1
|
Fu Z, Geng X, Liu C, Shen W, Dong Z, Sun G, Cai G, Chen X, Hong Q. Identification of common and specific fibrosis-related genes in three common chronic kidney diseases. Ren Fail 2024; 46:2295431. [PMID: 38174742 PMCID: PMC10769532 DOI: 10.1080/0886022x.2023.2295431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Kidney fibrosis is the common final pathway of virtually all advanced forms of chronic kidney disease (CKD) including diabetic nephropathy (DN), IgA nephropathy (IgAN) and membranous nephropathy (MN), with complex mechanism. Comparative gene expression analysis among these types of CKD may shed light on its pathogenesis. Therefore, we conducted this study aiming at exploring the common and specific fibrosis-related genes involved in different types of CKD. METHODS Kidney biopsy specimens from patients with different types of CKD and normal control subjects were analyzed using the NanoString nCounter® Human Fibrosis V2 Panel. Genes differentially expressed in all fibrotic DN, IgAN and MN tissues compared to the normal controls were regarded as the common fibrosis-related genes in CKD, whereas genes exclusively differentially expressed in fibrotic DN, IgAN or MN samples were considered to be the specific genes related to fibrosis in DN, IgAN and MN respectively. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression of the selected genes. RESULTS Protein tyrosine phosphatase receptor type C (PTPRC), intercellular cell adhesion molecule-1 (ICAM1), vascular cell adhesion molecule-1 (VCAM1), interleukin 10 receptor alpha (IL10RA) and CC chemokine receptor 2 (CCR2) were identified as the potential common genes for kidney fibrosis in different types of CKD, while peroxisome proliferator-activated receptor alpha (PPARA), lactate oxidase (LOX), secreted phosphoprotein 1 (SPP1) were identified as the specific fibrosis-associated genes for DN, IgAN and MN respectively. qRT-PCR demonstrated that the expression levels of these selected genes were consistent with the NanoString analysis. CONCLUSIONS There were both commonalities and differences in the mechanisms of fibrosis in different types of CKD, the commonalities might be used as the common therapeutic targets for kidney fibrosis in CKD, while the differences might be used as the diagnostic markers for DN, IgAN and MN respectively. Inflammation was highly relevant to the pathogenesis of fibrosis. This study provides further insight into the pathophysiology and treatment of fibrotic kidney disease.
Collapse
Affiliation(s)
- Zhangning Fu
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese, PLA General Hospital, Beijing, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guannan Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese, PLA General Hospital, Nephrology Institute of the Chinese PLA, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
2
|
Erichsen L, Thimm C, Bohndorf M, Rahman MS, Wruck W, Adjaye J. Activation of the Renin–Angiotensin System Disrupts the Cytoskeletal Architecture of Human Urine-Derived Podocytes. Cells 2022; 11:cells11071095. [PMID: 35406662 PMCID: PMC8997628 DOI: 10.3390/cells11071095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
High blood pressure is one of the major public health problems that causes severe disorders in several tissues including the human kidney. One of the most important signaling pathways associated with the regulation of blood pressure is the renin–angiotensin system (RAS), with its main mediator angiotensin II (ANGII). Elevated levels of circulating and intracellular ANGII and aldosterone lead to pro-fibrotic, -inflammatory, and -hypertrophic milieu that causes remodeling and dysfunction in cardiovascular and renal tissues. Furthermore, ANGII has been recognized as a major risk factor for the induction of apoptosis in podocytes, ultimately leading to chronic kidney disease (CKD). In the past, disease modeling of kidney-associated diseases was extremely difficult, as the derivation of kidney originated cells is very challenging. Here we describe a differentiation protocol for reproducible differentiation of sine oculis homeobox homolog 2 (SIX2)-positive urine-derived renal progenitor cells (UdRPCs) into podocytes bearing typical cellular processes. The UdRPCs-derived podocytes show the activation of the renin–angiotensin system by being responsive to ANGII stimulation. Our data reveal the ANGII-dependent downregulation of nephrin (NPHS1) and synaptopodin (SYNPO), resulting in the disruption of the podocyte cytoskeletal architecture, as shown by immunofluorescence-based detection of α-Actinin. Furthermore, we show that the cytoskeletal disruption is mainly mediated through angiotensin II receptor type 1 (AGTR1) signaling and can be rescued by AGTR1 inhibition with the selective, competitive angiotensin II receptor type 1 antagonist, losartan. In the present manuscript we confirm and propose UdRPCs differentiated to podocytes as a unique cell type useful for studying nephrogenesis and associated diseases. Furthermore, the responsiveness of UdRPCs-derived podocytes to ANGII implies potential applications in nephrotoxicity studies and drug screening.
Collapse
|
3
|
Tian Y, Zhan Y, Jiang Q, Lu W, Li X. Expression and function of PDGF-C in development and stem cells. Open Biol 2021; 11:210268. [PMID: 34847773 PMCID: PMC8633783 DOI: 10.1098/rsob.210268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is a relatively new member of the PDGF family, discovered nearly 20 years after the finding of platelet-derived growth factor A (PDGF-A) and platelet-derived growth factor B (PDGF-B). PDGF-C is generally expressed in most organs and cell types. Studies from the past 20 years have demonstrated critical roles of PDGF-C in numerous biological, physiological and pathological processes, such as development, angiogenesis, tumour growth, tissue remodelling, wound healing, atherosclerosis, fibrosis, stem/progenitor cell regulation and metabolism. Understanding PDGF-C expression and activities thus will be of great importance to various research disciplines. In this review, however, we mainly discuss the expression and functions of PDGF-C and its receptors in development and stem cells.
Collapse
Affiliation(s)
- Yi Tian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Ying Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Qin Jiang
- Ophthalmic Department, Affiliated Eye Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, People’s Republic of China
| |
Collapse
|
4
|
Huang L, Zhao YJ, Dong QR, Hu GC. Immune-mediated membranous nephropathy: Long term fluconazole usage caused podocyte autophagy. J Biochem Mol Toxicol 2021; 36:e22935. [PMID: 34726812 DOI: 10.1002/jbt.22935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022]
Abstract
The primary consequences of membranous nephropathy (MN) are the development of nephrotic syndrome including hypogammaglobulinemia, the increased infectious risk, the loss of protein-bound vitamin D, and, above all, an elevated thromboembolic incidence of up to 50% in severe proteinuria patients. Membrane nephropathy may be either idiopathic or primary, not recognized (70%-80%) or secondary (20%-30%) to pathological sicknesses such as hepatitis B, systemic lupus erythematosus, malignancies, and side-effects of medicines. The immunological responses in MN involve multiple components: immunoglobulin G (IgG), long-escaped antigens, and the membrane attachment complex, formed by the supplement to form C5b-9. In general, IgG4 is the most significant IgG subclass deposited in idiopathic membranous nephropathic disease but fluctuating IgG1 levels also are linked with immunological deposits. In contrast, IgG1, IgG2, and IgG3 deposition are greater than IgG4 deposition in secondary nephropathy. Fluconazole is a synthetic antifungal triazole that is often used. It is well tolerated in general and has never been identified as a cause of nephropathies. We report on the development of MN caused by fluconazole therapy that could potentiate podocyte autophagy.
Collapse
Affiliation(s)
- Lan Huang
- Division of Nephrology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Ya-Juan Zhao
- Division of Nephrology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Qiao-Rong Dong
- Division of Nephrology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Gui-Cai Hu
- Division of Nephrology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
5
|
Small-Dose Sunitinib Modulates p53, Bcl-2, STAT3, and ERK1/2 Pathways and Protects against Adenine-Induced Nephrotoxicity. Pharmaceuticals (Basel) 2020; 13:ph13110397. [PMID: 33212804 PMCID: PMC7698013 DOI: 10.3390/ph13110397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The therapeutic use of numerous pharmacological agents may be limited due to their nephrotoxicity and associated kidney injury. The aim of our study is to test the hypothesis that the blockade of tyrosine kinase-linked receptors signaling protects against chemically induced nephrotoxicity. To test our hypothesis, we investigated sunitinib as an inhibitor for tyrosine kinase signaling for both vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptors (PDGFR) against adenine-induced nephrotoxicity. Four groups of adult male Swiss albino mice were investigated: normal group, adenine group, sunitinib group, and the adenine+sunitinib group that received concurrent administration for both adenine and sunitinib. Kidney function and oxidative stress biomarkers were analyzed. Tubular injury and histopathological changes were examined. Renal expression of B-cell lymphoma-2 (Bcl-2), the tumor suppressor p53, transforming growth factor beta-1 (TGF-β1), phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2), and phospho-signal transducer and activator of transcription (phospho-STAT3) were measured. The results obtained showed significant improvement (p < 0.05) in kidney function and antioxidant biomarkers in the adenine+sunitinib group. Kidney fibrosis and tubular injury scores were significantly (p < 0.05) less in the adenine+sunitinib group and that of p53 expression as well. Furthermore, sunitinib decreased (p < 0.5) renal levels of TGF-β1, p-ERK1/2, and phospho-STAT3 while elevating Bcl-2 expression score. In conclusion, sunitinib diminished adenine-induced nephrotoxicity through interfering with profibrogenic pathways, activating anti-apoptotic mechanisms, and possessing potential antioxidant capabilities.
Collapse
|
6
|
Abstract
Chronic kidney disease (CKD) is a devastating condition that is reaching epidemic levels owing to the increasing prevalence of diabetes mellitus, hypertension and obesity, as well as ageing of the population. Regardless of the underlying aetiology, CKD is slowly progressive and leads to irreversible nephron loss, end-stage renal disease and/or premature death. Factors that contribute to CKD progression include parenchymal cell loss, chronic inflammation, fibrosis and reduced regenerative capacity of the kidney. Current therapies have limited effectiveness and only delay disease progression, underscoring the need to develop novel therapeutic approaches to either stop or reverse progression. Preclinical studies have identified several approaches that reduce fibrosis in experimental models, including targeting cytokines, transcription factors, developmental and signalling pathways and epigenetic modulators, particularly microRNAs. Some of these nephroprotective strategies are now being tested in clinical trials. Lessons learned from the failure of clinical studies of transforming growth factor β1 (TGFβ1) blockade underscore the need for alternative approaches to CKD therapy, as strategies that target a single pathogenic process may result in unexpected negative effects on simultaneously occurring processes. Additional promising avenues include preventing tubular cell injury and anti-fibrotic therapies that target activated myofibroblasts, the main collagen-producing cells.
Collapse
|
7
|
van Roeyen CRC, Martin IV, Drescher A, Schuett KA, Hermert D, Raffetseder U, Otten S, Buhl EM, Braun GS, Kuppe C, Liehn E, Boor P, Weiskirchen R, Eriksson U, Gross O, Eitner F, Floege J, Ostendorf T. Identification of platelet-derived growth factor C as a mediator of both renal fibrosis and hypertension. Kidney Int 2019; 95:1103-1119. [PMID: 30827511 DOI: 10.1016/j.kint.2018.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factors (PDGF) have been implicated in kidney disease progression. We previously found that PDGF-C is upregulated at sites of renal fibrosis and that antagonism of PDGF-C reduces fibrosis in the unilateral ureteral obstruction model. We studied the role of PDGF-C in collagen 4A3-/- ("Alport") mice, a model of progressive renal fibrosis with greater relevance to human kidney disease. Alport mice were crossbred with PDGF-C-/- mice or administered a neutralizing PDGF-C antibody. Both PDGF-C deficiency and neutralization reduced serum creatinine and blood urea nitrogen levels and mitigated glomerular injury, renal fibrosis, and renal inflammation. Unexpectedly, systolic blood pressure was also reduced in both Alport and wild-type mice treated with a neutralizing PDGF-C antibody. Neutralization of PDGF-C reduced arterial wall thickness in the renal cortex of Alport mice. Aortic rings isolated from anti-PDGF-C-treated wildtype mice exhibited reduced tension and faster relaxation than those of untreated mice. In vitro, PDGF-C upregulated angiotensinogen in aortic tissue and in primary hepatocytes and induced nuclear factor κB (NFκB)/p65-binding to the angiotensinogen promoter in hepatocytes. Neutralization of PDGF-C suppressed transcript expression of angiotensinogen in Alport mice and angiotensin II receptor type 1 in Alport and wildtype mice. Finally, administration of neutralizing PDGF-C antibodies ameliorated angiotensin II-induced hypertension in healthy mice. Thus, in addition to its key role in mediating renal fibrosis, we identified PDGF-C as a mediator of hypertension via effects on renal vasculature and on the renin-angiotensin system. The contribution to both renal fibrosis and hypertension render PDGF-C an attractive target in progressive kidney disease.
Collapse
Affiliation(s)
- Claudia R C van Roeyen
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.
| | - Ina V Martin
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ana Drescher
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | | | - Daniela Hermert
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ute Raffetseder
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Stephanie Otten
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Eva M Buhl
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Gerald S Braun
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Elisa Liehn
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry RWTH Aachen University, Aachen, Germany
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Gross
- Division of Nephrology and Rheumatology, University Medicine Göttingen, Göttingen, Germany
| | - Frank Eitner
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Kidney Diseases Research, Bayer AG, Wuppertal, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
8
|
O’Brien LL, Guo Q, Bahrami-Samani E, Park JS, Hasso SM, Lee YJ, Fang A, Kim AD, Guo J, Hong TM, Peterson KA, Lozanoff S, Raviram R, Ren B, Fogelgren B, Smith AD, Valouev A, McMahon AP. Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies. PLoS Genet 2018; 14:e1007181. [PMID: 29377931 PMCID: PMC5805373 DOI: 10.1371/journal.pgen.1007181] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/08/2018] [Accepted: 01/01/2018] [Indexed: 12/12/2022] Open
Abstract
Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped nephron progenitor-specific transcriptional networks of Six2, Hoxd11, Osr1, and Wt1. We identified 373 multi-factor associated 'regulatory hotspots' around genes closely associated with progenitor programs. To examine their functional significance, we deleted 'hotspot' enhancer elements for Six2 and Wnt4. Removal of the distal enhancer for Six2 leads to a ~40% reduction in Six2 expression. When combined with a Six2 null allele, progeny display a premature depletion of nephron progenitors. Loss of the Wnt4 enhancer led to a significant reduction of Wnt4 expression in renal vesicles and a mildly hypoplastic kidney, a phenotype also enhanced in combination with a Wnt4 null mutation. To explore the regulatory landscape that supports proper target gene expression, we performed CTCF ChIP-seq to identify insulator-boundary regions. One such putative boundary lies between the Six2 and Six3 loci. Evidence for the functional significance of this boundary was obtained by deep sequencing of the radiation-induced Brachyrrhine (Br) mutant allele. We identified an inversion of the Six2/Six3 locus around the CTCF-bound boundary, removing Six2 from its distal enhancer regulation, but placed next to Six3 enhancer elements which support ectopic Six2 expression in the lens where Six3 is normally expressed. Six3 is now predicted to fall under control of the Six2 distal enhancer. Consistent with this view, we observed ectopic Six3 in nephron progenitors. 4C-seq supports the model for Six2 distal enhancer interactions in wild-type and Br/+ mouse kidneys. Together, these data expand our view of the regulatory genome and regulatory landscape underpinning mammalian nephrogenesis.
Collapse
Affiliation(s)
- Lori L. O’Brien
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Preventative Medicine, Division of Bioinformatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Emad Bahrami-Samani
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Joo-Seop Park
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sean M. Hasso
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Young-Jin Lee
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Alan Fang
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Albert D. Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Trudy M. Hong
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | | | - Scott Lozanoff
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Ramya Raviram
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, University of California San Diego La Jolla, California, United States of America
| | - Bing Ren
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, University of California San Diego La Jolla, California, United States of America
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Andrew D. Smith
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Anton Valouev
- Department of Preventative Medicine, Division of Bioinformatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Abstract
Fibrosis is part of a tissue repair response to injury, defined as increased deposition of extracellular matrix. In some instances, fibrosis is beneficial; however, in the majority of diseases fibrosis is detrimental. Virtually all chronic progressive diseases are associated with fibrosis, representing a huge number of patients worldwide. Fibrosis occurs in all organs and tissues, becomes irreversible with time and further drives loss of tissue function. Various cells types initiate and perpetuate pathological fibrosis by paracrine activation of the principal cellular executors of fibrosis, i.e. stromal mesenchymal cells like fibroblasts, pericytes and myofibroblasts. Multiple pathways are involved in fibrosis, platelet-derived growth factor (PDGF)-signaling being one of the central mediators. Stromal mesenchymal cells express both PDGF receptors (PDGFR) α and β, activation of which drives proliferation, migration and production of extracellular matrix, i.e. the principal processes of fibrosis. Here, we review the role of PDGF signaling in organ fibrosis, with particular focus on the more recently described ligands PDGF-C and -D. We discuss the potential challenges, opportunities and open questions in using PDGF as a potential target for anti-fibrotic therapies.
Collapse
Affiliation(s)
| | - Jürgen Floege
- Division of Nephrology, RWTH University of Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, Germany; Division of Nephrology, RWTH University of Aachen, Germany.
| |
Collapse
|
10
|
Platelet-derived growth factor-C and -D in the cardiovascular system and diseases. Mol Aspects Med 2017; 62:12-21. [PMID: 28965749 DOI: 10.1016/j.mam.2017.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022]
Abstract
The cardiovascular system is among the first organs formed during development and is pivotal for the formation and function of the rest of the organs and tissues. Therefore, the function and homeostasis of the cardiovascular system are finely regulated by many important molecules. Extensive studies have shown that platelet-derived growth factors (PDGFs) and their receptors are critical regulators of the cardiovascular system. Even though PDGF-C and PDGF-D are relatively new members of the PDGF family, their critical roles in the cardiovascular system as angiogenic and survival factors have been amply demonstrated. Understanding the functions of PDGF-C and PDGF-D and the signaling pathways involved may provide novel insights into both basic biomedical research and new therapeutic possibilities for the treatment of cardiovascular diseases.
Collapse
|
11
|
Gaetani M, Chinnici CM, Carreca AP, Di Pasquale C, Amico G, Conaldi PG. Unbiased and quantitative proteomics reveals highly increased angiogenesis induction by the secretome of mesenchymal stromal cells isolated from fetal rather than adult skin. J Tissue Eng Regen Med 2017; 12:e949-e961. [DOI: 10.1002/term.2417] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Massimiliano Gaetani
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| | - Anna Paola Carreca
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| | - Claudia Di Pasquale
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| | - Giandomenico Amico
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| | - Pier Giulio Conaldi
- Fondazione Ri.MED Palermo Italy
- Regenerative Medicine and Biomedical Technologies Unit, Department of Laboratory Medicine and Advanced BiotechnologiesIRCCS‐ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies) Palermo Italy
| |
Collapse
|
12
|
Kitsunai H, Makino Y, Sakagami H, Mizumoto K, Yanagimachi T, Atageldiyeva K, Takeda Y, Fujita Y, Abiko A, Takiyama Y, Haneda M. High glucose induces platelet-derived growth factor-C via carbohydrate response element-binding protein in glomerular mesangial cells. Physiol Rep 2016; 4:4/6/e12730. [PMID: 27033449 PMCID: PMC4814887 DOI: 10.14814/phy2.12730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/12/2016] [Indexed: 01/29/2023] Open
Abstract
Persistent high concentration of glucose causes cellular stress and damage in diabetes via derangement of gene expressions. We previously reported high glucose activates hypoxia‐inducible factor‐1α and downstream gene expression in mesangial cells, leading to an extracellular matrix expansion in the glomeruli. A glucose‐responsive transcription factor carbohydrate response element‐binding protein (ChREBP) is a key mediator for such perturbation of gene regulation. To provide insight into glucose‐mediated gene regulation in mesangial cells, we performed chromatin immunoprecipitation followed by DNA microarray analysis and identified platelet‐derived growth factor‐C (PDGF‐C) as a novel target gene of ChREBP. In streptozotocin‐induced diabetic mice, glomerular cells showed a significant increase in PDGF‐C expression; the ratio of PDGF‐C‐positive cells to the total number glomerular cells demonstrated more than threefold increase when compared with control animals. In cultured human mesangial cells, high glucose enhanced expression of PDGF‐C protein by 1.9‐fold. Knock‐down of ChREBP abrogated this induction response. Upregulated PDGF‐C contributed to the production of type IV and type VI collagen, possibly via an autocrine mechanism. Interestingly, urinary PDGF‐C levels in diabetic model mice were significantly elevated in a fashion similar to urinary albumin. Taken together, we hypothesize that a high glucose‐mediated induction of PDGF‐C via ChREBP in mesangial cells contributes to the development of glomerular mesangial expansion in diabetes, which may provide a platform for novel predictive and therapeutic strategies for diabetic nephropathy.
Collapse
Affiliation(s)
- Hiroya Kitsunai
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuichi Makino
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hidemitsu Sakagami
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Katsutoshi Mizumoto
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Tsuyoshi Yanagimachi
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kuralay Atageldiyeva
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yasutaka Takeda
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yukihiro Fujita
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Atsuko Abiko
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yumi Takiyama
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masakazu Haneda
- Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
13
|
Boor P, Bábíčková J, Steegh F, Hautvast P, Martin IV, Djudjaj S, Nakagawa T, Ehling J, Gremse F, Bücher E, Eriksson U, van Roeyen CR, Eitner F, Lammers T, Floege J, Peutz-Kootstra CJ, Ostendorf T. Role of Platelet-Derived Growth Factor-CC in Capillary Rarefaction in Renal Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [DOI: 10.1016/j.ajpath.2015.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Kuai J, Mosyak L, Brooks J, Cain M, Carven GJ, Ogawa S, Ishino T, Tam M, Lavallie ER, Yang Z, Ponsel D, Rauchenberger R, Arch R, Pullen N. Characterization of binding mode of action of a blocking anti-platelet-derived growth factor (PDGF)-B monoclonal antibody, MOR8457, reveals conformational flexibility and avidity needed for PDGF-BB to bind PDGF receptor-β. Biochemistry 2015; 54:1918-29. [PMID: 25707433 DOI: 10.1021/bi5015425] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Platelet derived growth factor-BB (PDGF-BB) is an important mitogen and cell survival factor during development. PDGF-BB binds PDGF receptor-β (PDGFRβ) to trigger receptor dimerization and tyrosine kinase activation. We present the pharmacological and biophysical characterization of a blocking PDGF-BB monoclonal antibody, MOR8457, and contrast this to PDGFRβ. MOR8457 binds to PDGF-BB with high affinity and selectivity, and prevents PDGF-BB induced cell proliferation competitively and with high potency. The structural characterization of the MOR8457-PDGF-BB complex indicates that MOR8457 binds with a 2:1 stoichiometry, but that binding of a single MOR8457 moiety is sufficient to prevent binding to PDGFRβ. Comparison of the MOR8457-PDGF-BB structure with that of the PDGFRβ-PDGF-BB complex suggested the potential reason for this was a substantial bending and twisting of PDGF-BB in the MOR8457 structure, relative to the structures of PDGF-BB alone, bound to a PDGF-BB aptamer or PDGFRβ, which makes it nonpermissive for PDGFRβ binding. These biochemical and structural data offer insights into the permissive structure of PDGF-BB needed for agonism as well as strategies for developing specific PDGF ligand antagonists.
Collapse
Affiliation(s)
| | | | | | | | - Gregory J Carven
- ‡Scholar Rock LLC, 300 Technology Square, Cambridge, Massachusetts 02142, United States
| | - Shinji Ogawa
- §Pfizer Japan Inc., 3-22-7 Yoyogi, Shibuya, Tokyo 151-8589, Japan
| | | | | | | | | | - Dirk Ponsel
- ∥Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | | | - Robert Arch
- ¶Takeda Pharmaceuticals International Inc., One Takeda Parkway, Deerfield, Illinois 60015, United States
| | | |
Collapse
|
15
|
Noskovičová N, Petřek M, Eickelberg O, Heinzelmann K. Platelet-Derived Growth Factor Signaling in the Lung. From Lung Development and Disease to Clinical Studies. Am J Respir Cell Mol Biol 2015; 52:263-84. [DOI: 10.1165/rcmb.2014-0294tr] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
16
|
Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11515-014-1339-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Boor P, Ostendorf T, Floege J. PDGF and the progression of renal disease. Nephrol Dial Transplant 2014; 29 Suppl 1:i45-i54. [PMID: 24493869 DOI: 10.1093/ndt/gft273] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Progressive renal diseases represent a global medical problem, in part because we currently lack effective treatment strategies. Inhibition of platelet-derived growth factors (PDGFs) might represent one such novel strategy. PDGFs are required for normal kidney development by the recruitment of mesenchymal cells to both glomeruli and the interstitium. PDGFs are expressed in renal mesenchymal cells and, upon injury, in epithelial and infiltrating cells. They exert autocrine and paracrine effects on PDGF receptor-bearing mesenchymal cells, i.e. mesangial cells, fibroblasts and vascular smooth-muscle cells, which are crucially involved in progressive renal diseases. Proliferation but also migration and activation of these mesenchymal cells are the major effects mediated by PDGFs. These actions predefine the major roles of PDGFs in renal pathology, particularly in mesangioproliferative glomerulonephritis and interstitial fibrosis. Whereas for the former, the role of PDGFs is very well described and established, the latter is increasingly better documented as well. An involvement of PDGFs in other renal diseases, e.g. acute kidney injury, vascular injury and hypertensive as well as diabetic nephropathy, is less well established or presently unknown. Nevertheless, PDGFs represent a promising therapeutic option for progressive renal diseases, especially those characterized by mesangial cell proliferation and interstitial fibrosis. Clinical studies are eagerly awaited, in particular, since several drugs inhibiting PDGF signalling are available for clinical testing.
Collapse
Affiliation(s)
- Peter Boor
- Department of Nephrology, RWTH University of Aachen, Aachen, Germany
| | | | | |
Collapse
|
18
|
Abstract
Renal fibrosis is the hallmark of chronic kidney disease progression and is characterized by an exaggerated wound-healing process with the production of renal scar tissue. It comprises both the glomerular and the tubulointerstitial compartments. Among the factors that contribute to kidney fibrosis, the members of the platelet-derived growth factor (PDGF) family are among the best characterized ones. They appear to be the key factors in driving renal fibrosis, independent of the underlying kidney disease. The PDGF family consists of four isoforms (PDGF-A, -B, -C, and -D) and two receptor chains (PDGFR-α and -β), which are constitutively or inducibly expressed in most renal cells. These components have an irreplaceable role in kidney development by recruitment of mesenchymal cells to the glomerular and tubulointerstitial compartments. They further regulate multiple pathophysiologic processes including cell proliferation, cell migration, expression and accumulation of extracellular matrix, production and secretion of pro- and anti-inflammatory mediators, vascular permeability, and hemodynamics. This review provides a brief update on the role of different PDGF isoforms in the development of glomerulosclerosis and tubulointerstitial fibrosis, newly identified endogeneous PDGF antagonists, and resulting potential therapies.
Collapse
|
19
|
Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 2014; 10:700-11. [PMID: 25311535 DOI: 10.1038/nrneph.2014.184] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a major health and economic burden with a rising incidence. During progression of CKD, the sustained release of proinflammatory and profibrotic cytokines and growth factors leads to an excessive accumulation of extracellular matrix. Transforming growth factor β (TGF-β) and angiotensin II are considered to be the two main driving forces in fibrotic development. Blockade of the renin-angiotensin-aldosterone system has become the mainstay therapy for preservation of kidney function, but this treatment is not sufficient to prevent progression of fibrosis and CKD. Several factors that induce fibrosis have been identified, not only by TGF-β-dependent mechanisms, but also by TGF-β-independent mechanisms. Among these factors are the (partially) TGF-β-independent profibrotic pathways involving connective tissue growth factor, epidermal growth factor and platelet-derived growth factor and their receptors. In this Review, we discuss the specific roles of these pathways, their interactions and preclinical evidence supporting their qualification as additional targets for novel antifibrotic therapies.
Collapse
Affiliation(s)
- Helena M Kok
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Lucas L Falke
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| |
Collapse
|
20
|
Shrestha BM, Haylor J. Biological pathways and potential targets for prevention and therapy of chronic allograft nephropathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:482438. [PMID: 24971332 PMCID: PMC4058292 DOI: 10.1155/2014/482438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/04/2014] [Indexed: 02/08/2023]
Abstract
Renal transplantation (RT) is the best option for patients with end-stage renal disease, but the half-life is limited to a decade due to progressive deterioration of renal function and transplant failure from chronic allograft nephropathy (CAN), which is the leading cause of transplant loss. Extensive research has been done to understand the pathogenesis, the biological pathways of fibrogenesis, and potential therapeutic targets for the prevention and treatment of CAN. Despite the advancements in the immunosuppressive agents and patient care, CAN continues to remain an unresolved problem in renal transplantation. The aim of this paper is to undertake a comprehensive review of the literature on the pathogenesis, biological pathways of RT fibrogenesis, and potential therapeutic targets for the prevention and therapy of CAN.
Collapse
Affiliation(s)
- Badri Man Shrestha
- Division of Renal Transplantation, Sheffield Kidney Institute, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | - John Haylor
- Division of Renal Transplantation, Sheffield Kidney Institute, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| |
Collapse
|
21
|
Shankland SJ, Smeets B, Pippin JW, Moeller MJ. The emergence of the glomerular parietal epithelial cell. Nat Rev Nephrol 2014; 10:158-73. [PMID: 24468766 DOI: 10.1038/nrneph.2014.1] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glomerular diseases are the leading causes of chronic and end-stage kidney disease. In the 1980s and 1990s, attention was focused on the biology and role of glomerular endothelial and mesangial cells. For the past two decades, seminal discoveries have been made in podocyte biology in health and disease. More recently, the glomerular parietal epithelial cell (PEC)-the fourth resident glomerular cell type-has been under active study, leading to a better understanding and definition of how these cells behave normally, and their potential roles in glomerular disease. Accordingly, this Review will focus on our current knowledge of PECs, in both health and disease. We discuss model systems to study PECs, how PECs might contribute to glomerulosclerosis, crescent and pseudocrescent formation and how PECs handle filtered albumin. These events have consequences on PEC structure and function, and PECs have potential roles as stem or progenitor cells for podocytes in glomerular regeneration, which will also be described.
Collapse
Affiliation(s)
- Stuart J Shankland
- Division of Nephrology, University of Washington, 1959 North East Pacific Avenue, Box 356521, Room BB1269, Seattle, WA 98195-6521, USA
| | - Bart Smeets
- Nephrology and Clinical Immunology, University Hospital of the RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, 1959 North East Pacific Avenue, Box 356521, Room BB1269, Seattle, WA 98195-6521, USA
| | - Marcus J Moeller
- Nephrology and Clinical Immunology, University Hospital of the RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| |
Collapse
|
22
|
Martin IV, Borkham-Kamphorst E, Zok S, van Roeyen CRC, Eriksson U, Boor P, Hittatiya K, Fischer HP, Wasmuth HE, Weiskirchen R, Eitner F, Floege J, Ostendorf T. Platelet-derived growth factor (PDGF)-C neutralization reveals differential roles of PDGF receptors in liver and kidney fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:107-17. [PMID: 23141925 DOI: 10.1016/j.ajpath.2012.09.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/02/2012] [Accepted: 09/06/2012] [Indexed: 12/12/2022]
Abstract
Platelet-derived growth factors (PDGF) are key mediators of organ fibrosis. We investigated whether PDGF-C(-/-) mice or mice treated with neutralizing PDGF-C antibodies are protected from bile duct ligation-induced liver fibrosis, and we compared the effects with those of PDGF-C deficiency or neutralization on kidney fibrosis induced by unilateral ureteral obstruction. Unexpectedly, and in contrast to kidney fibrosis, PDGF-C deficiency or antagonism did not protect from liver fibrosis or functional liver impairment. Furthermore, the hepatic infiltration of monocytes/macrophages/dendritic cells and chemokine mRNA expression (CC chemokine ligand [CCL]5, CCL2, and CC chemokine receptor 2 [CCR2]) remained unchanged. Transcript expression of PDGF ligands increased in both liver and kidney fibrosis and was not affected by neutralization of PDGF-C. In kidney fibrosis, PDGF-C deficiency or antagonism led to reduced expression and signaling of PDGF-receptor (R)-α- and PDGFR-β-chains. In contrast, in liver fibrosis there was either no difference (PDGF-C(-/-) mice) or even an upregulation of PDGFR-β and signaling (anti-PDGF-C group). Finally, in vitro studies in portal myofibroblasts pointed to a predominant role of PDGF-B and PDGF-D signaling in liver fibrosis. In conclusion, our study revealed significant differences between kidney and liver fibrosis in that PDGF-C mediates kidney fibrosis, whereas antagonism of PDGF-C in liver fibrosis appears to be counteracted by significant upregulation and increased PDGFR-β signaling. PDGF-C antagonism, therefore, may not be effective to treat liver fibrosis.
Collapse
Affiliation(s)
- Ina V Martin
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Boor P. [New approaches in progressive kidney diseases]. DER PATHOLOGE 2012; 33 Suppl 2:296-301. [PMID: 22935783 DOI: 10.1007/s00292-012-1633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Renal fibrosis, i.e. the replacement of functional tissue with scar tissue, represents the pathological correlate for chronic kidney disease (CKD). A great number of renal diseases lead to CKD and thereby to renal fibrosis. Therefore, renal fibrosis represents an excellent treatment option for patients with CKD. Here we discuss the problems with the preclinical identification and testing of potential factors and therapeutic approaches for renal fibrosis as well as obstacles in the translation of these results to clinical practice. We present the preclinical evidence for the role of novel molecules involved in renal fibrosis, e.g. platelet-derived growth factors (PDGF), C5a or peroxisome proliferator-activated receptor-α (PPAR-α).
Collapse
Affiliation(s)
- P Boor
- Institut für Pathologie, RWTH Universität Aachen, Pauwelsstr. 30, 52074 Aachen.
| |
Collapse
|
24
|
Tang B, Gong JP, Sun JM, Luo WJ, Chen YK, Liu ZJ, Li F, Fu J. Construction of a plasmid for expression of rat platelet-derived growth factor C and its effects on proliferation, migration and adhesion of endothelial progenitor cells. Plasmid 2012; 69:195-201. [PMID: 22935743 DOI: 10.1016/j.plasmid.2012.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/20/2012] [Accepted: 07/30/2012] [Indexed: 12/14/2022]
Abstract
Endothelial progenitor cells (EPCs) play a key role in restoring endothelial function and enhancing angiogenesis. Platelet-derived growth factor C (PDGF-C) is a newly discovered member of the PDGF family that binds to the PDGFR-α homodimer and the PDGFR-α/β heterodimer. Currently, the biological effects of PDGF-C on EPCs proliferation, migration and adhesion are not well understood. In this study, the full-length coding sequence (CDS) region for the PDGF-C gene was obtained by reverse transcriptase-polymerase chain reaction (RT-PCR). The amplified PDGF-C product was digested and inserted into the pMD 19-T simple vector and then subcloned into a pIRES2-EGFP plasmid to construct the pIRES2-EGFP-PDGF-C eukaryotic expression vector. After it was transfected to EPCs, the expression of PDGF-C protein in EPCs was verified by Western blotting analysis. Finally, we investigated the effects of PDGF-C protein overexpression on EPCs proliferation, migration and adhesion. In conclusion, we constructed a recombinant eukaryotic expression vector containing the complete CDS region of PDGF-C and expressed the full-length and functional PDGF-C protein successfully. Furthermore, PDGF-C promoted EPCs proliferation, migration and adhesion. This offers promise for the development of new therapeutic strategies for improving neovascularization and repair of blood vessel endothelium in patients with ischemic heart disease or peripheral arterial occlusive disease.
Collapse
Affiliation(s)
- Bo Tang
- Department of Vascular Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ostendorf T, Eitner F, Floege J. The PDGF family in renal fibrosis. Pediatr Nephrol 2012; 27:1041-50. [PMID: 21597969 DOI: 10.1007/s00467-011-1892-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 12/13/2022]
Abstract
The platelet-derived growth factor (PDGF) family plays an important role in embryonic development, malignancy, wound healing, atherosclerosis, and fibrosis in multiple organs. It belongs to the best-characterized growth factor systems in normal and diseased kidneys, and there is accumulating evidence that members of the PDGF family are key players in the development of renal fibrosis independent of the underlying kidney disease. All components of the PDGF system, consisting of four isoforms (PDGF-A, -B, -C, -D) and two receptor chains (PDGFR-α and -β), are constitutively or inducibly expressed in most renal cells. They regulate multiple pathophysiologic events, ranging from cell proliferation and migration, extracellular matrix accumulation and production of pro- and anti-inflammatory mediators, to tissue permeability and hemodynamics. This review focuses on advances in defining the roles of different PDGF isoforms in the development of glomerulosclerosis and tubulointerstitial fibrosis. The recent identification of endogenous PDGF inhibitors offers additional novel therapeutic strategies.
Collapse
Affiliation(s)
- Tammo Ostendorf
- Department of Nephrology, RWTH University of Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| | | | | |
Collapse
|
26
|
Sukhotnik I, Mogilner JG, Pollak Y, Blumenfeld S, Bejar J, Coran AG. PDGF-α stimulates intestinal epithelial cell turnover after massive small bowel resection in a rat. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1274-81. [PMID: 22461028 DOI: 10.1152/ajpgi.00532.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Numerous cytokines have been shown to affect epithelial cell differentiation and proliferation through epithelial-mesenchymal interaction. Growing evidence suggests that platelet-derived growth factor (PDGF) signaling is an important mediator of these interactions. The purpose of this study was to evaluate the effect of PDGF-α on enterocyte turnover in a rat model of short bowel syndrome (SBS). Male rats were divided into four groups: Sham rats underwent bowel transection, Sham-PDGF-α rats underwent bowel transection and were treated with PDGF-α, SBS rats underwent a 75% bowel resection, and SBS-PDGF-α rats underwent bowel resection and were treated with PDGF-α. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined at euthanasia. Illumina's Digital Gene Expression analysis was used to determine PDGF-related gene expression profiling. PDGF-α and PDGF-α receptor (PDGFR-α) expression was determined by real-time PCR. Western blotting was used to determine p-ERK, Akt1/2/3, bax, and bcl-2 protein levels. SBS rats demonstrated a significant increase in PDGF-α and PDGFR-α expression in jejunum and ileum compared with sham animals. SBS-PDGF-α rats demonstrated a significant increase in bowel and mucosal weight, villus height, and crypt depth in jejunum and ileum compared with SBS animals. PDGF-α receptor expression in crypts increased in SBS rats (vs. sham) and was accompanied by an increased cell proliferation following PDGF-α administration. A significant decrease in cell apoptosis in this group was correlated with lower bax protein levels. In conclusion, in a rat model of SBS, PDGF-α stimulates enterocyte turnover, which is correlated with upregulated PDGF-α receptor expression in the remaining small intestine.
Collapse
Affiliation(s)
- Igor Sukhotnik
- Technion-Israel Institute of Technology, the Ruth and Bruce Rappaport Faculty of Medicine, Laboratory of Intestinal Adaptation and Recovery, Bnai Zion Medical Center, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
27
|
van Roeyen CRC, Ostendorf T, Floege J. The platelet-derived growth factor system in renal disease: an emerging role of endogenous inhibitors. Eur J Cell Biol 2011; 91:542-51. [PMID: 21872965 DOI: 10.1016/j.ejcb.2011.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/05/2011] [Accepted: 07/05/2011] [Indexed: 01/28/2023] Open
Abstract
The platelet-derived growth factor (PDGF) family consists of four isoforms which are secreted as homodimers (PDGF-AA, PDGF-BB, PDGF-CC and PDGF-DD) or heterodimers (PDGF-AB), and two receptor chains (PDGFR-α and -β). All members of the PDGF system are constitutively or inducibly expressed in renal cells and are involved in the regulation of cell proliferation and migration, the accumulation of extracellular matrix proteins and the secretion of pro- and anti-inflammatory mediators. Particular roles have been identified in mediating mesangioproliferative changes, renal interstitial fibrosis and glomerular angiogenesis. Different endogenous inhibitors of PDGF-induced biological responses exist which affect the activation/deactivation of PDGF isoforms, the activity of the PDGFRs, or which block downstream signaling pathways of the autophosphorylated PDGFRs. The novel endogenous inhibitor nephroblastoma overexpressed gene (NOV, CCN3) reduces PDGF-induced cell proliferation and is downregulated by PDGF isoforms itself. Among all identified inhibitors only few "true" PDGF antagonists have been identified. A better understanding of these inhibitors may aid in the design of novel therapeutic approaches to PDGF-mediated diseases.
Collapse
Affiliation(s)
- Claudia R C van Roeyen
- Department of Nephrology and Clinical Immunology, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52057 Aachen, Germany.
| | | | | |
Collapse
|
28
|
Affiliation(s)
- Peter Boor
- Department of Nephrology Institute of Pathology, RWTH University of Aachen, Aachen, Germany.
| | | |
Collapse
|
29
|
Receptor tyrosine kinases in kidney development. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:869281. [PMID: 21637383 PMCID: PMC3100575 DOI: 10.1155/2011/869281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/08/2011] [Accepted: 01/15/2011] [Indexed: 11/18/2022]
Abstract
The kidney plays a fundamental role in the regulation of arterial blood pressure and fluid/electrolyte homeostasis. As congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most common human birth defects, improved understanding of the cellular and molecular mechanisms that lead to CAKUT is critical. Accumulating evidence indicates that aberrant signaling via receptor tyrosine kinases (RTKs) is causally linked to CAKUT. Upon activation by their ligands, RTKs dimerize, undergo autophosphorylation on specific tyrosine residues, and interact with adaptor proteins to activate intracellular signal transduction pathways that regulate diverse cell behaviours such as cell proliferation, survival, and movement. Here, we review the current understanding of role of RTKs and their downstream signaling pathways in the pathogenesis of CAKUT.
Collapse
|
30
|
Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 2010; 6:643-56. [PMID: 20838416 DOI: 10.1038/nrneph.2010.120] [Citation(s) in RCA: 481] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Renal fibrosis is the common end point of virtually all progressive kidney diseases. Renal fibrosis should not be viewed as a simple and uniform 'scar', but rather as a dynamic system that involves extracellular matrix components and many, if not all, renal and infiltrating cell types. The involved cells exhibit enormous plasticity or phenotypic variability-a fact that we are only beginning to appreciate. Only a detailed understanding of the underlying mechanisms of renal fibrosis can facilitate the development of effective treatments. In this Review, we discuss the most recent advances in renal, or more specifically, tubulointerstitial fibrosis. Novel mechanisms as well as potential treatment targets based on different cell types are described. Problems that continue to plague the field are also discussed, including specific therapeutic targeting of the kidney, the development of improved diagnostic methods to assess renal fibrosis and the shortcomings of available animal models.
Collapse
Affiliation(s)
- Peter Boor
- Department of Nephrology, RWTH University of Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | |
Collapse
|
31
|
Boor P, van Roeyen CRC, Kunter U, Villa L, Bücher E, Hohenstein B, Hugo CPM, Eriksson U, Satchell SC, Mathieson PW, Eitner F, Floege J, Ostendorf T. PDGF-C mediates glomerular capillary repair. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:58-69. [PMID: 20489153 PMCID: PMC2893651 DOI: 10.2353/ajpath.2010.091008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 03/12/2010] [Indexed: 01/06/2023]
Abstract
Glomerular endothelial cell injury is a key component of a variety of diseases. Factors involved in glomerular endothelial cell repair are promising therapeutic agents for such diseases. Platelet-derived growth factor (PDGF)-C has pro-angiogenic properties; however, nothing is known about such functions in the kidney. We therefore investigated the consequences of either PDGF-C infusion or inhibition in rats with mesangioproliferative glomerulonephritis, which is accompanied by widespread glomerular endothelial cell damage. We also assessed the role of PDGF-C in a mouse model of thrombotic microangiopathy as well as in cultured glomerular endothelial cells. PDGF-C infusion in nephritic rats significantly reduced mesangiolysis and microaneurysm formation, whereas glomerular endothelial cell area and proliferation increased. PDGF-C infusion specifically up-regulated glomerular fibroblast growth factor-2 expression. In contrast, antagonism of PDGF-C in glomerulonephritis specifically reduced glomerular endothelial cell area and proliferation and increased mesangiolysis. Similarly, PDGF-C antagonism in murine thrombotic microangiopathy aggravated the disease and reduced glomerular endothelial area. In conditionally immortalized glomerular endothelial cells, PDGF-C was mitogenic and induced a 27-fold up-regulation of fibroblast growth factor-2 mRNA. PDGF-C also exerted indirect pro-angiogenic effects, since it induced endothelial cell mitogens and pro-angiogenic factors in mesangial cells and macrophages. These results identify PDGF-C as a novel, potent pro-angiogenic factor in the kidney that can accelerate capillary healing in experimental glomerulonephritis and thrombotic microangiopathy.
Collapse
Affiliation(s)
- Peter Boor
- Division of Nephrology and Immunology, University Hospital Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schlieper G, Grotemeyer D, Aretz A, Schurgers LJ, Krüger T, Rehbein H, Weirich TE, Westenfeld R, Brandenburg VM, Eitner F, Mayer J, Floege J, Sandmann W, Ketteler M. Analysis of calcifications in patients with coral reef aorta. Ann Vasc Surg 2010; 24:408-14. [PMID: 20144533 DOI: 10.1016/j.avsg.2009.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 08/22/2009] [Accepted: 11/11/2009] [Indexed: 12/17/2022]
Abstract
BACKGROUND Coral reef aorta is a rare vascular disease with intraluminal calcifications of the dorsal part of the visceral aorta. The pathogenesis of this disease with its topographic and morphologic characteristics is unknown. The aim of our study was to investigate calcification inhibitors and the ultrastructure of calcifications in patients with coral reef aorta. METHODS Ten patients with coral reef aorta were examined. Calcified specimens were investigated by immunohistochemical techniques for the expression of the calcification inhibitors matrix gla protein (MGP) and fetuin-A. Vessel walls were also assessed by electron microscopic techniques including electron energy-lost spectroscopy, electron dispersive spectroscopy, and electron diffraction. Sera of patients were analyzed for fetuin-A, uncarboxylated MGP (ucMGP), and osteoprotegerin. RESULTS As assessed by immunohistochemistry, most MGP was detected in the vicinity of calcified regions. Serum levels of the calcification inhibitors ucMGP, fetuin-A, and osteoprotegerin were 370+/-107 nmol/L, 0.57+/-0.03 g/L, and 5.64+/-0.79 pmol/L, respectively. Ultrastructural analysis of calcified specimens showed a core-shell structure with multiple calcification nuclei. Calcifications displayed a fine-crystalline character, and elemental analysis revealed hydroxyl apatite as the chemical compound. CONCLUSION The coral reef aorta represents an extreme exophytic growth of vascular calcification with multiple nuclei which resemble typical media calcification. Positive vascular immunostaining and low serum levels of both fetuin-A and ucMGP suggest a pathophysiologic role of these calcification inhibitors in the development of coral reef aorta.
Collapse
Affiliation(s)
- Georg Schlieper
- Department of Nephrology and Clinical Immunology, RWTH University Hospital, and Central Facility for Electron Microscopy, RWTH University, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Although the normal glomerulus comprises four resident cell types, least is known about the parietal epithelial cells (PECs). This comprehensive review addresses the cellular origin of PECs, discusses the normal structure and protein makeup of PECs, describes PEC function, and defines the responses to injury in disease and how these events lead to clinical events. The data show that PECs have unique properties and that new functions are being recognized such as their role in differentiating into podocytes during disease.
Collapse
|
34
|
PDGF-A, -C, and -D but not PDGF-B Increase TGF-β1 and Chronic Rejection in Rat Cardiac Allografts. Arterioscler Thromb Vasc Biol 2009; 29:691-8. [DOI: 10.1161/atvbaha.108.178558] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objective—
Chronic rejection is the main reason for the poor long-term survival of heart transplant recipients and is characterized by cardiac allograft inflammation, fibrosis, and arteriosclerosis. We examined the specific roles of different platelet-derived growth factor (PDGF) ligands (A–D)—potent mesenchymal cell mitogens—in rat cardiac allografts.
Methods and Results—
PDGFR-α mRNA was upregulated in acutely-rejecting, and PDGF-A and PDGF-C mRNA in chronically-rejecting cardiac¢hatn allografts. In acute rejection, PDGFR-α immunoreactivity increased in the media of arteries. In chronically-rejecting allografts, immunoreactivity of all PDGF ligands and receptors—except that of PDGF-B ligand—was found in the intima of arteries, and the expression of PDGF-A and PDGF-C was seen in cardiomyocytes. Intracoronary adeno-associated virus-2 (AAV2)-mediated PDGF-A and -D gene transfer enhanced cardiac allograft inflammation. AAV2-PDGF-A, AAV2-PDGF-C, and AAV2-PDGF-D significantly upregulated profibrotic TGF-β1 mRNA and accelerated cardiac fibrosis and arteriosclerosis. In contrast, AAV2-PDGF-B did not aggravate chronic rejection.
Conclusions—
We found that alloimmune response induces PDGF-A, PDGF-C, and PDGF-D expression in the graft vasculature. PDGF-A, PDGF-C, and PDGF-D mediated profibrotic and proarteriosclerotic effects in transplanted hearts involving the TGF-β1 pathway. Inhibition of signaling of all PDGF-ligands except that of PDGF-B may thus be needed to inhibit chronic rejection in cardiac allografts.
Collapse
|
35
|
Liu Y, Fan Z, Zhou Y, Liu M, Ding F, Gu X. The molecular cloning of platelet-derived growth factor-C (PDGF-C) gene of Gekko japonicus and its expression change in the spinal cord after tail amputation. Cell Mol Neurobiol 2009; 29:263-71. [PMID: 18925432 PMCID: PMC11506283 DOI: 10.1007/s10571-008-9319-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 09/19/2008] [Indexed: 01/06/2023]
Abstract
The platelet-derived growth factor-C (PDGF-C) gene of Gekko japonicus was obtained from a brain and spinal cord cDNA library. The results of Northern blot showed that transcript of PDGF-C gene of gecko is 2.8 kb in length, and it was abundantly expressed in tissues of heart, lung, kidney, and ovary. In situ hybridization (ISH) revealed that positive hybridization signals were present in both gray matter and white matter of the spinal cord. The change of PDGF-C expression in the spinal cord after tail amputation was examined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. The expression of PDGF-C in the spinal cord showed highest level at 1 day after tail amputation, and gradually decreased until 2 weeks, which indicated that the expression level of PDGF-C might be associated with the process of spinal cord injury and regeneration.
Collapse
Affiliation(s)
- Yan Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu province 226001 People’s Republic of China
| | - Zheng Fan
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu province 226001 People’s Republic of China
| | - Youlang Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu province 226001 People’s Republic of China
| | - Mei Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu province 226001 People’s Republic of China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu province 226001 People’s Republic of China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu province 226001 People’s Republic of China
| |
Collapse
|
36
|
Expression of a Novel PDGF Isoform, PDGF-C, in Experimental Periapical Lesions. J Endod 2009; 35:377-81. [DOI: 10.1016/j.joen.2008.11.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 11/19/2008] [Accepted: 11/28/2008] [Indexed: 01/06/2023]
|
37
|
Cohen CD, Kretzler M. [Gene expression analyses of kidney biopsies: the European renal cDNA bank--Kröner-Fresenius biopsy bank]. DER PATHOLOGE 2009; 30:101-4. [PMID: 19224215 DOI: 10.1007/s00292-008-1111-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Histological analysis of kidney biopsies is an essential part of our current diagnostic workup of patients with renal disease. Besides the already established diagnostic tools, new methods allow extensive analysis of the sample tissue's gene expression. Using results from a European multicenter study on gene expression analysis of renal biopsies, in this review we demonstrate that this novel approach not only expands the scope of so-called basic research but also might supplement future biopsy diagnostics. The goals are improved diagnosis and more specific therapy choice and prognosis estimates.
Collapse
Affiliation(s)
- C D Cohen
- Klinik für Nephrologie und Institut für Physiologie mit Zentrum für integrative Humanphysiologie, Universitätsspital und Universität Zürich, Zürich, Schweiz.
| | | |
Collapse
|
38
|
Wågsäter D, Zhu C, Björck HM, Eriksson P. Effects of PDGF-C and PDGF-D on monocyte migration and MMP-2 and MMP-9 expression. Atherosclerosis 2009; 202:415-23. [DOI: 10.1016/j.atherosclerosis.2008.04.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 11/26/2022]
|
39
|
|
40
|
Sanchez-Guerrero E, Midgley VC, Khachigian LM. Angiotensin II induction of PDGF-C expression is mediated by AT1 receptor-dependent Egr-1 transactivation. Nucleic Acids Res 2008; 36:1941-51. [PMID: 18272536 PMCID: PMC2330232 DOI: 10.1093/nar/gkm923] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factors are a family of mitogens and chemoattractants comprising of four ligand genes (A-, B-, C-, D-chains) implicated in many physiologic and pathophysiologic processes, including atherosclerosis, fibrosis and tumorigenesis. Our understanding of the molecular mechanisms, which regulate PDGF-C transcription remains incomplete. Transient transfection analysis, conventional and quantitative real-time PCR revealed the induction of PDGF-C transcription and mRNA expression in smooth muscle cells (SMCs) exposed to the peptide hormone angiotensin (ATII), which induces Egr-1. Occupancy of a G + C-rich element in the proximal region of the PDGF-C promoter was unaffected by ATII. Instead we discovered, using both nuclear extracts and recombinant proteins with EMSA and ChIP analyses, the existence of a second Egr-1-binding element located 500 bp upstream. ATII induction of PDGF-C transcription is mediated by the angiotensin type 1 receptor (AT1R) and Egr-1 activation through this upstream element. DNAzyme ED5 targeting Egr-1 blocked ATII-inducible PDGF-C expression. Moreover, increased PDGF-C expression after exposure to ATII depends upon the differentiation state of the SMCs. This study demonstrates the existence of this novel ATII-AT1R-Egr-1-PDGF-C axis in SMCs of neonatal origin, but not in adult SMCs, where ATII induces Egr-1 but not PDGF-C.
Collapse
Affiliation(s)
- Estella Sanchez-Guerrero
- The Centre for Vascular Research, The University of New South Wales and Department of Haematology, The Prince of Wales Hospital, Sydney, Australia
| | | | | |
Collapse
|
41
|
Eitner F, Bücher E, van Roeyen C, Kunter U, Rong S, Seikrit C, Villa L, Boor P, Fredriksson L, Bäckström G, Eriksson U, Ostman A, Floege J, Ostendorf T. PDGF-C is a proinflammatory cytokine that mediates renal interstitial fibrosis. J Am Soc Nephrol 2008; 19:281-9. [PMID: 18184860 DOI: 10.1681/asn.2007030290] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Frank Eitner
- Division of Nephrology and Immunology, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Floege J, Eitner F, Alpers CE. A New Look at Platelet-Derived Growth Factor in Renal Disease. J Am Soc Nephrol 2007; 19:12-23. [DOI: 10.1681/asn.2007050532] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
43
|
Harper L, Kashiwagi Y, Pusey CD, Hendry BM, Domin J. Platelet-derived growth factor reorganizes the actin cytoskeleton through 3-phosphoinositide-dependent and 3-phosphoinositide-independent mechanisms in human mesangial cells. Nephron Clin Pract 2007; 107:p45-56. [PMID: 17804914 DOI: 10.1159/000107805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 05/08/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Platelet-derived growth factor (PDGF) is a potent activator of mesangial cell proliferation and migration. Although phosphoinositide 3-kinase (PI3K) enzymes are important downstream targets of the PDGF receptor, the contribution made by their 3-phosphoinositide products in the reorganization of actin cytoskeleton and focal adhesions has been questioned. METHODS AND RESULTS Pharmacological inhibition of the PI3K activity blocks PDGF-induced migration of human primary mesangial cells using an in vitro scrape wound healing assay. Acute (<10 min) inhibition of the PI3K activity did not alter the effect of PDGF on either stress fibre dissolution or reorganization of focal adhesions. However, at later times (>30 min), PDGF-stimulated responses were inhibited. In contrast, PDGF-stimulated membrane ruffling remained insensitive to PI3K inhibitors throughout. Inhibition of protein kinase C and Erk also attenuated PDGF-stimulated mesangial cell migration; however, neither signaling pathway was responsible for the initial effects on filamentous actin and focal adhesions. CONCLUSIONS We propose that following PDGF stimulation of mesangial cells, reorganization of the actin cytoskeleton occurs in a biphasic manner. The mechanism responsible for mesangial cell migration that occurs immediately following PDGF stimulation may serve to 'prime' for the subsequent 3-phosphoinositide-, protein-kinase-C-, and Erk-dependent migration.
Collapse
|
44
|
Fischer K, Galamb O, Molnár B, Tulassay Z, Szabó A. [RNA expression as a prognostic tool in idiopathic nephrotic syndrome]. Orv Hetil 2007; 148:1067-1075. [PMID: 17545115 DOI: 10.1556/oh.2007.27978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Approximately 90% of children with nephrotic syndrome have idiopathic nephrotic syndrome. Idiopathic nephrotic syndrome includes three histologic types: minimal change disease, mesangial proliferation and focal segmental glomerulosclerosis. These diseases have similar clinical presentation but different prognosis. The aim of this review is to summarize the genetic knowledge related to idiopathic nephrotic syndrome, follow the progression of these diseases and to offer a survey of the gene expression pattern changes and their functional classification. Different types of RNA expression analysis methods, such as the northern-blot assay, the ribonuclease protection assay, the RNA in situ hybridization, the quantitative RT-PCR and the RNA expression microarray technology are discussed. Previous studies emphasize the importance of the following gene groups in the idiopathic nephrotic syndrome: genes involved the DNA synthesis and repair, growth factors, extracellular matrix proteins, extracellular ligand receptors, extracellular signal transduction, metabolic and transport process and immune regulation are frequently dys-expressed in idiopathic nephrotic syndrome. With the development and spread of the microarray technology these genes can be used as a compliment to the conventional diagnostic method.
Collapse
Affiliation(s)
- Krisztina Fischer
- Semmelweis Egyetem, Altalános Orvostudományi Kar I. Gyermekgyógyászati Klinika Budapest Szentkirályi u. 46. 1088, Hungary.
| | | | | | | | | |
Collapse
|
45
|
Smeets B, Dijkman HBPM, Wetzels JFM, Steenbergen EJ. Lessons from studies on focal segmental glomerulosclerosis: an important role for parietal epithelial cells? J Pathol 2006; 210:263-72. [PMID: 16924588 DOI: 10.1002/path.2051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glomerular diseases are caused by multiple mechanisms. Progressive glomerular injury is characterized by the development of segmental or global glomerulosclerosis independent of the nature of the underlying renal disease. Most studies on glomerular disease focus on the constituents of the filtration barrier (podocytes, glomerular basement membrane (GBM), endothelial cells) or the mesangial cells. Little attention is given to the epithelial cells lining Bowman's capsule, the so called parietal epithelial cells (PECs). This 'lack of attention' is partly explained by the presumed 'passive' function of PECs, which are large, flattened cells that cover Bowman's capsule in a single cell layer and form a barrier between the ultrafiltrate and the periglomerular interstitium, in normal glomerular physiology. A more important reason has been the lack of an established primary role for the parietal epithelium in glomerular diseases. However, in recent years, several studies have demonstrated that PECs are involved in extracapillary proliferation. In addition, PECs can become highly active, proliferating cells, expressing many growth factors, chemokines, cytokines, and their receptors. It was recently demonstrated that PECs also play a part in the development of focal segmental glomerulosclerosis (FSGS). This review summarises current knowledge of the PEC, with emphasis on the role of PECs in the development of FSGS.
Collapse
Affiliation(s)
- B Smeets
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Reigstad LJ, Martinez A, Varhaug JE, Lillehaug JR. Nuclear localisation of endogenous SUMO-1-modified PDGF-C in human thyroid tissue and cell lines. Exp Cell Res 2006; 312:782-95. [PMID: 16443219 DOI: 10.1016/j.yexcr.2005.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 11/21/2005] [Accepted: 11/30/2005] [Indexed: 01/06/2023]
Abstract
We investigated post-translational modification and subcellular localisation of endogenous platelet-derived growth factor-C (PDGF-C) in human thyroid papillary carcinomas (PTC), non-neoplastic thyroid tissues, and a selection of cultured cell lines. PDGF-C expressed nuclear localisation in 95% of all tested cell types in culture and in 10% of the thyrocytes from both PTC and non-neoplastic tissue. The cell lines expressed two forms of full-length PDGF-C, approximately 39 and approximately 55 kDa, in cell membrane and cytosol, while the approximately 55 kDa form dominated in the nucleus where it was partly chromatin-associated. The approximately 55 kDa form was post-translationally modified by SUMO-1. The putative PDGF-C SUMOylation site is the surface exposed (314)lysine part of a positively charged loop ((312)RPKTGVRGLHK(322)) with characteristics of a nuclear localisation signal. The tissue thyrocytes expressed a non-SUMOylated approximately 43 kDa and the 55 kDa PDGF-C. The SUMO-1 modified approximately 55 kDa PDGF-C expression was low in PTC where the approximately 43 kDa PDGF-C dominated. This is in contrast to non-neoplastic tissue and cultured cells where the SUMOylated approximately 55 kDa PDGF-C was strongly expressed. Our data provide novel evidence for nuclear localisation of PDGF-C, post-translational modification by SUMOylation and the expression of a novel form of PDGF-C in human papillary thyroid carcinomas.
Collapse
Affiliation(s)
- Laila J Reigstad
- Department of Molecular Biology, University of Bergen, Section of Surgery, Haukeland University Hospital, Bergen 5020, Norway
| | | | | | | |
Collapse
|
47
|
Reigstad LJ, Varhaug JE, Lillehaug JR. Structural and functional specificities of PDGF-C and PDGF-D, the novel members of the platelet-derived growth factors family. FEBS J 2005; 272:5723-41. [PMID: 16279938 DOI: 10.1111/j.1742-4658.2005.04989.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The platelet-derived growth factor (PDGF) family was for more than 25 years assumed to consist of only PDGF-A and -B. The discovery of the novel family members PDGF-C and PDGF-D triggered a search for novel activities and complementary fine tuning between the members of this family of growth factors. Since the expansion of the PDGF family, more than 60 publications on the novel PDGF-C and PDGF-D have been presented, highlighting similarities and differences to the classical PDGFs. In this paper we review the published data on the PDGF family covering structural (gene and protein) similarities and differences among all four family members, with special focus on PDGF-C and PDGF-D expression and functions. Little information on the protein structures of PDGF-C and -D is currently available, but the PDGF-C protein may be structurally more similar to VEGF-A than to PDGF-B. PDGF-C contributes to normal development of the heart, ear, central nervous system (CNS), and kidney, while PDGF-D is active in the development of the kidney, eye and brain. In adults, PDGF-C is active in the kidney and the central nervous system. PDGF-D also plays a role in the lung and in periodontal mineralization. PDGF-C is expressed in Ewing family sarcoma and PDGF-D is linked to lung, prostate and ovarian cancers. Both PDGF-C and -D play a role in progressive renal disease, glioblastoma/medulloblastoma and fibrosis in several organs.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Codon, Initiator
- Codon, Terminator
- Cysteine/chemistry
- Dimerization
- Disulfides/chemistry
- Exons
- Humans
- Introns
- Lymphokines/chemistry
- Lymphokines/genetics
- Lymphokines/physiology
- Mice
- Mice, Knockout
- Models, Molecular
- Molecular Sequence Data
- Platelet-Derived Growth Factor/chemistry
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/physiology
- Promoter Regions, Genetic
- Protein Binding
- Protein Processing, Post-Translational
- Protein Sorting Signals
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Platelet-Derived Growth Factor/genetics
- Receptors, Platelet-Derived Growth Factor/metabolism
- Sequence Homology, Amino Acid
Collapse
|
48
|
Xu L, Tong R, Cochran DM, Jain RK. Blocking platelet-derived growth factor-D/platelet-derived growth factor receptor beta signaling inhibits human renal cell carcinoma progression in an orthotopic mouse model. Cancer Res 2005; 65:5711-9. [PMID: 15994946 DOI: 10.1158/0008-5472.can-04-4313] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renal cell carcinoma is a highly malignant and often fatal disease of the kidney. It is difficult to treat, often because metastases are common at the time of presentation. Platelet-derived growth factor-D (PDGF-D) is a newly discovered member of the PDGF family; its function in tumor progression is largely unknown. Here, we examined the expression level of PDGF-D in human renal cell carcinoma by immunohistochemical staining using tissue arrays. We showed that human renal cell carcinoma expresses high levels of PDGF-D protein. The human renal cell carcinoma cell line SN12-C was stably transfected with pdgf-d cDNA. Overexpression of PDGF-D in SN12-C cells promoted tumor growth, angiogenesis, and metastasis of human renal cell carcinoma in an orthotopic severe combined immunodeficient (SCID) mouse model. PDGF-D overproduction in SN12-C cells increased the proliferation and migration of mural cells in vitro and improved perivascular cell coverage in vivo. Overexpression of PDGF-D led to increased expression of angiopoietin-1 and matrix metalloproteinase-9 in tumor tissues. ShRNAi and Gleevec were used to block PDGF-D expression and PDGF receptor beta (PDGFRbeta) signaling. Inhibition of PDGF-D expression by short hairpin RNA interference (shRNAi) and blockage of PDGFRbeta signaling by Gleevec inhibited the growth and lung metastasis of SN12-C cells grown orthotopically in SCID mice. Thus, PDGF-D is a potential candidate for controlling the progression of metastatic renal cell carcinoma. This opens up an avenue of investigation into novel therapeutic strategies for the treatment of renal cell carcinoma, including the use of recently developed tyrosine kinase inhibitors, such as Gleevec, which inhibit PDGF activity through inhibition of its receptor tyrosine kinase.
Collapse
MESH Headings
- Angiopoietin-1/biosynthesis
- Animals
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Growth Processes/physiology
- Cell Line, Tumor
- Cell Movement/physiology
- Disease Progression
- Humans
- Immunohistochemistry
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Lymphokines/antagonists & inhibitors
- Lymphokines/biosynthesis
- Lymphokines/genetics
- Matrix Metalloproteinase 9/biosynthesis
- Mice
- Mice, SCID
- Neoplasm Transplantation
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Platelet-Derived Growth Factor/biosynthesis
- Platelet-Derived Growth Factor/genetics
- RNA Interference
- RNA, Small Interfering/genetics
- Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor beta/biosynthesis
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Signal Transduction
- Transfection
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Lei Xu
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
49
|
Fredriksson L, Ehnman M, Fieber C, Eriksson U. Structural Requirements for Activation of Latent Platelet-derived Growth Factor CC by Tissue Plasminogen Activator. J Biol Chem 2005; 280:26856-62. [PMID: 15911618 DOI: 10.1074/jbc.m503388200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Platelet-derived growth factor C (PDGF-C) is one of four members in the PDGF family of growth factors, which are known mitogens and survival factors for cells of mesenchymal origin. PDGF-C has a unique two-domain structure consisting of an N-terminal CUB and a conserved C-terminal growth factor domain that are separated by a hinge region. PDGF-C is secreted as a latent dimeric factor (PDGF-CC), which undergoes extracellular removal of the CUB domains to become a PDGF receptor alpha agonist. Recently, the multidomain serine protease tissue plasminogen activator (tPA), a thrombolytic agent used for treatment of acute ischemic stroke, was shown to cleave and activate PDGF-CC. In this study we determine the molecular mechanism of tPA-mediated activation of PDGF-CC. Using various PDGF-CC and tPA mutants, we were able to demonstrate that both the CUB and the growth factor domains of PDGF-C, as well as the kringle-2 domain of tPA, are required for the interaction and cleavage to occur. We also show that Arg231 in PDGF-C is essential for tPA-mediated proteolysis and that the released "free" CUB domain of PDGF-C can act as a competitive inhibitor of the cleavage reaction. Furthermore, we studied how the PDGF-C/tPA axis is regulated in primary fibroblasts and found that PDGF-C expression is down-regulated by hypoxia but induced by transforming growth factor (TGF)-beta1 treatment. Elucidating the regulation and the mechanism of tPA-mediated activation of PDGF-CC will advance our knowledge of the physiological function of PDGF-CC and tPA and may provide new therapeutic opportunities for thrombolytic and cardiovascular therapies.
Collapse
Affiliation(s)
- Linda Fredriksson
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
50
|
Nangaku M, Shankland SJ, Couser WG. Cellular Response to Injury in Membranous Nephropathy. J Am Soc Nephrol 2005; 16:1195-204. [PMID: 15800119 DOI: 10.1681/asn.2004121098] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The pathogenesis of membranous nephropathy (MN) involves in situ formation of subepithelial immune deposits that produce glomerular injury by damaging and/or activating podocytes through complement-dependent processes. C5b-9 formation and insertion into podocyte cell membranes causes glomerular injury in MN. C5b-9 in sublytic quantities stimulates podocytes to produce proteases, oxidants, prostanoids, extracellular matrix components, and cytokines including TGF-beta. C5b-9 also causes alterations of the cytoskeleton that lead to abnormal distribution of slit diaphragm protein and detachment of viable podocytes that are shed into Bowman's space. These events result in disruption of the functional integrity of the glomerular basement membrane and the protein filtration barrier of podocytes with subsequent development of massive proteinuria. Complement components in proteinuric urine also induce tubular epithelial cell injury and mediate progressive interstitial disease in MN. Measurements of urinary C5b-9 or podocyte excretion in the urine may be useful in the diagnosis of MN and as measures of disease activity and response to therapy. Recent studies of cell-cycle proteins and DNA damage in podocytes have clarified why podocytes fail to proliferate in response to C5b-9-mediated injury and podocyte loss in MN, resulting in the development of glomerular sclerosis and renal failure. Improved understanding of the role of complement in the pathogenesis of MN and of the cellular response to C5b-9 attack creates several new opportunities for therapeutic intervention that may benefit patients with MN in the future.
Collapse
Affiliation(s)
- Masaomi Nangaku
- Division of Nephrology and Endocrinology, University of Tokyo School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|