1
|
The Role of GH/IGF Axis in Dento-Alveolar Complex from Development to Aging and Therapeutics: A Narrative Review. Cells 2021; 10:cells10051181. [PMID: 34066078 PMCID: PMC8150312 DOI: 10.3390/cells10051181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/02/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022] Open
Abstract
The GH/IGF axis is a major regulator of bone formation and resorption and is essential to the achievement of normal skeleton growth and homeostasis. Beyond its key role in bone physiology, the GH/IGF axis has also major pleiotropic endocrine and autocrine/paracrine effects on mineralized tissues throughout life. This article aims to review the literature on GH, IGFs, IGF binding proteins, and their respective receptors in dental tissues, both epithelium (enamel) and mesenchyme (dentin, pulp, and tooth-supporting periodontium). The present review re-examines and refines the expression of the elements of the GH/IGF axis in oral tissues and their in vivo and in vitro mechanisms of action in different mineralizing cell types of the dento-alveolar complex including ameloblasts, odontoblasts, pulp cells, cementoblasts, periodontal ligament cells, and jaw osteoblasts focusing on cell-specific activities. Together, these data emphasize the determinant role of the GH/IGF axis in physiological and pathological development, morphometry, and aging of the teeth, the periodontium, and oral bones in humans, rodents, and other vertebrates. These advancements in oral biology have elicited an enormous interest among investigators to translate the fundamental discoveries on the GH/IGF axis into innovative strategies for targeted oral tissue therapies with local treatments, associated or not with materials, for orthodontics and the repair and regeneration of the dento-alveolar complex and oral bones.
Collapse
|
2
|
Mattei V, Martellucci S, Pulcini F, Santilli F, Sorice M, Delle Monache S. Regenerative Potential of DPSCs and Revascularization: Direct, Paracrine or Autocrine Effect? Stem Cell Rev Rep 2021; 17:1635-1646. [PMID: 33829353 PMCID: PMC8553678 DOI: 10.1007/s12015-021-10162-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
A new source of mesenchymal stem cells has recently been discovered, the so-called dental pulp derived stem cells (DPSCs) which therefore could represent potentially tools for regenerative medicine. DPSC originate from the neural crest and are physiologically involved in dentin homeostasis; moreover, they contribute to bone remodeling and differentiation into several tissues including cartilage, bone, adipose and nervous tissues. DPSCs have also been shown to influence the angiogenesis process, for example through the release of secretory factors or by differentiating into vascular and/or perivascular cells. Angiogenesis, that has a pivotal role in tissue regeneration and repair, is defined as the formation of new vessels from preexisting vessels and is mediated by mutual and reciprocal interactions between endothelial cells and perivascular cells. It is also known that co-cultures of perivascular and endothelial cells (ECs) can form a vascular network in vitro and also in vivo. Since DPSCs seem to have characteristics similar to pericytes, understanding the possible mechanism of interaction between DPSCs and ECs during neo-angiogenesis is dramatically important for the development of advanced clinical application in the field of regeneration.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
- StemTeCh Group, Chieti, Italy.
| |
Collapse
|
3
|
Rusu MC, Săndulescu M, Stoenescu MD. Nestin and dental pulp stones - a case report-driven hypothesis. Morphologie 2021; 106:56-60. [PMID: 33485781 DOI: 10.1016/j.morpho.2020.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
The dental pulp stem cells (DPSCs) are mesenchymal stem/stromal cells (MSCs) with multilineage potential of differentiation. Different studies investigated dental pulp stones (PS), the calcified masses in the dental pulp, in regard to their prevalence, topography and structure. The etiology of PS is still unclear and, to our knowledge, the DPSCs were not attributed yet specific roles in PS formation. We report here an immunohistochemical study of a PS-embedding dental pulp from an impacted third mandibular molar of an adult patient, in which we used antibodies against CD34, Ki67, glial fibrillary acidic protein (GFAP), α-smooth muscle actin (α-SMA) and nestin. While endothelial cells expressed CD34 and pericytes or vascular smooth muscle cells expressed α-SMA, DPSCs and the osteoblasts coating the PS were exclusively labeled with nestin antibody. Stromal networks of nestin-expressing DPSCs were regarded as in situ providers of osteogenic progenitors involved in PS formation. Further experimental studies, with larger lots of tissue samples, as well as extended panels of markers, are needed in order to elucidate the DPSC hypothesis in the PS etiology.
Collapse
Affiliation(s)
- M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - M Săndulescu
- Division of Implant Prosthetic Therapy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - M D Stoenescu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania.
| |
Collapse
|
4
|
Abstract
Creating an optimal microenvironment that supports angiogenesis, cell-cell cross talk, cell migration, and differentiation is crucial for pulp/dentin regeneration. It was shown that dental stem cells being seeded onto a scaffold and transplanted in vivo could give rise to a new tissue similar to that of the native pulp. However, the unique structure of the tooth with a pulp space encased within hard dentin allows only a single blood supply from a small apical opening located at the apex of the root canals. Therefore, a further strategy that can address this limitation such as the incorporation of endothelial/endothelial progenitor cells or cells with high angiogenic potential into the transplant is required so that the added cells can contribute to the vascularization within the implant. However, the placement of 2 or more different cell types inside 3-dimensional porous scaffolds is technologically challenging. In contrast to the conventional scaffolding approach, self-assembly of monodispersed cells into 3-dimensional tissue mimics permits true physiological interactions between and among different types of cells without any influence from a secondary material. In this review, we discuss potential strategies that can be used in vasculature engineering in dental pulp regeneration with a specific emphasis on combining prevascularization and scaffold-based or scaffold-free approaches.
Collapse
Affiliation(s)
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
5
|
Alkharobi HE, Al-Khafaji H, Beattie J, Devine DA, El-Gendy R. Insulin-Like Growth Factor Axis Expression in Dental Pulp Cells Derived From Carious Teeth. Front Bioeng Biotechnol 2018; 6:36. [PMID: 29707538 PMCID: PMC5906522 DOI: 10.3389/fbioe.2018.00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/15/2018] [Indexed: 01/03/2023] Open
Abstract
The insulin-like growth factor (IGF) axis plays an important role in dental tissue regeneration and most components of this axis are expressed in human dental pulp cells (DPCs). In our previous study, we analyzed IGF axis gene expression in DPCs and demonstrated a novel role of IGF binding protein (IGFBP)-2 and -3 in coordinating mineralized matrix formation in differentiating DPCs. A more recent study from our laboratory partially characterized dental pulp stem cells from teeth with superficial caries (cDPCs) and showed that their potential to differentiate odontoblasts and/or into osteoblasts is enhanced by exposure to the mild inflammatory conditions characteristic of superficial caries. In the present study, we examine whether changes apparent in IGF axis expression during osteogenic differentiation of healthy DPCs are also apparent in DPCs derived from carious affected teeth.
Collapse
Affiliation(s)
- Hanaa Esa Alkharobi
- Division of Oral Biology, Leeds School of Dentistry, St James University Hospital, University of Leeds, Leeds, United Kingdom.,Department of Oral Biology, Faculty of Dentistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Hasanain Al-Khafaji
- Division of Oral Biology, Leeds School of Dentistry, St James University Hospital, University of Leeds, Leeds, United Kingdom.,Department of Oral Biology, Faculty of Dentistry, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - James Beattie
- Division of Oral Biology, Leeds School of Dentistry, St James University Hospital, University of Leeds, Leeds, United Kingdom
| | - Deirdre Ann Devine
- Division of Oral Biology, Leeds School of Dentistry, St James University Hospital, University of Leeds, Leeds, United Kingdom
| | - Reem El-Gendy
- Division of Oral Biology, Leeds School of Dentistry, St James University Hospital, University of Leeds, Leeds, United Kingdom.,Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
Abbas OL, Özatik O, Gönen ZB, Öğüt S, Özatik FY, Salkın H, Musmul A. Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Dental Pulp as Sources of Cell Therapy for Zone of Stasis Burns. J INVEST SURG 2018; 32:477-490. [PMID: 29442525 DOI: 10.1080/08941939.2018.1433254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Introduction: The implantation of mesenchymal stem cells (MSCs) has been shown to exert benefits for the survival of the zone-of-stasis. However, the clinical experience indicates the importance of selecting the right source and type of stem cells. Therefore, we planned the current study to perform a quantitative comparison of MSCs isolated from three different sources to provide information useful in selection of the optimal source and to see whether critical mechanisms are conserved between different populations. Methods: The protective effects of MSCs derived from bone marrow, adipose tissue and dental pulp were compared in a rat model of thermal trauma. The stasis zones were evaluated 72 h after the burn using histochemistry, immunohistochemistry and biochemistry. Results: Gross evaluation of burn wounds revealed that the differences between the mean percentages of the calculated necrotic areas weren't statistically significant. Semi-quantitative grading of the histopathological findings revealed that there were no significant differences between damage scores. Immunohistochemical assessment of apoptotic and necrotic cell deaths revealed that the differences between the mean numbers of apoptotic and necrotic cells weren't statistically significant. Myeloperoxidase activity was found to be significantly lower in the adipose tissue group. Biochemical and immunohistochemical assessment of tissue malondialdehyde revealed that the differences between the groups weren't statistically significant. Finally, the number of neo-vessels in the dental pulp group was found to be significantly higher. Conclusion: Our findings suggest that bone marrow, adipose tissue and dental pulp may serve as a universal donor MSC source for the prevention of burn wound progression.
Collapse
Affiliation(s)
- Ozan Luay Abbas
- Ahi Evran University, Faculty of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Kırşehir, Turkey
| | - Orhan Özatik
- Dumlupınar University, Faculty of Medicine, Department of Histology and Embryology, Kütahya, Turkey
| | | | - Serdal Öğüt
- Adnan Menderes University, Faculty of Health Science, Department of Nutrition and Dietetics, Aydın, Turkey
| | | | - Hasan Salkın
- Beykent University, Vocational School, Department of Medical Services and techniques, Istanbul, Turkey
| | - Ahmet Musmul
- Osmangazi University, Faculty of Medicine, Department of Biostatistics, Eskişehir, Turkey
| |
Collapse
|
7
|
Zanini M, Meyer E, Simon S. Pulp Inflammation Diagnosis from Clinical to Inflammatory Mediators: A Systematic Review. J Endod 2017; 43:1033-1051. [PMID: 28527838 DOI: 10.1016/j.joen.2017.02.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Similar to other tissues, the dental pulp mounts an inflammatory reaction as a way to eliminate pathogens and stimulate repair. Pulp inflammation is prerequisite for dentin pulp complex repair and regeneration; otherwise, chronic disease or pulp necrosis occurs. Evaluation of pulp inflammation severity is necessary to predict the clinical success of maintaining pulp vitality. Clinical limitations to evaluating in situ inflammatory status are well-described. A molecular approach that aids clinical distinction between reversible and irreversible pulpitis could improve the success rate of vital pulp therapy. The aim of this article is to review inflammatory mediator expression in the context of clinical diagnosis. METHODS We searched PubMed and Cochrane databases for articles published between 1970 and December 2016. Only published studies of inflammatory mediator expression related to clinical diagnosis were eligible for inclusion and analysis. RESULTS Thirty-two articles were analyzed. Two molecular approaches were described by study methods, protein expression analysis and gene expression analysis. Our review indicates that interleukin-8, matrix metalloproteinase 9, tumor necrosis factor-α, and receptor for advanced glycation end products expression increase at both the gene and protein levels during inflammation. CONCLUSIONS Clinical irreversible pulpitis is related to specific levels of inflammatory mediator expression. The difference in expression between reversible and irreversible disease is both quantitative and qualitative. On the basis of our analysis, in situ quantification of inflammatory mediators may aid in the clinical distinction between reversible and irreversible pulpitis.
Collapse
Affiliation(s)
- Marjorie Zanini
- UFR d'odontologie, Université Paris Diderot, Paris, France; Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | - Elisabeth Meyer
- UFR d'odontologie, Université Paris Diderot, Paris, France; Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | - Stéphane Simon
- UFR d'odontologie, Université Paris Diderot, Paris, France; Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France; UMRS INSERM 1138 Team 5, Centre de recherche des Cordeliers, Paris, France.
| |
Collapse
|
8
|
Chiu HY, Lin CH, Hsu CY, Yu J, Hsieh CH, Shyu WC. IGF1R + Dental Pulp Stem Cells Enhanced Neuroplasticity in Hypoxia-Ischemia Model. Mol Neurobiol 2016; 54:8225-8241. [PMID: 27914008 DOI: 10.1007/s12035-016-0210-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
Until now, the surface markers of multipotent mesenchymal stem cells (MSCs) had not been fully identified. Here, we found that the IGF1 receptor (IGF1R), regarded as a pluripotent marker of embryonic stem cells (ESCs), was also expressed in human dental pulp derived-mesenchymal stem cells (hDSCs), which displayed a potential for both self-renewal and multipotency. hDSC-secreted IGF1 interacted with IGF1R through an autocrine signaling pathway to maintain this self-renewal and proliferation potential. Stereotaxic implantation of immunosorted IGF1R+ hDSCs in rats with neonatal hypoxia-ischemia (NHI) promoted neuroplasticity, improving the neurological outcome by increasing expression of the anti-apoptotic protein Bcl-2, which enhanced both neurogenesis and angiogenesis. In addition, treatment with IGF1R+ hDSCs significantly modulated neurite regeneration and anti-inflammation in vivo in NHI rats and in vitro in primary cortical cultures under oxygen/glucose deprivation. Autocrine regulatory expression of IGF1R contributed to maintaining the self-renewal capacity of hDSCs. Furthermore, implantation of IGF1R+ hDSCs increased neuroplasticity with neurite regeneration and immunomodulation in and the NHI rat model.
Collapse
Affiliation(s)
- Hsiao-Yu Chiu
- Children's Hospital, China Medical University and Hospital, Taichung, Taiwan.,Translational Medicine Doctoral Degree Program, China Medical University, Taichung, Taiwan
| | - Chen-Huan Lin
- Translational Research Center, and Department of Neurology, China Medical University Hospital, Taichung, Taiwan, 40440
| | - Chung Y Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| | - Woei-Cherng Shyu
- Translational Research Center, and Department of Neurology, China Medical University Hospital, Taichung, Taiwan, 40440. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
9
|
Alkharobi H, Alhodhodi A, Hawsawi Y, Alkafaji H, Devine D, El-Gendy R, Beattie J. IGFBP-2 and -3 co-ordinately regulate IGF1 induced matrix mineralisation of differentiating human dental pulp cells. Stem Cell Res 2016; 17:517-522. [PMID: 27776273 PMCID: PMC5153425 DOI: 10.1016/j.scr.2016.09.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 01/07/2023] Open
Abstract
Human dental pulp cells (DPCs), which are known to contain a subset of stem cells capable of reforming a dentin and pulp-like complex upon in vivo transplantation, were isolated from third molars of three healthy donors and differentiated to a matrix mineralisation phenotype using by culture in dexamethasone and l-ascorbic acid. qRT-PCR analysis of insulin-like growth factor ( IGF) axis gene expression indicated that all genes, except insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein-1 ( IGFBP-1), were expressed in DPCs. During differentiation upregulation of insulin-like growth factor binding protein-2 (IGFBP-2) and downregulation of insulin-like growth factor binding protein-3 (IGFBP-3) expression was observed. Changes in IGFBP-2 and IGFBP-3 mRNA expression were confirmed at the protein level by ELISA of DPC conditioned medium functional analysis indicated that IGF1 stimulated the differentiation of DPCs and that the activity of the growth factor was enhanced by pre-complexation with IGFBP-2 but inhibited by pre-complexation with IGFBP-3. Therefore changes in IGFBP-2 and -3 expression during differentiation form part of a co-ordinated functional response to enhance the pro-differentiative action of IGF1 and represent a novel mechanism for the regulation of DPC differentiation.
Collapse
Affiliation(s)
- Hanaa Alkharobi
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Aishah Alhodhodi
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Yousef Hawsawi
- Dept. of Medical Breast Oncology, MD Anderson Cancer Research Centre, University of Texas, Houston, United States
| | - Hasanain Alkafaji
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Deirdre Devine
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Reem El-Gendy
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom; Dept. of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt.
| | - James Beattie
- Division of Oral Biology, Leeds School of Dentistry, Level 7 Wellcome Trust Brenner Building, St James University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom.
| |
Collapse
|
10
|
Role of IGF1R(+) MSCs in modulating neuroplasticity via CXCR4 cross-interaction. Sci Rep 2016; 6:32595. [PMID: 27586516 PMCID: PMC5009335 DOI: 10.1038/srep32595] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022] Open
Abstract
To guide the use of human mesenchymal stem cells (MSCs) toward clinical applications, identifying pluripotent-like-markers for selecting MSCs that retain potent self-renewal-ability should be addressed. Here, an insulin-like growth factor 1 receptor (IGF1R)–expressing sub-population in human dental pulp MSCs (hDSCs), displayed multipotent properties. IGF1R expression could be maintained in hDSCs when they were cultured in 2% human cord blood serum (hUCS) in contrast to that in 10% fetal calf serum (FCS). Cytokine array showed that hUCS contained higher amount of several growth factors compared to FCS, including IGF-1 and platelet-derived growth factor (PDGF-BB). These cytokines modulates the signaling events in the hDSCs and potentially enhances engraftment upon transplantation. Specifically, a bidirectional cross-talk between IGF1R/IGF1 and CXCR4/SDF-1α signaling pathways in hDSCs, as revealed by interaction of the two receptors and synergistic activation of both signaling pathways. In rat stroke model, animals receiving IGF1R+ hDSCs transplantation, interaction between IGF1R and CXCR4 was demonstrated to promote neuroplasticity, therefore improving neurological function through increasing glucose metabolic activity, enhancing angiogenesis and anti-inflammatiory effects. Therefore, PDGF in hUCS-culture system contributed to the maintenance of the expression of IGF1R in hDSCs. Furthermore, implantation of IGF1R+ hDSCs exerted enhanced neuroplasticity via integrating inputs from both CXCR4 and IGF1R signaling pathways.
Collapse
|
11
|
Magnucki G, Schenk U, Ahrens S, Navarrete Santos A, Gernhardt CR, Schaller HG, Hoang-Vu C. Expression of the IGF-1, IGFBP-3 and IGF-1 receptors in dental pulp stem cells and impacted third molars. J Oral Sci 2015; 55:319-27. [PMID: 24351920 DOI: 10.2334/josnusd.55.319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
IGF-1 regulates the metabolism of hard dental tissue through binding to the IGF-1 receptor on target cells. Furthermore, IGF-binding-protein-3 promotes the accessibility of IGF-1. The aim of this study was to investigate the expression of IGF-1, IGFBP-3 and IGF-1R in STRO-1-positive dental pulp stem cells (DPSCs) and fully impacted wisdom teeth in relation to tooth development. Third molars were surgically removed from 60 patients and classified into two groups: teeth showing ongoing development (group 1) and teeth that had completed root shaping (group 2). The transcript and protein levels of IGF-1, IGFBP-3 and IGF-1R were investigated using RT-PCR and immunohistochemistry. The expression of the same proteins was also analyzed in DPSCs. The teeth from group 1 showed significantly stronger expression of IGF-1 and IGF-1R. The major sources of all of the proteins investigated immunohistochemically in sections of wisdom teeth were odontoblasts, cementoblasts and cell colonies in the pulpal mesenchyme. These colonies were identified as stem cells in view of their positivity for STRO-1, and the cells were subsequently sorted by flow cytometry. These DPSCs demonstrated high levels of pluripotency markers and IGF-1 and IGF-1R. We conclude that members of the IGF-1 family are involved in the late stage of tooth development and the process of pulpal differentiation.
Collapse
Affiliation(s)
- Gabriel Magnucki
- Department of Operative Dentistry and Periodontology, University School of Dental Medicine, Faculty of Medicine, Martin-Luther-University of Halle-Wittenberg
| | | | | | | | | | | | | |
Collapse
|
12
|
Al-Kharobi H, El-Gendy R, Devine DA, Beattie J. The role of the insulin‑like growth factor (IGF) axis in osteogenic and odontogenic differentiation. Cell Mol Life Sci 2014; 71:1469-76. [PMID: 24232361 PMCID: PMC11113200 DOI: 10.1007/s00018-013-1508-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
The insulin-like growth factor (IGF) axis is a multicomponent molecular network which has important biological functions in the development and maintenance of differentiated tissue function(s). One of the most important functions of the IGF axis is the control of skeletal tissue metabolism by the finely tuned regulation of the process of osteogenesis. To achieve this, the IGF axis controls the activity of several cell types—osteoprogenitor cells, osteoblasts, osteocytes and osteoclasts to achieve the co-ordinated development of appropriate hard tissue structure and associated matrix deposition. In addition, there is an increasing awareness that the IGF axis also plays a role in the process of odontogenesis (tooth formation). In this review, we highlight some of the key findings in both of these areas. A further understanding of the role of the IGF axis in hard tissue biology may contribute to tissue regeneration strategies in cases of skeletal tissue trauma.
Collapse
Affiliation(s)
- H. Al-Kharobi
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| | - R. El-Gendy
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| | - D. A. Devine
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| | - J. Beattie
- Leeds University School of Dentistry, University of Leeds, Clarendon Way, Leeds, LS2 9LU UK
| |
Collapse
|
13
|
Kim SG, Zhou J, Solomon C, Zheng Y, Suzuki T, Chen M, Song S, Jiang N, Cho S, Mao JJ. Effects of growth factors on dental stem/progenitor cells. Dent Clin North Am 2013; 56:563-75. [PMID: 22835538 DOI: 10.1016/j.cden.2012.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. A myriad of growth factors regulates multiple cellular functions including migration, proliferation, differentiation, and apoptosis of several cell types intimately involved in dentin-pulp regeneration. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin-like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes knowledge on many growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration.
Collapse
Affiliation(s)
- Sahng G Kim
- Center for Craniofacial Regeneration, Columbia University, 630 West 168 Street, PH7E, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang S, Mu J, Fan Z, Yu Y, Yan M, Lei G, Tang C, Wang Z, Zheng Y, Yu J, Zhang G. Insulin-like growth factor 1 can promote the osteogenic differentiation and osteogenesis of stem cells from apical papilla. Stem Cell Res 2012; 8:346-56. [PMID: 22286010 DOI: 10.1016/j.scr.2011.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 01/09/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) plays an important role in the regulation of tooth root development, and stem cells from apical papilla (SCAPs) are responsible for the formation of root pulp and dentin. To date, it remains unclear whether IGF-1 can regulate the function of SCAPs. In this study, SCAPs were isolated and purified from human immature root apex, and stimulated by 100 ng/mL exogenous IGF-1. The effects of IGF-1 on the proliferation and differentiation of SCAPs were subsequently investigated. IGF-1 treated SCAPs presented the morphological and ultrastructural changes. Cell proliferation, alkaline phosphatase (ALP) activity and mineralization capacity of SCAPs were increased by IGF-1. Western blot and quantitative RT-PCR analyses further demonstrated that the expression of osteogenic-related proteins and genes (e.g., alkaline phosphatase, runt-related transcription factor 2, osterix, and osteocalcin) was significantly up-regulated in IGF-1 treated SCAPs, whereas the expression of odontoblast-specific markers (e.g., dentin sialoprotein and dentin sialophosphoprotein) was down-regulated by IGF-1. In vivo results revealed that IGF-1 treated SCAPs mostly gave birth to bone-like tissues while untreated SCAPs mainly generated dentin-pulp complex-like structures after transplantation. The present study revealed that IGF-1 can promote the osteogenic differentiation and osteogenesis capacity of SCAPs, but weaken their odontogenic differentiation and dentinogenesis capability, indicating that IGF-1 treated SCAPs can be used as a potential candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Sainan Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Caviedes-Bucheli J, Canales-Sánchez P, Castrillón-Sarria N, Jovel-Garcia J, Alvarez-Vásquez J, Rivero C, Azuero-Holguín MM, Diaz E, Munoz HR. Expression of insulin-like growth factor-1 and proliferating cell nuclear antigen in human pulp cells of teeth with complete and incomplete root development. Int Endod J 2009; 42:686-93. [PMID: 19467045 DOI: 10.1111/j.1365-2591.2009.01568.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To quantify the expression of insulin-like growth factor-1 (IGF-1) and proliferating cell nuclear antigen (PCNA) in human pulp cells of teeth with complete or incomplete root development, to support the specific role of IGF-1 in cell proliferation during tooth development and pulp reparative processes. METHODOLOGY Twenty six pulp samples were obtained from freshly extracted human third molars, equally divided in two groups according to root development stage (complete or incomplete root development). All samples were processed and immunostained to determine the expression of IGF-1 and PCNA in pulp cells. Sections were observed with a light microscope at 80x and morphometric analyses were performed to calculate the area of PCNA and IGF-1 immunostaining using digital image software. Mann-Whitney's test was used to determine statistically significant differences between groups (P < 0.05) for each peptide and the co-expression of both. RESULTS Expression of IGF-1 and PCNA was observed in all human pulp samples with a statistically significant higher expression in cells of pulps having complete root development (P = 0.0009). CONCLUSION Insulin-like growth factor-1 and PCNA are expressed in human pulp cells, with a significant greater expression in pulp cells of teeth having complete root development.
Collapse
Affiliation(s)
- J Caviedes-Bucheli
- Postgraduate Endodontic Department, School of Dentistry, Pontificia Universidad Javeriana, Bogota, Colombia.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gandia C, Armiñan A, García-Verdugo JM, Lledó E, Ruiz A, Miñana MD, Sanchez-Torrijos J, Payá R, Mirabet V, Carbonell-Uberos F, Llop M, Montero JA, Sepúlveda P. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 2007; 26:638-45. [PMID: 18079433 DOI: 10.1634/stemcells.2007-0484] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human dental pulp contains precursor cells termed dental pulp stem cells (DPSC) that show self-renewal and multilineage differentiation and also secrete multiple proangiogenic and antiapoptotic factors. To examine whether these cells could have therapeutic potential in the repair of myocardial infarction (MI), DPSC were infected with a retrovirus encoding the green fluorescent protein (GFP) and expanded ex vivo. Seven days after induction of myocardial infarction by coronary artery ligation, 1.5 x 10(6) GFP-DPSC were injected intramyocardially in nude rats. At 4 weeks, cell-treated animals showed an improvement in cardiac function, observed by percentage changes in anterior wall thickening left ventricular fractional area change, in parallel with a reduction in infarct size. No histologic evidence was seen of GFP+ endothelial cells, smooth muscle cells, or cardiac muscle cells within the infarct. However, angiogenesis was increased relative to control-treated animals. Taken together, these data suggest that DPSC could provide a novel alternative cell population for cardiac repair, at least in the setting of acute MI.
Collapse
Affiliation(s)
- Carolina Gandia
- Fundación Hospital General Universitario, Consorcio Hospital General Universitario de Valencia, Avenida Tres Cruces s/n, 46014 Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Caviedes-Bucheli J, Angel-Londoño P, Díaz-Perez A, Orozco MP, Álvarez JL, Lombana N, Díaz E, Muñoz HR. Variation in the Expression of Insulin-like Growth Factor-1 in Human Pulp Tissue According to the Root-development Stage. J Endod 2007; 33:1293-5. [DOI: 10.1016/j.joen.2007.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/12/2007] [Accepted: 07/18/2007] [Indexed: 10/22/2022]
|
18
|
Caviedes-Bucheli J, Gutierrez-Guerra JE, Salazar F, Pichardo D, Moreno GC, Munoz HR. Substance P receptor expression in healthy and inflamed human pulp tissue. Int Endod J 2007; 40:106-11. [PMID: 17229115 DOI: 10.1111/j.1365-2591.2006.01189.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM To use radioreceptor analysis for comparing substance P (SP) receptor expression in human pulp tissue samples collected from teeth having a clinical diagnosis of acute irreversible pulpitis, healthy pulps and teeth with induced inflammation. METHODOLOGY Five pulp samples were obtained from teeth having a clinical diagnosis of acute irreversible pulpitis. Another 10 pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic purposes. In five of these premolars inflammation was induced prior to pulp collection. All of the samples were processed and labelled with 125I-SP. Binding sites were identified by 125I-SP and standard SP competition assays. Kruskal-Wallis and Mann-Whitney (post-hoc) tests were used to establish statistically significant differences between the groups. RESULTS Substance P receptor expression was found in all human pulp tissue samples. Most receptors were found in the group of pulps from teeth having a clinical diagnosis of acute irreversible pulpitis, followed by the group of pulps having induced inflammation. The least number of receptors was expressed in the group of healthy pulps. Statistical analysis revealed significant differences between the group of healthy pulp and both inflamed pulp groups (P < 0.01). CONCLUSION Substance P receptor expression in human pulp tissue is significantly increased during inflammatory phenomena such as acute irreversible pulpitis.
Collapse
Affiliation(s)
- J Caviedes-Bucheli
- Graduate Studies Department, School of Dentistry, Pontificia Universidad Jeveriana, Bogota, Colombia.
| | | | | | | | | | | |
Collapse
|
19
|
Caviedes-Bucheli J, Avendaño N, Gutierrez R, Hernández S, Moreno GC, Romero MC, Muñoz HR. Quantification of lactate-dehydrogenase and cell viability in postmortem human dental pulp. J Endod 2006; 32:183-5. [PMID: 16500222 DOI: 10.1016/j.joen.2005.10.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding pulp repair and regeneration requires being familiar with this tissue's behavior under extreme conditions, such as postmortem state where an abrupt interruption of tissue blood supply occurs. The purpose of this study was to quantify cell viability and the amount of lactate-dehydrogenase (LDH) expressed in human pulp tissue 6, 12, and 24 hours postmortem to establish how long dental pulp remains viable after death. Pulp samples were obtained from 14 unidentified corpses of people who had received lethal injuries in car accidents or from gunshot wounds; they had at least three caries- and restoration-free incisors. Half of each sample was used for determining cell viability at three different time intervals. The rest of each sample was used for quantifying LDH expression at the same time intervals. Another 14 pulp samples were obtained from live patients' healthy premolars where extraction was indicated for orthodontic reasons to assess normal LDH value in pulp tissue. The results showed cell viability decreasing from 89 to 68 to 41% measured 6, 12, and 24 hours postmortem, respectively. LDH expression in healthy pulps was 246 U/mg pulp weight. Expression increased after death from 249 U/mg at 6 hours to 337 U/mg at 12 hours. LDH expression decreased to 131 U/mg 24 hours postmortem. These findings are valuable in understanding dental pulp survival capability under extreme conditions that may have important clinical significance in terms of repair and regeneration.
Collapse
Affiliation(s)
- Javier Caviedes-Bucheli
- Department of Graduate Studies, School of Dentistry, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Caviedes-Bucheli J, Lombana N, Azuero-Holguín MM, Munoz HR. Quantification of neuropeptides (calcitonin gene-related peptide, substance P, neurokinin A, neuropeptide Y and vasoactive intestinal polypeptide) expressed in healthy and inflamed human dental pulp. Int Endod J 2006; 39:394-400. [PMID: 16640639 DOI: 10.1111/j.1365-2591.2006.01093.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIM To quantify the expression of calcitonin gene-related peptide (CGRP), substance P (SP), neurokinin A (NKA), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) in healthy and inflamed human dental pulp tissue. METHODOLOGY Six pulp samples were obtained from teeth having a clinical diagnosis of acute irreversible pulpitis. Another 12 pulp samples were obtained from premolars where extraction was indicated for orthodontic purposes. In six of these premolar teeth inflammation was induced by mechanical pulp exposure prior to sample collection. All samples were processed and 125I-labelled; neuropeptides were quantified by competition assays. ANOVA and Mann-Whitney's (post hoc) tests were used to establish statistically significant differences between the groups. RESULTS Expression of five neuropeptides was found in all human pulp samples. Statistical analysis revealed a significantly higher (P < 0.05) expression of CGRP, SP, NKA and NPY in both inflammatory conditions compared with healthy pulp control values. VIP expression remained stable during the inflammatory conditions. CONCLUSION Expression of CGRP, SP and NKA released from C-fibres and NPY released from sympathetic fibres is significantly higher in the inflamed human pulp compared with healthy pulp. Expression of VIP released from parasympathetic fibres is not increased during the inflammatory conditions of human dental pulp.
Collapse
Affiliation(s)
- J Caviedes-Bucheli
- Graduate Studies Department, School of Dentistry, Pontificia Universidad Javeriana, Bogota, Colombia.
| | | | | | | |
Collapse
|
21
|
Caviedes-Bucheli J, Arenas N, Guiza O, Moncada NA, Moreno GC, Diaz E, Munoz HR. Calcitonin gene-related peptide receptor expression in healthy and inflamed human pulp tissue. Int Endod J 2005; 38:712-7. [PMID: 16164685 DOI: 10.1111/j.1365-2591.2005.01006.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To use radioreceptor analysis for comparing calcitonin gene-related peptide (CGRP) receptor expression in human pulp tissue samples collected from teeth having a clinical diagnosis of acute irreversible pulpitis, healthy pulps and teeth with induced inflammation. METHODOLOGY Six pulp samples were obtained from teeth having a clinical diagnosis of acute irreversible pulpitis. Another eight pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic purposes. In four of these premolars, inflammation was induced prior to pulp collection. All the samples were processed and labelled with 125I-CGRP. Binding sites were identified by 125I-CGRP and standard CGRP competition assays. RESULTS CGRP receptor expression was found in all human pulp tissue samples. Most receptors were found in the group of pulps from teeth having a clinical diagnosis of acute irreversible pulpitis, followed by the group of pulps having induced inflammation. The least number of receptors was expressed in the group of healthy pulps. The Kruskal-Wallis and Mann-Whitney (post-hoc) tests showed statistically significant differences between the groups (P < 0.05). CONCLUSION CGRP receptor expression in human pulp tissue is significantly increased during inflammatory phenomena such as acute irreversible pulpitis.
Collapse
Affiliation(s)
- J Caviedes-Bucheli
- Graduate Studies Department, School of Dentistry, Pontificia Universidad Javeriana, Bogota, Colombia.
| | | | | | | | | | | | | |
Collapse
|