1
|
Zhao X, Ma C, Li L, Yang Y, Zhang S, Wang X. Human Adipose Tissue-Derived Stromal Cells Ameliorate Adriamycin-Induced Nephropathy by Promoting Angiogenesis. Organogenesis 2024; 20:2356339. [PMID: 38796830 PMCID: PMC11135856 DOI: 10.1080/15476278.2024.2356339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
This study is to investigate the therapeutical effect and mechanisms of human-derived adipose mesenchymal stem cells (ADSC) in relieving adriamycin (ADR)-induced nephropathy (AN). SD rats were separated into normal group, ADR group, ADR+Losartan group (20 mg/kg), and ADR + ADSC group. AN rats were induced by intravenous injection with adriamycin (8 mg/kg), and 4 d later, ADSC (2 × 105 cells/mouse) were administrated twice with 2 weeks interval time (i.v.). The rats were euthanized after the 6 weeks' treatment. Biochemical indicators reflecting renal injury, such as blood urea nitrogen (BUN), neutrophil gelatinase alpha (NGAL), serum creatinine (Scr), inflammation, oxidative stress, and pro-fibrosis molecules, were evaluated. Results demonstrated that we obtained high qualified ADSCs for treatment determined by flow cytometry, and ADSCs treatment significantly ameliorated renal injuries in DN rats by decreasing BUN, Scr and NGAL in peripheral blood, as well as renal histopathological injuries, especially protecting the integrity of podocytes by immunofluorescence. Furthermore, ADSCs treatment also remarkably reduced the renal inflammation, oxidative stress, and fibrosis in DN rats. Preliminary mechanism study suggested that the ADSCs treatment significantly increased renal neovascularization via enhancing proangiogenic VEGF production. Pharmacodynamics study using in vivo imaging confirmed that ADSCs via intravenous injection could accumulate into the kidneys and be alive at least 2 weeks. In a conclusion, ADSC can significantly alleviate ADR-induced nephropathy, and mainly through reducing oxidative stress, inflammation and fibrosis, as well as enhancing VEGF production.
Collapse
Affiliation(s)
- Xiaodi Zhao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chengyan Ma
- The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lijie Li
- Beijing AeglesStem Technology Co. LTD, Beijing, China
| | - Yuemei Yang
- Beijing AeglesStem Technology Co. LTD, Beijing, China
| | - Sen Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoli Wang
- Department of Hematology, Lishui People’s Hospital, Lishui, China
| |
Collapse
|
2
|
Cavusoglu Nalbantoglu I, Sevgi S, Kerimoglu G, Kadıoglu Duman M, Kalyoncu NI. Ursodeoxycholic acid ameliorates erectile dysfunction and corporal fibrosis in diabetic rats by inhibiting the TGF-β1/Smad2 pathway. Int J Impot Res 2024; 36:886-895. [PMID: 38454160 DOI: 10.1038/s41443-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Corporal tissue fibrosis is critical in diabetes-associated erectile dysfunction. Transforming growth factor-β1/Small mothers against decapentaplegic-2 (TGF-β1/Smad2) contributes to the induction of fibrosis in corporal tissue. Smad7 is accepted as a general negative regulator of Smad signaling, although its role in corporal fibrosis is unknown. Ursodeoxycholic acid (UDCA) is a hydrophilic bile acid used for biliary and liver related disorders and has antifibrotic effects in the liver. This study investigated the effects of UDCA on diabetic erectile dysfunction. Forty-eight male Spraque Dawley rats were divided into six groups: nondiabetic (n = 6), nondiabetic+20 mg/kg UDCA (n = 6), nondiabetic+80 mg/kg UDCA (n = 6), diabetic (n = 10), diabetic+20 mg/kg UDCA (n = 10), diabetic+80 mg/kg UDCA (n = 10). Diabetes was induced by intraperitoneal injection of 60 mg/kg Streptozocin. UDCA (20 and 80 mg/kg/day) or saline was subsequently administered via oral gavage for 56 days. Erectile function was evaluated as measurement of maximum intracavernosal pressure (m-ICP)/mean arterial pressure (MAP) and total ICP/MAP. Corporal tissues were evaluated by Western blotting and Masson's trichrome staining. Electrical stimulation-induced m-ICP/MAP responses were higher in UDCA-treated diabetic rats compared to untreated diabetic rats, respectively (20 mg/kg; 4 V: 0.77 ± 0.11 vs 0.45 ± 0.09, p = 0.0001 and 80 mg/kg; 4 V: 0.78 ± 0.11 vs 0.45 ± 0.09, p = 0.0001) UDCA prevented the increase in phospho-Smad2 and fibronectin protein expressions in diabetic corporal tissue both at 20 mg/kg (p = 0.0002, p = 0.002 respectively) and 80 mg/kg doses (p < 0.0001 for both). Smad7 protein expressions were significantly increased in the UDCA-treated diabetic groups compared to the untreated diabetic group (20 mg/kg: p = 0.0079; 80 mg/kg: p = 0.004). Furthermore, UDCA significantly prevented diabetes-induced increase in collagen (20 mg/kg: p = 0.0172; 80 mg/kg: p = 0.0003) and smooth muscle loss (20 mg/kg: p = 0.044; 80 mg/kg: p = 0.039). In conclusion, UDCA has a potential protective effect on erectile function in diabetic rats by altering fibrotic pathways via inhibition of TGF-β1/Smad2 and activation of Smad7.
Collapse
Affiliation(s)
- Irem Cavusoglu Nalbantoglu
- Department of Pharmacology, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Türkiye.
| | - Serhat Sevgi
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Gokcen Kerimoglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Mine Kadıoglu Duman
- Department of Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Nuri Ihsan Kalyoncu
- Department of Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
3
|
Şahin A, Babayev H, Cirigliano L, Preto M, Falcone M, Altıntas E, Gül M. Unveiling the molecular Hallmarks of Peyronie's disease: a comprehensive narrative review. Int J Impot Res 2024; 36:801-808. [PMID: 38454161 DOI: 10.1038/s41443-024-00845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Peyronie's disease, a fibroinflammatory disorder, detrimentally impacts the sexual well-being of men and their partners. The manifestation of fibrotic plaques within penile tissue, attributed to dysregulated fibrogenesis, is pathognomonic for this condition. The onset of fibrosis hinges on the perturbation of the equilibrium between matrix metalloproteinases (MMPs), crucial enzymes governing the extracellular matrix, and tissue inhibitors of MMPs (TIMPs). In the context of Peyronie's disease, there is an elevation in TIMP levels coupled with a decline in MMP levels, culminating in fibrogenesis. Despite the scant molecular insights into fibrotic pathologies, particularly in the context of Peyronie's disease, a comprehensive literature search spanning 1995 to 2023, utilizing PubMed Library, was conducted to elucidate these mechanisms. The findings underscore the involvement of growth factors such as FGF and PDGF, and cytokines like IL-1 and IL-6, alongside PAI-1, PTX-3, HIF, and IgG4 in the fibrotic cascade. Given the tissue-specific modulation of fibrosis, comprehending the molecular underpinnings of penile fibrosis becomes imperative for the innovation of novel and efficacious therapies targeting Peyronie's disease. This review stands as a valuable resource for researchers and clinicians engaged in investigating the molecular basis of fibrotic diseases, offering guidance for advancements in understanding Peyronie's disease.
Collapse
Affiliation(s)
- Ali Şahin
- Selcuk University School of Medicine, 42250, Konya, Turkey
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265, Davos, Switzerland
| | - Lorenzo Cirigliano
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Mirko Preto
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Marco Falcone
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Emre Altıntas
- Department of Urology, Selcuk University School of Medicine, 42250, Konya, Turkey
| | - Murat Gül
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy.
- Department of Urology, Selcuk University School of Medicine, 42250, Konya, Turkey.
| |
Collapse
|
4
|
Wang S, Yu H, Liu S, Liu Y, Gu X. Regulation of idiopathic pulmonary fibrosis: a cross-talk between TGF- β signaling and MicroRNAs. Front Med (Lausanne) 2024; 11:1415278. [PMID: 39386739 PMCID: PMC11461268 DOI: 10.3389/fmed.2024.1415278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Pulmonary fibrosis (PF) is a highly complex and challenging disease affecting the respiratory system. Patients with PF usually have an abbreviated survival period and a consequential high mortality rate after the diagnosis is confirmed, posing serious threats to human health. In clinical practice, PF is typically treated by antifibrotic agents, such as Pirfenidone and Nintedanib. However, these agents have been reported to correlate with substantial adverse effects, escalating costs, and insufficient efficacy. Moreover, it remains unclarified about the multifactorial pathology of PF. Therefore, there is an urgent demand for elucidating these underlying mechanisms and identifying safe, efficient, and targeted therapeutic strategies for PF treatment. The crucial role of the transforming growth factor-β (TGF-β) signaling pathway in PF development has been explored in many studies. MicroRNAs (miRNAs), which function as post-transcriptional regulators of gene expression, can significantly affect the development of PF by modulating TGF-β signaling. In turn, TGF-β signaling can regulate the expression and biogenesis of miRNAs, thereby substantially affecting the progression of PF. Hence, the therapeutic strategies that focus on the drug-targeted regulation of miRNAs, either by augmenting down-regulated miRNAs or inhibiting overexpressed miRNAs, may hinder the pathways related to TGF-β signaling. These strategies may contribute to the prevention and suppression of PF progression and may provide novel insights into the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
6
|
Kepreotis SV, Oh JG, Park M, Yoo J, Lee C, Mercola M, Hajjar RJ, Jeong D. Inhibition of miR-25 ameliorates cardiac and skeletal muscle dysfunction in aged mdx/utrn haploinsufficient (+/-) mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102174. [PMID: 38584818 PMCID: PMC10998245 DOI: 10.1016/j.omtn.2024.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Dystrophic cardiomyopathy is a significant feature of Duchenne muscular dystrophy (DMD). Increased cardiomyocyte cytosolic calcium (Ca2+) and interstitial fibrosis are major pathophysiological hallmarks that ultimately result in cardiac dysfunction. MicroRNA-25 (miR-25) has been identified as a suppressor of both sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) and mothers against decapentaplegic homolog-7 (Smad7) proteins. In this study, we created a gene transfer using an miR-25 tough decoy (TuD) RNA inhibitor delivered via recombinant adeno-associated virus serotype 9 (AAV9) to evaluate the effect of miR-25 inhibition on cardiac and skeletal muscle function in aged dystrophin/utrophin haploinsufficient mice mdx/utrn (+/-), a validated transgenic murine model of DMD. We found that the intravenous delivery of AAV9 miR-25 TuD resulted in strong and stable inhibition of cardiac miR-25 levels, together with the restoration of SERCA2a and Smad7 expression. This was associated with the amelioration of cardiomyocyte interstitial fibrosis as well as recovered cardiac function. Furthermore, the direct quadricep intramuscular injection of AAV9 miR-25 TuD significantly restored skeletal muscle Smad7 expression, reduced tissue fibrosis, and enhanced skeletal muscle performance in mdx/utrn (+/-) mice. These results imply that miR-25 TuD gene transfer may be a novel therapeutic approach to restore cardiomyocyte Ca2+ homeostasis and abrogate tissue fibrosis in DMD.
Collapse
Affiliation(s)
- Sacha V. Kepreotis
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Jae Gyun Oh
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Mina Park
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
| | - Jimeen Yoo
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Cholong Lee
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger J. Hajjar
- Mass General Brigham Gene and Cell Therapy Institute, Boston, MA, USA
| | - Dongtak Jeong
- Department of Medicinal and Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, South Korea
- Cardiovascular Research Institute, Icahn School of Medicine, Mount Sinai, NY, USA
| |
Collapse
|
7
|
Zhang K, Zheng S, Wu J, He J, Ouyang Y, Ao C, Lang R, Jiang Y, Yang Y, Xiao H, Li Y, Li M, Wang H, Li C, Wu D. Human umbilical cord mesenchymal stem cell-derived exosomes ameliorate renal fibrosis in diabetic nephropathy by targeting Hedgehog/SMO signaling. FASEB J 2024; 38:e23599. [PMID: 38572590 DOI: 10.1096/fj.202302324r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Shuo Zheng
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Jiasheng Wu
- The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yifan Yang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Huan Xiao
- School of Life Science, Hubei University, Wuhan, China
| | - Yu Li
- School of Life Science, Hubei University, Wuhan, China
| | - Mao Li
- School of Life Science, Hubei University, Wuhan, China
| | - Huiming Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
8
|
Basta MD, Petruk S, Mazo A, Walker JL. Fibrosis-the tale of H3K27 histone methyltransferases and demethylases. Front Cell Dev Biol 2023; 11:1193344. [PMID: 37476157 PMCID: PMC10354294 DOI: 10.3389/fcell.2023.1193344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 (EZH1, EZH2), which are the alternative subunits of the Polycomb Repressive Complex 2 (PRC2) and demethylase (KDM) enzymes, Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and Lysine demethylase 6B (KDM6B), are responsible for regulating methylation status of H3K27me3. In this review, we explore how these key enzymes regulate chromatin structure to alter gene expression in fibrosis, highlighting them as attractive targets for the treatment of fibrosis.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Janice L. Walker
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Ophthalmology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
9
|
Colucci R, Fornai M, Antonioli L, Segnani C, Ippolito C, Pellegrini C, Nericcio A, Zizzo MG, Serio R, Blandizzi C, Bernardini N. Role of cyclooxygenase pathways in bowel fibrotic remodelling in a murine model of experimental colitis. J Pharm Pharmacol 2023; 75:264-275. [PMID: 36477570 DOI: 10.1093/jpp/rgac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Gut fibrosis occurs under chronic inflammation. This study examined the effects of different cyclooxygenase (COX) inhibitors on fibrosis in the inflamed colon. METHODS Colitis was induced by 2,4-dinitrobenzenesulfonic acid (DNBS) in albino male Sprague-Dawley rats. After 6, 12 and 18 days, macroscopic and microscopic damage, collagen and elastic fibre content were examined. At day 6, pro-fibrotic factors (collagen I and III, hydroxyproline, fibronectin, matrix metalloproteinase-2 and -9), transforming growth factor-beta (TGF-β) signalling [TGF-β, Ras homolog gene family member A (RhoA), phosphorylated small mother against decapentaplegic (pSMAD)-2 and -6] and peristalsis were assessed, and the effects of indomethacin, SC-560 or celecoxib were tested. KEY FINDINGS Six days after DNBS administration, significant histopathological signs of fibrotic remodelling were observed in rats. At day 6, pro-fibrotic factors were up-regulated and colonic peristalsis was altered. COX inhibitors reversed the histochemical, molecular and functional changes in the fibrotic colon. COX inhibition reduced TGF-β expression, SMAD2 phosphorylation and RhoA, and increased SMAD6 expression. CONCLUSIONS Colonic fibrosis is associated with altered bowel motility and induction of profibrotic factors driven by TGF-β signalling. COX-1 and COX-2 inhibition counteracts this fibrotic remodelling by the modulation of TGF-β/SMAD signalling, mainly via SMAD6 induction and reduction in SMAD2 phosphorylation.
Collapse
Affiliation(s)
- Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Tang L, Zhu M, Che X, Yang X, Xu Y, Ma Q, Zhang M, Ni Z, Shao X, Mou S. Astragaloside IV Targets Macrophages to Alleviate Renal Ischemia-Reperfusion Injury via the Crosstalk between Hif-1α and NF-κB (p65)/Smad7 Pathways. J Pers Med 2022; 13:jpm13010059. [PMID: 36675720 PMCID: PMC9863138 DOI: 10.3390/jpm13010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
(1) Background: Astragaloside IV (AS-IV) is derived from Astragalus membranous (AM), which is used to treat kidney disease. Macrophages significantly affect the whole process of renal ischemia-reperfusion (I/R). The regulation of macrophage polarization in kidneys by AS-IV was the focus. (2) Methods: Renal tubular injury and fibrosis in mice were detected by Hematoxylin and Eosin staining and Masson Trichrome Staining, separately. An ELISA and quantitative real-time polymerase chain reaction were used to explore the cytokine and mRNA expression. Western blot was used to determine protein expression and siRNA technology was used to reveal the crosstalk of signal pathways in RAW 264.7 under hypoxia. (3) Results: In the early stages of I/R injury, AS-IV reduced renal damage and macrophage infiltration. M1-associated markers were decreased, while M2 biomarkers were increased. The NF-κB (p65)/Hif-1α pathway was suppressed by AS-IV in M1. Moreover, p65 dominated the expression of Hif-1α. In the late stages of I/R injury, renal fibrosis was alleviated, and M2 infiltration also decreased after AS-IV treatment. Hif-1α expression was reduced by AS-IV, while Smad7 expression was enhanced. Hif-1α interferes with the expression of Smad7 in M2. (4) Conclusions: AS-IV promoted the differentiation of M1 to M2, relieving the proinflammatory response to alleviate the kidney injury during the early stages. AS-IV attenuated M2 macrophage infiltration to prevent kidney fibrosis during the later stages.
Collapse
Affiliation(s)
- Lumin Tang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Minyan Zhu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiajing Che
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoqian Yang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao Xu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qing Ma
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Zhang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinghua Shao
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shan Mou
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Correspondence:
| |
Collapse
|
11
|
Schuler C, Foti F, Perren L, Mamie C, Weder B, Stokmaier M, de Vallière C, Heuchel R, Ruiz PA, Rogler G, Hausmann M. Deletion of Smad7 Ameliorates Intestinal Inflammation and Contributes to Fibrosis. Inflamm Bowel Dis 2022; 29:647-660. [PMID: 36282601 DOI: 10.1093/ibd/izac221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Patients suffering from inflammatory bowel diseases (IBDs) express increased mucosal levels of transforming growth factor (TGF)-β compared with non-IBD controls. SMAD7 negatively regulates TGF-β signaling. An earlier study aiming to target Smad7 showed a lack of clinical benefit. It remains unknown whether inhibition of SMAD7 is beneficial in specific settings of IBD. We evaluated the effect of Smad7 deficiency on inflammation, fibrogenesis, and wound healing. METHODS For the initiation of fibrosis in Smad7-/- (Smad7Δex-I) CD-1 mice, the dextran sodium sulfate-induced chronic colitis model and the heterotopic transplantation model of fibrosis were used. Wound closure of fibroblasts from Smad7-/- mice was determined using culture inserts and electric cell-substrate impedance sensing in vitro. RESULTS In dextran sodium sulfate-induced chronic colitis, Smad7 deficiency was associated with ameliorated inflammation, as evidenced by decreased clinical score, histological score, and myeloperoxidase activity. Absence of SMAD7 decreased T-cell accumulation in colonic tissue and tumor necrosis factor (TNF) mRNA expression levels. Smad7-/- mice showed a significant increase in hydroxyproline and collagen content, as well as ColIVa1 mRNA expression. Wild type mice transplanted with terminal ileum from Smad7-/- mice in the heterotopic animal model for intestinal fibrosis showed a significant increase in collagen content and protein expression of α-smooth muscle actin. CONCLUSIONS Smad7 deficiency is associated with a decrease in intestinal inflammation and an increase in fibrosis. Targeting SMAD7 constitutes a potential new treatment option for IBD; progression of disease-associated fibrosis should be considered.
Collapse
Affiliation(s)
- Cordelia Schuler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Federica Foti
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Leonie Perren
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Céline Mamie
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruce Weder
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Michelle Stokmaier
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Rainer Heuchel
- Pancreas Cancer Research Lab, CLINTEC, Karolinska Institutet, Huddinge, Sweden
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
An Y, Ren Y, Wang J, Zang J, Gao M, Wang H, Wang S, Dong Y. MST1/2 in PDGFR-α + cells negatively regulates TGF-β-induced myofibroblasts accumulation in renal fibrosis. Am J Physiol Renal Physiol 2022; 322:F512-F526. [PMID: 35253468 DOI: 10.1152/ajprenal.00367.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Injury-induced fibroblast-to-myofibroblast differentiation is a key event of renal fibrosis. YAP, a transcriptional coactivator, plays an important role in fibroblast activation and Smad transcriptional activity to promote TGF-β-induced differentiation from fibroblasts to myofibrolasts. MST1/2, a negative regulator of YAP, also increases in fibroblasts by TGF-β stimulation. Here we examined whether MST1/2, as a negative regulator, attenuated YAP and TGF-β/Smad signaling in fibroblasts to reduce fibrosis. The MST1/2 and YAP expression levels increased in PDGFRα+ cells of obstructed kidneys following the increase of TGF-β and renal fibrosis after UUO. The PDGFRα+ cells-specific knockout of Mst1/2 in mice increased UUO-induced myofibroblast accumulation and fibrosis. In cultured fibroblasts, TGF-β increased YAP and promoted its nucleus entry, but a high dose and prolonged treatment of TGF-β increased the MST1/2 activation to prevent YAP from entering the nucleus. Our results indicated that MST1/2 is a negative-feedback signal of TGF-β-induced fibroblast differentiation.
Collapse
Affiliation(s)
- Yina An
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yaqi Ren
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jianghua Zang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Min Gao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haidong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi Province, China
| | - Shuaiyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanjun Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Zhang W, Rong G, Gu J, Fan C, Guo T, Jiang T, Deng W, Xie J, Su Z, Yu Q, Mai J, Zheng R, Chen X, Tang X, Zhang J. Nicotinamide N-methyltransferase ameliorates renal fibrosis by its metabolite 1-methylnicotinamide inhibiting the TGF-β1/Smad3 pathway. FASEB J 2022; 36:e22084. [PMID: 35107844 DOI: 10.1096/fj.202100913rrr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD), a disease involving damage to the kidney structure and function, is a global public health problem. Tubulointerstitial fibrosis (TIF) is both an inevitable pathological change in individuals with CKD and a driving force in the progression of renal fibrosis. Nicotinamide N-methyltransferase (NNMT) and its metabolite 1-methylnicotinamide (MNAM) have been shown to protect against lipotoxicity-induced kidney tubular injury. However, the biological roles of NNMT and MNAM in regulating TIF remain elusive. This study aimed to investigate the protective effect of NNMT and MNAM on TIF and the mechanisms involved. We explored the functions and mechanisms of NNMT and MNAM in TIF, as well as the interaction between NNMT and MNAM, using unilateral ureteral obstruction (UUO) mice and cultured mouse tubular epithelial cells (mTECs) stimulated with transforming growth factor-β1 (TGF-β1). Several important findings were obtained as follows: (1) NNMT expression was upregulated in the kidneys of UUO mice and TGF-β1-induced mTECs, and this upregulation was proposed to be a protective compensatory response to TIF. (2) MNAM was a potentially effective antifibrotic and anti-inflammatory medication in UUO mice. (3) The antifibrotic effect of NNMT overexpression was exerted by increasing the concentration of MNAM. (4) The renoprotective role of MNAM depended on the selective blockade of the interaction of Smad3 with TGFβ receptor I. Overall, our study shows that NNMT is involved in the development and progression of CKD and that its metabolite MNAM may be a novel inhibitor of the TGF-β1/Smad3 pathway with great therapeutic potential for CKD.
Collapse
Affiliation(s)
- Wenying Zhang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guang Rong
- Department of Nephrology, SSL Central Hospital of Dongguan City, Dongguan, China
| | - Jinge Gu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cuiling Fan
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tingting Jiang
- Department of Nephrology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Weiqian Deng
- Department of Nephrology, Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jiayu Xie
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, The Engineering Technology Research Center of Education Ministry of China, Southern Medical University, Guangzhou, China
| | - Zhihua Su
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qimin Yu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyi Mai
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rinan Zheng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xingling Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xun Tang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Zhang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Manresa MC, Wu A, Nhu QM, Chiang AWT, Okamoto K, Miki H, Kurten R, Pham E, Duong LD, Lewis NE, Akuthota P, Croft M, Aceves SS. LIGHT controls distinct homeostatic and inflammatory gene expression profiles in esophageal fibroblasts via differential HVEM and LTβR-mediated mechanisms. Mucosal Immunol 2022; 15:327-337. [PMID: 34903876 PMCID: PMC8866113 DOI: 10.1038/s41385-021-00472-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 02/04/2023]
Abstract
Fibroblasts mediate tissue remodeling in eosinophilic esophagitis (EoE), a chronic allergen-driven inflammatory pathology. Diverse fibroblast subtypes with homeostasis-regulating or inflammatory profiles have been recognized in various tissues, but which mediators induce these alternate differentiation states remain largely unknown. We recently identified that TNFSF14/LIGHT promotes an inflammatory esophageal fibroblast in vitro. Herein we used esophageal biopsies and primary fibroblasts to investigate the role of the LIGHT receptors, herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR), and their downstream activated pathways, in EoE. In addition to promoting inflammatory gene expression, LIGHT down-regulated homeostatic factors including WNTs, BMPs and type 3 semaphorins. In vivo, WNT2B+ fibroblasts were decreased while ICAM-1+ and IL-34+ fibroblasts were expanded in EoE, suggesting that a LIGHT-driven gene signature was imprinted in EoE versus normal esophageal fibroblasts. HVEM and LTβR overexpression and deficiency experiments demonstrated that HVEM regulates a limited subset of LIGHT targets, whereas LTβR controls all transcriptional effects. Pharmacologic blockade of the non-canonical NIK/p100/p52-mediated NF-κB pathway potently silenced LIGHT's transcriptional effects, with a lesser role found for p65 canonical NF-κB. Collectively, our results show that LIGHT promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype and represses homeostatic gene expression via a LTβR-NIK-p52 NF-κB dominant pathway.
Collapse
Affiliation(s)
- Mario C. Manresa
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA ,grid.185006.a0000 0004 0461 3162La Jolla Institute for Immunology, La Jolla, CA USA
| | - Amanda Wu
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA
| | - Quan M. Nhu
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA ,grid.419794.60000 0001 2111 8997Division of Gastroenterology and Hepatology, Scripps Clinic, San Diego, CA USA
| | - Austin W. T. Chiang
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA
| | - Kevin Okamoto
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA
| | - Haruka Miki
- grid.185006.a0000 0004 0461 3162La Jolla Institute for Immunology, La Jolla, CA USA
| | - Richard Kurten
- grid.239305.e0000 0001 2157 2081Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital Research Institute, Little Rock, AR USA
| | - Elaine Pham
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA
| | - Loan D. Duong
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA
| | - Nathan E. Lewis
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA
| | - Praveen Akuthota
- grid.266100.30000 0001 2107 4242Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA USA
| | - Michael Croft
- grid.185006.a0000 0004 0461 3162La Jolla Institute for Immunology, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Medicine, University of California, San Diego, CA USA
| | - Seema S. Aceves
- grid.266100.30000 0001 2107 4242Department of Pediatrics, University of California, San Diego, CA USA ,Division of Allergy Immunology, San Diego, CA USA ,grid.266100.30000 0001 2107 4242Department of Medicine, University of California, San Diego, CA USA ,grid.286440.c0000 0004 0383 2910Rady Children’s Hospital San Diego, San Diego, CA USA
| |
Collapse
|
15
|
You YK, Wu WF, Huang XR, Li HD, Ren YP, Zeng JC, Chen H, Lan HY. Deletion of Smad3 protects against C-reactive protein-induced renal fibrosis and inflammation in obstructive nephropathy. Int J Biol Sci 2021; 17:3911-3922. [PMID: 34671208 PMCID: PMC8495386 DOI: 10.7150/ijbs.62929] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/14/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction and Aims: Elevated plasma levels of C-reactive protein (CRP) are closely associated with progressive renal injury in patients with chronic kidney disease (CKD). Here, we tested a hypothesis that CRP may promote renal fibrosis and inflammation via a TGF-β/Smad3-dependent mechanism. Methods: Role and mechanisms of TGF-β/Smad3 in CRP-induced renal fibrosis and inflammation were examined in a mouse model of unilateral ureteral obstruction (UUO) induced in CRP Tg/Smad3 KO mice and in a rat tubular epithelial cell line in which Smad3 gene is stably knocked down (S3KD-NRK52E). Results: We found that mice overexpressing the human CRP gene were largely promoted renal inflammation and fibrosis as evidenced by increasing IL-1β, TNF-α, MCP-1 expression, F4/80+ macrophages infiltration, and marked accumulation of α-smooth muscle actin (α-SMA), collagen I and fibronectin in the UUO kidney, which were blunted when Smad3 gene was deleted in CRPtg-Smad3KO. Mechanistically, we found that the protection of renal inflammation and fibrosis in the UUO kidney of CRPtg-Smad3KO mice was associated with the inactivation of CD32-NF-κB and TGF-β/Smad3 signaling. Conclusion: In conclusion, Smad3 deficiency protects against CRP-mediated renal inflammation and fibrosis in the UUO kidney by inactivating CD32-NF-κB and TGF-β/Smad3 signaling.
Collapse
Affiliation(s)
- Yong-Ke You
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China.,Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Wei-Feng Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.,CUHK-Guangdong Provincial People's Hospital Joint Research Laboratory for Immunological and Genetic Kidney Disease, the Chinese University of Hong Kong, Hong Kong, China
| | - Hai-Di Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Ye-Ping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jin-Cheng Zeng
- Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunological and Genetic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China.,CUHK-Guangdong Provincial People's Hospital Joint Research Laboratory for Immunological and Genetic Kidney Disease, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Prado LG, Barbosa AS. Understanding the Renal Fibrotic Process in Leptospirosis. Int J Mol Sci 2021; 22:ijms221910779. [PMID: 34639117 PMCID: PMC8509513 DOI: 10.3390/ijms221910779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is a neglected infectious disease caused by pathogenic species of the genus Leptospira. The acute disease is well-described, and, although it resembles other tropical diseases, it can be diagnosed through the use of serological and molecular methods. While the chronic renal disease, carrier state, and kidney fibrosis due to Leptospira infection in humans have been the subject of discussion by researchers, the mechanisms involved in these processes are still overlooked, and relatively little is known about the establishment and maintenance of the chronic status underlying this infectious disease. In this review, we highlight recent findings regarding the cellular communication pathways involved in the renal fibrotic process, as well as the relationship between renal fibrosis due to leptospirosis and CKD/CKDu.
Collapse
Affiliation(s)
- Luan Gavião Prado
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Lineu Prestes 1374, São Paulo 05508-000, Brazil
| | - Angela Silva Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil;
- Correspondence:
| |
Collapse
|
17
|
Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin Sci (Lond) 2021; 135:275-303. [PMID: 33480423 DOI: 10.1042/cs20201213] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Elevated expression of the multifunctional cytokine transforming growth factor β1 (TGF-β1) is causatively linked to kidney fibrosis progression initiated by diabetic, hypertensive, obstructive, ischemic and toxin-induced injury. Therapeutically relevant approaches to directly target the TGF-β1 pathway (e.g., neutralizing antibodies against TGF-β1), however, remain elusive in humans. TGF-β1 signaling is subjected to extensive negative control at the level of TGF-β1 receptor, SMAD2/3 activation, complex assembly and promoter engagement due to its critical role in tissue homeostasis and numerous pathologies. Progressive kidney injury is accompanied by the deregulation (loss or gain of expression) of several negative regulators of the TGF-β1 signaling cascade by mechanisms involving protein and mRNA stability or epigenetic silencing, further amplifying TGF-β1/SMAD3 signaling and fibrosis. Expression of bone morphogenetic proteins 6 and 7 (BMP6/7), SMAD7, Sloan-Kettering Institute proto-oncogene (Ski) and Ski-related novel gene (SnoN), phosphate tensin homolog on chromosome 10 (PTEN), protein phosphatase magnesium/manganese dependent 1A (PPM1A) and Klotho are dramatically decreased in various nephropathies in animals and humans albeit with different kinetics while the expression of Smurf1/2 E3 ligases are increased. Such deregulations frequently initiate maladaptive renal repair including renal epithelial cell dedifferentiation and growth arrest, fibrotic factor (connective tissue growth factor (CTGF/CCN2), plasminogen activator inhibitor type-1 (PAI-1), TGF-β1) synthesis/secretion, fibroproliferative responses and inflammation. This review addresses how loss of these negative regulators of TGF-β1 pathway exacerbates renal lesion formation and discusses the therapeutic value in restoring the expression of these molecules in ameliorating fibrosis, thus, presenting novel approaches to suppress TGF-β1 hyperactivation during chronic kidney disease (CKD) progression.
Collapse
|
18
|
Abstract
Lin28a has diverse functions including regulation of cancer, reprogramming and regeneration, but whether it promotes injury or is a protective reaction to renal injury is unknown. We studied how Lin28a acts in unilateral ureteral obstruction (UUO)-induced renal fibrosis following unilateral ureteral obstruction, in a mouse model. We further defined the role of Lin28a in transforming growth factor (TGF)-signaling pathways in renal fibrosis through in vitro study using human tubular epithelium-like HK-2 cells. In the mouse unilateral ureteral obstruction model, obstruction markedly decreased the expression of Lin28a, increased the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin. In TGF-β-stimulated HK-2 cells, the expression of Lin28a was reduced and the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin was increased. Adenovirus-mediated overexpression of Lin28a inhibited the expression of TGF-β-stimulated type I collagen, α-SMA, vimentin and fibronectin. Lin28a inhibited TGF-β-stimulated SMAD3 activity, via inhibition of SMAD3 phos-phorylation, but not the MAPK pathway ERK, JNK or p38. Lin28a attenuates renal fibrosis in obstructive nephropathy, making its mechanism a possible therapeutic target for chronic kidney disease.
Collapse
Affiliation(s)
- Gwon-Soo Jung
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Yeo Jin Hwang
- Division of Electronics & Information System, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Jun-Hyuk Choi
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Kyeong-Min Lee
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
19
|
Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl) 2021; 99:1209-1220. [PMID: 34059951 PMCID: PMC8367892 DOI: 10.1007/s00109-021-02083-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Transforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.
Collapse
|
20
|
Gu YY, Dou JY, Huang XR, Liu XS, Lan HY. Transforming Growth Factor-β and Long Non-coding RNA in Renal Inflammation and Fibrosis. Front Physiol 2021; 12:684236. [PMID: 34054586 PMCID: PMC8155637 DOI: 10.3389/fphys.2021.684236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is one of the most characterized pathological features in chronic kidney disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or allograft transplantation the only clinical option for CKD patients. Transforming growth factor-β (TGF-β) is the key mediator in renal fibrosis and is an essential regulator for renal inflammation. Therefore, the general blockade of the pro-fibrotic TGF-β may reduce fibrosis but may risk promoting renal inflammation and other side effects due to the diverse role of TGF-β in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides and have been regarded as promising therapeutic targets for many diseases. This review focuses on the importance of TGF-β and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-β and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Yun Dou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
22
|
Edosuyi O, Choi M, Igbe I, Oyekan A. Fumarate exerted an antihypertensive effect and reduced kidney injury molecule (KIM)-1 expression in deoxycorticosterone acetate-salt hypertension. Clin Exp Hypertens 2021; 43:555-564. [PMID: 33879002 DOI: 10.1080/10641963.2021.1916943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: The tricarboxylic (TCA) acid cycle provides the energy needed for regulatory functions in the cardio-renal system. Recently, a genetic defect in the TCA cycle enzyme, fumarase hydratase, altered L-arginine metabolism and exacerbated hypertension in salt-sensitive rats. This study evaluated the effect of fumarate and its possible link to L-arginine metabolism in deoxycorticosterone (DOCA)-salt hypertension, a non-genetic model of hypertension.Method: Hypertension was induced with DOCA (25 mg/kg s.c, twice weekly) + 1% NaCL in uninephrectomised rats placed on fumarate (1 g/L, ad libitum). Blood pressure was measured in conscious rats via carotid cannulation. Biochemical and western blot analyses were carried out on kidney fractions.Results: Fumarate reduced mean blood pressure (198 ± 5 vs 167 ± 7 mmHg, p < .01), increased nitric oxide levels in the renal cortex (36.1 ± 2 vs 61.3 ± 4 nM/µg) and medulla (27.4 ± 1 vs 54.1 ± 2 nM/µg) of DOCA-salt rats (p < .01). Consistent with this, arginase activity was reduced (threefold) in the renal medulla but not cortex of DOCA-salt rats. Fumarate increased superoxide dismutase activity in the medulla (p < .001) of DOCA-hypertensive rats. However, catalase activity was exacerbated by fumarate in both renal cortex (4.5 ± 1 vs 11.2 ± 1) and medulla (3.7 ± 1 vs 16.3 ± 1 units/mg) of DOCA-salt rats (p < .001). Proteinuria (64.6%), kidney injury molecule-1 expression and kidney weight were reduced in DOCA-hypertensive rats treated with fumarate (p< .05). However, there was a paradoxical increase in TGF-β expression in fumarate-treated DOCA-salt rats. Conclusion: These data show that fumarate attenuated hypertension, renal injury and improved the redox state of the kidney in DOCA/salt hypertension by mechanisms involving selective reduction of L-arginine metabolism.
Collapse
Affiliation(s)
- Osaze Edosuyi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, Benin, Nigeria.,Center for Cardiovascular Diseases, Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX, USA
| | - Myung Choi
- Center for Cardiovascular Diseases, Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX, USA
| | - Ighodaro Igbe
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, Benin, Nigeria
| | - Adebayo Oyekan
- Center for Cardiovascular Diseases, Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX, USA
| |
Collapse
|
23
|
Wang HJ, Liu H, Lin YH, Zhang SJ. MiR-32-5p knockdown inhibits epithelial to mesenchymal transition and renal fibrosis by targeting SMAD7 in diabetic nephropathy. Hum Exp Toxicol 2021; 40:587-595. [PMID: 32959695 DOI: 10.1177/0960327120952157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is primary cause of end-stage renal disease. A previous study has shown that miR-32-5p (miR-32) is highly expressed in kidney tissue during chronic allograft dysfunction with interstitial fibrosis and tubular atrophy. However, the role of miR-32-5p (miR-32) in DN is still unclear. In this study, streptozotocin-induced DN rat models and high glucose (HG)-incubated human kidney proximal tubular epithelial (HK-2) cells were established to investigate the role and underlying mechanisms of miR-32 in DN. Results of real-time PCR revealed that miR-32 levels were greatly increased in DN rats and HG-incubated HK-2 cells. Downregulation of miR-32 effectively relieved HG-induced autophagy suppression, fibrosis, epithelial-mesenchymal transition (EMT) and inflammation in HK-2 cells. Besides, miR-32 overexpression significantly down-regulated the expression of mothers against decapentaplegic homolog 7 (SMAD7), whereas knockdown of miR-32 markedly up-regulated the level of SMAD7. Dual-luciferase reporter gene assay confirmed that SMAD7 was a target of miR-32. Reintroduction of SMAD7 expression rescued miR-32-induced HK-2 cells autophagy suppression, EMT and renal fibrosis. Our findings indicate that miR-32 may play roles in the progression of EMT and fibrosis in DN.
Collapse
Affiliation(s)
- H-J Wang
- Department of Endocrinology, The Fourth Affiliated Hospital of 194024Harbin Medical University, Harbin, People's Republic of China
| | - H Liu
- Department of Endocrinology, The Fourth Affiliated Hospital of 194024Harbin Medical University, Harbin, People's Republic of China
| | - Y-H Lin
- Department of Endocrinology, The Fourth Affiliated Hospital of 194024Harbin Medical University, Harbin, People's Republic of China
| | - S-J Zhang
- Department of Endocrinology, The Fourth Affiliated Hospital of 194024Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
24
|
Transforming Growth Factor-β Signaling in Fibrotic Diseases and Cancer-Associated Fibroblasts. Biomolecules 2020; 10:biom10121666. [PMID: 33322749 PMCID: PMC7763058 DOI: 10.3390/biom10121666] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is essential in embryo development and maintaining normal homeostasis. Extensive evidence shows that TGF-β activation acts on several cell types, including epithelial cells, fibroblasts, and immune cells, to form a pro-fibrotic environment, ultimately leading to fibrotic diseases. TGF-β is stored in the matrix in a latent form; once activated, it promotes a fibroblast to myofibroblast transition and regulates extracellular matrix (ECM) formation and remodeling in fibrosis. TGF-β signaling can also promote cancer progression through its effects on the tumor microenvironment. In cancer, TGF-β contributes to the generation of cancer-associated fibroblasts (CAFs) that have different molecular and cellular properties from activated or fibrotic fibroblasts. CAFs promote tumor progression and chronic tumor fibrosis via TGF-β signaling. Fibrosis and CAF-mediated cancer progression share several common traits and are closely related. In this review, we consider how TGF-β promotes fibrosis and CAF-mediated cancer progression. We also discuss recent evidence suggesting TGF-β inhibition as a defense against fibrotic disorders or CAF-mediated cancer progression to highlight the potential implications of TGF-β-targeted therapies for fibrosis and cancer.
Collapse
|
25
|
Zhou SS, Ai ZZ, Li WN, Li L, Zhu XY, Ba YM. Shenkang VII Recipe Attenuates Unilateral Ureteral Obstruction-induced Renal Fibrosis via TGF-β/Smad, NF-κB and SHH Signaling Pathway. Curr Med Sci 2020; 40:917-930. [PMID: 32980902 DOI: 10.1007/s11596-020-2255-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to explore the protective effects of the traditional Chinese Medicine formula Shenkang VII recipe (SK-7) on renal fibrosis and the mechanisms. Renal fibrosis was induced by unilateral ureteral obstruction (UUO) in rats. The rats were then divided into 5 groups: control group (Sham operation), UUO model group, UUO model plus low to high doses of SK-7 (0.5, 1.0, or 2.0 g/kg/day, for 14 days) groups. The animals were sacrificed on the 7th or 14th day. Kidney tissues were collected for histopathological examinations (hematoxylin and eosin and Masson's trichrome staining). Immunohistochemistry was used to detect the expression of collagen type III (Col III), fibronectin (FN), α-smooth muscle actin (α-SMA), TIMP metallopeptidase inhibitor 2 (TIMP2), matrix metallopeptidase 2 (MMP2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and monocyte chemotactic protein-1 (MCP-1). The TGF-β1/Smad, NF-kB and Sonic hedgehog signaling proteins were detected by Western blotting. Our results showed that SK-7 prevented UUO-induced renal injury and accumulation of collagen fibrils. Renal fibrosis biomarkers Col III, FN, α-SMA and TIMP2 were increased in the rats after UUO and decreased by SK-7, while MMP2 was upregulated after treatment. SK-7 also suppressed the levels of TNF-α, IL-1β and MCP-1 in UUO rats. In addition, SK-7 inhibited activation of the TGF-β/Smad, NF-κB and sonic hedgehog signaling (SHH) pathways. Taken together, these findings suggest that SK-7 may regulate the synthesis and degradation of extracellular matrix, reduce inflammation and suppress the proliferation of fibroblasts, by blocking the TGF-β1/Smad, NF-κB and SHH signaling pathways to exert its anti-renal fibrosis effect in UUO rats.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhong-Zhu Ai
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wei-Nan Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, 430061, China
| | - Liang Li
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Yun Zhu
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yuan-Ming Ba
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China. .,Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
26
|
Wang Y, Chen T, Pan Z, Lin Z, Yang L, Zou B, Yao W, Feng D, Huangfu C, Lin C, Wu G, Ling H, Liu G. 8-Oxoguanine DNA glycosylase modulates the cell transformation process in pulmonary fibrosis by inhibiting Smad2/3 and interacting with Smad7. FASEB J 2020; 34:13461-13473. [PMID: 32808374 DOI: 10.1096/fj.201901291rrrrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 11/11/2022]
Abstract
The DNA repair enzyme 8-oxoguanine DNA glycosylase-1 (OGG1) is involved in early embryonic development, as well as in multiple conditions, including cardiac fibrosis, diabetes, and neurodegenerative diseases. But, function of OGG1 in pulmonary fibrosis was not entirely clear. In this study, we identified a novel function of OGG1 in the cell transformation process in pulmonary fibrosis. We demonstrated that OGG1 and Smad7 co-localize and interact in A549 cells. Bleomycin-induced pulmonary fibrosis was established in wild-type (WT) and Ogg1-/- mice. Upon treatment with transforming growth factor (TGF)-β1, increased OGG1 expression was observed in WT mice with pulmonary fibrosis as well as in A549 cells, MRC-5 cells, and primary rat type II alveolar epithelial cells. The increased expression of OGG1 promoted cell migration, while OGG1 depletion decreased migration ability. Expression of the transformation-associated markers vimentin and alpha-smooth muscle actin were also affected by OGG1. We also observed that OGG1 promoted TGF-β1-induced cell transformation and activated Smad2/3 by interacting with Smad7. The interaction between OGG1 and the TGF-β/Smad axis modulates the cell transformation process in lung epithelial cells and fibroblasts. Moreover, we demonstrated that Ogg1 deficiency relieved pulmonary fibrosis in bleomycin-treated mice. Ogg1 knockout decreased the bleomycin-induced expression of Smad7 and phosphorylation of Smad2/3 in mice. These findings suggest that OGG1 has multiple biological functions in the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ting Chen
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhanchun Pan
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziying Lin
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Baoan Zou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weimin Yao
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Dehui Feng
- Elderly Medical Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Changmei Huangfu
- Elderly Medical Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunyu Lin
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guiqing Wu
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huayu Ling
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
27
|
Xiang E, Han B, Zhang Q, Rao W, Wang Z, Chang C, Zhang Y, Tu C, Li C, Wu D. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res Ther 2020; 11:336. [PMID: 32746936 PMCID: PMC7397631 DOI: 10.1186/s13287-020-01852-y] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/01/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Background Diabetic nephropathy (DN) is one of the most serious complications of diabetes and the leading cause of end-stage chronic kidney disease. Currently, there are no effective drugs for treating DN. Therefore, novel and effective strategies to ameliorate DN at the early stage should be identified. This study aimed to explore the effectiveness and underlying mechanisms of human umbilical cord mesenchymal stem cells (UC-MSCs) in DN. Methods We identified the basic biological properties and examined the multilineage differentiation potential of UC-MSCs. Streptozotocin (STZ)-induced DN rats were infused with 2 × 106 UC-MSCs via the tail vein at week 6. After 2 weeks, we measured blood glucose level, levels of renal function parameters in the blood and urine, and cytokine levels in the kidney and blood, and analyzed renal pathological changes after UC-MSC treatment. We also determined the colonization of UC-MSCs in the kidney with or without STZ injection. Moreover, in vitro experiments were performed to analyze cytokine levels of renal tubular epithelial cell lines (NRK-52E, HK2) and human renal glomerular endothelial cell line (hrGECs). Results UC-MSCs significantly ameliorated functional parameters, such as 24-h urinary protein, creatinine clearance rate, serum creatinine, urea nitrogen, and renal hypertrophy index. Pathological changes in the kidney were manifested by significant reductions in renal vacuole degeneration, inflammatory cell infiltration, and renal interstitial fibrosis after UC-MSC treatment. We observed that the number of UC-MSCs recruited to the injured kidneys was increased compared with the controls. UC-MSCs apparently reduced the levels of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) and pro-fibrotic factor (TGF-β) in the kidney and blood of DN rats. In vitro experiments showed that UC-MSC conditioned medium and UC-MSC-derived exosomes decreased the production of these cytokines in high glucose-injured renal tubular epithelial cells, and renal glomerular endothelial cells. Moreover, UC-MSCs secreted large amounts of growth factors including epidermal growth factor, fibroblast growth factor, hepatocyte growth factor, and vascular endothelial growth factor. Conclusion UC-MSCs can effectively improve the renal function, inhibit inflammation and fibrosis, and prevent its progression in a model of diabetes-induced chronic renal injury, indicating that UC-MSCs could be a promising treatment strategy for DN.
Collapse
Affiliation(s)
- E Xiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China.,Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Bing Han
- Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Quan Zhang
- Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Wei Rao
- Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | | | - Cheng Chang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yaqi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chengshu Tu
- Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China.
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China. .,Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China.
| |
Collapse
|
28
|
Ikezaki M, Nishioka N, Nishikawa T, Higashimoto N, Ihara Y. Hsc70 is required for E-cadherin expression in epithelial-like NRK-52E cells. Biochem Biophys Res Commun 2020; 527:481-488. [PMID: 32336545 DOI: 10.1016/j.bbrc.2020.04.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 11/28/2022]
Abstract
Heat-shock cognate protein 70 (Hsc70), a molecular chaperone, is involved in multiple cellular functions. We previously demonstrated that Hsc70 is required for TGF-β-induced Smad signaling in mesenchymal-like NRK-49F cells. In the present study, to compare the Hsc70 functions in TGF-β-related signaling between epithelial and mesenchymal cells, we examined the effect of Hsc70 downregulation on TGF-β-induced signaling in epithelial-like NRK-52E cells. TGF-β-induced Smad signaling was suppressed in cells treated with small interfering RNA (siRNA) for Hsc70. Interestingly, despite interference with TGF-β signaling, TGF-β-induced suppression of E-cadherin expression was not affected by Hsc70 knockdown. Instead, Hsc70 knockdown itself caused the suppression of E-cadherin expression at the transcription level in cells treated with Hsc70 siRNA. We also examined the effects of Hsc70 knockdown on the level of E-cadherin-gene repressors, such as Snail1, Slug, Zeb1, Zeb2, and Twist1, and found that transcription of the repressors was upregulated after 24- or 36-h treatment with Hsc70 siRNA. Collectively, these results indicate that, in addition to a supportive role in TGF-β-induced signaling, Hsc70 supports E-cadherin expression through downregulation of the E-cadherin-gene repressors in NRK-52E cells, suggesting that Hsc70 plays a functional role to maintain the epithelial cell phenotype.
Collapse
Affiliation(s)
- Midori Ikezaki
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naoki Nishioka
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Taro Nishikawa
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Natsuki Higashimoto
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yoshito Ihara
- Department of Biochemistry, School of Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
29
|
Abstract
Renal fibrosis is a hallmark of chronic kidney disease. Although considerable achievements in the pathogenesis of renal fibrosis have been made, the underlying mechanisms of renal fibrosis remain largely to be explored. Now we have reached the consensus that TGF-β is a master regulator of renal fibrosis. Indeed, TGF-β regulates renal fibrosis via both canonical and noncanonical TGF-β signaling. Moreover, ongoing renal inflammation promotes fibrosis as inflammatory cells such as macrophages, conventional T cells and mucosal-associated invariant T cells may directly or indirectly contribute to renal fibrosis, which is also tightly regulated by TGF-β. However, anti-TGF-β treatment for renal fibrosis remains ineffective and nonspecific. Thus, research into mechanisms and treatment of renal fibrosis remains highly challenging.
Collapse
|
30
|
Gu YY, Liu XS, Huang XR, Yu XQ, Lan HY. Diverse Role of TGF-β in Kidney Disease. Front Cell Dev Biol 2020; 8:123. [PMID: 32258028 PMCID: PMC7093020 DOI: 10.3389/fcell.2020.00123] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation and fibrosis are two pathological features of chronic kidney disease (CKD). Transforming growth factor-β (TGF-β) has been long considered as a key mediator of renal fibrosis. In addition, TGF-β also acts as a potent anti-inflammatory cytokine that negatively regulates renal inflammation. Thus, blockade of TGF-β inhibits renal fibrosis while promoting inflammation, revealing a diverse role for TGF-β in CKD. It is now well documented that TGF-β1 activates its downstream signaling molecules such as Smad3 and Smad3-dependent non-coding RNAs to transcriptionally and differentially regulate renal inflammation and fibrosis, which is negatively regulated by Smad7. Therefore, treatments by rebalancing Smad3/Smad7 signaling or by specifically targeting Smad3-dependent non-coding RNAs that regulate renal fibrosis or inflammation could be a better therapeutic approach. In this review, the paradoxical functions and underlying mechanisms by which TGF-β1 regulates in renal inflammation and fibrosis are discussed and novel therapeutic strategies for kidney disease by targeting downstream TGF-β/Smad signaling and transcriptomes are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
31
|
Effect of Jiawei Fengshining on Synovial Cell Apoptosis and TGF- β1/Smad Signaling Pathway in Rats with Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:8614034. [PMID: 31929822 PMCID: PMC6942847 DOI: 10.1155/2019/8614034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 11/21/2022]
Abstract
Background/Aims Jiawei Fengshining (JWFSN) is a new formula originated from Fengshining, a classic formula for the treatment of rheumatoid arthritis (RA). The mechanism of JWFSN in the treatment of RA is still unclear. The aim of this study was to evaluate the effect of JWFSN formula on the inflammatory mediator levels in the serum and the TGF-β1/Smad pathway in the synovium and to explore the underlying mechanisms of JWFSN formula to ameliorate synovial hyperplasia and apoptosis inhibition of synovium in rats with RA. Method SPF female Wistar rats were randomly divided into 6 groups: the blank control group, the model control group, the positive drug group, and the low-, medium-, and high- dose JWFSN groups, with 8 rats in each group. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory mediators, anti-inflammatory mediators, and rheumatoid factor (RF). The pathological condition and apoptosis of the synovial tissue were detected by hematoxylin and eosin (HE) and TUNEL staining, respectively. TGF-β1, p-Smad2, p-Smad3, and Smad7 protein expressions in synovial tissue were measured by western blot assay. In addition, human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A was treated with 20% JWFSN-containing serum to obtain in vitro data. Result The administration of JWFSN was found to ameliorate synovial hyperplasia and promote apoptosis; increase the serum contents of anti-inflammatory mediators; reduce inflammatory mediators and RF contents; and inhibit the TGF-β1/Smad signaling pathway in CIA rats. In vitro JWFSN treatment increased the apoptosis of MH7A cells and decreased cell viability. Additionally, JWFSN treatment inhibited the TGF-β1/Smad signaling pathway in MH7A cells. Interestingly, kartogenin (TGF-β1/Smad pathway activator) treament reversed the effects of JWFSN treatment. Conclusion JWFSN may ameliorate inflammatory factors' abnormality, synovial hyperplasia, and apoptosis inhibition of synovium via the TGF-β1/Smad signaling pathway.
Collapse
|
32
|
Chen Y, Zhang Q, Zhou Y, Yang Z, Tan M. Inhibition of miR-182-5p attenuates pulmonary fibrosis via TGF-β/Smad pathway. Hum Exp Toxicol 2019; 39:683-695. [PMID: 31884830 DOI: 10.1177/0960327119895549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with high morbidity and mortality. miR-182-5p is overexpressed in several fibrosis-related diseases but its effect in pulmonary fibrosis has not been reported yet. To investigate the function of miR-182-5p in pulmonary fibrosis, we established bleomycin (BLM)-induced fibrotic mice model and transforming growth factor-β1 (TGF-β1)-treated human embryonic lung fibroblasts model. In this study, miR-182-5p was highly expressed in pulmonary tissues of BLM-induced fibrotic mice. The content of hydroxyproline and TGF-β1 was decreased by downregulating the expression of miR-182-5p, indicating that fibrosis was alleviated in mice treated with Lentivirus-anti-miR-182-5p.Quantification of fibrosis-related proteins demonstrated that downregulation of miR-182-5p inhibited the expression of profibrotic proteins (fibronectin, α-smooth muscle actin, p-Smad2/p-Smad3) as well as enhanced the level of Smad7. In vitro assays validated that miR-182-5p was induced by TGF-β1 with the function of promoting fibrosis. In dual-luciferase reporter assay, Smad7 was demonstrated to be negatively regulated by miR-182-5p. Moreover, the effect of knocking down miR-182-5p on inhibiting fibrosis was achieved by upregulating the expression of Smad7. Therefore, miR-182-5p can be regarded as a biomarker of IPF and its inhibition may be a promising therapeutic approach in treating IPF.
Collapse
Affiliation(s)
- Y Chen
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Q Zhang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Y Zhou
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Z Yang
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - M Tan
- Department of Respiratory Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
33
|
Ai K, Zhu X, Kang Y, Li H, Zhang L. miR-130a-3p inhibition protects against renal fibrosis in vitro via the TGF-β1/Smad pathway by targeting SnoN. Exp Mol Pathol 2019; 112:104358. [PMID: 31836508 DOI: 10.1016/j.yexmp.2019.104358] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/16/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Renal fibrosis, a common pathological outcome of chronic kidney disease (CKD), is characterized by extracellular matrix (ECM) accumulation, damage to the tubular epithelium, and the proliferation and activation of fibroblasts. SnoN, a TGF-β1/Smad transcriptional co-suppressor, is downregulated in obstructive nephropathy. However, the relationship between miR-130a-3p and SnoN expression in the regulation of renal fibrosis is still unknown. METHODS We used human renal proximal tubular epithelial cells (HRPTEpiCs, HK-2 and primary HRPTEpiCs) treated with TGF-β1 to establish an in vitro renal fibrosis model. The expression of miR-130a-3p, SnoN and other proteins related to epithelial mesenchymal transition (EMT) and TGF-β1/Smad signalling was investigated by western blotting or qRT-PCR. A luciferase reporter assay was conducted to confirm the interaction of SnoN mRNA and miR-130a-3p. The translocation of p-Smad 2/3 and Smad 7 was determined using immunofluorescence staining. RESULTS After TGF-β1 treatment, miR-130a-3p was highly expressed in renal tubular epithelial cells, while SnoN was poorly expressed. The cell morphology changed to fibroblast-like, indicating evidence of EMT. The levels of EMT and fibrosis-related proteins were decreased through miR-130a-3p inhibition. Additionally, miR-130a-3p acted upon the 3'-UTR of SnoN directly to suppress SnoN expression. Furthermore, miR-130a-3p/SnoN promoted the activation of TGF-β1/Smad signalling, as revealed by p-Smad 2/3 and Smad 7 expression levels and distribution patterns. CONCLUSION Our study verified that miR-130a-3p facilitates the TGF-β1/Smad pathway in renal tubular epithelial cells and may participate in renal fibrosis by targeting SnoN, which could be a possible strategy for renal fibrosis treatment.
Collapse
Affiliation(s)
- Kai Ai
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Xuan Zhu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Ye Kang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Hu Li
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Lei Zhang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
34
|
Liu L, Zou J, Guan Y, Zhang Y, Zhang W, Zhou X, Xiong C, Tolbert E, Zhao TC, Bayliss G, Zhuang S. Blocking the histone lysine 79 methyltransferase DOT1L alleviates renal fibrosis through inhibition of renal fibroblast activation and epithelial-mesenchymal transition. FASEB J 2019; 33:11941-11958. [PMID: 31373855 DOI: 10.1096/fj.201801861r] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Disruptor of telomeric silencing-1 like (DOT1L) protein specifically catalyzes the methylation of histone H3 on Lys79 (H3K79) and is implicated in tumors. But its role in tissue fibrosis remains unclear. Here we demonstrated that injury to the kidney increased DOT1L expression and H3K79 dimethylation in renal tubular epithelial cells and myofibroblasts in a murine model of unilateral ureteral obstruction. Administration of EPZ5676, a highly selective inhibitor of DOT1L, attenuated renal fibrosis. Treatment with EPZ5676 or DOT1L small interfering RNA also inhibited TGF-β1 and serum-induced activation of renal interstitial fibroblasts and epithelial-mesenchymal transition (EMT) in vitro. Moreover, blocking DOT1L abrogated injury-induced epithelial G2/M arrest; reduced expression of Snail, Twist, and Notch1; and inactivated several profibrotic signaling molecules in the injured kidney, including Smad3, epidermal growth factor receptor, platelet-derived growth factor receptor, signal transducer and activator of transcription 3, protein kinase B, and NF-κB. Conversely, DOT1L inhibition increased expression of phosphatase and tensin homolog, a protein associated with dephosphorylation of tyrosine kinase receptors, and prevented decline in levels of Klotho and Smad7, 2 renoprotective factors. Thus, our data indicate that targeting DOT1L attenuates renal fibrosis through inhibition of renal fibroblasts and EMT by suppressing activation of multiple profibrotic signaling pathways while retaining expression of renoprotective factors.-Liu, L., Zou, J., Guan, Y., Zhang, Y., Zhang, W., Zhou, X., Xiong, C., Tolbert, E., Zhao, T. C., Bayliss, G., Zhuang, S. Blocking the histone lysine 79 methyltransferase DOT1L alleviates renal fibrosis through inhibition of renal fibroblast activation and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Lirong Liu
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Clinical Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianan Zou
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yingjie Guan
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Yunhe Zhang
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Wei Zhang
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Xiaoxu Zhou
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Chongxiang Xiong
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Evelyn Tolbert
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Ting C Zhao
- Department of Surgery, Roger Williams Medical Center-Boston University Medical School, Providence, Rhode Island, USA
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island, USA.,Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
You YK, Luo Q, Wu WF, Zhang JJ, Zhu HJ, Lao L, Lan HY, Chen HY, Cheng YX. Petchiether A attenuates obstructive nephropathy by suppressing TGF-β/Smad3 and NF-κB signalling. J Cell Mol Med 2019; 23:5576-5587. [PMID: 31211499 PMCID: PMC6652659 DOI: 10.1111/jcmm.14454] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/14/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Obstructive nephropathy is the end result of a variety of diseases that block drainage from the kidney(s). Transforming growth factor‐β1 (TGF‐β1)/Smad3‐driven renal fibrosis is the common pathogenesis of obstructive nephropathy. In this study, we identified petchiether A (petA), a novel small‐molecule meroterpenoid from Ganoderma, as a potential inhibitor of TGF‐β1‐induced Smad3 phosphorylation. The obstructive nephropathy was induced by unilateral ureteral obstruction (UUO) in mice. Mice received an intraperitoneal injection of petA/vehicle before and after UUO or sham operation. An in vivo study revealed that petA protected against renal inflammation and fibrosis by reducing the infiltration of macrophages, inhibiting the expression of proinflammatory cytokines (interleukin‐1β and tumour necrosis factor‐α) and reducing extracellular matrix deposition (α‐smooth muscle actin, collagen I and fibronectin) in the obstructed kidney of UUO mice; these changes were associated with suppression of Smad3 and NF‐κB p65 phosphorylation. Petchiether A inhibited Smad3 phosphorylation in vitro and down‐regulated the expression of the fibrotic marker collagen I in TGF‐β1‐treated renal epithelial cells. Further, we found that petA dose‐dependently suppressed Smad3‐responsive promoter activity, indicating that petA inhibits gene expression downstream of the TGF‐β/Smad3 signalling pathway. In conclusion, our findings suggest that petA protects against renal inflammation and fibrosis by selectively inhibiting TGF‐β/Smad3 signalling.
Collapse
Affiliation(s)
- Yong-Ke You
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qi Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei-Feng Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiao-Jiao Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Hong-Jian Zhu
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Lixing Lao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Hui Y Lan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hai-Yong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yong-Xian Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
36
|
Liang Y, Chen G, Yang Y, Li Z, Chen T, Sun W, Yu M, Pan K, Guo W, Tian W. Effect of canonical NF-κB signaling pathway on the differentiation of rat dental epithelial stem cells. Stem Cell Res Ther 2019; 10:139. [PMID: 31109359 PMCID: PMC6528379 DOI: 10.1186/s13287-019-1252-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nuclear factor-κB (NF-κB), an important transcription factor, participates in many physiological and pathological processes such as growth, differentiation, organogenesis, apoptosis, inflammation, and immune response, including tooth development. However, it is still unknown whether NF-κB participates in the regulation of dental epithelial stem cells (DESCs) in postnatal rat incisors. Here, we investigated the specific differentiation regulatory mechanisms of the canonical NF-κB signaling pathway in DESCs and provided the mechanism of cross-talk involved in DESC differentiation. METHODS After adding the activator or inhibitor of the NF-κB signaling pathway, Western blot and quantitative real-time PCR were used to analyze the expressions of amelogenesis-related genes and proteins and canonical transforming growth factor-β (TGF-β) signaling. In addition, we used amelogenesis induction in vitro by adding the activator or inhibitor of the NF-κB signaling pathway to the amelogenesis-induction medium, respectively. Recombinant TGF-β was used to activate the TGF-β pathway, and SMAD7 siRNA was used to downregulate the expression of SMAD7 in DESCs. RESULTS We found that the expression of amelogenesis-related genes and proteins as well as TGF-β signaling were downregulated, while SMAD7 expression was increased in NF-κB-activated DESCs. In addition, NF-κB-inhibited DESCs exhibited opposite results compared with NF-κB-activated DESCs. Furthermore, the canonical NF-κB signaling pathway suppressed the canonical TGF-β-SMAD signaling by inducing SMAD7 expression involved in the regulation of DESC differentiation. CONCLUSIONS These results indicate that the canonical NF-κB signaling pathway participated in the regulation of DESC differentiation, which was through upregulating SMAD7 expression and further suppressing the canonical TGF-β-SMAD signaling pathway.
Collapse
Affiliation(s)
- Yan Liang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, People's Republic of China.,Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Guoqing Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yuzhi Yang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Pediatric Dentistry, West China College of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Ziyue Li
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tian Chen
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wenhua Sun
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mei Yu
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Kuangwu Pan
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, People's Republic of China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China. .,Department of Pediatric Dentistry, West China College of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, People's Republic of China.
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China. .,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin South Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
37
|
Ahmad T, Suzuki YJ. Juglone in Oxidative Stress and Cell Signaling. Antioxidants (Basel) 2019; 8:antiox8040091. [PMID: 30959841 PMCID: PMC6523217 DOI: 10.3390/antiox8040091] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Juglone (5-hydroxyl-1,4-naphthoquinone) is a phenolic compound found in walnuts. Because of the antioxidant capacities of phenolic compounds, juglone may serve to combat oxidative stress, thereby protecting against the development of various diseases and aging processes. However, being a quinone molecule, juglone could also act as a redox cycling agent and produce reactive oxygen species. Such prooxidant properties of juglone may confer health effects, such as by killing cancer cells. Further, recent studies revealed that juglone influences cell signaling. Notably, juglone is an inhibitor of Pin1 (peptidyl-prolyl cis/trans isomerase) that could regulate phosphorylation of Tau, implicating potential effects of juglone in Alzheimer’s disease. Juglone also activates mitogen-activated protein kinases that could promote cell survival, thereby protecting against conditions such as cardiac injury. This review describes recent advances in the understanding of the effects and roles of juglone in oxidative stress and cell signaling.
Collapse
Affiliation(s)
- Taseer Ahmad
- College of Pharmacy, University of Sargodha, Sargodha, Punjab 40100, Pakistan.
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA.
| |
Collapse
|
38
|
Hu B, Mao Z, Du Q, Jiang X, Wang Z, Xiao Z, Zhu D, Wang X, Zhu Y, Wang H. miR-93-5p targets Smad7 to regulate the transforming growth factor-β1/Smad3 pathway and mediate fibrosis in drug-resistant prolactinoma. Brain Res Bull 2019; 149:21-31. [PMID: 30946881 DOI: 10.1016/j.brainresbull.2019.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
Prolactinoma is a common subtype of pituitary tumors. Dopamine receptor agonists are the preferred treatment for prolactinoma; however, with this therapy, drug resistance often occurs. In our previous work, we found that partial resistant prolactinomas showed increased fibrosis and that the transforming growth factor (TGF)-β1/Smad3 signaling pathway mediated fibrosis and was involved in drug resistance. Additionally, the success of surgery is known to be heavily influenced by the consistency of the pituitary adenoma. Therefore, in this study, we aimed to clarify the mechanisms of fibrosis in prolactinoma. Using high-throughput sequencing for analysis of microRNAs, we found that miR-93-5p was significantly upregulated in prolactinoma samples with a high degree of fibrosis compared with that in samples without fibrosis. Furthermore, we found that miR-93-5p was negatively correlated with the relative expression of Smad7 and positively correlated with the relative expression of TGF-β1 in clinical prolactinoma samples. In addition, luciferase reporter assays showed that miR-93-5p could downregulate the Smad7 gene, an important inhibitor of the TGF-β1/Smad3 signaling pathway, and activate TGF-β1/Smad3 signaling-mediated fibrosis in a feed-forward loop. Moreover, miR-93-5p could enhance the drug resistance of prolactinoma cells by regulation of TGF-β1/Smad3-dependent fibrosis. Taken together, our findings demonstrated that miR-93-5p may be a potential therapeutic target for inhibiting fibrosis and reducing drug resistance in prolactinoma cells.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhigang Mao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiu Du
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Zongming Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zheng Xiao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dimin Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonghong Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Haijun Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
39
|
Li J, Qiu P, Wang S, Wu J, He Q, Li K, Xu L. β-N-Oxalyl-L-α,β-diaminopropionic acid from Panax notoginseng plays a major role in the treatment of type 2 diabetic nephropathy. Biomed Pharmacother 2019; 114:108801. [PMID: 30928803 DOI: 10.1016/j.biopha.2019.108801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the most serious and dangerous chronic complications of diabetes mellitus.Panax notoginseng has been widely used with great efficacy in the long-term treatment of kidney disease. However, the mechanism by which it exerts its effects has not been fully elucidated. AIM We sought to identify the major components ofPanax notoginseng that are effective in reducing the symptoms of DN in vitro and in vivo. METHODS Inhibition of cell proliferation and collagen secretion were used to screen the ten most highly concentrated components ofPanax notoginseng. The STZ-induced DN rat model on a high-fat-high-glucose diet was used to investigate the renal protective effect of Panax notoginseng and dencichine and their underlying molecular mechanisms. RESULTS Among the ten components analysed, dencichine (β-N-oxalyl-L-α,β-diaminopropionic acid) was the most protective against DN. Dencichine andPanax notoginseng attenuated glucose and lipid metabolic disorders in STZ-induced DN rats on a high-fat-high-glucose diet. In the untreated DN rats, we observed albuminuria, renal failure, and pathological changes. However, treatment with dencichine and Panax notoginseng alleviated these symptoms. We also observed that dencichine suppressed the expression of TGF-β1 and Smad2/3, which mediates mesangial cell proliferation and extracellular matrix (ECM) accumulation in the glomerulus, and enhanced the expression of Smad7, the endogenous inhibitor of the TGF-β1/Smad signalling pathway. CONCLUSION From these results, we concluded that dencichine is the main compound inPanax notoginseng that is responsible for alleviating renal injury in the experimental DN model. Its mechanism may be related to the reduction of the deposition of ECM in glomeruli and inhibition of the epithelial mesenchymal transformation (EMT) by inhibition of the TGF-β1/Smad signalling pathway.
Collapse
Affiliation(s)
- Jie Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, 710032, Xi'an, China
| | - Pengcheng Qiu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, 710032, Xi'an, China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, 710032, Xi'an, China; School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| | - Junsheng Wu
- School of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Qiaoyan He
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, 710032, Xi'an, China
| | - Kaifeng Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, 710032, Xi'an, China
| | - Lu Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, 710032, Xi'an, China
| |
Collapse
|
40
|
Shukla SK, Rafiq K. Proteasome biology and therapeutics in cardiac diseases. Transl Res 2019; 205:64-76. [PMID: 30342797 PMCID: PMC6372329 DOI: 10.1016/j.trsl.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
The ubiquitin proteasome system (UPS) is the major pathway for intracellular protein degradation in most organs, including the heart. UPS controls many fundamental biological processes such as cell cycle, cell division, immune responses, antigen presentation, apoptosis, and cell signaling. The UPS not only degrades substrates but also regulates activity of gene transcription at the post-transcription level. Emerging evidence suggests that impairment of UPS function is sufficient to cause a number of cardiac diseases, including heart failure, cardiomyopathies, hypertrophy, atrophy, ischemia-reperfusion, and atherosclerosis. Alterations in the expression of UPS components, changes in proteasomal peptidase activities and increased ubiquitinated and oxidized proteins have also been detected in diabetic cardiomyopathy (DCM). However, the pathophysiological role of the UPS in DCM has not been examined. Recently, in vitro and in vivo studies have proven highly valuable in assessing effects of various stressors on the UPS and, in some cases, suggesting a causal link between defective protein clearance and disease phenotypes in different cardiac diseases, including DCM. Translation of these findings to human disease can be greatly strengthened by corroboration of discoveries from experimental model systems using human heart tissue from well-defined patient populations. This review will summarize the general role of the UPS in different cardiac diseases, with major focus on DCM, and on recent advances in therapeutic development.
Collapse
Affiliation(s)
- Sanket Kumar Shukla
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Khadija Rafiq
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
41
|
Zhou G, Sun X, Qin Q, Lv J, Cai Y, Wang M, Mu R, Lan HY, Wang QW. Loss of Smad7 Promotes Inflammation in Rheumatoid Arthritis. Front Immunol 2018; 9:2537. [PMID: 30450102 PMCID: PMC6224447 DOI: 10.3389/fimmu.2018.02537] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022] Open
Abstract
Objective: Smad7 is an inhibitory Smad and plays a protective role in many inflammatory diseases. However, the roles of Smad7 in rheumatoid arthritis (RA) remain unexplored, which were investigated in this study. Methods: The activation of TGF-β/Smad signaling was examined in synovial tissues of patients with RA. The functional roles and mechanisms of Smad7 in RA were determined in a mouse model of collagen-induced arthritis (CIA) in Smad7 wild-type (WT) and knockout (KO) CD-1 mice, a strain resistant to autoimmune arthritis induction. Results: TGF-β/Smad3 signaling was markedly activated in synovial tissues of patients with RA, which was associated with the loss of Smad7, and enhanced Th17 and Th1 immune response. The potential roles of Smad7 in RA were further investigated in a mouse model of CIA in Smad7 WT/KO CD-1 mice. As expected, Smad7-WT CD-1 mice did not develop CIA. Surprisingly, CD-1 mice with Smad7 deficiency developed severe arthritis including severe joint swelling, synovial hyperplasia, cartilage damage, massive infiltration of CD3+ T cells and F4/80+ macrophages, and upregulation of proinflammatory cytokines IL-1β, TNFα, and MCP-1. Further studies revealed that enhanced arthritis in Smad7 KO CD-1 mice was associated with increased Th1, Th2 and, importantly, Th17 over the Treg immune response with overactive TGF-β/Smad3 and proinflammatory IL-6 signaling in the joint tissues. Conclusions: Smad7 deficiency increases the susceptibility to autoimmune arthritis in CD-1 mice. Enhanced TGF-β/Smad3-IL-6 signaling and Th17 immune response may be a mechanism through which disrupted Smad7 causes autoimmune arthritis in CD-1 mice.
Collapse
Affiliation(s)
- Gengmin Zhou
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital, Peking, China
| | - Qingxia Qin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiyang Lv
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yueming Cai
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Meiying Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Rong Mu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Peking, China
| | - Hui-Yao Lan
- Department of Medicine and therapeutics, Li KaShing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Qing-Wen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
42
|
Wang P, Luo ML, Song E, Zhou Z, Ma T, Wang J, Jia N, Wang G, Nie S, Liu Y, Hou F. Long noncoding RNA lnc-TSI inhibits renal fibrogenesis by negatively regulating the TGF-β/Smad3 pathway. Sci Transl Med 2018; 10:eaat2039. [PMID: 30305452 DOI: 10.1126/scitranslmed.aat2039] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/11/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
Abstract
Transforming growth factor-β (TGF-β) is a well-established central mediator of renal fibrosis, a common outcome of almost all progressive chronic kidney diseases. Here, we identified a poorly conserved and kidney-enriched long noncoding RNA in TGF-β1-stimulated human tubular epithelial cells and fibrotic kidneys, which we termed TGF-β/Smad3-interacting long noncoding RNA (lnc-TSI). Lnc-TSI was transcriptionally regulated by Smad3 and specifically inhibited TGF-β-induced Smad3 phosphorylation and downstream profibrotic gene expression. Lnc-TSI acted by binding with the MH2 domain of Smad3, blocking the interaction of Smad3 with TGF-β receptor I independent of Smad7. Delivery of human lnc-TSI into unilateral ureteral obstruction (UUO) mice, a well-established model of renal fibrosis, inhibited phosphorylation of Smad3 in the kidney and attenuated renal fibrosis. In a cohort of 58 patients with biopsy-confirmed IgA nephropathy (IgAN), lnc-TSI renal expression negatively correlated with the renal fibrosis index (r = -0.56, P < 0.001) after adjusting for cofounders. In a longitudinal study, 32 IgAN patients with low expression of renal lnc-TSI at initial biopsy had more pronounced increases in their renal fibrosis index and experienced stronger declines in renal function at repeat biopsy at a mean of 48 months of follow-up. These data suggest that lnc-TSI reduced renal fibrogenesis through negative regulation of the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Peng Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China
| | - Man-Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhanmei Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China
| | - Tongtong Ma
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China
| | - Jun Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China
| | - Nan Jia
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China
| | - Guobao Wang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China
| | - Sheng Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China
| | - FanFan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangzhou 510515, China.
| |
Collapse
|
43
|
Ramazani Y, Knops N, Elmonem MA, Nguyen TQ, Arcolino FO, van den Heuvel L, Levtchenko E, Kuypers D, Goldschmeding R. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol 2018; 68-69:44-66. [DOI: 10.1016/j.matbio.2018.03.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
|
44
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 329] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
45
|
Chen P, Luo Q, Huang C, Gao Q, Li L, Chen J, Chen B, Liu W, Zeng W, Chen Z. Pathogenesis of non-alcoholic fatty liver disease mediated by YAP. Hepatol Int 2018; 12:26-36. [PMID: 29330836 DOI: 10.1007/s12072-017-9841-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/27/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study aimed to investigate the mechanism of the interaction between Yes-associated protein (YAP) and transforming growth factor-β (TGF-β)/Smad signaling pathways in the development of non-alcoholic fatty liver disease (NAFLD). METHODS Serum samples of monkeys with biopsy-proven NAFLD and healthy normal monkeys were used to measure fasting plasma glucose (FPG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG) and albumin (ALB) with the BECKMAN CX5 PRO. Hematoxylin-eosin staining (H&E) was used for pathologic analysis, Masson trichrome staining was used to assess for fibrosis staging, and Oil Red O staining was used to detect lipid droplet deposition. According to an NAFLD activity score of < 4 points and > 4 points, the samples were divided into groups: the steatosis group and fibrosing NASH group. Furthermore, monkeys with a fibrosis stage < 2 were assigned to the mild fibrosis group, while monkeys with fibrosis stage ≥ 2 were assigned to the significant fibrosis group. Moreover, the fibrosis stage was subdivided as follows: stages 1a, 1c and 2-3. Immunohistochemistry and real-time quantitative PCR were used to quantify protein and gene expression, respectively. RESULTS In the present study, 54 monkeys with NAFLD and 23 normal monkeys were recruited. Serum FPG and TG levels were higher in fibrosing NASH monkeys compared with simple steatosis and normal monkeys, and differences between simple steatosis and normal monkeys were not statistically significant (p > 0.05). YAP increased in NAFLD, which mainly localized in the nuclei of hepatocytes, perivascular cells and bile duct cells; the accumulation of YAP correlated with the severity of hepatocyte injury. Compared with normal monkeys, the expression of TGF-β, α-smooth muscle actin (α-SMA), Drosophila mothers against decapentaplegic protein 3 (Smad3) and connective tissue growth factor (CTGF) in the liver of simple steatosis monkeys significantly increased (p < 0.01). Compared with simple steatosis monkeys, the expression of TGF-β, α-SMA, Smad3 and CTGF in fibrosing NASH significantly increased (p < 0.01). However, the expression of Drosophila mothers against decapentaplegic protein 7 (Smad7) in the liver of fibrosing NASH monkeys significantly decreased (p < 0.01). With the severity of liver fibrosis, the expression of TGF-β, α-SMA, Smad3 and CTGF gradually increased, and the difference was statistically significant (p < 0.01). However, there was no significant difference in the expression of Smad3 between fibrosis stage 1a and 1c. Compared with normal monkeys, the expression of Smad7 in the liver of monkeys with fibrosis significantly decreased (p < 0.01), but was significantly higher at fibrosis stage 1c than at fibrosis stage 1a and 2. CONCLUSION The YAP and TGF-β signaling pathways and the interaction between them promote the development and progression of NAFLD.
Collapse
Affiliation(s)
- Ping Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qihui Luo
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Chao Huang
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qi Gao
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Like Li
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingfei Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bing Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wentao Liu
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Wen Zeng
- Sichuan Primed Biological Technology Co., Ltd/National Experimental Macaque Reproduce Laboratory, Ya'an, 625014, Sichuan, China
| | - Zhengli Chen
- Laboratory of Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China.
| |
Collapse
|
46
|
Liu X, Mujahid H, Rong B, Lu QH, Zhang W, Li P, Li N, Liang ES, Wang Q, Tang DQ, Li NL, Ji XP, Chen YG, Zhao YX, Zhang MX. Irisin inhibits high glucose-induced endothelial-to-mesenchymal transition and exerts a dose-dependent bidirectional effect on diabetic cardiomyopathy. J Cell Mol Med 2017; 22:808-822. [PMID: 29063670 PMCID: PMC5783871 DOI: 10.1111/jcmm.13360] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence indicates that irisin provides beneficial effects in diabetes. However, whether irisin influences the development of diabetic cardiomyopathy (DCM) remains unclear. Therefore, we investigated the potential role and mechanism of action of irisin in diabetes‐induced myocardial dysfunction in mice. Type 1 diabetes was induced in mice by injecting streptozotocin, and the diabetic mice were administered recombinant r‐irisin (low or high dose: 0.5 or 1.5 μg/g body weight/day, I.P.) or PBS for 16 weeks. Irisin treatment did not alter blood glucose levels in the diabetic mice. However, the results of echocardiographical and histopathological assays indicated that low‐dose irisin treatment alleviated cardiac fibrosis and left ventricular function in the diabetic mice, whereas high‐dose irisin failed to mitigate the ventricular function impairment and increased collagen deposition. The potential mechanism underlying the effect of low‐dose irisin involved irisin‐mediated inhibition of high glucose‐induced endothelial‐to‐mesenchymal transition (EndMT); conversely, high‐dose irisin treatment enhanced high glucose‐induced MMP expression by stimulating MAPK (p38 and ERK) signalling and cardiac fibroblast proliferation and migration. Low‐dose irisin alleviated DCM development by inhibiting high glucose‐induced EndMT. By contrast, high‐dose irisin disrupted normal MMP expression and induced cardiac fibroblast proliferation and migration, which results in excess collagen deposition. Thus, irisin can inhibit high glucose‐induced EndMT and exert a dose‐dependent bidirectional effect on DCM.
Collapse
Affiliation(s)
- Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haroon Mujahid
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bing Rong
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qing-Hua Lu
- Department of Cardiology, Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Er-Shun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dong-Qi Tang
- Department of Cardiology, Second Hospital of Shandong University, Jinan, Shandong, China
| | - Nai-Lin Li
- Department of Medicine-Solna, Clinical Pharma Pharmacology, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Xiao-Ping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Guo Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Xia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
47
|
Liang M, Yu M, Xia R, Song K, Wang J, Luo J, Chen G, Cheng J. Yap/Taz Deletion in Gli + Cell-Derived Myofibroblasts Attenuates Fibrosis. J Am Soc Nephrol 2017; 28:3278-3290. [PMID: 28768710 DOI: 10.1681/asn.2015121354] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/30/2017] [Indexed: 01/18/2023] Open
Abstract
In damaged kidneys, increased extracellular matrix (ECM) and tissue stiffness stimulate kidney fibrosis through incompletely characterized molecular mechanisms. The transcriptional coactivators yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz) function as mechanosensors in cancer cells and have been implicated in the regulation of myofibroblasts in the kidney. We hypothesized that the development of kidney fibrosis depends on Yap-induced activation and proliferation of kidney fibroblasts. In mice, Yap expression increased in renal fibroblasts after unilateral ureteral obstruction (UUO), in association with worsening of interstitial fibrosis. In cultured fibroblasts, inhibition of Yap/Taz signaling blocked TGF-β1-induced fibroblast-to-myofibroblast transformation and ECM production, whereas constitutive activation of Yap promoted fibroblast transformation and ECM production even in the absence of TGF-β1. Moreover, in the absence of TGF-β1, fibroblasts seeded on a stiffened ECM transformed into myofibroblasts in a process dependent on the activation of Yap. In mice with UUO, the Yap inhibitor verteporfin reduced interstitial fibrosis. Furthermore, Gli1+ cell-specific knockout of Yap/Taz in mice suppressed UUO-induced ECM deposition, myofibroblast accumulation, and interstitial fibrosis. In a UUO-release model, induction of Gli1+ cell-specific Yap/Taz knockout partially reversed the development of interstitial fibrosis. Thus, in the kidney, Yap is a tissue mechanosensor that can be activated by ECM and transforms fibroblasts into myofibroblasts; the interaction of Yap/Taz and ECM forms a feed-forward loop resulting in kidney fibrosis. Identifying mechanisms that interrupt this profibrotic cycle could lead to the development of anti-fibrosis therapy.
Collapse
Affiliation(s)
- Ming Liang
- Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; and.,Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Michael Yu
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Ruohan Xia
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Ke Song
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Jun Wang
- Molecular Physiology, Baylor College of Medicine, Houston, Texas
| | - Jinlong Luo
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Guang Chen
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| | - Jizhong Cheng
- Departments of Medicine, Section of Nephrology, Selzman Institute for Kidney Health and
| |
Collapse
|
48
|
Whaley-Connell A, Sowers JR. Obesity and kidney disease: from population to basic science and the search for new therapeutic targets. Kidney Int 2017; 92:313-323. [DOI: 10.1016/j.kint.2016.12.034] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/22/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
|
49
|
Jie L, Pengcheng Q, Qiaoyan H, Linlin B, Meng Z, Fang W, Min J, Li Y, Ya Z, Qian Y, Siwang W. Dencichine ameliorates kidney injury in induced type II diabetic nephropathy via the TGF-β/Smad signalling pathway. Eur J Pharmacol 2017. [PMID: 28633927 DOI: 10.1016/j.ejphar.2017.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diabetic nephropathy (DN), a common complication associated with both type I and type II diabetes mellitus (DM), is a major cause of chronic nephropathy and a common cause of end-stage renal diseases (ESRD) throughout the world. This study is aimed to determine whether dencichine (De) can ameliorate renal damage in high-glucose-and-fat diet combined STZ (streptozocin) induced DN in type II DM rats and to investigate the potential underlying mechanisms. Markers of metabolism, diabetes, and renal function, and levels of extracellular matrix (ECM) collagen I (Col I), collagen IV (Col IV), fibronectin (FN) and laminin (LN), and of proteins in the TGF-β/Smad pathway were analysed through RT-PCR, western blot, immunofluorescence and immunohistochemistry. The results show that De significantly alleviates metabolism disorder, improved renal function, relieved pathological alterations in the glomerulus of DN rats, decreased ECM deposition and increased the ratio of matrix metalloproteinase (MMP)-9 to tissue inhibitor of metalloproteinase (TIMP)-1 both in vivo and in vitro. Moreover, De negatively regulated TGF-β/Smad signalling pathway and increased the expression of Smad7, an endogenic inhibitory Smad located downstream of the signalling pathway. In conclusion, we provide experimental evidence indicating that the renoprotective effect of De could significantly prevent the progression of DN possibly attribute to down-regulation of the TGF-β/Smad pathway and rebalance the deposition and degradation of ECM proteins.
Collapse
Affiliation(s)
- Li Jie
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Qiu Pengcheng
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - He Qiaoyan
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Bi Linlin
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Zhang Meng
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Wang Fang
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Jia Min
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China; Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, 710021 Xi'an, China
| | - Yan Li
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Zhang Ya
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Yang Qian
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China
| | - Wang Siwang
- Department of Natural Medicine, Fourth Military Medical University, 710032 Xi'an, China.
| |
Collapse
|
50
|
Li Y, Zhang T, Zhou J, Yang S, Fan M, Sun X, Zhang M, Xu S, Cha M, Hu X, Qi L, Lin S, Liu S, Hu D. Transcriptome analysis of muskrat scented glands degeneration mechanism. PLoS One 2017; 12:e0176935. [PMID: 28472080 PMCID: PMC5417569 DOI: 10.1371/journal.pone.0176935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/19/2017] [Indexed: 12/22/2022] Open
Abstract
The scented gland, a musk-secreting organ of male muskrats, shows clear seasonal changes. When entering the secreting season in March, scented glands gradually increase in size and active secretion starts. In September, scented glands become gradually smaller and secretion decreases. By November, scented glands are gradually replaced by adipose tissue. In this study, six healthy adult male muskrats were analysed: three from the secreting season (March) and three from the non-secreting season (November). Using RNA-Seq analysis, gene expression profiles of scented glands from both seasons were determined. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we found that genes involved in calcium and TGF-beta signalling pathways were significantly more expressed in the non-secreting than in the secreting season. These changes in gene expression correlated with alterations in scented gland size. Both calcium and TGF-beta signalling pathways are important regulators of cell apoptosis, which may thus be involved in muskrat scented gland degeneration.
Collapse
Affiliation(s)
- Yimeng Li
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Tianxiang Zhang
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Juntong Zhou
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Shuang Yang
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Mengyuan Fan
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Xiaoning Sun
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Meishan Zhang
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Shanghua Xu
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Muha Cha
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Xiaolong Hu
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Lei Qi
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| | - Shaobi Lin
- Research Department, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Zhangzhou City, Fujian Province, People’s Republic of China
| | - Shuqiang Liu
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
- Research Department, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd, Zhangzhou City, Fujian Province, People’s Republic of China
| | - Defu Hu
- College of Nature Conservation, Beijing Forestry University, Beijing, People’s Republic of China
| |
Collapse
|