1
|
Ramasamy A, Mohan C. Molecular and Cellular Mediators of Renal Fibrosis in Lupus Nephritis. Int J Mol Sci 2025; 26:2621. [PMID: 40141260 PMCID: PMC11942537 DOI: 10.3390/ijms26062621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Lupus nephritis (LN), a significant complication of systemic lupus erythematosus (SLE), represents a challenging manifestation of the disease. One of the prominent pathophysiologic mechanisms targeting the renal parenchyma is fibrosis, a terminal process resulting in irreversible tissue damage that eventually leads to a decline in renal function and/or end-stage kidney disease (ESKD). Both glomerulosclerosis and interstitial fibrosis emerge as reliable prognostic indicators of renal outcomes. This article reviews the hallmarks of renal fibrosis in lupus nephritis, including the known and putative drivers of fibrogenesis. A better understanding of the cellular and molecular processes driving fibrosis in LN may help inform the development of therapeutic strategies for this disease, as well as the identification of individuals at higher risk of developing ESKD.
Collapse
Affiliation(s)
| | - Chandra Mohan
- Biomedical Engineering Department, University of Houston, 3517 Cullen Blvd, Room 2027, Houston, TX 77204, USA;
| |
Collapse
|
2
|
Ran L, Li W, Zhang H, Lin J, Zhu L, Long H, Xiang L, Chen L, Li Q, Hu Y, Gong M, Xiao B, Zhao H. Identification of Plasma hsa_circ_0001230 and hsa_circ_0023879 as Potential Novel Biomarkers for Focal Segmental Glomerulosclerosis and circRNA-miRNA-mRNA Network Analysis. Kidney Blood Press Res 2024; 49:310-325. [PMID: 38648755 DOI: 10.1159/000538825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Focal segmental glomerulosclerosis (FSGS) is a common glomerulopathy with an unclear mechanism. The demand for FSGS clinical diagnostic biomarkers has not yet been met. Circular RNA (circRNA) is a novel non-coding RNA with multiple functions, but its diagnostic value for FSGS remains unexplored. This study aimed to identify circRNAs that could aid in early clinical diagnosis and to investigate their mechanisms in podocyte injury. METHODS The signature of plasma circRNAs for FSGS was identified by circRNA microarray. The existence of circRNAs was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR), RNase R assay, and DNA sequencing. Plasma levels of circRNAs were evaluated by qRT-PCR. The diagnostic value was appraised by the receiver operating characteristic curve. The circRNA-miRNA-mRNA network was built with Cytoscape 7.3.2. Statistically significant differences were calculated by the Mann-Whitney U test. RESULTS A total of 493 circRNAs (165 upregulated, 328 downregulated) were differentially expressed in the plasma of FSGS patients (n = 3) and normal controls (n = 3). Eight candidate circRNAs were demonstrated to be circular and stable transcripts. Among them, hsa_circ_0001230 and hsa_circ_0023879 were significantly upregulated in FSGS patients (n = 29) compared to normal controls (n = 51). The areas under the curve value of hsa_circ_0001230 and hsa_circ_0023879 were 0.668 and 0.753, respectively, while that of the two-circRNA panel was 0.763. The RNA pull-down analysis revealed that hsa_circ_0001230 and hsa_circ_0023879 could sponge hsa-miR-106a. Additionally, hsa_circ_0001230 and hsa_circ_0023879 positively regulated hsa-miR-106a target genes phosphatase and tensin homolog (PTEN) and Bcl-2-like protein 11 (BCL2L11) in podocytes. CONCLUSION hsa_circ_0001230 and hsa_circ_0023879 are novel blood biomarkers for FSGS. They may regulate podocyte apoptosis by competitively binding to hsa-miR-106a.
Collapse
Affiliation(s)
- Lingyu Ran
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China,
| | - Wei Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, China
| | - Huhai Zhang
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jie Lin
- Department of Disease Control and Prevention, The 904th Hospital of Joint Logistic Support Force of the PLA, Wuxi, China
| | - Longyin Zhu
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huanping Long
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lunli Xiang
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Liping Chen
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qixuan Li
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yuhan Hu
- Department of Clinical Lab, Southwest Hospital, Army Medical University, Chongqing, China
| | - Min Gong
- College of Traditional Chinese Medicine, Chongqing Three Gorges Medical College, Chongqing, China
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Hongwen Zhao
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Gu YY, Dou JY, Huang XR, Liu XS, Lan HY. Transforming Growth Factor-β and Long Non-coding RNA in Renal Inflammation and Fibrosis. Front Physiol 2021; 12:684236. [PMID: 34054586 PMCID: PMC8155637 DOI: 10.3389/fphys.2021.684236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is one of the most characterized pathological features in chronic kidney disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or allograft transplantation the only clinical option for CKD patients. Transforming growth factor-β (TGF-β) is the key mediator in renal fibrosis and is an essential regulator for renal inflammation. Therefore, the general blockade of the pro-fibrotic TGF-β may reduce fibrosis but may risk promoting renal inflammation and other side effects due to the diverse role of TGF-β in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides and have been regarded as promising therapeutic targets for many diseases. This review focuses on the importance of TGF-β and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-β and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Yun Dou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Sisto M, Ribatti D, Lisi S. Organ Fibrosis and Autoimmunity: The Role of Inflammation in TGFβ-Dependent EMT. Biomolecules 2021; 11:biom11020310. [PMID: 33670735 PMCID: PMC7922523 DOI: 10.3390/biom11020310] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
Recent advances in our understanding of the molecular pathways that control the link of inflammation with organ fibrosis and autoimmune diseases point to the epithelial to mesenchymal transition (EMT) as the common association in the progression of these diseases characterized by an intense inflammatory response. EMT, a process in which epithelial cells are gradually transformed to mesenchymal cells, is a major contributor to the pathogenesis of fibrosis. Importantly, the chronic inflammatory microenvironment has emerged as a decisive factor in the induction of pathological EMT. Transforming growth factor-β (TGF-β), a multifunctional cytokine, plays a crucial role in the induction of fibrosis, often associated with chronic phases of inflammatory diseases, contributing to marked fibrotic changes that severely impair normal tissue architecture and function. The understanding of molecular mechanisms underlying EMT-dependent fibrosis has both a basic and a translational relevance, since it may be useful to design therapies aimed at counteracting organ deterioration and failure. To this end, we reviewed the recent literature to better elucidate the molecular response to inflammatory/fibrogenic signals in autoimmune diseases in order to further the specific regulation of EMT-dependent fibrosis in more targeted therapies.
Collapse
|
5
|
Xu M, Li S, Wang J, Huang S, Zhang A, Zhang Y, Gu W, Yu X, Jia Z. Cilomilast Ameliorates Renal Tubulointerstitial Fibrosis by Inhibiting the TGF-β1-Smad2/3 Signaling Pathway. Front Med (Lausanne) 2021; 7:626140. [PMID: 33553218 PMCID: PMC7859332 DOI: 10.3389/fmed.2020.626140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Renal tubulointerstitial fibrosis is the key pathological feature in chronic kidney diseases (CKDs) with no satisfactory therapies in clinic. Cilomilast is a second-generation, selective phosphodiesterase-4 inhibitor, but its role in renal tubulointerstitial fibrosis in CKD remains unclear. Material and Methods: Cilomilast was applied to the mice with unilateral ureteric obstruction (UUO) and renal fibroblast cells (NRK-49F) stimulated by TGF-β1. Renal tubulointerstitial fibrosis and inflammation after UUO or TGF-β1 stimulation were examined by histology, Western blotting, real-time PCR and immunohistochemistry. KIM-1 and NGAL were detected to evaluate tubular injury in UUO mice. Results:In vivo, immunohistochemistry and western blot data demonstrated that cilomilast treatment inhibited extracellular matrix deposition, profibrotic gene expression, and the inflammatory response. Furthermore, cilomilast prevented tubular injury in UUO mice, as manifested by reduced expression of KIM-1 and NGAL in the kidney. In vitro, cilomilast attenuated the activation of fibroblast cells stimulated by TGF-β1, as shown by the reduced expression of fibronectin, α-SMA, collagen I, and collagen III. Cilomilast also inhibited the activation of TGF-β1-Smad2/3 signaling in TGF-β1-treated fibroblast cells. Conclusion: The findings of this study suggest that cilomilast is protective against renal tubulointerstitial fibrosis in CKD, possibly through the inhibition of TGF-β1-Smad2/3 signaling, indicating the translational potential of this drug in treating CKD.
Collapse
Affiliation(s)
- Man Xu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shumin Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiajia Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowen Yu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Jiang L, Cui H, Ding J, Yang A, Zhang Y. Puromycin aminonucleoside-induced podocyte injury is ameliorated by the Smad3 inhibitor SIS3. FEBS Open Bio 2020; 10:1601-1611. [PMID: 32583562 PMCID: PMC7396432 DOI: 10.1002/2211-5463.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/29/2020] [Accepted: 06/19/2020] [Indexed: 11/05/2022] Open
Abstract
Smad3 signaling and transgelin expression are often activated during puromycin aminonucleoside (PAN)‐induced podocyte injury. Here, we investigated whether the Smad3 inhibitor SIS3 can ameliorate damage to injured podocytes. A model of PAN‐induced podocyte injury was constructed using the MPC5 cell line. The effects of SIS3 on the expression of the podocyte cytoskeletal proteins transgelin, p15INK4B, phosphor‐smad3, phosphor‐JAK/stat3, the apoptotic marker cleaved caspase 3, and c‐myc were investigated using western blot. The distribution of F‐actin in PAN‐induced podocyte injury was observed under an immunofluorescence microscope. PAN‐induced podocyte injury altered the distribution of F‐actin and transgelin, and colocalization of these two proteins was observed. Transgelin expression and Smad3 phosphorylation were increased in the MPC5 cell line with prolonged PAN treatment. In addition, c‐myc expression, p15INK4B, and JAK phosphorylation were all increased after treatment with PAN. Treatment with the Smad3 inhibitor SIS3 reversed these phenomena and protected against PAN‐induced podocyte injury. Moreover, stimulating podocytes directly with TGFβ‐1 also led to enhanced expression of transgelin or phosphor‐JAK/stat3, and this could be inhibited by SIS3. In conclusion, transgelin expression was induced through the Smad3 signaling pathway during PAN‐induced podocyte injury, and the resulting abnormal distribution of F‐actin and the enhanced expression of transgelin could be reversed by blockade of this pathway.
Collapse
Affiliation(s)
- Lina Jiang
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Hong Cui
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Jie Ding
- Pediatric Department, Peking University First Hospital, Beijing, China
| | - Aijun Yang
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| | - Yingchao Zhang
- Pediatric Department, Beijing Friendship Hospital, Capital University of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Makled MN, El-Kashef DH. Saroglitazar attenuates renal fibrosis induced by unilateral ureteral obstruction via inhibiting TGF-β/Smad signaling pathway. Life Sci 2020; 253:117729. [PMID: 32348836 DOI: 10.1016/j.lfs.2020.117729] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
Obstructive nephropathy is a common clinical case that causes chronic kidney disease and ultimately progresses to end-stage renal disease. The activation of peroxisome proliferator-activated receptor-α (PPAR-α) reduces tubulointerstitial fibrosis and inflammation associated with obstructive nephropathy. AIMS This study was carried out to investigate the potential effect of saroglitazar, dual PPAR-α/γ agonist, in alleviating renal fibrosis induced by unilateralureteral obstruction (UUO). MAIN METHODS Twenty-four male Sprague Dawley rats were haphazardly divided into four groups of six rats each, including sham operated group, vehicle- or saroglitazar-treated UUO and saroglitazar groups. Rats received oral gavage of saroglitazar (3 mg/kg/day) for 13 days. On day 14, all rats were sacrificed; blood and renal tissues were collected. KEY FINDINGS Saroglitazar inhibited UUO-induced oxidative stress; it decreased the elevated levels of MDA and nitric oxide and increased levels of GSH and SOD in renal tissue. Moreover, saroglitazar repressed UUO-induced inflammation; it decreased the renal levels of nuclear factor kappa B (NF-κB) and interleukin-6 (IL-6). Furthermore, saroglitazar inhibited the accumulation of extracellular matrix via decreasing collagen, hydroxylproline and matrix metalloproteinase-9 (MMP-9) levels. Saroglitazar also decreased the expression of both the alpha smooth muscle actin (α-SMA) and tumor growth factor-beta (TGF-β). These effects were in parallel with reduction in mothers against decapentaplegic homolog 3 (smad3) expression and plasminogen activator inhibitor-1 (PAI-1) levels. SIGNIFICANCE Collectively, the protective impact of saroglitazar might be attributed to its antioxidant, anti-inflammatory and anti-fibrotic effects against UUO-induced tubulointerstitial fibrosis through its regulatory effect on TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
8
|
Brkić J, Dunk C, Shan Y, O'Brien JA, Lye P, Qayyum S, Yang P, Matthews SG, Lye SJ, Peng C. Differential Role of Smad2 and Smad3 in the Acquisition of an Endovascular Trophoblast-Like Phenotype and Preeclampsia. Front Endocrinol (Lausanne) 2020; 11:436. [PMID: 32733385 PMCID: PMC7362585 DOI: 10.3389/fendo.2020.00436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
During placental development, cytotrophoblast progenitor cells differentiate into the syncytiotrophoblast and invasive extravillous trophoblasts (EVTs). Some EVTs further differentiate into endovascular trophoblasts (enEVTs) which exhibit endothelial-like properties. Abnormal placental development, including insufficient enEVT-mediated remodeling of the uterine spiral arteries, is thought to be a precipitating factor in the onset of preeclampsia (PE), a pregnancy-related hypertensive disorder. Several members of the transforming growth factor-β (TGF-β) superfamily, such as TGF-βs, Nodal, and Activin have been reported to either promote or inhibit the invasive EVT pathway. These ligands signal through serine/threonine receptor complexes to activate downstream signaling mediators, Smad2 and Smad3. In this study, we determined Smad2 and Smad3 expression pattern in placenta and their effects on trophoblast invasion and differentiation. Total Smad2/3 levels were relatively constant across gestation while the ratio of active phosphorylated forms to their total levels varied with gestational stages, with a higher pSmad2/total Smad2 in later gestation and a higher pSmad3/total Smad3 in early gestation. Immunofluorescent staining revealed that pSmad3 was localized in nuclei of EVTs in anchoring villi. On the other hand, pSmad2 was mostly absent in this invasive EVT population. In addition, pSmad3/total Smad3, but not pSmad2/total Smad2, was significantly lower in both early onset and late onset PE cases, as compared to gestational age-matched controls. Functional studies carried out using a first trimester trophoblast cell line, HTR-8/SVneo, and first trimester human placental explants showed that Smad2 and Smad3 had differential roles in the invasive pathway. Specifically, siRNA-mediated knockdown of Smad2 resulted in an increase in trophoblast invasion and an upregulation of mRNA levels of enEVT markers while the opposite was observed with Smad3 knockdown. In addition, Smad2 siRNA accelerated the EVT outgrowth in first trimester placental explants while the Smad3 siRNA reduced the outgrowth of EVTs when compared to the control. Furthermore, knockdown of Smad2 enhanced, whereas overexpression of Smad2 suppressed, the ability of trophoblasts to form endothelial-like networks. Conversely, Smad3 had opposite effects as Smad2 on network formation. These findings suggest that Smad2 and Smad3 have opposite functions in the acquisition of an enEVT-like phenotype and defects in Smad3 activation are associated with PE.
Collapse
Affiliation(s)
- Jelena Brkić
- Department of Biology, York University, Toronto, ON, Canada
| | - Caroline Dunk
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Sheza Qayyum
- Department of Biology, York University, Toronto, ON, Canada
| | - Peifeng Yang
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Stephen J. Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng
| |
Collapse
|
9
|
Barbagallo C, Passanisi R, Mirabella F, Cirnigliaro M, Costanzo A, Lauretta G, Barbagallo D, Bianchi C, Pagni F, Castorina S, Granata A, Di Pietro C, Ragusa M, Malatino LS, Purrello M. Upregulated microRNAs in membranous glomerulonephropathy are associated with significant downregulation of IL6 and MYC mRNAs. J Cell Physiol 2018; 234:12625-12636. [PMID: 30515781 DOI: 10.1002/jcp.27851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
Membranous glomerulonephropathy (MGN) is a glomerulopathy characterized by subepithelial deposits of immune complexes on the extracapillary side of the glomerular basement membrane. Insertion of C5b-9 (complement membrane-attack complex) into the membrane leads to functional impairment of the glomerular capillary wall. Knowledge of the molecular pathogenesis of MGN is actually scanty. MicroRNA (miRNA) profiling in MGN and unaffected tissues was performed by TaqMan Low-Density Arrays. Expression of miRNAs and miRNA targets was evaluated in Real-Time polymerase chain reaction (PCR). In vitro transient silencing of miRNAs was achieved through transfection with miRNA inhibitors. Ten miRNAs (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, miR-107, miR-129-3p, miR-423-5p, miR-516-3p, miR-532-3p, and miR-1275) were differentially expressed (DE) in MGN biopsies compared to unaffected controls. Interleukin 6 (IL6) and MYC messenger RNAs (mRNAs; targets of DE miRNAs) were significantly downregulated in biopsies from MGN patients, and upregulated in A498 cells following let-7a-5p or let-7c-5p transient silencing. Gene ontology analysis showed that DE miRNAs regulate pathways associated with MGN pathogenesis, including cell cycle, proliferation, and apoptosis. A significant correlation between DE miRNAs and mRNAs and clinical parameters (i.e., antiphospholipid antibodies, serum creatinine, estimated glomerular filtration, proteinuria, and serum cholesterol) has been detected. Based on our data, we propose that DE miRNAs and their downstream network may be involved in MGN pathogenesis and could be considered as potential diagnostic biomarkers of MGN.
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberta Passanisi
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Department of Thoracic Surgery, Centro Clinico e Diagnostico Morgagni, Catania, Italy
| | - Federica Mirabella
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Arianna Costanzo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Lauretta
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Bianchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Section of Pathology, University of Milano-Bicocca, Monza, Italy
| | - Sergio Castorina
- Department of Thoracic Surgery, Centro Clinico e Diagnostico Morgagni, Catania, Italy.,Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Antonio Granata
- Unit of Nephrology, Ospedale S. Giovanni di Dio, Agrigento, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute - IRCCS, Troina, Italy
| | - Lorenzo S Malatino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Michele Purrello
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Zhang H, Yang Y, Wang Y, Wang B, Li R. Renal-protective effect of thalidomide in streptozotocin-induced diabetic rats through anti-inflammatory pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:89-98. [PMID: 29386886 PMCID: PMC5765978 DOI: 10.2147/dddt.s149298] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Diabetic nephropathy (DN) is a major microvascular complication in diabetes. An increasing body of evidence has shown that DN is related to chronic inflammation, kidney hypertrophy, and fibrosis. While thalidomide has been shown to have anti-inflammatory and antifibrotic effects, the effects of thalidomide on the pathogenesis of DN are unclear. This study was undertaken to explore whether thalidomide has renal-protective effects in diabetic rats. Methods Male Sprague Dawley rats were injected intraperitoneally with 50 mg/kg streptozotocin to induce diabetes. Diabetic rats were treated with thalidomide (200 mg/kg/d) for 8 weeks, and then blood and urine were collected for measurement of renal function-related parameters. Histopathology, immunohistochemistry, enzyme-linked immunosorbent assay, and Western blot analyses were performed to assess renal proinflammatory cytokines, fibrotic protein, and related signaling pathways. Results Diabetic rats exhibited obvious renal structural and functional abnormalities, as well as renal inflammation and fibrosis. Compared with diabetic control rats, those treated with thalidomide showed significantly improved histological alterations and biomarkers of renal function, as well as reduced expression of renal inflammatory cytokines, including NF-κB and MCP-1. Furthermore, renal fibrotic proteins, such as TGF-β1, TβRII, TβRI, smad3, collagen IV, and fibronectin were also remarkably suppressed. Treatment with thalidomide markedly stimulated the phosphorylation of AMPKα. Conclusion In this study, thalidomide suppressed the inflammatory and fibrotic processes in DN. These effects were partly mediated by the activation of AMPKα, and inhibition of the NF-κB/MCP-1 and TGF-β1/Smad signaling pathways. These results suggest that thalidomide may have therapeutic potential in diabetic renal injury through the anti-inflammatory pathway.
Collapse
Affiliation(s)
| | - Yanlan Yang
- Department of Endocrinology, Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, People's Republic of China
| | | | | | | |
Collapse
|
11
|
Wang XB, Zhu H, Song W, Su JH. Gremlin Regulates Podocyte Apoptosis via Transforming Growth Factor-β (TGF-β) Pathway in Diabetic Nephropathy. Med Sci Monit 2018; 24:183-189. [PMID: 29315280 PMCID: PMC5771160 DOI: 10.12659/msm.905758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gremlin has been reported to be up-regulated in glomerular mesangial cells in diabetic nephropathy (DN). However, the regulation of gremlin in podocytes is still rarely reported. This study aimed to investigate the underlying mechanisms by which gremlin mediates the pathogenesis of DN via transforming growth factor-β (TGF-β) signaling pathways. MATERIAL AND METHODS Lentiviral and RNAi transfection were performed to increase and decrease gremlin expression in high-glucose conditions. Expression at the mRNA and protein level was detected by RT-qPCR and Western blotting. RESULTS The expression of gremlin was significantly higher in high-glucose (HG, 30mM) than normal-glucose (NG, 5.5 mM) conditions. The gremlin overexpression significantly suppressed the expression of nephrin and synaptopodin. The phosphorylation of canonical TGF-b signaling pathway components, including Smad2/3 and MKK, was increased in the gremlin-overexpressing group. In addition, the expression levels of Bax and cleaved caspase-3 were also higher in the gremlin-overexpressing group. TGF-β pathway inhibitor (SB505124) significantly inhibited TGF-β pathway activity and enhanced the expression of nephrin and synaptopodin. CONCLUSIONS These results indicate that gremlin can aggravate podocyte lesions through the TGF-β signaling pathway, providing a novel therapeutic target for DN.
Collapse
Affiliation(s)
- Xiao-Bing Wang
- Department of Nephrology, Taizhou Second People’s Hospital Affiliated Yangzhou University, Taizhou, Jiangsu, P.R. China
| | - Hong Zhu
- Department of Nephrology, Taizhou Second People’s Hospital Affiliated Yangzhou University, Taizhou, Jiangsu, P.R. China
| | - Wei Song
- Department of Gastroenterology, Huai’an First People’s Hospital, Nanjing Medical University, Huai’an, Jiangsu, P.R. China
| | - Jian-Hua Su
- Department of Geriatric Medicine, Wuxi No. 2 People’s Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Corresponding Author: Jian-Hua Su, e-mail:
| |
Collapse
|
12
|
Cui JH, Xie X. UCH-L1 Expressed by Podocytes: a Potentially Therapeutic Target for Lupus Nephritis? Inflammation 2017; 40:657-665. [DOI: 10.1007/s10753-017-0512-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Huang G, Lv J, Li T, Huai G, Li X, Xiang S, Wang L, Qin Z, Pang J, Zou B, Wang Y. Notoginsenoside R1 ameliorates podocyte injury in rats with diabetic nephropathy by activating the PI3K/Akt signaling pathway. Int J Mol Med 2016; 38:1179-1189. [PMID: 27571993 PMCID: PMC5029967 DOI: 10.3892/ijmm.2016.2713] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/11/2016] [Indexed: 01/15/2023] Open
Abstract
The present study was designed to examine the protective effect of notoginsenoside R1 (NR1) on podocytes in a rat model of streptozotocin (STZ)‑induced diabetic nephropathy (DN), and to explore the mechanism responsible for NR1-induced renal protection. Diabetes was induced by a single injection of STZ, and NR1 was administered daily at a dose of 5 mg/kg (low dose), 10 mg/kg (medium) and 20 mg/kg (high) for 16 weeks in Sprague-Dawley rats. Blood glucose levels, body weight and proteinuria were measured every 4 weeks, starting on the day that the rats received NR1. Furthermore, on the day of sacrifice, blood, urine and kidneys were collected in order to assess renal function according to general parameters. Pathological staining was performed to evaluate the renal protective effect of NR1, and the expression of the key slit diaphragm proteins, namely neprhin, podocin and desmin, were evaluated. In addition, the serum levels of inflammatory cytokines [tumor necrosis factor-α (TNF-α), tumor growth factor-β1 (TGF-β1), interleukin (IL)-1 and IL-6] as well as an anti-inflammatory cytokine (IL-10) were assessed, and the apoptosis of podocytes was quantified. Finally, the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway and the involvement of nuclear factor-κB (NF-κB) inactivation was further analyzed. In this study, NR1 improved renal function by ameliorating histological alterations, increasing the expression of nephrin and podocin, decreasing the expression of desmin, and inhibiting both the inflammatory response as well as the apoptosis of podocytes. Furthermore, NR1 treatment increased the phosphorylation of both PI3K (p85) and Akt, indicating that activation of the PI3K/Akt signaling pathway was involved. Moreover, NR1 treatment decreased the phosphorylation of NF-κB (p65), suggesting the downregulation of NF-κB. This is the first study to the best of our knowledge, to clearly demonstrate that NR1 treatment ameliorates podocyte injury by inhibiting both inflammation and apoptosis through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Guodong Huang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011
- Hepatobiliary and Intestinal Surgery Research Center, Central South University, Changsha, Hunan 410008
| | - Jianzhen Lv
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001
| | - Tongyu Li
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001
| | - Guoli Huai
- Department of Biomedical Engineering, Medical School of the University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Xiang Li
- Department of Biomedical Engineering, Medical School of the University of Electronic Science and Technology of China, Chengdu, Sichuan 610054
| | - Shaowei Xiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011
| | - Longlong Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001
| | - Zhenlin Qin
- Guangxi University of Chinese Medicine, Nanning, Guangxi 530001
| | - Jianli Pang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011
| | | | - Yi Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
14
|
Wu J, Zheng C, Wang X, Yun S, Zhao Y, Liu L, Lu Y, Ye Y, Zhu X, Zhang C, Shi S, Liu Z. MicroRNA-30 family members regulate calcium/calcineurin signaling in podocytes. J Clin Invest 2015; 125:4091-106. [PMID: 26436650 DOI: 10.1172/jci81061] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022] Open
Abstract
Calcium/calcineurin signaling is critical for normal cellular physiology. Abnormalities in this pathway cause many diseases, including podocytopathy; therefore, understanding the mechanisms that underlie the regulation of calcium/calcineurin signaling is essential. Here, we showed that critical components of calcium/calcineurin signaling, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, are the targets of the microRNA-30 family (miR-30s). We found that these 5 genes are highly expressed as mRNA, but the level of the proteins is low in normal podocytes. Conversely, protein levels were markedly elevated in podocytes from rats treated with puromycin aminonucleoside (PAN) and from patients with focal segmental glomerulosclerosis (FSGS). In both FSGS patients and PAN-treated rats, miR-30s were downregulated in podocytes. In cultured podocytes, PAN or a miR-30 sponge increased TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3 expression; calcium influx; intracellular Ca2+ concentration; and calcineurin activity. Moreover, NFATC3 nuclear translocation, synaptopodin degradation, integrin β3 (ITGB3) activation, and actin fiber loss, which are downstream of calcium/calcineurin signaling, were induced by miR-30 reduction but blocked by the calcineurin inhibitor FK506. Podocyte-specific expression of the miR-30 sponge in mice increased calcium/calcineurin pathway component protein expression and calcineurin activity. The mice developed podocyte foot process effacement and proteinuria, which were prevented by FK506. miR-30s also regulated calcium/calcineurin signaling in cardiomyocytes. Together, our results identify miR-30s as essential regulators of calcium/calcineurin signaling.
Collapse
|
15
|
Fu X, Song B, Tian GW, Li JL. The effects of the water-extraction of Astragali Radix and Lycopi herba on the Pathway of TGF-smads-UPP in a rat model of Diabetic Nephropathy. Pharmacogn Mag 2014; 10:491-6. [PMID: 25422551 PMCID: PMC4239728 DOI: 10.4103/0973-1296.141773] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/04/2013] [Accepted: 09/26/2014] [Indexed: 12/14/2022] Open
Abstract
Background: Astragali Radix and Lycopi Herba were widely used in clinical practice for treating the diabetic nephropathy (DN), but their therapeutic mechanisms were not clear. Objective: To observe the effects of the water-extraction of Astragali Radix and Lycopi Herba on the signaling pathway of TGF-Smads-UPP in streptozotocin (STZ)-induced DN. Materials and Methods: Sprague-Dawley (SD) rats were randomly divided into the normal control (NC) group and the model group. The NC group was fed with a standard diet and the other five diabetic groups received a high-fat diet. After 4 weeks, five diabetic groups were treated with STZ (30mg/kg i.p.). The NC group rats were treated with citrate buffer. Tail random blood glucose (RBG) was measured 72h later using a strip-operated blood glucose sensor and monitored every 2 weeks until drug intervention. Rats with RBG levels less than 16.7mmol/L were excluded from the diabetic groups. At the end of 4 weeks after STZ injection, 24h microalbuminuria was collected and detected. The microalbuminuria was measured by radioimmunoassay (RIA). The blood glucose was tested using a blood glucose meter. The kidney was dissected from each SD rat. Proteins and mRNA of TGF-β1, Smads and Smurf were tested by western-blot and real-time PCR analysis, and 26S proteasome activity was measured by an ELISA kit. Results: The water-extraction of Astragali Radix and Lycopi Herba significantly lowered fasting glucose and urine albumin in diabetic rats through inhibition of TGF-β1 mRNA and protein expression in the STZ-induced diabetic rats, and regulation of the Smad3, Smad7, Smurf1, Smurf2 mRNA and protein expression, as well as elevated 26S proteasome activity to play control effect in DN. Conclusion: 0.9 g/ml water-extraction of Astragali Radix and Lycopi Herba group has significant therapeutic effects on the STZ-induced diabetic rats, and this regulation depends on TGF-Smads-UPP signaling pathway.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, China
| | - Bing Song
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Liaoning Medical University, Jinzhou 121000, China
| | - Guo-Wei Tian
- Department of Traditional Chinese Medicine, Affiliated hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Jing-Lin Li
- Department of Traditional Chinese Medicine, Affiliated hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| |
Collapse
|
16
|
Ji X, Naito Y, Weng H, Ma X, Endo K, Kito N, Yanagawa N, Yu Y, Li J, Iwai N. Renoprotective mechanisms of pirfenidone in hypertension-induced renal injury: through anti-fibrotic and anti-oxidative stress pathways. Biomed Res 2014; 34:309-19. [PMID: 24389407 DOI: 10.2220/biomedres.34.309] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pirfenidone (PFD) is a novel anti-fibrotic agent that targets TGFβ. However, the mechanisms underlying its renoprotective properties in hypertension-induced renal injury are poorly understood. We investigated the renoprotective properties of PFD and clarified its renoprotective mechanisms in a rat hypertension-induced renal injury model. Dahl salt-sensitive rats were fed a high-salt diet with or without 1% PFD for 6 weeks. During the administration period, we examined the effects of PFD on blood pressure and renal function. After the administration, the protein levels of renal TGFβ, Smad2/3, TNFα, MMP9, TIMP1, and catalase were examined. In addition, total serum antioxidant activity was measured. Compared to untreated rats, PFD treatment significantly attenuated blood pressure and proteinuria. Histological study showed that PFD treatment improved renal fibrosis. PFD may exert its anti-fibrotic effects via the downregulation of TGFβ-Smad2/3 signaling, improvement of MMP9/TIMP1 balance, and suppression of fibroblast proliferation. PFD treatment also increased catalase expression and total serum antioxidant activity. In contrast, PFD treatment did not affect the expression of TNFα protein, macrophage or T-cell infiltration, or plasma interleukin 1β levels. PFD prevents renal injury via its anti-fibrotic and anti-oxidative stress mechanisms. Clarifying the renoprotective mechanisms of PFD will help improve treatment for chronic renal diseases.
Collapse
Affiliation(s)
- Xu Ji
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences,Kunming, Yunnan 650201, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nie Y, Li S, Yi Y, Su W, Chai X, Jia D, Wang Q. Effects of astragalus injection on the TGFβ/Smad pathway in the kidney in type 2 diabetic mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:148. [PMID: 24885228 PMCID: PMC4023174 DOI: 10.1186/1472-6882-14-148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 04/29/2014] [Indexed: 11/13/2022]
Abstract
Background In traditional Chinese medicine, astragalus injection is used to treat diabetic nephropathy (DN). The current study was conducted to determine the effects of astragalus injection on DN by assessing potential modulation of the transforming growth factor beta TGFβ/Smad signaling pathway. Methods Diabetic, male KKAy mice, aged 14 weeks were randomly divided into a model group and an astragalus treatment group, while age-matched male C57BL/6J mice were selected as controls. The treatment group received daily intraperitoneal injections of astragalus (0.03 ml/10 g.d), while the model group received injections of an equivalent volume of saline. Mice were euthanized after 24 weeks. Serum samples were obtained from animals in each group, and blood glucose, creatinine, and urea nitrogen levels were measured. Tissue samples from the kidney were used for morphometric studies. The expression of TGFβ1, TGFβR-Ι, Smad3, and Smad7 were evaluated using reverse transcription-polymerase chain reaction (RT-PCR), and western blot analysis. Results Mice in the model group became obese, and suffered complications, including hyperglycemia, polyuria, and proteinuria. Astragalus treatment significantly reduced albuminuria, improved renal function, and ameliorated changes in renal histopathology. Moreover, administration of astragalus injection increased Smad7 expression, and inhibited the expression of TGFβR-Ι, Smad3 and its phosphorylation, and decreased the mRNA level of TGFβ1. Conclusions The TGFβ/Smad signaling pathway plays an important role in the development of DN. Administration of astragalus injection could prevent or mitigate DN by rebalancing TGFβ/Smad signaling, and could play a protective role in DN-induced renal damage in KKAy mice.
Collapse
|
18
|
Das R, Xu S, Quan X, Nguyen TT, Kong ID, Chung CH, Lee EY, Cha SK, Park KS. Upregulation of mitochondrial Nox4 mediates TGF-β-induced apoptosis in cultured mouse podocytes. Am J Physiol Renal Physiol 2013; 306:F155-67. [PMID: 24259511 DOI: 10.1152/ajprenal.00438.2013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Injury to podocytes leads to the onset of chronic renal diseases characterized by proteinuria. Elevated transforming growth factor (TGF)-β in kidney tissue is associated with podocyte damage that ultimately results in apoptosis and detachment. We investigated the proapoptotic mechanism of TGF-β in immortalized mouse podocytes. Exogenous TGF-β1-induced podocyte apoptosis through caspase-3 activation, which was related to elevated ROS levels generated by selective upregulation of NADPH oxidase 4 (Nox4). In mouse podocytes, Nox4 was predominantly localized to mitochondria, and Nox4 upregulation by TGF-β1 markedly depolarized mitochondrial membrane potential. TGF-β1-induced ROS production and caspase activation were mitigated by an antioxidant, the Nox inhibitor diphenyleneiodonium, or small interfering RNA for Nox4. A TGF-β receptor I blocker, SB-431542, completely reversed the changes triggered by TGF-β1. Knockdown of either Smad2 or Smad3 prevented the increase of Nox4 expression, ROS generation, loss of mitochondrial membrane potential, and caspase-3 activation by TGF-β1. These results suggest that TGF-β1-induced mitochondrial Nox4 upregulation via the TGF-β receptor-Smad2/3 pathway is responsible for ROS production, mitochondrial dysfunction, and apoptosis, which may at least in part contribute to the development and progression of proteinuric glomerular diseases such as diabetic nephropathy.
Collapse
Affiliation(s)
- Ranjan Das
- Dept. of Physiology and Institute of Lifestyle Medicine, Yonsei Univ. Wonju College of Medicine, Ilsan-dong, Wonju, Gangwon-Do 220-701, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Arora MK, Singh UK. Molecular mechanisms in the pathogenesis of diabetic nephropathy: an update. Vascul Pharmacol 2013; 58:259-71. [PMID: 23313806 DOI: 10.1016/j.vph.2013.01.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 01/04/2013] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is known to trigger retinopathy, neuropathy and nephropathy. Diabetic nephropathy, a long-term major microvascular complication of uncontrolled hyperglycemia, affects a large population worldwide. Recent findings suggest that numerous pathways are activated during the course of diabetes mellitus and that these pathways individually or collectively play a role in the induction and progression of diabetic nephropathy. However, clinical strategies targeting these pathways to manage diabetic nephropathy remain unsatisfactory, as the number of diabetic patients with nephropathy is increasing yearly. To develop ground-breaking therapeutic options to prevent the development and progression of diabetic nephropathy, a comprehensive understanding of the molecular mechanisms involved in the pathogenesis of the disease is mandatory. Therefore, the purpose of this paper is to discuss the underlying mechanisms and downstream pathways involved in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Mandeep Kumar Arora
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut 250005, Uttar Pradesh, India.
| | | |
Collapse
|
20
|
Marks SD, Tullus K. Autoantibodies in systemic lupus erythematosus. Pediatr Nephrol 2012; 27:1855-68. [PMID: 22193636 DOI: 10.1007/s00467-011-2078-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 02/04/2023]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial disorder with multigenic inheritance and various environmental factors implicated in its aetiopathogenesis. Despite the multiple mechanisms involved in the aetiology of SLE being elusive, recent studies have made progress in our understanding of the pathogenic mechanisms via abnormal regulation of cell-mediated and humoral immunity that lead to tissue damage. The heterogeneity of the clinical manifestations probably reflects the complexity of the disease pathogenesis itself. The immune system in SLE is characterised by a complex interplay between overactive B cells, abnormally activated T cells and antigen-presenting cells. This interplay leads to the production of an array of inflammatory cytokines, apoptotic cells, diverse autoantibodies and immune complexes that in turn activate effector cells and the complement system, leading to tissue injury and damage which are the hallmarks of the clinical manifestations. SLE patients have dysregulation of inflammatory cytokines, chemokines and immune response-related genes, as well as of the genes involved in apoptosis, signal transduction and the cell cycle.
Collapse
Affiliation(s)
- Stephen D Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Trust, Great Ormond Street, London, WC1N 3JH, UK.
| | | |
Collapse
|
21
|
Smad7 is a transforming growth factor-beta-inducible mediator of apoptosis in granulosa cells. Fertil Steril 2012; 97:1452-9.e1-6. [PMID: 22656308 DOI: 10.1016/j.fertnstert.2012.03.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To determine the functional role of Smad7 in granulosa cells. DESIGN Granulosa cell culture and molecular biological techniques were used to investigate regulation and function of Smad7. SETTING Research laboratory. ANIMAL(S) C57bl/j hybrid mouse. INTERVENTION(S) Primary mouse granulosa cells were isolated and grown in culture for all messenger RNA expression experiments. Smad7 promoter constructs were evaluated with a luciferase reporter system in SIGC cells to determine sites activating Smad7 expression. MAIN OUTCOME MEASURE(S) Overexpression (Smad7 complementary DNA) and downregulation (Smad7 small interfering RNA) of Smad7 in primary mouse granulosa cells were used to evaluate the functional role of Smad7 in granulosa cells. RESULT(S) Smad7 expression was upregulated by treatment with transforming growth factor-β (TGF-β) but not activin or activation of the cyclic adenosine monophosphate pathway. The promoter of Smad7 was activated by TGF-β. Truncation of the promoter or mutation of the Smad response element at -141 eliminated TGF-β activation of the promoter. Smad3 was not specifically required for TGF-β-stimulated expression of Smad7, though activation of the TGFBR1 receptor was. When Smad7 was overexpressed in granulosa cells, apoptosis was markedly increased. When Smad7 expression was reduced with small interfering RNA, then the TGF-β-induced apoptosis was blocked. CONCLUSION(S) Smad7 mediates apoptosis induced by TGF-β in mouse granulosa cells, suggesting that dysregulation of Smad7 could impair folliculogenesis.
Collapse
|
22
|
Lu H, Kapur G, Mattoo TK, Lyman WD. Hypoxia decreases podocyte expression of slit diaphragm proteins. Int J Nephrol Renovasc Dis 2012; 5:101-7. [PMID: 22888268 PMCID: PMC3413038 DOI: 10.2147/ijnrd.s27332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Chronic hypoxia contributes to progressive tubulointerstitial injury and, consequently, renal failure. However, the effect of hypoxia on glomerular podocytes, which are integral to the slit diaphragm complex and responsible for selectivity of the glomerular filtration barrier, has not been completely determined. Methods Conditionally immortalized mouse podocyte cells were exposed to hypoxic (1% O2) or normoxic (room air) conditions for 24, 48, or 72 hours, after which cell viability was determined by MTT assay. Cells were stained with podocin and phalloidin to determine podocin and intracellular actin distribution. Expression of synaptopodin, CD2-associated protein (CD2AP), NcK, transforming growth factor-β1 (TGF-β1), hypoxia-inducible factor (HIF-1α) were evaluated by real-time polymerase chain reaction. Results Podocytes exposed to hypoxia had significantly reduced viability at 48 (87%) and 72 hours (66%). There was disarrangement of intracellular filament actin by phalloidin staining, a 30% weaker fluorescence intensity by podocin staining, significantly reduced expression of synaptopodin (12%), CD2AP (42%), NcK (38%), and increased expression of TGF-β1 and P-ERK after hypoxia treatment. Conclusion Podocyte exposure to hypoxia leads to reduced viability and SD protein expression, which may explain persistent and/or increasing proteinuria in patients with progressive renal failure. Increased expression of TGF-β1 and P-ERK is associated with apoptosis and fibrosis, which could be the link between hypoxia and glomerular injury.
Collapse
Affiliation(s)
- Hong Lu
- Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | | |
Collapse
|
23
|
|
24
|
Mechanical stretch down-regulates expression of the Smad6 gene in cultured rat mesangial cells. Clin Exp Nephrol 2012; 16:690-6. [DOI: 10.1007/s10157-012-0630-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 03/15/2012] [Indexed: 02/04/2023]
|
25
|
Pereira RL, Reis VO, Semedo P, Buscariollo BN, Donizetti-Oliveira C, Cenedeze MA, Soares MF, Pacheco-Silva A, Savage PB, Câmara NOS, Keller AC. Invariant natural killer T cell agonist modulates experimental focal and segmental glomerulosclerosis. PLoS One 2012; 7:e32454. [PMID: 22427838 PMCID: PMC3299669 DOI: 10.1371/journal.pone.0032454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 01/30/2012] [Indexed: 01/13/2023] Open
Abstract
A growing body of evidence demonstrates a correlation between Th2 cytokines and the development of focal and segmental glomerulosclerosis (FSGS). Therefore, we hypothesized that GSL-1, a monoglycosylceramide from Sphingomonas ssp. with pro-Th1 activity on invariant Natural Killer T (iNKT) lymphocytes, could counterbalance the Th2 profile and modulate glomerulosclerosis. Using an adriamycin(ADM)-based model of FSGS, we found that BALB/c mice presented albuminuria and glomerular degeneration in association with a Th2-like pro-fibrogenic profile; these mice also expressed a combination of inflammatory cytokines, such as IL-4, IL-1α, IL-1β, IL-17, TNF-α, and chemokines, such as RANTES and eotaxin. In addition, we observed a decrease in the mRNA levels of GD3 synthase, the enzyme responsible for GD3 metabolism, a glycolipid associated with podocyte physiology. GSL-1 treatment inhibited ADM-induced renal dysfunction and preserved kidney architecture, a phenomenon associated with the induction of a Th1-like response, increased levels of GD3 synthase transcripts and inhibition of pro-fibrotic transcripts and inflammatory cytokines. TGF-β analysis revealed increased levels of circulating protein and tissue transcripts in both ADM- and GSL-1-treated mice, suggesting that TGF-β could be associated with both FSGS pathology and iNKT-mediated immunosuppression; therefore, we analyzed the kidney expression of phosphorylated SMAD2/3 and SMAD7 proteins, molecules associated with the deleterious and protective effects of TGF-β, respectively. We found high levels of phosphoSMAD2/3 in ADM mice in contrast to the GSL-1 treated group in which SMAD7 expression increased. These data suggest that GSL-1 treatment modulates the downstream signaling of TGF-β through a renoprotective pathway. Finally, GSL-1 treatment at day 4, a period when proteinuria was already established, was still able to improve renal function, preserve renal structure and inhibit fibrogenic transcripts. In conclusion, our work demonstrates that the iNKT agonist GSL-1 modulates the pathogenesis of ADM-induced glomerulosclerosis and may provide an alternative approach to disease management.
Collapse
Affiliation(s)
- Rafael L. Pereira
- Departamento de Medicina – Nefrologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Vanessa O. Reis
- Departamento de Medicina – Nefrologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Patricia Semedo
- Departamento de Medicina – Nefrologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Bruna N. Buscariollo
- Departamento de Medicina – Nefrologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | | | - Marcos A. Cenedeze
- Departamento de Medicina – Nefrologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Maria Fernanda Soares
- Departamento de Medicina – Nefrologia, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Alvaro Pacheco-Silva
- Departamento de Medicina – Nefrologia, Universidade Federal de São Paulo, São Paulo, Brasil
- Unidade de Transplante Renal, Instituto Israelita de Ensino e Pesquisa Albert Einstein, São Paulo, Brasil
| | - Paul B. Savage
- Department of Chemistry and Biochemistry Brigham Young University, Provo, Utah, United States of America
| | - Niels O. S. Câmara
- Departamento de Medicina – Nefrologia, Universidade Federal de São Paulo, São Paulo, Brasil
- Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brasil
| | - Alexandre C. Keller
- Departamento de Medicina – Nefrologia, Universidade Federal de São Paulo, São Paulo, Brasil
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
26
|
Lan HY. Smads as therapeutic targets for chronic kidney disease. Kidney Res Clin Pract 2012; 31:4-11. [PMID: 26889404 PMCID: PMC4715089 DOI: 10.1016/j.krcp.2011.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/03/2011] [Accepted: 10/12/2011] [Indexed: 01/17/2023] Open
Abstract
Renal fibrosis is a hallmark of chronic kidney disease (CKD). It is generally thought that transforming growth factor-β1 (TGF-β1) is a key mediator of fibrosis and mediates renal scarring positively by Smad2 and Smad3, but negatively by Smad7. Our recent studies found that in CKD, TGF-β1 is not a sole molecule to activate Smads. Many mediators such as angiotensin II and advanced glycation end products can also activate Smads via both TGF-β-dependent and independent mechanisms. In addition, Smads can interact with other signaling pathways, such as the mitogen-activated protein kinase and nuclear factor-kappaB (NF-κB) pathways, to regulate renal inflammation and fibrosis. In CKD, Smad2 and Smad3 are highly activated, while Smad7 is reduced or lost. In the context of fibrosis, Smad3 is pathogenic and mediates renal fibrosis by upregulating miR-21 and miR-192, but down-regulating miR-29 and miR-200 families. By contrast, Smad2 and Smad7 are protective. Overexpression of Smad7 inhibits both Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation. Interestingly, Smad4 has diverse roles in renal fibrosis and inflammation. The complexity and distinct roles of individual Smads in CKD suggest that treatment of CKD should aim to correct the imbalance of Smad signaling or target the Smad3-dependent genes related to fibrosis, rather than to block the general effect of TGF-β1. Thus, treatment of CKD by overexpression of Smad7 or targeting Smad3-dependent miRNAs such as downregulation of miR-21 or overexpression of miR-29 may represent novel therapeutic strategies for CKD.
Collapse
Affiliation(s)
- Hui Yao Lan
- CUHK Shenzhen Institute, Shenzhen, Guangdong, and Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
27
|
The ADF/Cofilin-Pathway and Actin Dynamics in Podocyte Injury. Int J Cell Biol 2011; 2012:320531. [PMID: 22190940 PMCID: PMC3235464 DOI: 10.1155/2012/320531] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/22/2011] [Accepted: 10/12/2011] [Indexed: 01/15/2023] Open
Abstract
ADF/cofilins are the major regulators of actin dynamics in mammalian cells. The activation of ADF/cofilins is controlled by a variety of regulatory mechanisms. Dysregulation of ADF/cofilin may result in loss of a precisely organized actin cytoskeletal architecture and can reduce podocyte migration and motility. Recent studies suggest that cofilin-1 can be regulated through several extracellular signals and slit diaphragm proteins. Cofilin knockdown and knockout animal models show dysfunction of glomerular barrier and filtration with foot process effacement and loss of secondary foot processes. This indicates that cofilin-1 is necessary for modulating actin dynamics in podocytes. Podocyte alterations in actin architecture may initiate or aid the progression of a large variety of glomerular diseases, and cofilin activity is required for reorganization of an intact filtration barrier. Since almost all proteinuric diseases result from a similar phenotype with effacement of the foot processes, we propose that cofilin-1 is at the centre stage of the development of proteinuria and thus may be an attractive drug target for antiproteinuric treatment strategies.
Collapse
|
28
|
Wen D, You L, Zhang Q, Zhang L, Gu Y, Hao CM, Chen J. Upregulation of nestin protects podocytes from apoptosis induced by puromycin aminonucleoside. Am J Nephrol 2011; 34:423-34. [PMID: 21952051 DOI: 10.1159/000331701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/12/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND Nestin is an intermediate filament protein widely used as a marker of stem cells or progenitor cells. Nestin is also highly expressed in the glomerular podocyte, a type of terminally differentiated epithelial cell. Little is known about the significance of nestin in podocytes. METHODS Puromycin aminonucleoside (PAN) was injected into the rats to produce a PAN nephrosis model. Transmission electronic microscopy and terminal dUTP nick end-labeling assay were used to examine the podocyte foot process (FP) effacement and apoptosis, respectively. A mouse podocyte cell line was cultured and incubated with PAN. Immunoblot was used to examine the level of nestin expression both in vivo and in vitro. Enhanced green fluorescence protein-tagged plasmids containing nestin shRNA were transfected into the cultured podocytes to silence nestin expression. F-actin arrangement within cultured podocytes was investigated by immunofluorescence, while the apoptosis rate was examined by both Hoechst stain and flow cytometry. RESULTS In the PAN-induced rat nephrosis model, podocyte nestin expression was increased in the absence of apparent podocyte apoptosis, even though the FP was significantly effaced. In the cultured mouse podocytes, PAN upregulated nestin expression in a time-dependent manner within 24 h of treatment. Notably, no significant apoptosis occurred, however knocking down nestin expression resulted in a remarkable derangement of actin cytoskeleton and an increase in apoptosis in the cultured podocytes 24 h after being incubated with PAN. CONCLUSIONS Upregulation of nestin expression during PAN nephrosis could protect podocytes from apoptosis and that this process is mediated by maintaining the regular arrangement of actin cytoskeleton.
Collapse
Affiliation(s)
- Donghai Wen
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Mechanisms and consequences of TGF-ß overexpression by podocytes in progressive podocyte disease. Cell Tissue Res 2011; 347:129-40. [PMID: 21541658 PMCID: PMC3250617 DOI: 10.1007/s00441-011-1169-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 04/04/2011] [Indexed: 01/21/2023]
Abstract
In patients with progressive podocyte disease, such as focal segmental glomerulosclerosis (FSGS) and membranous nephropathy, upregulation of transforming growth factor-ß (TGF-ß) is observed in podocytes. Mechanical pressure or biomechanical strain in podocytopathies may cause overexpression of TGF-ß and angiotensin II (Ang II). Oxidative stress induced by Ang II may activate the latent TGF-ß, which then activates Smads and Ras/extracellular signal-regulated kinase (ERK) signaling pathways in podocytes. Enhanced TGF-ß activity in podocytes may lead to thickening of the glomerular basement membrane (GBM) by overproduction of GBM proteins and impaired GBM degradation in podocyte disease. It may also lead to podocyte apoptosis and detachment from the GBM, and epithelial-mesenchymal transition (EMT) of podocytes, initiating the development of glomerulosclerosis. Furthermore, activated TGF-ß/Smad signaling by podocytes may induce connective tissue growth factor and vascular endothelial growth factor overexpression, which could act as a paracrine effector mechanism on mesangial cells to stimulate mesangial matrix synthesis. In proliferative podocytopathies, such as cellular or collapsing FSGS, TGF-ß-induced ERK activation may play a role in podocyte proliferation, possibly via TGF-ß-induced EMT of podocytes. Collectively, these data bring new mechanistic insights into our understanding of the TGF-ß overexpression by podocytes in progressive podocyte disease.
Collapse
|
30
|
Effects of Panax notoginoside on the expression of TGF-β1 and Smad-7 in renal tissues of diabetic rats. ACTA ACUST UNITED AC 2011; 31:190. [PMID: 21505983 DOI: 10.1007/s11596-011-0250-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Indexed: 01/08/2023]
Abstract
In order to explore the effects of Panax notoginoside (PNS) on the expression of transforming growth factor β1 (TGF-β1) and Smad-7 in renal tissues of diabetes, a rat model of diabetic nephropathy was set up by intravenous injection of streptozotocin (STZ). Wistar rats were randomly divided into normal group, diabetic control group, group treated by PNS at low-dosage (PL), group treated by PNS at high-dosage (PH) and group treated by catopril (C), respectively. Fasting blood glucose (FBG), renal index, endogenous creatinine clearance rate (C(Cr)) and urinary albumin (UAlb) in 24 h were examined after 6 weeks. Meanwhile, the expressions of TGF-β1 and Smad7 in renal tissues were immunohistochemically dectected. At the end of the sixth week, FBG, renal index, C(cr), UAlb were all elevated significantly in control group (P<0.01). The expression of TGF-β1 protein was increased while Smad7 protein decreased in renal tissue (P<0.01). However, the treatment with PNS reversed the aforementioned changes in renal tissues of diabetic rats. These results indicate that PNS possess a protective effect on the kidney of diabetic rats and it might protect kidney by inhibiting the expression of TGF-β1 protein and enhancing the expression of Smad7 protein.
Collapse
|
31
|
Liu YM, Liu RH, Liu WJ, Liu L, Wu ZK, Chen YY. [Effects of Chinese herbal medicine Yiqi Huoxue Formula on TGF-β/smad signal transduction pathway and connective tissue growth factor in rats with renal interstitial fibrosis]. ACTA ACUST UNITED AC 2010; 8:1165-73. [PMID: 21144460 DOI: 10.3736/jcim20101209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To observe the effects of Yiqi Huoxue Formula (YQHXF), a compound Chinese herbal medicine, on transforming growth factor-β (TGF-β)/smad signal transduction pathway and connective tissue growth factor (CTGF) in rats with renal interstitial fibrosis METHODS Unilateral ureteral obstruction (UUO) rat model was established and the rats were randomly divided into 5 groups: untreated group, high-, medium-, and low-dose YQHXF groups and fosinopril sodium group. Another group with sham operation was set as control. All rats were administered with corresponding drugs for 3 weeks. After the last administration, each rat was sacrificed and weighed and the serum was separated for creatinine (Cr) and blood urea nitrogen (BUN) detection. Kidneys of the rats were taken out, and mRNA and protein expressions of TGF-β, smad2, smad7 and CTGF were measured with real-time fluorescent quantitative reverse transcription-polymerase chain reaction and Western blotting respectively; fibrosis of the kidney tissue was observed with hematoxylin-eosin (HE) staining and Masson trichrome staining. RESULTS Compared with sham-operation group, Cr and BUN in serum of UUO groups were increased, while high-dose YQHXF treatment decreased the UUO-induced increase of Cr and BUN levels. HE staining and Masson staining results showed that the renal tubular epithelial cells in untreated group got atrophied; lumens of renal tubules expanded; fibroplastic proliferation and inflammatory cell infiltration were observed in renal interstitium; the number of glomerulus decreased and collagen increased significantly compared with sham-operation group. In the high- and medium-dose YQHXF groups and fosinopril sodium group, the histopathological changes of inflammatory cell infiltration, fibroplastic proliferation, expansion of lumens of renal tubules was improved as compared with the untreated group. The mRNA and protein expressions of TGF-β, smad2 and CTGF in untreated group were higher than those in sham-operation group (P<0.05), and the mRNA and protein expressions of smad7 in untreated group were lower than those in the sham-operation group (P<0.05). Compared with untreated group, high- and medium-dose of YQHXF significantly down-regulated the mRNA and protein expressions of TGF-β, smad2 and CTGF (P<0.01, P<0.05), and up-regulated the mRNA and protein expressions of smad7 (P<0.01, P<0.05). CONCLUSIONS The mRNA expression of CTGF in UUO rats may be regulated by TGF-β/smad signaling transduction pathway. YQHXF might inhibit the expression of CTGF through down-regulation of TGF-β and smad2 and up-regulation of smad7, thus inhibiting the progression of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Yong-mei Liu
- Department of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
32
|
Lasagni L, Ballerini L, Angelotti ML, Parente E, Sagrinati C, Mazzinghi B, Peired A, Ronconi E, Becherucci F, Bani D, Gacci M, Carini M, Lazzeri E, Romagnani P. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 2010; 28:1674-85. [PMID: 20680961 PMCID: PMC2996085 DOI: 10.1002/stem.492] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glomerular diseases account for 90% of end-stage kidney disease. Podocyte loss is a common determining factor for the progression toward glomerulosclerosis. Mature podocytes cannot proliferate, but recent evidence suggests that they can be replaced by renal progenitors localized within the Bowman's capsule. Here, we demonstrate that Notch activation in human renal progenitors stimulates entry into the S-phase of the cell cycle and cell division, whereas its downregulation is required for differentiation toward the podocyte lineage. Indeed, a persistent activation of the Notch pathway induced podocytes to cross the G(2)/M checkpoint, resulting in cytoskeleton disruption and death by mitotic catastrophe. Notch expression was virtually absent in the glomeruli of healthy adult kidneys, while a strong upregulation was observed in renal progenitors and podocytes in patients affected by glomerular disorders. Accordingly, inhibition of the Notch pathway in mouse models of focal segmental glomerulosclerosis ameliorated proteinuria and reduced podocyte loss during the initial phases of glomerular injury, while inducing reduction of progenitor proliferation during the regenerative phases of glomerular injury with worsening of proteinuria and glomerulosclerosis. Taken altogether, these results suggest that the severity of glomerular disorders depends on the Notch-regulated balance between podocyte death and regeneration provided by renal progenitors.
Collapse
Affiliation(s)
- Laura Lasagni
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A conceptual framework for the molecular pathogenesis of progressive kidney disease. Pediatr Nephrol 2010; 25:2223-30. [PMID: 20352456 PMCID: PMC5558437 DOI: 10.1007/s00467-010-1503-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 01/26/2023]
Abstract
The data regarding the pathogenesis of progressive kidney disease implicate cytokine effects, physiological factors, and myriad examples of relatively nonspecific cellular dysfunction. The sheer volume of information being generated on this topic threatens to overwhelm our efforts to understand progression in chronic kidney disease or to derive rational strategies to treat it. Here, a conceptual framework is offered for organizing and considering these data. Disease is initiated by an injury that evokes a tissue-specific cellular response. Subsequent structural repair may be effective, or the new structure may be sufficiently changed that it requires an adaptive physiological response. If this adaptation is not successful, subsequent cycles of misdirected repair or maladaptation may lead to progressive nephron loss. To illustrate how this framework can be used to organize our approach to disease pathogenesis, the role of cytokines in proteinuria and progressive glomerular disease is discussed. Finally, this theoretical framework is reconsidered to examine its implications for the diagnosis and treatment of clinical conditions. Application of this schema could have significant relevance to both research inquiry and clinical practice.
Collapse
|
34
|
Cofilin-1 inactivation leads to proteinuria--studies in zebrafish, mice and humans. PLoS One 2010; 5:e12626. [PMID: 20838616 PMCID: PMC2935884 DOI: 10.1371/journal.pone.0012626] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 08/05/2010] [Indexed: 01/31/2023] Open
Abstract
Background Podocytes are highly specialized epithelial cells on the visceral side of the glomerulus. Their interdigitating primary and secondary foot processes contain an actin based contractile apparatus that can adjust to changes in the glomerular perfusion pressure. Thus, the dynamic regulation of actin bundles in the foot processes is critical for maintenance of a well functioning glomerular filtration barrier. Since the actin binding protein, cofilin-1, plays a significant role in the regulation of actin dynamics, we examined its role in podocytes to determine the impact of cofilin-1 dysfunction on glomerular filtration. Methods and Findings We evaluated zebrafish pronephros function by dextran clearance and structure by TEM in cofilin-1 morphant and mutant zebrafish and we found that cofilin-1 deficiency led to foot process effacement and proteinuria. In vitro studies in murine and human podocytes revealed that PMA stimulation induced activation of cofilin-1, whereas treatment with TGF-β resulted in cofilin-1 inactivation. Silencing of cofilin-1 led to an accumulation of F-actin fibers and significantly decreased podocyte migration ability. When we analyzed normal and diseased murine and human glomerular tissues to determine cofilin-1 localization and activity in podocytes, we found that in normal kidney tissues unphosphorylated, active cofilin-1 was distributed throughout the cell. However, in glomerular diseases that affect podocytes, cofilin-1 was inactivated by phosphorylation and observed in the nucleus. Conclusions Based on these in vitro and in vivo studies we concluded cofilin-1 is an essential regulator for actin filament recycling that is required for the dynamic nature of podocyte foot processes. Therefore, we describe a novel pathomechanism of proteinuria development.
Collapse
|
35
|
Tossidou I, Teng B, Drobot L, Meyer-Schwesinger C, Worthmann K, Haller H, Schiffer M. CIN85/RukL is a novel binding partner of nephrin and podocin and mediates slit diaphragm turnover in podocytes. J Biol Chem 2010; 285:25285-95. [PMID: 20457601 DOI: 10.1074/jbc.m109.087239] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Podocyte damage is the basis of many glomerular diseases with ultrastructural changes and decreased expression of components of the slit diaphragm such as nephrin and podocin. Under physiological conditions it is likely that the slit diaphragm underlies permanent renewal processes to indemnify its stability in response to changes in filtration pressure. This would require constant reorganization of the podocyte foot process and the renewal of slit diaphragm components. Thus far, the mechanisms underlying the turnover of slit diaphragm proteins are largely unknown. In this manuscript we examined a mechanism of nephrin endocytosis via CIN85/Ruk(L)-mediated ubiquitination. We can demonstrate that the loss of nephrin expression and onset of the proteinuria in CD2AP(-/-) mice correlates with an increased accumulation of ubiquitinated proteins and expression of CIN85/Ruk(L) in podocytes. In cultured murine podocytes CD2AP deficiency leads to an early ubiquitination of nephrin and podocin after stimulation with fibroblast growth factor-4. Binding assays with different CIN85/Ruk isoforms and mutants showed that nephrin and podocin are binding to the coiled-coil domain of CIN85/Ruk(L). We found that in the presence of CIN85/Ruk(L), which is involved in down-regulation of receptor-tyrosine kinases, nephrin is internalized after stimulation with fibroblast growth factor-4. Interestingly, coexpression of CIN85/Ruk(L) with CD2AP led to a decreased binding of CIN85/Ruk(L) to nephrin and podocin, which indicates a functional competition between CD2AP and CIN85/Ruk(L). Our results support a novel role for CIN85/Ruk(L) in slit diaphragm turnover and proteinuria.
Collapse
Affiliation(s)
- Irini Tossidou
- Division of Nephrology, Medical School of Hannover, Carl-Neuberg Street 1, Hannover 30625, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Cho ME, Kopp JB. Pirfenidone: an anti-fibrotic therapy for progressive kidney disease. Expert Opin Investig Drugs 2010; 19:275-83. [PMID: 20050822 DOI: 10.1517/13543780903501539] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Many chronic diseases of various etiologies lead to fibrosis and organ dysfunction. Despite many advances in medicine in recent years, options to slow the progression of fibrotic diseases have remained limited. The recent availability of pirfenidone, an antifibrotic and anti-inflammatory investigational agent, thus offers a new hope for treating progressive fibrotic diseases. AREAS COVERED IN THIS REVIEW This review provides concise review of the available data regarding the mechanism and pharmacokinetics of pirfenidone and preclinical and clinical data regarding efficacy and safety in fibrotic diseases of the kidney. It also reviews results of clinical trials involving pirfenidone in other fibrotic diseases. WHAT THE READER WILL GAIN The review will provide in-depth review of pirfenidone with a renal focus. TAKE HOME MESSAGE Because many of the available clinical trials have been small and/or uncontrolled, conclusive evidence regarding efficacy and safety of pirfenidone is lacking, particularly in patients with renal or hepatic dysfunction. Larger studies are needed to better understand long-term efficacy and safety of this medication in various patient populations.
Collapse
Affiliation(s)
- Monique E Cho
- National Institutes of Health, Kidney Disease Branch, 10/CRC 5-5750, 9000 Rockville Pike, Bethesda, MD 20892-1268, USA.
| | | |
Collapse
|
37
|
Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol 2009; 4:1255-66. [PMID: 19581401 DOI: 10.2215/cjn.00520109] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRs) are a family of short non-coding RNAs. These endogenously produced factors have been shown to play important roles in gene regulation. The discovery of miRs has greatly expanded our knowledge of gene regulation at the posttranscriptional level. miRs inhibit target gene expression by blocking protein translation or by inducing mRNA degradation and therefore have the potential to modulate physiologic and pathologic processes. The imperative need to determine their cellular targets and disease relevance has sparked an unprecedented explosion of research in the miR field. Recent findings have revealed critical functions for specific miRs in cellular events such as proliferation, differentiation, development, and immune responses and in the regulation of genes relevant to human diseases. Of particular interest to renal researchers are recent reports that key miRs are highly expressed in the kidney and can act as effectors of TGF-beta actions and high glucose in diabetic kidney disease. Moreover, podocyte-specific deletion of Dicer, a key enzyme involved in miR biogenesis, led to proteinuria and severe renal dysfunction in mice. Hence, studies aimed at determining the in vitro and in vivo functions of miRs in the kidney could determine their value as therapeutic targets for progressive renal glomerular and tubular diseases. Translational approaches could be facilitated by the development of effective inhibitors of specific miRs and methods for optimal delivery of anti-miRs to the kidney. The major goal of this review is to highlight key functions of these miRs and their relationships to human diseases, with special emphasis on diabetic kidney disease.
Collapse
Affiliation(s)
- Mitsuo Kato
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|
38
|
|
39
|
Abstract
PURPOSE OF REVIEW The glomerular filtration barrier is a unique structure characterized by a specialized three-dimensional framework of podocytes. This review is aimed at describing the latest advances made in the understanding of polarity signalling pathways regulating the formation and the maintenance of the complex podocyte architecture. RECENT FINDINGS Podocytes are composed of a large cell body that extends primary and secondary processes. An apicobasal polarity axis allows for podocyte orientation between the urinary space and the glomerular basement membrane. Recent studies document that conserved polarity protein complexes such as the partitioning defective 3 (Par3), partitioning defective 6 (Par6) and atypical protein kinase C (aPKC) complex are essential regulators of podocyte morphology. Glomerular development, slit diaphragm targeting and apicobasolateral distribution of molecules seem to be tightly regulated by these polarity signalling pathways. SUMMARY Accumulating evidence indicates that conserved polarity protein complexes are essential for normal podocyte morphology and differentiation. The diseased podocyte, which typically presents with foot process effacement, might require these molecular guideposts when recovering from stress and when restoring normal podocyte morphology.
Collapse
|
40
|
Pohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze-Mosgau S, Stallmach A, Kinne RW, Wolf G. TGF-beta and fibrosis in different organs - molecular pathway imprints. Biochim Biophys Acta Mol Basis Dis 2009; 1792:746-56. [PMID: 19539753 DOI: 10.1016/j.bbadis.2009.06.004] [Citation(s) in RCA: 476] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 12/25/2022]
Abstract
The action of transforming-growth-factor (TGF)-beta following inflammatory responses is characterized by increased production of extracellular matrix (ECM) components, as well as mesenchymal cell proliferation, migration, and accumulation. Thus, TGF-beta is important for the induction of fibrosis often associated with chronic phases of inflammatory diseases. This common feature of TGF-related pathologies is observed in many different organs. Therefore, in addition to the description of the common TGF-beta-pathway, this review focuses on TGF-beta-related pathogenetic effects in different pathologies/organs, i. e., arthritis, diabetic nephropathy, colitis/Crohn's disease, radiation-induced fibrosis, and myocarditis (including their similarities and dissimilarities). However, TGF-beta exhibits both exacerbating and ameliorating features, depending on the phase of disease and the site of action. Due to its central role in severe fibrotic diseases, TGF-beta nevertheless remains an attractive therapeutic target, if targeted locally and during the fibrotic phase of disease.
Collapse
Affiliation(s)
- Dirk Pohlers
- Experimental Rheumatology Unit, Department of Orthopedics, Waldkrankenhaus Rudolf Elle Eisenberg, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang Q, Wang Y, Minto AW, Wang J, Shi Q, Li X, Quigg RJ. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J 2008; 22:4126-35. [PMID: 18716028 DOI: 10.1096/fj.08-112326] [Citation(s) in RCA: 317] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intrinsic glomerular cells in a diabetic milieu have transcriptional activation of genes that influence the development of diabetic nephropathy. The cellular repertoire of microRNAs can regulate translation of these expressed genes into proteins. Fibronectin is a key matrix protein accumulated in excess in diabetic nephropathy. Here, we exposed cultured human and mouse mesangial cells to high glucose and transforming growth factor-beta to simulate the diabetic milieu. In these conditions in vitro, as well as in mouse diabetic nephropathy models in vivo, microRNA-377 was consistently up-regulated relative to controls. Through a combination of computational and biological approaches, we identified relevant miR-377 target genes. Although fibronectin was induced by miR-377, it was not a direct target of miR-377. However, miR-377 led to reduced expressions of p21-activated kinase and superoxide dismutase, which enhanced fibronectin protein production. Thus, overexpression of miR-377 in diabetic nephropathy indirectly leads to increased fibronectin protein production; as such, miR-377 can have a critical role in the pathophysiology of this prevalent human disease.
Collapse
Affiliation(s)
- Qiang Wang
- Section of Nephrology, Department of Medicine, The University of Chicago, 5841 South Maryland Ave., MC5100, AMB-S523, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Cain JE, Hartwig S, Bertram JF, Rosenblum ND. Bone morphogenetic protein signaling in the developing kidney: present and future. Differentiation 2008; 76:831-42. [PMID: 18331343 DOI: 10.1111/j.1432-0436.2008.00265.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta superfamily. A critical role for BMP signaling in the development of the metanephric kidney is supported by a growing number of studies using in vitro assays and in vivo animal models. Here we review current knowledge of BMPs, BMP receptors and regulators of the BMP signaling pathway in the developing kidney. We highlight major gaps in our knowledge of the roles of BMP signaling in the development of the normal and abnormal kidney and identify areas and techniques likely to improve our understanding.
Collapse
Affiliation(s)
- Jason E Cain
- Program in Developmental and Stem Cell Biology The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
43
|
Yoshida S, Nagase M, Shibata S, Fujita T. Podocyte Injury Induced by Albumin Overload in vivo and in vitro: Involvement of TGF-Beta and p38 MAPK. ACTA ACUST UNITED AC 2008; 108:e57-68. [DOI: 10.1159/000124236] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 02/08/2008] [Indexed: 11/19/2022]
|
44
|
Kwoh C, Shannon MB, Miner JH, Shaw A. Pathogenesis of nonimmune glomerulopathies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:349-74. [PMID: 18039119 DOI: 10.1146/annurev.pathol.1.110304.100119] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nonimmune glomerulopathies are an area of significant research. This review discusses the development of focal segmental glomerulosclerosis, with particular attention to the role of the podocyte in the initiation of glomerulosclerosis and the contribution to glomerulosclerosis from capillary hypertension and soluble factors such as transforming growth factor beta, platelet-derived growth factor, vascular endothelial growth factor, and angiotensin. The effects of these factors on endothelial and mesangial cells are also discussed. In addition, we review our current understanding of the slit diaphragm (a specialized cell junction found in the kidney), slit diaphragm-associated proteins (including nephrin, podocin, alpha-actinin-4, CD2-associated protein, and transient receptor potential channel 6), and the role of these proteins in glomerular disease. We also discuss the most recent research on the pathogenesis of collapsing glomerulosclerosis, human immunodeficiency virus associated nephropathy, Denys-Drash, diabetic nephropathy, Alport syndrome, and other diseases related to the interaction between the podocyte and the glomerular basement membrane.
Collapse
Affiliation(s)
- Christopher Kwoh
- Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63113, USA.
| | | | | | | |
Collapse
|
45
|
Dixon A, Maric C. 17beta-Estradiol attenuates diabetic kidney disease by regulating extracellular matrix and transforming growth factor-beta protein expression and signaling. Am J Physiol Renal Physiol 2007; 293:F1678-90. [PMID: 17686959 PMCID: PMC3179625 DOI: 10.1152/ajprenal.00079.2007] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously showed that supplementation with 17beta-estradiol (E2) from the onset of diabetes attenuates the development of diabetic renal disease. The aim of the present study was to examine whether E2 can also attenuate the disease process once it has developed. The present study was performed in nondiabetic and streptozotocin-induced diabetic Sprague-Dawley rats. E2 supplementation began after 9 wk of diabetes and continued for 8 wk. Diabetes was associated with an increase in urine albumin excretion, glomerulosclerosis, tubulointerstitial fibrosis, renal cortical collagen type I and IV, laminin, plasminogen activator inhibitor-1, tissue inhibitors of metalloproteinase-1 and -2, transforming growth factor (TGF)-beta, TGF-beta receptor type I and II, Smad2/3, phosphorylated Smad2/3, and Smad4 protein expression, and CD68-positive cell abundance. Decreases in matrix metalloproteinase (MMP)-2 protein expression and activity and decreases in Smad6 and Smad7 protein expression were also associated with diabetes. E2 supplementation completely or partially attenuated all these changes, except Smad4 and fibronectin, on which E2 supplementation had no effect. These data suggest that E2 attenuates the progression of diabetic renal disease once it has developed by regulating extracellular matrix, TGF-beta, and expression of its downstream regulatory proteins. These findings support the notion that sex hormones in general, and E2 in particular, are important regulators of renal function and may be novel targets for the treatment and prevention of diabetic renal disease.
Collapse
Affiliation(s)
- Alexis Dixon
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057
| | - Christine Maric
- Department of Medicine, Georgetown University Medical Center, Washington, DC 20057
- Center for the Study of Sex Differences: in Health, Aging and Disease, Georgetown University Medical Center, Washington, DC 20057
| |
Collapse
|
46
|
Mizobuchi M, Morrissey J, Finch JL, Martin DR, Liapis H, Akizawa T, Slatopolsky E. Combination therapy with an angiotensin-converting enzyme inhibitor and a vitamin D analog suppresses the progression of renal insufficiency in uremic rats. J Am Soc Nephrol 2007; 18:1796-806. [PMID: 17513326 DOI: 10.1681/asn.2006091028] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Monotherapy with angiotensin-converting enzyme inhibitors has been shown to be beneficial in suppressing the progression of experimentally induced kidney diseases. Whether such therapy provides additional benefits when combined with vitamin D or an analog of vitamin D has not been established. Rats were made uremic by 5/6 nephrectomy and treated as follows: Uremic + vehicle (UC), uremic + enalapril (30 mg/L in drinking water; E), uremic + paricalcitol (19-nor; 0.8 microg/kg, three times a week), and uremic + enalapril + paricalcitol (E + 19-nor). A group of normal rats served as control (NC). BP was significantly elevated in the UC and 19-nor groups compared with the NC group but was indistinguishable from normal in the E and E + 19-nor groups. The decrease in creatinine clearance and the increase in the excretion of urinary protein that were observed in the UC group were ameliorated by the use of E alone or by E + 19-nor (P < 0.05 versus UC). The glomerulosclerotic index was significantly decreased in both the 19-nor (P < 0.01) and E + 19-nor groups (P < 0.01) compared with the UC group. Tubulointerstitial volume was significantly decreased in both the E (P < 0.05) and E + 19-nor groups (P < 0.01) compared with the UC group. Both macrophage infiltration (ED-1-positive cells) and production of the chemokine monocyte chemoattractant protein-1 were significantly blunted in E + 19-nor compared with E group. TGF-beta1 mRNA and protein expression were increased in the UC group (mRNA: 23.7-fold; protein: 29.1-fold versus NC). These increases were significantly blunted in the 19-nor group (mRNA: 7.1-fold; protein: 8.0-fold versus NC) and virtually normalized in the E + 19-nor group (protein: 0.8-fold versus NC). Phosphorylation of Smad2 was also elevated in the UC group (7.6-fold versus NC) but less so in the 19-nor-treated rats (5.5-fold versus NC). When rats were treated with E + 19-nor, the phosphorylation of Smad2 was normal (1.1-fold versus NC). Thus, 19-nor can suppress the progression of renal insufficiency via mediation of the TGF-beta signaling pathway, and this effect is amplified when BP is controlled via renin-angiotensin system blockade.
Collapse
Affiliation(s)
- Masahide Mizobuchi
- Renal Division, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Ka SM, Huang XR, Lan HY, Tsai PY, Yang SM, Shui HA, Chen A. Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J Am Soc Nephrol 2007; 18:1777-88. [PMID: 17475816 DOI: 10.1681/asn.2006080901] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autoimmune crescentic glomerulonephritis is characterized by severe immune response with glomerular crescentic formation and fibrosis in the kidney. Recent studies indicate that overexpression of renal Smad7 attenuates both renal fibrosis and inflammation in rat remnant kidney. However, little attention has been paid to the potential role of TGF-beta/Smad signaling in autoimmune kidney disease. This study tested the hypothesis that blocking TGF-beta signaling by overexpression of Smad7 may have a therapeutic effect in a mouse model of autoimmune crescentic glomerulonephritis that was induced in C57BL/6 x DBA/2J F1 hybrid mice by giving DBA/2J donor lymphocytes. Smad7 gene was transfected into the kidney using the ultrasound-microbubble-mediated system. Results showed that overexpression of Smad7 blocked both renal fibrosis and inflammatory pathways in terms of Smad2/3 and NF-kappaB activation (P < 0.01), thereby inhibiting alpha-smooth muscle actin; collagen I, III, and IV accumulation; and expression of inflammatory cytokines (IL-1beta and IL-6), adhesion molecule/chemokine (intercellular adhesion molecule-1, monocyte chemoattractant protein-1), and inducible nitric oxide synthase (all P < 0.01). Leukocyte infiltration (CD4(+) cells and macrophages) was also suppressed (P < 0.005). Severe histologic damage (glomerular crescent formation and tubulointerstitial injury) and functional injury including proteinuria were significantly improved (all P < 0.05). This study provides important evidence that overexpression of Smad7 may have therapeutic potential for autoimmune kidney disease.
Collapse
Affiliation(s)
- Shuk-Man Ka
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, No. 325 Sec. 2 Cheng-Gung Road, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
48
|
Fintha A, Sebe A, Masszi A, Terebessy T, Huszár T, Rosivall L, Mucsi I. Angiotensin II activates plasminogen activator inhibitor-I promoter in renal tubular epithelial cells via the AT1receptor. ACTA ACUST UNITED AC 2007; 94:19-30. [PMID: 17444273 DOI: 10.1556/aphysiol.94.2007.1-2.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1) regulates normal extracellular matrix (ECM) metabolism and it is a key regulator of the fibrotic process. Both angiotensin II (Ang II) and angiotensin IV (Ang IV) have been reported to stimulate PAI-1 expression. It is not known how PAI-1 expression is regulated by the renin-angiotensin system (RAS) in renal tubular cells. METHODS To dissect signaling mechanisms contributing to the up-regulation of the PAI-1 promoter, porcine proximal tubular cells stably expressing the rabbit AT1 receptor (LLC-PK/AT1) were transiently transfected with a luciferase reporter construct containing the PAI-1 promoter. Promoter activation was assessed by measuring luciferase activity from cell lysates. RESULTS Ang II dose-dependently stimulated the transcriptional activity of the PAI-1 promoter in renal proximal tubular cells whereas Ang IV had no consistent effect on the promoter activity. Neither inhibition of the Extracellular Signal Regulated Kinase (ERK) cascade nor inhibition of the c-Jun-N-terminal Kinase (JNK) pathway did reduce the stimulation of the PAI-1 promoter by Ang II. However, genistein, a tyrosine kinase inhibitor blocked the effect of Ang II. CONCLUSION Ang II but not Ang IV activates the PAI-1 promoter in renal proximal tubular cells and this effect is mediated by tyrosine kinases.
Collapse
Affiliation(s)
- A Fintha
- Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
49
|
De Borst MH, Prakash J, Melenhorst WBWH, van den Heuvel MC, Kok RJ, Navis G, van Goor H. Glomerular and tubular induction of the transcription factor c-Jun in human renal disease. J Pathol 2007; 213:219-28. [PMID: 17891746 DOI: 10.1002/path.2228] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The transcription factor c-Jun regulates the expression of genes involved in proliferation and inflammation in many cell types but its role in human renal disease is largely unclear. In the current study we investigated whether c-Jun activation is associated with human renal disease and if c-Jun activation regulates pro-inflammatory and pro-fibrotic genes in renal cells. Activation of c-Jun was quantified by scoring renal expression of phosphorylated c-Jun (pc-Jun) in control human renal tissue and in biopsies from patients with various renal diseases (diabetic nephropathy, focal glomerulosclerosis, hypertension, IgA nephropathy, membranous glomerulopathy, minimal change disease, membranoproliferative glomerulonephritis, systemic lupus erythematosus, acute rejection, and Wegener's granulomatosis); this was correlated with parameters of renal damage. Furthermore, we studied the functional role of c-Jun activation in human tubular epithelial cells (HK-2) stimulated with TGF-beta. Activated c-Jun was present in nuclei of glomerular and tubular cells in all human renal diseases, but only sporadically in controls. Across the diseases, the extent of pc-Jun expression correlated with the degree of focal glomerulosclerosis, interstitial fibrosis, cell proliferation, kidney injury molecule-1 (Kim-1) expression, macrophage accumulation, and impairment of renal function. In HK-2 cells, TGF-beta induced c-Jun activation after 1 h (+40%, p < 0.001) and 24 h (+160%, p < 0.001). The specific c-Jun N-terminal kinase (JNK) inhibitor SP600125 abolished c-Jun phosphorylation at all time points and blunted TGF-beta- or BSA-induced procollagen-1alpha 1 and MCP-1 gene expression in HK-2 cells. We conclude that in human renal disease, the transcription factor c-Jun is activated in glomerular and tubular cells. Activation of c-Jun may be involved in the regulation of inflammation and/or fibrosis in human renal disease.
Collapse
Affiliation(s)
- M H De Borst
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen and University of Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
50
|
Banas MC, Parks WT, Hudkins KL, Banas B, Holdren M, Iyoda M, Wietecha TA, Kowalewska J, Liu G, Alpers CE. Localization of TGF-beta signaling intermediates Smad2, 3, 4, and 7 in developing and mature human and mouse kidney. J Histochem Cytochem 2006; 55:275-85. [PMID: 17142805 DOI: 10.1369/jhc.6a7083.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smad proteins are signaling intermediates of the TGF-beta superfamily and are involved in a range of biological activities including development and immune responses. We studied the expression of TGF-beta-receptor activated Smads (Smad2 and Smad3), the common partner Smad (Smad4), an inhibitory Smad (Smad7), and the activated (phosphorylated) Smad2 (pSmad2) in developing and adult kidneys of humans and mice. These studies demonstrate associated expression of these Smads in multiple renal cell types in all developmental stages and in mature non-diseased kidneys. Smad expression is in general most widespread at the earliest stages of nephron development and diminishes as components of the nephrons become more differentiated. Paucity of Smad expression in mesangial cells in contrast to widespread expression of these Smads in glomerular visceral epithelial cells in both developing and mature kidneys was remarkable. Divergent and less extensive expression of Smad4, compared with other Smad proteins, was also demonstrated in tubules of human kidneys. Based on the observed expression patterns, these findings demonstrate, for the first time, expression of the TGF-beta-receptor-activated Smad2 and Smad3, the common mediator Smad4, and the inhibitory Smad7 in the developing human fetal kidney, extending observations previously made in rodent systems to humans.
Collapse
Affiliation(s)
- Miriam C Banas
- Klinik und Poliklinik für Innere Medizin II, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|