterious 'graft-versus-host disease' (GVHD) which represents the major limitation of allo-SCT. Current trials have focused on a dual goal: augmentation of GVL and complete abolishment of GVHD. From a theoretical point of view complete dissociation of GVL from GVHD can occur by selecting antigenic targets present on malignant and absent from normal cells. Hematopoietic tissue-restricted minor histocompatibility antigens and leukemia or tumor-associated antigens are ideal candidates for tumor-targeted immunotherapy. Other options for inducing anti-tumor immunity in the absence of GVHD are natural killer (NK) cell immunotherapy, amplification of immune responses by using monoclonal antibodies, and bispecific T and NK-cell engagers. Genetically modified immune effectors such as T-cells armed with chimeric antigen receptors (CAR) or transduced with T-cell receptors with anti-tumor specificity are another exciting field of immunotherapy against malignancies.
Collapse
Affiliation(s)
- Panagiotis Tsirigotis
- Second Department of Internal Medicine, Propaedeutic, Attikon General University Hospital, University of Athens , Greece
| | | | | |
Collapse
|
4
|
Induction of acute GVHD by sex-mismatched H-Y antigens in the absence of functional radiosensitive host hematopoietic-derived antigen-presenting cells. Blood 2011; 119:3844-53. [PMID: 22101894 DOI: 10.1182/blood-2011-10-384057] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is currently thought that acute GVHD cannot be elicited in the absence of Ag presentation by radiosensitive host hematopoietic-derived APCs after allogeneic BM transplantation. Because clinical data suggest that sex-mismatched H-Y Ags may be important minor histocompatibility Ags for GVH responses, we directly tested their relevance and ability to initiate GVHD when presented by either the hematopoietic- (host or donor) or the nonhematopoietic-derived APCs. H-Y minor Ag incompatibility elicited both CD4(+) and CD8(+) T-cell driven GVHD lethality. Studies with various well-established BM chimera recipients, in contrast to the current views, have reported that in the absence of functional radiosensitive host hematopoietic-derived APCs, H-Y Ag presentation by either the donor hematopoietic-derived or the host nonhematopoietic-derived APCs is sufficient for inducing GVHD. Our data further suggest that infusion of sufficient numbers of alloreactive donor T cells will induce GVHD in the absence of radiosensitive host hematopoietic-derived APCs.
Collapse
|
5
|
Abstract
Allogeneic hematopoietic cell transplantation led to the discovery of the allogeneic GVL effect, which remains the most convincing evidence that immune cells can cure cancer in humans. However, despite its great paradigmatic and clinical relevance, induction of GVL by conventional allogeneic hematopoietic cell transplantation remains a quite rudimentary form of leukemia immunotherapy. It is toxic and its efficacy is far from optimal. It is therefore sobering that since the discovery of the GVL effect 3 decades ago, the way GVL is induced and manipulated has practically not changed. Preclinical and clinical studies suggest that injection of T cells primed against a single Ag present on neoplastic cells could enhance the GVL effect without causing any GVHD. We therefore contend that Ag-targeted adoptive T-cell immunotherapy represents the future of leukemia immunotherapy, and we discuss the specific strategies that ought to be evaluated to reach this goal. Differences between these strategies hinge on 2 key elements: the nature of the target Ag and the type of Ag receptor expressed on T cells.
Collapse
|
6
|
Hess Michelini R, Freschi M, Manzo T, Jachetti E, Degl'Innocenti E, Grioni M, Basso V, Bonini C, Simpson E, Mondino A, Bellone M. Concomitant tumor and minor histocompatibility antigen-specific immunity initiate rejection and maintain remission from established spontaneous solid tumors. Cancer Res 2010; 70:3505-14. [PMID: 20388780 DOI: 10.1158/0008-5472.can-09-4253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nonmyeloablative hematopoietic cell transplantation can cure patients with hematologic malignancies but has reported limited success against solid tumors. This is possibly because of profound peripheral tolerance mechanisms and/or suboptimal tumor recognition by effector T lymphocytes. We report that in mice developing spontaneous prostate cancer, nonmyeloablative minor histocompatibility mismatched hematopoietic stem cell transplantation, and donor lymphocyte infusion of unmanipulated lymphocytes combined with posttransplant tumor-specific vaccination circumvents tumor-specific tolerance, allowing acute tumor rejection and the establishment of protective immunosurveillance. Although donor-derived tumor-specific T cells readily differentiated into effector cells and infiltrated the tumor soon after infusion, they were alone insufficient for tumor eradication, which instead required the concomitance of minor histocompatibiltiy antigen-specific CD8(+) T-cell responses. The establishment of protective immunosurveillance was best induced by posttransplant tumor-specific vaccination. Hence, these results provide the proof of principle that tumor-specific T-cell responses have to be harnessed together with minor histocompatibility responses and sustained by posttransplant tumor-specific vaccination to improve the efficacy of allotransplantion for the cure of solid tumors.
Collapse
Affiliation(s)
- Rodrigo Hess Michelini
- Lymphocyte Activation Unit, Cellular Immunology Unit, Pathology Unit, Experimental Hematology, San Raffaele Scientific Institute, and Universita Vita-Salute San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Fanning SL, Appel MY, Berger SA, Korngold R, Friedman TM. The immunological impact of genetic drift in the B10.BR congenic inbred mouse strain. THE JOURNAL OF IMMUNOLOGY 2009; 183:4261-72. [PMID: 19752227 DOI: 10.4049/jimmunol.0900971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The MHC-matched, minor histocompatibility Ag (miHA)-mismatched B10.BR-->CBA strain combination has been used to elucidate the immunobiology of graft-vs-host disease (GVHD) following allogeneic bone marrow transplantation. Studies conducted in the 1980s had established that B10.BR CD8+ T cells were capable of mediating GVHD in the absence of CD4+ T cells, and that CD4+ T cells were unable to induce lethal disease. In more recent studies with this GVHD model, we detected etiological discrepancies with the previously published results, which suggested that genetic drift might have occurred within the B10.BR strain. In particular, there was increased allorecognition of CBA miHA by B10.BR CD4+ T cells, as determined by both TCR Vbeta spectratype analysis and the induction of lethal GVHD in CBA recipients. Additionally, alloreactivity was observed between the genetically drifted mice (B10.BR/Jdrif) and mice rederived from frozen embryos of the original strain (B10.BR/Jrep) using Vbeta spectratype analysis and IFN-gamma ELISPOT assays, suggesting that new miHA differences had arisen between the mice. Furthermore, T cell-depleted B10.BR/Jdrif bone marrow cells were unable to provide long-term survival following either allogeneic or syngeneic bone marrow transplantation. Gene expression analysis revealed several genes involved in hematopoiesis that were overexpressed in the lineage-negative fraction of B10.BR/Jdrif bone marrow, as compared with B10.BR/Jrep mice. Taken together, these results suggest that genetic drift in the B10.BR strain has significantly impacted the immune alloreactive response in the GVHD model by causing altered expression of miHA and diminished capacity for survival following transplantation into lethally irradiated recipients.
Collapse
Affiliation(s)
- Stacey L Fanning
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | | | | | | | | |
Collapse
|
8
|
Abstract
Allogeneic haematopoietic stem-cell transplantation (SCT) is a curative therapy for haematological malignancies and inherited disorders of blood cells, such as sickle-cell anaemia. Mature alphabeta T cells that are contained in the allografts reconstitute T-cell immunity and can eradicate malignant cells in the recipient. Unfortunately, these T cells recognize the recipient as 'non-self' and employ a wide range of immune mechanisms to attack recipient tissues in a process known as graft-versus-host disease (GVHD). The full therapeutic potential of allogeneic haematopoietic SCT will not be realized until approaches to minimize GVHD, while maintaining the positive contributions of donor T cells, are developed. This Review focuses on research in mouse models pursued to achieve this goal.
Collapse
Affiliation(s)
- Warren D Shlomchik
- Yale University School of Medicine, sections of Medical Oncology and Immunobiology, PO BOX 208032, New Haven, Connecticut 06520, USA.
| |
Collapse
|
9
|
DiRienzo CG, Murphy GF, Friedman TM, Korngold R. T-cell receptor V(alpha) usage by effector CD4+Vbeta11+ T cells mediating graft-versus-host disease directed to minor histocompatibility antigens. Biol Blood Marrow Transplant 2007; 13:265-76. [PMID: 17317580 PMCID: PMC2562653 DOI: 10.1016/j.bbmt.2006.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/06/2006] [Indexed: 01/24/2023]
Abstract
T-cell receptor (TCR) Valpha (TRAV) and Vbeta (TRBV) chains provide the T-cell specificity for recognition of major histocompatibility complex (MHC)-bound antigens. However, there is limited information on the diversity of TRAV use within an antigen response. Previous investigation of CD4(+) T-cell-mediated graft-versus-host disease (GVHD) in the minor histocompatibility antigen-mismatched C57BL/6 (B6)-->BALB.B irradiated murine model determined that Vbeta11(+) T cells were associated with disease severity. Polymerase chain reaction (PCR)-based complementarity-determining region 3 (CDR3)-sized spectratype analysis of B6 Vbeta11(+) T cells from the spleens of recipient BALB.B mice undergoing GVHD indicated biased use within the V(alpha)6, 9, 13, 14, 18, and 22 families. To probe deeper into this limited V(alpha) response, the current study was undertaken to further define TRAV-Jalpha (TRAJ) nucleotide sequences found in host-presensitized B6 Vbeta11(+) T cells proliferating in response to in vitro stimulation with BALB.B splenocytes. Using the nonpalindromic adaptor PCR method, we found dominant use of the TRAV13-TRAJ16 transcript combination. Then, using laser capture microdissection, we found use of the identical TRAV-TRAJ nucleotide sequence in areas dominated by infiltrating Vbeta11(+) CD4(+) T cells during the development of GVHD in both the rete-like prominences of the dorsal lingual epithelium and the ileal crypts of the small intestine.
Collapse
MESH Headings
- Animals
- Base Sequence
- Bone Marrow Transplantation/adverse effects
- Bone Marrow Transplantation/immunology
- CD4-Positive T-Lymphocytes/immunology
- Graft vs Host Disease/immunology
- Intestine, Small
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Minor Histocompatibility Antigens/immunology
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Spleen
Collapse
Affiliation(s)
- Christine G. DiRienzo
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, and
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Thea M. Friedman
- Cancer Center, Hackensack University Medical Center, Hackensack, NJ
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, and
| | - Robert Korngold
- Cancer Center, Hackensack University Medical Center, Hackensack, NJ
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, and
| |
Collapse
|
10
|
Hagiwara H, Ohsawa Y, Asakura S, Murakami T, Teshima T, Sunada Y. Bone marrow transplantation improves outcome in a mouse model of congenital muscular dystrophy. FEBS Lett 2006; 580:4463-8. [PMID: 16859688 DOI: 10.1016/j.febslet.2006.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Revised: 06/10/2006] [Accepted: 07/03/2006] [Indexed: 11/24/2022]
Abstract
We examined whether pathogenesis in dystrophin-deficient (mdx) mice and laminin-alpha2-deficient (dy) mice is ameliorated by bone marrow transplantation (BMT). Green fluorescent protein (GFP) mice were used as donors. In mdx mice, BMT failed to produce any significant differences in muscle pathology, although some GFP-positive fibers with restored dystrophin expression were observed. In contrast, in the dy mice, BMT led to a significant increase in lifespan and an increase in growth rate, muscle strength, and respiratory function. We conclude that BMT improved outcome in dy mice but not mdx mice.
Collapse
Affiliation(s)
- Hiroki Hagiwara
- Division of Neurology, Department of Internal Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama 701-0192, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Kaplan DH, Anderson BE, McNiff JM, Jain D, Shlomchik MJ, Shlomchik WD. Target Antigens Determine Graft-versus-Host Disease Phenotype. THE JOURNAL OF IMMUNOLOGY 2004; 173:5467-75. [PMID: 15494494 DOI: 10.4049/jimmunol.173.9.5467] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chronic graft-vs-host disease (cGVHD) is an increasingly frequent complication of allogeneic stem cell transplantation. Phenotypically, cGVHD differs from patient to patient; in particular, a subset of patients develops extensive cutaneous fibrosis. Similarly, graft-vs-host disease (GVHD) is distinct in inbred murine donor:recipient pairings, indicating a genetic component to disease phenotype. The B10.D2 -->BALB/c (H-2d) strain pairing uniquely recapitulates key pathologic features of fibrotic human cutaneous cGVHD. To distinguish whether this genetic component is due to differences in genes that modulate immune responses or to the specific Ags targeted, we asked whether skin-dominant cGVHD also develops in the B10 -->BALB.B (H-2b) and B10.BR -->BALB.K (H-2k) MHC-congenic pairings. Because each MHC haplotype presents different peptides and selects different T cell repertoires, GVHD in each donor:recipient pair undoubtedly targets different Ags. We found that, in contrast to BALB/c recipients, BALB.B mice never manifested skin disease while BALB.K mice developed a modified form of skin disease. Instead, BALB.B and BALB.K recipients developed systemic GVHD which was absent in BALB/c mice. Moreover, in (B10 x B10.D2)F1 -->(BALB.B x BALB/c)F1 H-2b/d transplants, recipients developed both cutaneous and systemic disease. Thus, the selection of immunodominant Ags determines the target and character of GVHD, providing insight into the genetic basis for different forms of GVHD.
Collapse
Affiliation(s)
- Daniel H Kaplan
- Departments of Dermatology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
12
|
Chao NJ. Minors come of age: minor histocompatibility antigens and graft-versus-host disease. Biol Blood Marrow Transplant 2004; 10:215-23. [PMID: 15077220 DOI: 10.1016/j.bbmt.2003.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Minor histocompatibility antigens (miHA) are responsible for the occurrence of graft-versus-host disease in the setting of a major histocompatibility complex matched sibling allogeneic stem cell transplantation. These miHA are peptide fragments that are associated with major histocompatibility complex class I or class II antigens. Elegant experiments have led to the molecular characterization of these antigens. Efforts to prevent graft-versus-host disease could be targeted through this pathway by matching for these miHA or by preventing antigen recognition. Alternatively, these miHA could be exploited as targets for a more potent graft-versus-malignancy effect. This area of miHA promises to continue to be an exciting area of continued research.
Collapse
Affiliation(s)
- Nelson J Chao
- Department of Medicine and Immunology, Durham, North Carolina 27710, USA.
| |
Collapse
|
13
|
Ji YH, Weiss L, Zeira M, Abdul-Hai A, Reich S, Schuger L, Slavin S. Allogeneic cell-mediated immunotherapy of leukemia with immune donor lymphocytes to upregulate antitumor effects and downregulate antihost responses. Bone Marrow Transplant 2003; 32:495-504. [PMID: 12942096 DOI: 10.1038/sj.bmt.1704150] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Donor lymphocyte infusion mediates most effective graft- versus-leukemia (GVL) effects following induction of host-versus-graft tolerance by transplantation of donor stem cells. This study was designed to maximize GVL effects across both major (MHC) and minor (mHgs) histocompatibility barriers in recipients inoculated with murine B-cell leukemia (BCL1), using specifically immune donor lymphocytes. GVL effects were induced with donor spleen cells from mice immunized across MHC or mHgs barriers with BCL/1 cells or normal BALB/c spleen cells. Our data suggest that spleen cells from donor mice immunized against murine B-cell leukemia of BALB/c origin, or to a lesser extent against normal host alloantigens, induce better therapeutic GVL effects with less great-versus-host disease (GVHD) across both mHgs and MHC. The cytokine profile of effector cells inducing predominantly GVL effects with reduced GVHD across MHC and mHg barriers consisted preferentially of upregulated IFN-gamma, IL-2, IL-10 and IL-12 in donors, implying a Th-1 to Th-2 cytokine shift. We hypothesize that immunotherapy with immune donor lymphocytes sensitized in vivo or in vitro with allogeneic tumor cells or normal host cells together with allogeneic BMT may provide an effective approach for amplifying GVL effects, while reducing procedure-related morbidity and mortality due to uncontrolled GVHD.
Collapse
Affiliation(s)
- Y H Ji
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
van Os R, Sheridan TM, Robinson S, Drukteinis D, Ferrara JL, Mauch PM. Immunogenicity of Ly5 (CD45)-antigens hampers long-term engraftment following minimal conditioning in a murine bone marrow transplantation model. Stem Cells 2001; 19:80-7. [PMID: 11209093 DOI: 10.1634/stemcells.19-1-80] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Various techniques are available for distinguishing donor from host cells evaluating the efficacy of conditioning regimen for experimental bone marrow transplantation (BMT). Techniques include the use of extracellular immunological markers, such as Ly5 (CD45), and intracellular biochemical markers, such as glucose-phosphate-isomerase (Gpi). Because Ly5 is an extracellular protein, the disparity between donor (Ly5.1) and host (Ly5.2) antigens may induce a weak immune response whereas with Gpi, no immune response is expected. This difference may be of particular concern in experimental transplantation approaches that use minimal conditioning such as low-dose total body irradiation (TBI). Such mild conditioning may not induce the immunosuppression required to overcome host rejection of Ly5 disparate cells. To compare the relative engraftment of Ly5.1 and Gpi-1(a) donor marrow, B6 (Gpi-1(b)/Ly5.2) mice were irradiated with low-level TBI (0-6 Gy) and transplanted with several bone marrow (BM) doses (2 x 10(6)-5 x 10(7) cells). At 8, 26, and 52 weeks post-BMT, the level of donor engraftment was measured using flow cytometry (Ly5) or Gpi-electrophoresis. Lower engraftment levels were found in mice transplanted with Ly5 congenic BM in groups given low-dose TBI (< or = 4 Gy) and/or low doses of BM cells (BMC) (2 x 10(6)). However, when higher TBI or BMC doses were used, similar engraftment levels were found, suggesting sufficient immune suppression to allow equal engraftment of both sources of BM. These data suggest that even a minor phenotypic disparity between donor and host, such as Ly5, may necessitate high-dose TBI to prevent rejection. The combination of low-dose TBI or other nonmyeloablative conditioning strategies with small numbers of BMC may lead to reduced engraftment when extracellular immunological markers such as Ly5 are used for transplantation studies. Therefore, small immunological differences must be considered when using the Ly5 marker for engraftment.
Collapse
Affiliation(s)
- R van Os
- Department of Radiation Oncology, Brigham and Women's Hospital and the Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
15
|
Choi EY, Yoshimura Y, Christianson GJ, Sproule TJ, Malarkannan S, Shastri N, Joyce S, Roopenian DC. Quantitative analysis of the immune response to mouse non-MHC transplantation antigens in vivo: the H60 histocompatibility antigen dominates over all others. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4370-9. [PMID: 11254691 DOI: 10.4049/jimmunol.166.7.4370] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Minor histocompatibility Ags (minor H Ags) are substantial impediments to MHC-matched solid tissue and bone marrow transplantation. From an antigenic standpoint, transplantation between MHC-matched individuals has the potential to be remarkably complex. To determine the extent to which the immune response is simplified by the phenomenon of immunodominance, we used peptide/MHC tetramers based on recently discovered minor H Ags (H60, H13, and HY) and monitored in vivo CD8 T cell responses of female C57BL/6 mice primed with MHC-matched, but background-disparate, male BALB.B cells. CD8 T cells against H60 overwhelmed responses to the H13 and HY throughout primary and secondary challenge. H60 immunodominance was an inherent quality, overcoming a lower memory precursor frequency compared with that of H13 and evoking a T cell response with diverse TCRV beta usage. IFN-gamma staining examining congenically defined minor H Ags extended H60 dominance over additional minor H Ags, H28, H4, and H7. These four minor H Ags accounted for up to 85% of the CD8 T cell response, but H60 stood out as the major contributor. These findings show that immunodominance applies to antigenically complex transplantation settings in vivo and that the responses to the H60 minor H Ag dominates in this model. We suggest that immunodominant minor H Ags are those that result from the absence of a self analog.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Clone Cells
- Cytotoxicity Tests, Immunologic/methods
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Female
- Flow Cytometry
- Immunization, Passive
- Immunodominant Epitopes/administration & dosage
- Immunodominant Epitopes/immunology
- Longitudinal Studies
- Lymphocyte Activation/immunology
- Lymphocyte Culture Test, Mixed
- Male
- Mice
- Mice, Congenic
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Minor Histocompatibility Antigens/administration & dosage
- Minor Histocompatibility Antigens/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Skin Transplantation/immunology
- Species Specificity
- Spleen/cytology
- Spleen/immunology
- Spleen/transplantation
Collapse
Affiliation(s)
- E Y Choi
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Friedman TM, Gilbert M, Briggs C, Korngold R. Repertoire Analysis of CD8+ T Cell Responses to Minor Histocompatibility Antigens Involved in Graft-Versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.1.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Graft-vs-host disease (GVHD) is a major complication of allogeneic bone marrow transplantation. Experimentally, lethal GVHD can be induced in MHC-matched strain combinations differing in expression of multiple minor histocompatibility Ags (miHA). Recently, the GVHD potential of C57BL/6By (B6) T cells in irradiated BALB.B (both H2b) and related CXB recombinant inbred strains of mice has been studied to determine the scope of the response to miHA in vivo and how it compared with CTL responses to immunodominant miHA in vitro. The GVHD response in these strain combinations appeared to be limited to a few Ags, yet there was no correlation of these miHA with that of in vitro CTL responses. To further investigate the role of CD8+ T cells in GVHD, we analyzed positively selected miHA-specific donor CD8+ thoracic duct lymphocytes (TDL) collected from irradiated BALB.B and CXBE mice, 5 to 6 days after transplantation of B6 T cells. Flow cytometric analysis of B6→BALB.B TDL did not indicate expansion of any particular TCR Vβ family, whereas Vβ10 and Vβ14 families were significantly expanded in the B6->CXBE TDL. However, PCR-based complementarity-determining region 3 size spectratyping revealed overlapping involvement of donor Vβ1, 6, 8, 9, 10, and 14 families in both BALB.B and CXBE recipients and unique utilization of the Vβ4 family in BALB.B mice, suggesting oligoclonal T cell responses to a limited number of miHA. In addition, the injection of CD8+Vβ14+ B6 T cells into irradiated BALB.B and CXBE mice induced lethal GVHD, confirming the involvement of miHA-specific T cells within an individual Vβ family.
Collapse
Affiliation(s)
- Thea M. Friedman
- Kimmel Cancer Institute, Jefferson Medical College, Philadelphia, PA 19107
| | - Michael Gilbert
- Kimmel Cancer Institute, Jefferson Medical College, Philadelphia, PA 19107
| | - Constance Briggs
- Kimmel Cancer Institute, Jefferson Medical College, Philadelphia, PA 19107
| | - Robert Korngold
- Kimmel Cancer Institute, Jefferson Medical College, Philadelphia, PA 19107
| |
Collapse
|
17
|
Perreault C, Roy DC, Fortin C. Immunodominant minor histocompatibility antigens: the major ones. IMMUNOLOGY TODAY 1998; 19:69-74. [PMID: 9509761 DOI: 10.1016/s0167-5699(97)01185-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Allogeneic Peripheral Blood Progenitor Cell Transplantation in a Murine Model: Evidence for an Improved Graft-Versus-Leukemia Effect. Blood 1997. [DOI: 10.1182/blood.v90.4.1694] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Peripheral blood progenitor cells (PBPCs) are increasingly being used to replace bone marrow cells (BMCs) as a source of hematopoietic stem cells also in the field of allogeneic transplantation. Whereas it is well known that PBPC grafts and BM differ significantly in progenitor cell content and lymphocyte dose, the clinical consequences of these differences with respect to engraftment, graft-versus-host disease (GVHD), and the graft-versus-leukemia (GVL) effect are more difficult to assess. We present a murine model that allows us to evaluate engraftment, GVHD, and GVL effect of allogeneic PBPC transplantation (PBPCT). Balb/c mice (H-2d) served as recipients. Donors were major histocompatibility complex-matched DBA/2 mice or syngeneic Balb/c mice, respectively. Experiments with increasing numbers of BMCs or Filgastrim-mobilized PBPCs showed that the number of progenitor cells in the graft was correlated with the probability to engraft, irrespective of the graft type. With identically high cell numbers transferred (1 × 109 nucleated cells/kg body weight [BW]), the mortality rates due to GVHD (25%) were about the same after allogeneic BM transplantation (BMT) and allogeneic PBPCT, although PBPC grafts contained four times more CD3+ T cells as compared with BM grafts (6.2 × 108v 1.4 × 108/kg BW). For investigation of GVL activity, Balb/c recipients were injected with syngeneic cells of the B-lymphocytic leukemia cell line A20 2 days before transplantation. After total body irradiation to a dose of 7.5 Gy, 1 × 109/kg BW Balb/c PBPCs, DBA BMCs, or DBA PBPCs were infused. The relapse rates observed were 80% after syngeneic PBPCT (n = 22), 60% after allogeneic BMT (n = 23), and 34% after allogeneic PBPCT (n = 26) (allogeneic BMT v PBPCT, P = .032). We conclude that transplantation of allogeneic PBPCs instead of BM may enhance the GVL effect without an increase of GVHD.
Collapse
|
19
|
Allogeneic Peripheral Blood Progenitor Cell Transplantation in a Murine Model: Evidence for an Improved Graft-Versus-Leukemia Effect. Blood 1997. [DOI: 10.1182/blood.v90.4.1694.1694_1694_1700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peripheral blood progenitor cells (PBPCs) are increasingly being used to replace bone marrow cells (BMCs) as a source of hematopoietic stem cells also in the field of allogeneic transplantation. Whereas it is well known that PBPC grafts and BM differ significantly in progenitor cell content and lymphocyte dose, the clinical consequences of these differences with respect to engraftment, graft-versus-host disease (GVHD), and the graft-versus-leukemia (GVL) effect are more difficult to assess. We present a murine model that allows us to evaluate engraftment, GVHD, and GVL effect of allogeneic PBPC transplantation (PBPCT). Balb/c mice (H-2d) served as recipients. Donors were major histocompatibility complex-matched DBA/2 mice or syngeneic Balb/c mice, respectively. Experiments with increasing numbers of BMCs or Filgastrim-mobilized PBPCs showed that the number of progenitor cells in the graft was correlated with the probability to engraft, irrespective of the graft type. With identically high cell numbers transferred (1 × 109 nucleated cells/kg body weight [BW]), the mortality rates due to GVHD (25%) were about the same after allogeneic BM transplantation (BMT) and allogeneic PBPCT, although PBPC grafts contained four times more CD3+ T cells as compared with BM grafts (6.2 × 108v 1.4 × 108/kg BW). For investigation of GVL activity, Balb/c recipients were injected with syngeneic cells of the B-lymphocytic leukemia cell line A20 2 days before transplantation. After total body irradiation to a dose of 7.5 Gy, 1 × 109/kg BW Balb/c PBPCs, DBA BMCs, or DBA PBPCs were infused. The relapse rates observed were 80% after syngeneic PBPCT (n = 22), 60% after allogeneic BMT (n = 23), and 34% after allogeneic PBPCT (n = 26) (allogeneic BMT v PBPCT, P = .032). We conclude that transplantation of allogeneic PBPCs instead of BM may enhance the GVL effect without an increase of GVHD.
Collapse
|
20
|
Goulmy E. Human minor histocompatibility antigens: new concepts for marrow transplantation and adoptive immunotherapy. Immunol Rev 1997; 157:125-40. [PMID: 9255626 DOI: 10.1111/j.1600-065x.1997.tb00978.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bone marrow transplantation (BMT) is the present treatment for hematological malignancies. Two major drawbacks of allogeneic BMT are graft-versus-host disease (GVHD) and leukemia relapse. The use of HLA-matched siblings as marrow donors results in the best transplant outcome. Nonetheless, the results of clinical BMT reveal that the selection of MHC-identical donors' bone marrow (BM) is no guarantee for avoiding GVHD or ensuring disease-free survival even when donor and recipient are closely related. It is believed that non-MHC-encoded so-called minor histocompatibility antigens (mHag) are involved in both graft-versus-host and graft-versus-leukemia activities. The recent new insights into the chemical nature of mHag not only reveal their physiological function but, more importantly, provide insights into their role in BMT. Together with the information on the human mHag genetics and tissue distribution gathered in the past, we may now apply this knowledge to the benefit of human BMT. Directly relevant is the utility of mHag molecular typing for diagnostics in BM donor selection. Most promising is the use of mHag-specific cytotoxic T cells for adoptive immunotherapy of leukemia.
Collapse
Affiliation(s)
- E Goulmy
- Department of Immunohematology and Blood Bank, Leiden University Hospital, The Netherlands.
| |
Collapse
|