1
|
Su S, Chen Z, Ke Q, Kocher O, Krieger M, Kang PM. Nanoparticle-Directed Antioxidant Therapy Can Ameliorate Disease Progression in a Novel, Diet-Inducible Model of Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2024; 44:2476-2488. [PMID: 39417229 PMCID: PMC11602363 DOI: 10.1161/atvbaha.124.321030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Oxidative stress plays a crucial role in the pathogenesis of coronary artery disease. In cardiovascular research using murine models, the generation and maintenance of models with robust coronary arterial atherosclerosis has been challenging. METHODS We characterized a new mouse model in which the last 3 amino acids of the carboxyl terminus of the HDL (high-density lipoprotein) receptor (SR-B1 [scavenger receptor, class B, type 1]) were deleted in a low-density lipoprotein receptor knockout (LDLR-/-) mouse model (SR-B1ΔCT/LDLR-/-) fed an atherogenic diet. We also tested the therapeutic effects of an oxidative stress-targeted nanoparticle in atherogenic diet-fed SR-B1ΔCT/LDLR-/- mice. RESULTS The SR-B1ΔCT/LDLR-/- mice fed an atherogenic diet had occlusive coronary artery atherosclerosis, impaired cardiac function, and a dramatically lower survival rate, compared with LDLR-/- mice fed the same diet. As SR-B1ΔCT/LDLR-/- mice do not exhibit female infertility or low pup yield, they are far easier and less costly to use than the previously described SR-B1-based models of coronary artery disease. We found that treatment with the targeted nanoparticles improved the cardiac functions and corrected hematologic abnormalities caused by the atherogenic diet in SR-B1ΔCT/LDLR-/- mice but did not alter the distinctive plasma lipid levels. CONCLUSIONS The SR-B1ΔCT/LDLR-/- mice developed diet-inducible, fatal atherosclerotic coronary artery disease, which could be ameliorated by targeted nanoparticle therapy. Our study provides new tools for the development of cardiovascular therapies.
Collapse
Affiliation(s)
- Shi Su
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zhifen Chen
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Qingen Ke
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Guo X, Qin Y, Feng Z, Li H, Yang J, Su K, Mao R, Li J. Investigating the anti-inflammatory effects of icariin: A combined meta-analysis and machine learning study. Heliyon 2024; 10:e35307. [PMID: 39170422 PMCID: PMC11336647 DOI: 10.1016/j.heliyon.2024.e35307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Objective The objectives of this study were to define the superiority of icariin and its derivatives' anti-inflammatory activities and to create a reference framework for evaluating preclinical evidence. This method combines machine learning and meta-analysis to identify underlying biological pathways. Methods Data came from PubMed, Embase, Web of Science, and the Cochrane Library. SYRCLE was used to evaluate the risk of bias in a subset of research. Meta-analysis and detailed subgroup analyses, categorized by species, genders, disease type, dosage, and treatment duration, were performed using R and STATA 15.0 software to derive nuanced insights. Employing R software (version 4.2.3) and the tidymodels package, the analysis focused on constructing a model and selecting features, with TNF-α as the dependent variable. This approach aims to identify significant predictors of drug efficacy. An in-depth literature facilitated the synthesis of anti-inflammatory mechanisms attributed to icariin and its constituent compounds. Results Following a meticulous search and selection process, 19 studies, involving 370 and 260 animals were included in the meta-analysis and machine-learning assessment, respectively. The findings revealed that icariin and its derivatives markedly reduced inflammation markers, including TNF-α and IL-1β. Additionally, machine-learning outcomes, with TNF-α as the target variable, indicated enhanced anti-inflammatory effects of icariin across respiratory, urological, neurological, and digestive disease types. These effects were more pronounced at doses exceeding 27.52 mg/kg/day and treatment durations beyond 31.22 days. Conclusion Strong anti-inflammatory effects are exhibited by icariiin and its derivatives, which are especially beneficial in the management of digestive, neurological, pulmonary, and urinary conditions. Effective for periods longer than 31.22 days and at dosages more than 27.52 mg/kg/day. Subsequent research will involve more targeted animal experiments and safety assessments to obtain more comprehensive preclinical evidence.
Collapse
Affiliation(s)
- Xiaochuan Guo
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Yanqin Qin
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Zhenzhen Feng
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Haibo Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Jingfan Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Kailin Su
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Ruixiao Mao
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| | - Jiansheng Li
- Department of Respiratory Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases By Henan and Education Ministry of PR China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou 450046, Henan province, China
| |
Collapse
|
3
|
Zhang Z, Zhou Q, Liu R, Liu L, Shen WJ, Azhar S, Qu YF, Guo Z, Hu Z. The adaptor protein GIPC1 stabilizes the scavenger receptor SR-B1 and increases its cholesterol uptake. J Biol Chem 2021; 296:100616. [PMID: 33811857 PMCID: PMC8093464 DOI: 10.1016/j.jbc.2021.100616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
The scavenger receptor class B type 1 (SR-B1), a high-density lipoprotein (HDL) receptor, is a membrane glycoprotein that mediates selective uptake of HDL-cholesterol and cholesterol ester (CE) into cells. SR-B1 is subject to posttranslational regulation; however, the underlying mechanisms still remain obscure. Here, we identified a novel SR-B1-interacting protein, GIPC1 (GAIP-interacting protein, C terminus 1) that interacts with SR-B1 and stabilizes SR-B1 by negative regulation of its proteasomal and lysosomal degradation pathways. The physiological interaction between SR-B1 and GIPC1 was supported by co-immunoprecipitation of wild-type and mutant GIPC1 constructs in SR-B1 ± GIPC1 overexpressing cells, in native liver cells, and in mouse liver tissues. Overexpression of GIPC1 increased endogenous SR-B1 protein levels, subsequently increasing selective HDL-cholesterol/CE uptake and cellular triglyceride (TG) and total cholesterol (TC) levels, whereas silencing of GIPC1 in the mouse liver was associated with blunted hepatic SR-B1 levels, elevated plasma TG and TC, and attenuated hepatic TG and TC content. A positive correlation was identified between GIPC1 and SR-B1 expression, and both expressions of GIPC1 and SR-B1 from human liver samples were inversely correlated with body mass index (BMI) from human subjects. We therefore conclude that GIPC1 plays a key role in the stability and function of SR-B1 and can also effectively regulate hepatic lipid and cholesterol metabolism. These findings expand our knowledge of the regulatory roles of GIPC1 and suggest that GIPC1 exerts a major effect on cell surface receptors such as SR-B1 and its associated hepatic lipid and cholesterol metabolic processes.
Collapse
Affiliation(s)
- Ziyu Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qian Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Rui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA; Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California, USA; Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
4
|
Wang W, Yan Z, Hu J, Shen WJ, Azhar S, Kraemer FB. Scavenger receptor class B, type 1 facilitates cellular fatty acid uptake. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158554. [PMID: 31678516 DOI: 10.1016/j.bbalip.2019.158554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
SR-B1 belongs to the class B scavenger receptor, or CD36 super family. SR-B1 and CD36 share an affinity for a wide array of ligands. Although they exhibit similar ligand binding specificity, SR-B1 and CD36 have some very specific lipid transport functions. Whereas SR-B1 primarily facilitates the selective delivery of cholesteryl esters (CEs) and cholesterol from HDL particles to the liver and non-placental steroidogenic tissues, as well as participating in cholesterol efflux from cells, CD36 primarily mediates the uptake of long-chain fatty acids in high fatty acid-requiring organs such as the heart, skeletal muscle and adipose tissue. However, CD36 also mediates cholesterol efflux and facilitates selective lipoprotein-CE delivery, although less efficiently than SR-B1. Interestingly, the ability or efficiency of SR-B1 to mediate fatty acid uptake has not been reported. In this paper, using overexpression and siRNA-mediated knockdown of SR-B1, we show that SR-B1 possesses the ability to facilitate fatty acid uptake. Moreover, this function is not blocked by BLT-1, a specific chemical inhibitor of HDL-CE uptake activity of SR-B1, nor by sulfo-N-succinimidyl oleate, which inhibits fatty acid uptake by CD36. Attenuated fatty acid uptake was also observed in primary adipocytes isolated from SR-B1 knockout mice. In conclusion, facilitation of fatty acid uptake is an additional function that is mediated by SR-B1.
Collapse
Affiliation(s)
- Wei Wang
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America; Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Zhe Yan
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America; Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Jie Hu
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America.
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA 94305, United States of America; Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, United States of America.
| |
Collapse
|
5
|
Pal R, Ke Q, Pihan GA, Yesilaltay A, Penman ML, Wang L, Chitraju C, Kang PM, Krieger M, Kocher O. Carboxy-terminal deletion of the HDL receptor reduces receptor levels in liver and steroidogenic tissues, induces hypercholesterolemia, and causes fatal heart disease. Am J Physiol Heart Circ Physiol 2016; 311:H1392-H1408. [PMID: 27694217 DOI: 10.1152/ajpheart.00463.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/13/2016] [Indexed: 01/15/2023]
Abstract
The HDL receptor SR-BI mediates the transfer of cholesteryl esters from HDL to cells and controls HDL abundance and structure. Depending on the genetic background, loss of SR-BI causes hypercholesterolemia, anemia, reticulocytosis, splenomegaly, thrombocytopenia, female infertility, and fatal coronary heart disease (CHD). The carboxy terminus of SR-BI (505QEAKL509) must bind to the cytoplasmic adaptor PDZK1 for normal hepatic-but not steroidogenic cell-expression of SR-BI protein. To determine whether SR-BI's carboxy terminus is also required for normal protein levels in steroidogenic cells, we introduced into SR-BI's gene a 507Ala/STOP mutation that produces a truncated receptor (SR-BIΔCT). As expected, the dramatic reduction of hepatic receptor protein in SR-BIΔCT mice was similar to that in PDZK1 knockout (KO) mice. Unlike SR-BI KO females, SR-BIΔCT females were fertile. The severity of SR-BIΔCT mice's hypercholesterolemia was intermediate between those of SR-BI KO and PDZK1 KO mice. Substantially reduced levels of the receptor in adrenal cortical cells, ovarian cells, and testicular Leydig cells in SR-BIΔCT mice suggested that steroidogenic cells have an adaptor(s) functionally analogous to hepatic PDZK1. When SR-BIΔCT mice were crossed with apolipoprotein E KO mice (SR-BIΔCT/apoE KO), pathologies including hypercholesterolemia, macrocytic anemia, hepatic and splenic extramedullary hematopoiesis, massive splenomegaly, reticulocytosis, thrombocytopenia, and rapid-onset and fatal occlusive coronary arterial atherosclerosis and CHD (median age of death: 9 wk) were observed. These results provide new insights into the control of SR-BI in steroidogenic cells and establish SR-BIΔCT/apoE KO mice as a new animal model for the study of CHD.
Collapse
Affiliation(s)
- Rinku Pal
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Qingen Ke
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - German A Pihan
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ayce Yesilaltay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Marsha L Penman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Li Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Peter M Kang
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
6
|
Yang F, Du Y, Zhang J, Jiang Z, Wang L, Hong B. Low-density lipoprotein upregulate SR-BI through Sp1 Ser702 phosphorylation in hepatic cells. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1066-1075. [PMID: 27320013 DOI: 10.1016/j.bbalip.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/04/2016] [Accepted: 06/10/2016] [Indexed: 01/25/2023]
Abstract
Scavenger receptor class B type I (SR-BI) is one of the key proteins in the process of reverse cholesterol transport (RCT), and its major function is to uptake high density lipoprotein (HDL) cholesterol from plasma into liver cells. The regulation of SR-BI expression is important for controlling serum lipid content and reducing the risks of cardiovascular diseases. Here we found that SR-BI expression was significantly increased by LDL in vivo and in vitro, and the transcription factor specific protein 1 (Sp1) plays a critical role in this process. Results from co-immunoprecipitation experiments indicate that the activation of SR-BI was associated with Sp1-recruited protein complexes in the promoter region of SR-BI, where histone acetyltransferase p300 was recruited and histone deacetylase HDAC1 was dismissed. As a result, histone acetylation increased, leading to activation of SR-BI transcription. With further investigation, we found that LDL phosphorylated Sp1 through ERK1/2 pathway, which affected Sp1 protein complexes formation in SR-BI promoter. Using mass spectrometry and site directed mutagenesis, a new Sp1 phosphorylation site Ser702 was defined to be associated with Sp1-HDAC1 interaction and may be important in SR-BI activation, shedding light on the knowledge of delicate mechanism of hepatic HDL receptor SR-BI gene modulation by LDL.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China
| | - Yu Du
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China
| | - Jin Zhang
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China
| | - Zhibo Jiang
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China
| | - Li Wang
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China.
| | - Bin Hong
- Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Tiantan Xili, Beijing 100050, China.
| |
Collapse
|
7
|
Briand O, Touche V, Colin S, Brufau G, Davalos A, Schonewille M, Bovenga F, Carrière V, de Boer JF, Dugardin C, Riveau B, Clavey V, Tailleux A, Moschetta A, Lasunción MA, Groen AK, Staels B, Lestavel S. Liver X Receptor Regulates Triglyceride Absorption Through Intestinal Down-regulation of Scavenger Receptor Class B, Type 1. Gastroenterology 2016; 150:650-8. [PMID: 26602218 DOI: 10.1053/j.gastro.2015.11.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 10/30/2015] [Accepted: 11/10/2015] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Reducing postprandial triglyceridemia may be a promising strategy to lower the risk of cardiovascular disorders associated with obesity and type 2 diabetes. In enterocytes, scavenger receptor class B, type 1 (SR-B1, encoded by SCARB1) mediates lipid-micelle sensing to promote assembly and secretion of chylomicrons. The nuclear receptor subfamily 1, group H, members 2 and 3 (also known as liver X receptors [LXRs]) regulate genes involved in cholesterol and fatty acid metabolism. We aimed to determine whether intestinal LXRs regulate triglyceride absorption. METHODS C57BL/6J mice were either fed a cholesterol-enriched diet or given synthetic LXR agonists (GW3965 or T0901317). We measured the production of chylomicrons and localized SR-B1 by immunohistochemistry. Mechanisms of postprandial triglyceridemia and SR-B1 regulation were studied in Caco-2/TC7 cells incubated with LXR agonists. RESULTS In mice and in the Caco-2/TC7 cell line, LXR agonists caused localization of intestinal SR-B1 from apical membranes to intracellular organelles and reduced chylomicron secretion. In Caco-2/TC7 cells, LXR agonists reduced SR-B1-dependent lipidic-micelle-induced Erk phosphorylation. LXR agonists also reduced intracellular trafficking of the apical apolipoprotein B pool toward secretory compartments. LXR reduced levels of SR-B1 in Caco-2/TC7 cells via a post-transcriptional mechanism that involves microRNAs. CONCLUSION In Caco-2/TC7 cells and mice, intestinal activation of LXR reduces the production of chylomicrons by a mechanism dependent on the apical localization of SR-B1.
Collapse
Affiliation(s)
- Olivier Briand
- University Lille, Inserm, Centre Hospitalier Universitaire (CHU) de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Véronique Touche
- University Lille, Inserm, Centre Hospitalier Universitaire (CHU) de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Sophie Colin
- University Lille, Inserm, Centre Hospitalier Universitaire (CHU) de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Gemma Brufau
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alberto Davalos
- Madrid Institute for Advanced Studies (IMDEA) Food Institute, Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Campus de Excelencia Internacional (CEI), Universidad Autónoma de Madrid (UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Marleen Schonewille
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fabiola Bovenga
- National Research Cancer Center, Giovanni Paolo II, and University of Bari, Bari, Italy
| | - Véronique Carrière
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cit, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigatión Sanitaria (IRYCIS), Madrid, Spain
| | - Jan Freark de Boer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Camille Dugardin
- University Lille, Inserm, Centre Hospitalier Universitaire (CHU) de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Béatrice Riveau
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC), UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM), UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes, Sorbonne Paris Cit, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Véronique Clavey
- University Lille, Inserm, Centre Hospitalier Universitaire (CHU) de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Anne Tailleux
- University Lille, Inserm, Centre Hospitalier Universitaire (CHU) de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Antonio Moschetta
- National Research Cancer Center, Giovanni Paolo II, and University of Bari, Bari, Italy
| | - Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigatión Sanitaria (IRYCIS), Madrid, Spain; Centro de Investigatión Biomedica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | - Albert K Groen
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart Staels
- University Lille, Inserm, Centre Hospitalier Universitaire (CHU) de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France.
| | - Sophie Lestavel
- University Lille, Inserm, Centre Hospitalier Universitaire (CHU) de Lille, Institut Pasteur de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| |
Collapse
|
8
|
Hu Z, Hu J, Shen WJ, Kraemer FB, Azhar S. A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry 2015; 54:6917-30. [PMID: 26567857 DOI: 10.1021/acs.biochem.5b00147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Salt-inducible kinase 1 (SIK1) is a serine/threonine kinase that belongs to the stress- and energy-sensing AMPK family of kinases. SIK1 expression is rapidly induced in Y1 adrenal cells in response to ACTH via the cAMP-PKA signaling cascade, and it has been suggested that an increased level of SIK1 expression inhibits adrenal steroidogenesis by repressing the cAMP-dependent transcription of steroidogenic proteins, CYP11A1 and StAR, by attenuating CREB transcriptional activity. Here we show that SIK1 stimulates adrenal steroidogenesis by modulating the selective HDL-CE transport activity of SR-B1. Overexpression of SIK1 increases cAMP-stimulated and SR-B1-mediated selective HDL-BODIPY-CE uptake in cell lines without impacting SR-B1 protein levels, whereas knockdown of SIK1 attenuated cAMP-stimulated selective HDL-BODIPY-CE uptake. SIK1 forms a complex with SR-B1 by interacting with its cytoplasmic C-terminal domain, and in vitro kinase activity measurements indicate that SIK1 can phosphorylate the C-terminal domain of SR-B1. Among potential phosphorylation sites, SIK1-catalyzed phosphorylation of Ser496 is critical for SIK1 stimulation of the selective CE transport activity of SR-B1. Mutational studies further demonstrated that both the intact catalytic activity of SIK1 and its PKA-catalyzed phosphorylation are essential for SIK1 stimulation of SR-B1 activity. Finally, overexpression of SIK1 caused time-dependent increases in SR-B1-mediated and HDL-supported steroid production in Y1 cells; however, these effects were lost with knockdown of SR-B1. Taken together, these studies establish a role for SIK1 in the positive regulation of selective HDL-CE transport function of SR-B1 and steroidogenesis and suggest a potential mechanism for SIK1 signaling in modulating SR-B1-mediated selective CE uptake and associated steroidogenesis.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Jie Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System , Palo Alto, California 94304, United States
| |
Collapse
|
9
|
Liao J, Huang W, Liu G. Animal models of coronary heart disease. J Biomed Res 2015; 30:3-10. [PMID: 26585560 PMCID: PMC5274506 DOI: 10.7555/jbr.30.20150051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/16/2015] [Accepted: 06/27/2015] [Indexed: 01/17/2023] Open
Abstract
Cardiovascular disease, predominantly coronary heart disease and stroke, leads to high morbidity and mortality not only in developed worlds but also in underdeveloped regions. The dominant pathologic foundation for cardiovascular disease is atherosclerosis and as to coronary heart disease, coronary atherosclerosis and resulting lumen stenosis, even total occlusions. In translational research, several animals, such as mice, rabbits and pigs, have been used as disease models of human atherosclerosis and related cardiovascular disorders. However, coronary lesions are either naturally rare or hard to be fast induced in these models, hence, coronary heart disease induction mostly relies on surgical or pharmaceutical interventions with no or limited primary coronary lesions, thus unrepresentative of human coronary heart disease progression and pathology. In this review, we will describe the progress of animal models of coronary heart disease following either spontaneous or diet-accelerated coronary lesions.
Collapse
Affiliation(s)
- Jiawei Liao
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
10
|
Lee WR, Sacharidou A, Behling-Kelly E, Oltmann SC, Zhu W, Ahmed M, Gerard RD, Hui DY, Abe JI, Shaul PW, Mineo C. PDZK1 prevents neointima formation via suppression of breakpoint cluster region kinase in vascular smooth muscle. PLoS One 2015; 10:e0124494. [PMID: 25886360 PMCID: PMC4401672 DOI: 10.1371/journal.pone.0124494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/02/2015] [Indexed: 01/21/2023] Open
Abstract
Scavenger receptor class B, type I (SR-BI) and its adaptor protein PDZK1 mediate responses to HDL cholesterol in endothelium. Whether the receptor-adaptor protein tandem serves functions in other vascular cell types is unknown. The current work determined the roles of SR-BI and PDZK1 in vascular smooth muscle (VSM). To evaluate possible VSM functions of SR-BI and PDZK1 in vivo, neointima formation was assessed 21 days post-ligation in the carotid arteries of wild-type, SR-BI-/- or PDZK1-/- mice. Whereas neointima development was negligible in wild-type and SR-BI-/-, there was marked neointima formation in PDZK1-/- mice. PDZK1 expression was demonstrated in primary mouse VSM cells, and compared to wild-type cells, PDZK1-/- VSM displayed exaggerated proliferation and migration in response to platelet derived growth factor (PDGF). Tandem affinity purification-mass spectrometry revealed that PDZK1 interacts with breakpoint cluster region kinase (Bcr), which contains a C-terminal PDZ binding sequence and is known to enhance responses to PDGF in VSM. PDZK1 interaction with Bcr in VSM was demonstrated by pull-down and by coimmunoprecipitation, and the augmented proliferative response to PDGF in PDZK1-/- VSM was abrogated by Bcr depletion. Furthermore, compared with wild-type Bcr overexpression, the introduction of a Bcr mutant incapable of PDZK1 binding into VSM cells yielded an exaggerated proliferative response to PDGF. Thus, PDZK1 has novel SR-BI-independent function in VSM that affords protection from neointima formation, and this involves PDZK1 suppression of VSM cell proliferation via an inhibitory interaction with Bcr.
Collapse
Affiliation(s)
- Wan Ru Lee
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Anastasia Sacharidou
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Erica Behling-Kelly
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sarah C. Oltmann
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Weifei Zhu
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mohamed Ahmed
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Robert D. Gerard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - David Y. Hui
- Department of Pathology, Metabolic Diseases Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jun-ichi Abe
- Department of Medicine and the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (PS); (CM)
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (PS); (CM)
| |
Collapse
|
11
|
Lichtenstein L, Serhan N, Espinosa-Delgado S, Fabre A, Annema W, Tietge UJF, Robaye B, Boeynaems JM, Laffargue M, Perret B, Martinez LO. Increased atherosclerosis in P2Y13/apolipoprotein E double-knockout mice: contribution of P2Y13 to reverse cholesterol transport. Cardiovasc Res 2015; 106:314-23. [PMID: 25770145 DOI: 10.1093/cvr/cvv109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/07/2015] [Indexed: 11/14/2022] Open
Abstract
AIMS High-density lipoproteins (HDLs) protect against atherosclerosis mainly due to their function in hepatobiliary reverse cholesterol transport (RCT). This is a process whereby excess cholesterol from peripheral tissues is transported by HDL particles to the liver for further metabolism and biliary excretion. Hepatic uptake of HDL holoparticles involves the P2Y13 receptor, independently of the selective cholesteryl ester uptake mediated by scavenger receptor class B, type I (SR-BI). Accordingly, P2Y13-deficient mice (P2Y13 (-/-)) have impaired RCT. This study assessed whether P2Y13 deficiency would affect atherosclerotic development. METHODS AND RESULTS P2Y13 (-/-) mice were crossbred with atherosclerosis-prone apoE(-/-) mice. When 15 weeks old, P2Y13 (-/-)/apoE(-/-) mice had more aortic sinus lesions than apoE(-/-) mice. Bone marrow transplantation showed that the absence of the P2Y13 receptor in blood cells did not lead to significantly greater atherosclerotic plaque size formation compared with control apoE(-/-) reconstituted animals. Conversely, the absence of the P2Y13 receptor, except in blood cells, resulted in lesion sizes similar to that in P2Y13 (-/-)/apoE(-/-) reconstituted mice, pointing to a role for non-haematopoietic-derived P2Y13. Unexpectedly, P2Y13 (-/-)/apoE(-/-) mice displayed a lower HDL-cholesterol level than apoE(-/-) mice, which might be due to greater SR-BI expression in the liver. However, P2Y13 deficiency in apoE(-/-) mice was translated into reduced biliary and faecal sterol excretion and impaired RCT from macrophage to faeces, suggesting that an alteration in hepatobiliary RCT could be solely responsible for the greater atherosclerosis observed. CONCLUSION The P2Y13 receptor protects against atherosclerosis, primarily through its role in hepatobiliary RCT.
Collapse
Affiliation(s)
- Laeticia Lichtenstein
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Nizar Serhan
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Sara Espinosa-Delgado
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Aurélie Fabre
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Wijtske Annema
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bernard Robaye
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean-Marie Boeynaems
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Muriel Laffargue
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France
| | - Bertrand Perret
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Laurent O Martinez
- INSERM, UMR 1048, Institut de Maladies Métaboliques et Cardiovasculaires, Toulouse, France Université de Toulouse III, UMR 1048, Toulouse, France CHU de Toulouse, Hôpital Purpan, Toulouse, France INSERM U1048, Bât. L3, Hôpital Rangueil, BP 84225, 31432 Toulouse cedex 04, France
| |
Collapse
|
12
|
Sarma GN, Moody IS, Ilouz R, Phan RH, Sankaran B, Hall RA, Taylor SS. D-AKAP2:PKA RII:PDZK1 ternary complex structure: insights from the nucleation of a polyvalent scaffold. Protein Sci 2014; 24:105-16. [PMID: 25348485 DOI: 10.1002/pro.2593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 02/02/2023]
Abstract
A-kinase anchoring proteins (AKAPs) regulate cAMP-dependent protein kinase (PKA) signaling in space and time. Dual-specific AKAP2 (D-AKAP2/AKAP10) binds with high affinity to both RI and RII regulatory subunits of PKA and is anchored to transporters through PDZ domain proteins. Here, we describe a structure of D-AKAP2 in complex with two interacting partners and the exact mechanism by which a segment that on its own is disordered presents an α-helix to PKA and a β-strand to PDZK1. These two motifs nucleate a polyvalent scaffold and show how PKA signaling is linked to the regulation of transporters. Formation of the D-AKAP2: PKA binary complex is an important first step for high affinity interaction with PDZK1, and the structure reveals important clues toward understanding this phenomenon. In contrast to many other AKAPs, D-AKAP2 does not interact directly with the membrane protein. Instead, the interaction is facilitated by the C-terminus of D-AKAP2, which contains two binding motifs-the D-AKAP2AKB and the PDZ motif-that are joined by a short linker and only become ordered upon binding to their respective partner signaling proteins. The D-AKAP2AKB binds to the D/D domain of the R-subunit and the C-terminal PDZ motif binds to a PDZ domain (from PDZK1) that serves as a bridging protein to the transporter. This structure also provides insights into the fundamental question of why D-AKAP2 would exhibit a differential mode of binding to the two PKA isoforms.
Collapse
Affiliation(s)
- Ganapathy N Sarma
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0654; Department of Pharmacology, University of California, San Diego, La Jolla, California, 92093-0654
| | | | | | | | | | | | | |
Collapse
|
13
|
Challenges in using cultured primary rodent hepatocytes or cell lines to study hepatic HDL receptor SR-BI regulation by its cytoplasmic adaptor PDZK1. PLoS One 2013; 8:e69725. [PMID: 23936087 PMCID: PMC3720616 DOI: 10.1371/journal.pone.0069725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/12/2013] [Indexed: 12/15/2022] Open
Abstract
Background PDZK1 is a four PDZ-domain containing cytoplasmic protein that binds to a variety of membrane proteins via their C-termini and can influence the abundance, localization and/or function of its target proteins. One of these targets in hepatocytes in vivo is the HDL receptor SR-BI. Normal hepatic expression of SR-BI protein requires PDZK1 - <5% of normal hepatic SR-BI is seen in the livers of PDZK1 knockout mice. Progress has been made in identifying features of PDZK1 required to control hepatic SR-BI in vivo using hepatic expression of wild-type and mutant forms of PDZK1 in wild-type and PDZK1 KO transgenic mice. Such in vivo studies are time consuming and expensive, and cannot readily be used to explore many features of the underlying molecular and cellular mechanisms. Methodology/Principal Findings Here we have explored the potential to use either primary rodent hepatocytes in culture using 2D collagen gels with newly developed optimized conditions or PDZK1/SR-BI co-transfected cultured cell lines (COS, HEK293) for such studies. SR-BI and PDZK1 protein and mRNA expression levels fell rapidly in primary hepatocyte cultures, indicating this system does not adequately mimic hepatocytes in vivo for analysis of the PDZK1 dependence of SR-BI. Although PDZK1 did alter SR-BI protein expression in the cell lines, its influence was independent of SR-BI’s C-terminus, and thus is not likely to occur via the same mechanism as that which occurs in hepatocytes in vivo. Conclusions/Significance Caution must be exercised in using primary hepatocytes or cultured cell lines when studying the mechanism underlying the regulation of hepatic SR-BI by PDZK1. It may be possible to use SR-BI and PDZK1 expression as sensitive markers for the in vivo-like state of hepatocytes to further improve primary hepatocyte cell culture conditions.
Collapse
|
14
|
Tsukamoto K, Wales TE, Daniels K, Pal R, Sheng R, Cho W, Stafford W, Engen JR, Krieger M, Kocher O. Noncanonical role of the PDZ4 domain of the adaptor protein PDZK1 in the regulation of the hepatic high density lipoprotein receptor scavenger receptor class B, type I (SR-BI). J Biol Chem 2013; 288:19845-60. [PMID: 23720744 DOI: 10.1074/jbc.m113.460170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The four PDZ (PDZ1 to PDZ4) domain-containing adaptor protein PDZK1 controls the expression, localization, and function of the HDL receptor scavenger receptor class B, type I (SR-BI), in hepatocytes in vivo. This control depends on both the PDZ4 domain and the binding of SR-BI's cytoplasmic C terminus to the canonical peptide-binding sites of either the PDZ1 or PDZ3 domain (no binding to PDZ2 or PDZ4). Using transgenic mice expressing in the liver domain deletion (ΔPDZ2 or ΔPDZ3), domain replacement (PDZ2→1), or target peptide binding-negative (PDZ4(G389P)) mutants of PDZK1, we found that neither PDZ2 nor PDZ3 nor the canonical target peptide binding activity of PDZ4 were necessary for hepatic SR-BI regulatory activity. Immunohistochemical studies established that the localization of PDZK1 on hepatocyte cell surface membranes in vivo is dependent on its PDZ4 domain and the presence of SR-BI. Analytical ultracentrifugation and hydrogen deuterium exchange mass spectrometry suggested that the requirement of PDZ4 for localization and SR-BI regulation is not due to PDZ4-mediated oligomerization or induction of conformational changes in the PDZ123 portion of PDZK1. However, surface plasmon resonance analysis showed that PDZ4, but not the other PDZ domains, can bind vesicles that mimic the plasma membrane. Thus, PDZ4 may potentiate PDZK1's regulation of SR-BI by promoting its lipid-mediated attachment to the cytoplasmic membrane. Our results show that not all of the PDZ domains of a multi-PDZ domain-containing adaptor protein are required for its biological activities and that both canonical target peptide binding and noncanonical (peptide binding-independent) capacities of PDZ domains may be employed by a single such adaptor for optimal in vivo activity.
Collapse
Affiliation(s)
- Kosuke Tsukamoto
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang L, Jia XJ, Jiang HJ, Du Y, Yang F, Si SY, Hong B. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Mol Cell Biol 2013; 33:1956-64. [PMID: 23459944 PMCID: PMC3647964 DOI: 10.1128/mcb.01580-12] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/25/2013] [Indexed: 01/05/2023] Open
Abstract
Hepatic scavenger receptor class B type I (SR-BI) plays an important role in selective high-density lipoprotein cholesterol (HDL-C) uptake, which is a pivotal step of reverse cholesterol transport. In this study, the potential involvement of microRNAs (miRNAs) in posttranscriptional regulation of hepatic SR-BI and selective HDL-C uptake was investigated. The level of SR-BI expression was repressed by miRNA 185 (miR-185), miR-96, and miR-223, while the uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-HDL was decreased by 31.9% (P < 0.001), 23.9% (P < 0.05), and 15.4% (P < 0.05), respectively, in HepG2 cells. The inhibition of these miRNAs by their anti-miRNAs had opposite effects in these hepatic cells. The critical effect of miR-185 was further validated by the loss of regulation in constructs with mutated miR-185 target sites. In addition, these miRNAs directly targeted the 3' untranslated region (UTR) of SR-BI with a coordinated effect. Interestingly, the decrease of miR-96 and miR-185 coincided with the increase of SR-BI in the livers of ApoE KO mice on a high-fat diet. These data suggest that miR-185, miR-96, and miR-223 may repress selective HDL-C uptake through the inhibition of SR-BI in human hepatic cells, implying a novel mode of regulation of hepatic SR-BI and an important role of miRNAs in modulating cholesterol metabolism.
Collapse
Affiliation(s)
- Li Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Perez-Martinez P, Garcia-Rios A, Delgado-Lista J, Perez-Jimenez F, Lopez-Miranda J. Metabolic syndrome: Evidences for a personalized nutrition. Mol Nutr Food Res 2011; 56:67-76. [DOI: 10.1002/mnfr.201100531] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/06/2011] [Accepted: 09/23/2011] [Indexed: 11/10/2022]
|
17
|
Kocher O, Birrane G, Yesilaltay A, Shechter S, Pal R, Daniels K, Krieger M. Identification of the PDZ3 domain of the adaptor protein PDZK1 as a second, physiologically functional binding site for the C terminus of the high density lipoprotein receptor scavenger receptor class B type I. J Biol Chem 2011; 286:25171-86. [PMID: 21602281 PMCID: PMC3137089 DOI: 10.1074/jbc.m111.242362] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/21/2011] [Indexed: 12/11/2022] Open
Abstract
The normal expression, cell surface localization, and function of the murine high density lipoprotein receptor scavenger receptor class B type I (SR-BI) in hepatocytes in vivo, and thus normal lipoprotein metabolism, depend on its four PDZ domain (PDZ1-PDZ4) containing cytoplasmic adaptor protein PDZK1. Previous studies showed that the C terminus of SR-BI ("target peptide") binds directly to PDZ1 and influences hepatic SR-BI protein expression. Unexpectedly an inactivating mutation in PDZ1 (Tyr(20) → Ala) only partially, rather than completely, suppresses the ability of PDZK1 to control hepatic SR-BI. We used isothermal titration calorimetry to show that PDZ3, but not PDZ2 or PDZ4, can also bind the target peptide (K(d) = 37.0 μm), albeit with ∼10-fold lower affinity than PDZ1. This binding is abrogated by a Tyr(253) → Ala substitution. Comparison of the 1.5-Å resolution crystal structure of PDZ3 with its bound target peptide ((505)QEAKL(509)) to that of peptide-bound PDZ1 indicated fewer target peptide stabilizing atomic interactions (hydrogen bonds and hydrophobic interactions) in PDZ3. A double (Tyr(20) → Ala (PDZ1) + Tyr(253) → Ala (PDZ3)) substitution abrogated all target peptide binding to PDZK1. In vivo hepatic expression of a singly substituted (Tyr(253) → Ala (PDZ3)) PDZK1 transgene (Tg) was able to correct all of the SR-BI-related defects in PDZK1 knock-out mice, whereas the doubly substituted [Tyr(20) → Ala (PDZ1) + Tyr(253) → Ala (PDZ3)]Tg was unable to correct these defects. Thus, we conclude that PDZK1-mediated control of hepatic SR-BI requires direct binding of the SR-BI C terminus to either the PDZ1 or PDZ3 domains, and that binding to both domains simultaneously is not required for PDZK1 control of hepatic SR-BI.
Collapse
Affiliation(s)
- Olivier Kocher
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Giral H, Lanzano L, Caldas Y, Blaine J, Verlander JW, Lei T, Gratton E, Levi M. Role of PDZK1 protein in apical membrane expression of renal sodium-coupled phosphate transporters. J Biol Chem 2011; 286:15032-42. [PMID: 21388960 DOI: 10.1074/jbc.m110.199752] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The sodium-dependent phosphate (Na/P(i)) transporters NaPi-2a and NaPi-2c play a major role in the renal reabsorption of P(i). The functional need for several transporters accomplishing the same role is still not clear. However, the fact that these transporters show differential regulation under dietary and hormonal stimuli suggests different roles in P(i) reabsorption. The pathways controlling this differential regulation are still unknown, but one of the candidates involved is the NHERF family of scaffolding PDZ proteins. We propose that differences in the molecular interaction with PDZ proteins are related with the differential adaptation of Na/P(i) transporters. Pdzk1(-/-) mice adapted to chronic low P(i) diets showed an increased expression of NaPi-2a protein in the apical membrane of proximal tubules but impaired up-regulation of NaPi-2c. These results suggest an important role for PDZK1 in the stabilization of NaPi-2c in the apical membrane. We studied the specific protein-protein interactions of Na/P(i) transporters with NHERF-1 and PDZK1 by FRET. FRET measurements showed a much stronger interaction of NHERF-1 with NaPi-2a than with NaPi-2c. However, both Na/P(i) transporters showed similar FRET efficiencies with PDZK1. Interestingly, in cells adapted to low P(i) concentrations, there were increases in NaPi-2c/PDZK1 and NaPi-2a/NHERF-1 interactions. The differential affinity of the Na/P(i) transporters for NHERF-1 and PDZK1 proteins could partially explain their differential regulation and/or stability in the apical membrane. In this regard, direct interaction between NaPi-2c and PDZK1 seems to play an important role in the physiological regulation of NaPi-2c.
Collapse
Affiliation(s)
- Hector Giral
- Department of Medicine, University of Colorado, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Carlström M. Seasonal Variation in Metabolic Syndrome Components: How Much Do They Influence the Diagnosis of Metabolic Syndrome? CURRENT CARDIOVASCULAR RISK REPORTS 2010. [DOI: 10.1007/s12170-010-0139-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Kocher O, Birrane G, Tsukamoto K, Fenske S, Yesilaltay A, Pal R, Daniels K, Ladias JAA, Krieger M. In vitro and in vivo analysis of the binding of the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), to the PDZ1 domain of its adaptor protein PDZK1. J Biol Chem 2010; 285:34999-5010. [PMID: 20739281 DOI: 10.1074/jbc.m110.164418] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys(14)-Xaa(4)-Asn(19)-Tyr-Gly-Phe-Phe-Leu(24)), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI ((503)VLQEAKL(509)). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (K(d)) of the K14A and F22A mutants were 3.2 and 4.0 μM, respectively, similar to 2.6 μM measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI ((505)QEAKL(509)) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10-20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1.
Collapse
Affiliation(s)
- Olivier Kocher
- Department of Pathology, Center for Vascular Biology Research, Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215,
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yesilaltay A, Daniels K, Pal R, Krieger M, Kocher O. Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice. PLoS One 2009; 4:e8103. [PMID: 19956623 PMCID: PMC2779610 DOI: 10.1371/journal.pone.0008103] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/05/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND PDZK1 is a four PDZ-domain containing protein that binds to the carboxy terminus of the HDL receptor, scavenger receptor class B type I (SR-BI), and regulates its expression, localization and function in a tissue-specific manner. PDZK1 knockout (KO) mice are characterized by a marked reduction of SR-BI protein expression ( approximately 95%) in the liver (lesser or no reduction in other organs) with a concomitant 1.7 fold increase in plasma cholesterol. PDZK1 has been shown to be atheroprotective using the high fat/high cholesterol ('Western') diet-fed murine apolipoprotein E (apoE) KO model of atherosclerosis, presumably because of its role in promoting reverse cholesterol transport via SR-BI. PRINCIPAL FINDINGS Here, we have examined the effects of PDZK1 deficiency in apoE KO mice fed with the atherogenic 'Paigen' diet for three months. Relative to apoE KO, PDZK1/apoE double KO (dKO) mice showed increased plasma lipids (33% increase in total cholesterol; 49 % increase in unesterified cholesterol; and 36% increase in phospholipids) and a 26% increase in aortic root lesions. Compared to apoE KO, dKO mice exhibited substantial occlusive coronary artery disease: 375% increase in severe occlusions. Myocardial infarctions, not observed in apoE KO mice (although occasional minimal fibrosis was noted), were seen in 7 of 8 dKO mice, resulting in 12 times greater area of fibrosis in dKO cardiac muscle. CONCLUSIONS These results show that Paigen-diet fed PDZK1/apoE dKO mice represent a new animal model useful for studying coronary heart disease and suggest that PDZK1 may represent a valuable target for therapeutic intervention.
Collapse
Affiliation(s)
- Ayce Yesilaltay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kathleen Daniels
- Department of Pathology and Center for Vascular Biology Research, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rinku Pal
- Department of Pathology and Center for Vascular Biology Research, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
22
|
Stylianou IM, Svenson KL, VanOrman SK, Langle Y, Millar JS, Paigen B, Rader DJ. Novel ENU-induced point mutation in scavenger receptor class B, member 1, results in liver specific loss of SCARB1 protein. PLoS One 2009; 4:e6521. [PMID: 19654867 PMCID: PMC2715880 DOI: 10.1371/journal.pone.0006521] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/05/2009] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular disease (CVD) is the largest cause of premature death in human populations throughout the world. Circulating plasma lipid levels, specifically high levels of LDL or low levels of HDL, are predictive of susceptibility to CVD. The scavenger receptor class B member 1 (SCARB1) is the primary receptor for the selective uptake of HDL cholesterol by liver and steroidogenic tissues. Hepatic SCARB1 influences plasma HDL-cholesterol levels and is vital for reverse cholesterol transport. Here we describe the mapping of a novel N-ethyl-N-nitrosourea (ENU) induced point mutation in the Scarb1 gene identified in a C57BL/6J background. The mutation is located in a highly conserved amino acid in the extracellular loop and leads to the conversion of an isoleucine to an asparagine (I179N). Homozygous mutant mice express normal Scarb1 mRNA levels and are fertile. SCARB1 protein levels are markedly reduced in liver (∼90%), but not in steroidogenic tissues. This leads to ∼70% increased plasma HDL levels due to reduced HDL cholesteryl ester selective uptake. Pdzk1 knockout mice have liver-specific reduction of SCARB1 protein as does this mutant; however, in vitro analysis of the mutation indicates that the regulation of SCARB1 protein in this mutant is independent of PDZK1. This new Scarb1 model may help further our understanding of post-translational and tissue-specific regulation of SCARB1 that may aid the important clinical goal of raising functional HDL.
Collapse
Affiliation(s)
- Ioannis M Stylianou
- School of Medicine, Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | | | |
Collapse
|
23
|
Seidler U, Singh AK, Cinar A, Chen M, Hillesheim J, Hogema B, Riederer B. The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann N Y Acad Sci 2009; 1165:249-60. [PMID: 19538313 DOI: 10.1111/j.1749-6632.2009.04046.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The four members of the NHERF (Na(+)/H(+) exchanger regulatory factor) family of PDZ adapter proteins bind to a variety of membrane transporters and receptors and modulate membrane expression, mobility, interaction with other proteins, and the formation of signaling complexes. All four family members are expressed in the intestine. The CFTR (cystic fibrosis transmembrane regulator) anion channel and the Na(+)/H(+) exchanger NHE3 (Na/H exchanger- isoform 3) are two prominent binding partners to this PDZ-adapter family, which are also known key players in the regulation of intestinal electrolyte and fluid transport. Experiments in heterologous expression systems have provided a number of mechanistic models how NHERF protein interactions can affect the function of their targets at the molecular level. Recently, NHERF1, 2, and 3 knockout mice have become available, and this review summarizes the reports on electrolyte and fluid transport regulation in the native intestine of these mice.
Collapse
Affiliation(s)
- Ursula Seidler
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Akanuma SI, Yamamoto A, Okayasu S, Tachikawa M, Hosoya KI. High-density lipoprotein-associated alpha-tocopherol uptake by human retinal pigment epithelial cells (ARPE-19 Cells): the irrelevance of scavenger receptor class B, type I. Biol Pharm Bull 2009; 32:1131-4. [PMID: 19483330 DOI: 10.1248/bpb.32.1131] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the high-density lipoprotein (HDL)-associated alpha-tocopherol (alpha-tocopherol-HDL) transport and clarify the contribution of scavenger receptor class B, type I (SR-BI) to the uptake in the human retinal pigment epithelial cell line (ARPE-19 cells). [(3)H]alpha-Tocopherol-HDL uptake into ARPE-19 cells seeded onto a transwell from both the apical (apical-to-cell) and basal compartment (basal-to-cell) exhibited a time-dependent increase for 90 min and there was a reduction at 4 degrees C. These results indicate the involvement of carrier-mediated process in alpha-tocopherol-HDL uptake in ARPE-19 cells. Immunoblot analysis revealed that SR-BI protein was expressed in ARPE-19 cells. However, the uptake of [(3)H]alpha-tocopherol from the apical or basal compartment was hardly inhibited by block lipid transport-1 (BLT-1), a specific inhibitor of the SR-BI-mediated lipid transfer. In conclusion, ARPE-19 cells have a carrier-mediated transport mechanism of [(3)H]alpha-tocopherol-HDL regardless of any SR-BI-mediated process.
Collapse
Affiliation(s)
- Shin-ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Regulation of lipoprotein receptor activity influences lipoprotein metabolism, related physiology and pathophysiology. Adaptor proteins that bind to the LDL or HDL receptors apparently link these receptors to cellular components essential for their normal functioning. Here, we focus on the influence of PDZK1 on the HDL receptor scavenger receptor class B type I (SR-BI), with emphasis on the roles played by its individual PDZ domains, the impact in regulating HDL metabolism and the relevance for cardiovascular disease. RECENT FINDINGS PDZK1 plays an essential role in maintaining hepatic SR-BI levels and controlling HDL metabolism, protects against the development of atherosclerosis in a murine model and also mediates SR-BI-dependent regulation of endothelial cell biology by HDL, suggesting that PDZK1 plays multiple roles in normal physiology and may influence associated disorder. All four PDZ domains of PDZK1 appear necessary to promote normal hepatic expression, function and intracellular localization of SR-BI. SUMMARY SR-BI mediates several features of HDL metabolism and function, some of which depend on SR-BI's interaction with PDZK1. Exploration of the structure and function of PDZK1 and the mechanisms by which it controls SR-BI will provide additional insights into HDL metabolism and may provide the basis for new therapeutic modalities for cardiovascular disease.
Collapse
Affiliation(s)
- Olivier Kocher
- Department of Pathology, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
26
|
Junyent M, Arnett DK, Tsai MY, Kabagambe EK, Straka RJ, Province M, An P, Lai CQ, Parnell LD, Shen J, Lee YC, Borecki I, Ordovás JM. Genetic variants at the PDZ-interacting domain of the scavenger receptor class B type I interact with diet to influence the risk of metabolic syndrome in obese men and women. J Nutr 2009; 139:842-8. [PMID: 19321583 PMCID: PMC2714388 DOI: 10.3945/jn.108.101196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The scaffolding protein PDZ domain containing 1 (PDZK1) regulates the HDL receptor scavenger receptor class B type I. However, the effect of PDZK1 genetic variants on lipids and metabolic syndrome (MetS) traits remains unknown. This study evaluated the association of 3 PDZK1 single nucleotide polymorphisms (SNP) (i33968C > T, i15371G > A, and i19738C > T) with lipids and risk of MetS and their potential interactions with diet. PDZK1 SNP were genotyped in 1000 participants (481 men, 519 women) included in the Genetics of Lipid Lowering Drugs and Diet Network study. Lipoprotein subfractions were measured by proton NMR spectroscopy and dietary intake was estimated using a validated questionnaire. The PDZK1_i33968C > T polymorphism was associated with MetS (P = 0.034), mainly driven by the association of the minor T allele with higher plasma triglycerides (P = 0.004) and VLDL (P = 0.021), and lower adiponectin concentrations (P = 0.022) than in participants homozygous for the major allele (C). We found a significant gene x BMI x diet interaction, in which the deleterious association of the i33968T allele with MetS was observed in obese participants with high PUFA and carbohydrate (P-values ranging from 0.004 to 0.020) intakes. Conversely, a there was a protective effect in nonobese participants with high PUFA intake (P < 0.05). These findings suggest that PDZK1_i33968C > T genetic variants may be associated with a higher risk of exhibiting MetS. This gene x BMI x diet interaction offers the potential to identify dietary and other lifestyle changes that may obviate the onset of MetS in individuals with a specific genetic background.
Collapse
Affiliation(s)
- Mireia Junyent
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Donna K. Arnett
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Michael Y. Tsai
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Edmond K. Kabagambe
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Robert J. Straka
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Michael Province
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Ping An
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Chao-Qiang Lai
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Laurence D. Parnell
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Jian Shen
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Yu-Chi Lee
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Ingrid Borecki
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| | - Jose M. Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Department of Epidemiology, School of Public Health, and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294-0022; Laboratory of Medicine and Pathology, and Department of Experimental and Clinical Pharmacology Department, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455-0353; and Division of Biostatistics, and Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63108
| |
Collapse
|
27
|
Wehinger A, Tancevski I, Seiler R, Frotschnig SM, Frantz S, Huber J, Eller P, Schgoer W, Foeger B, Patsch JR, Ritsch A. Influence of aspirin on SR-BI expression in human carotid plaques. Atherosclerosis 2009; 206:234-8. [PMID: 19268942 DOI: 10.1016/j.atherosclerosis.2009.01.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 01/21/2009] [Accepted: 01/23/2009] [Indexed: 12/27/2022]
Abstract
BACKGROUND We recently showed that aspirin promotes scavenger receptor class-B type I (SR-BI) protein expression in vitro in primary human macrophages and in vivo in resident peritoneal macrophages of mice. METHODS We compared SR-BI and CD68 expression in carotid atherosclerotic specimens from endarterectomized patients with (n=38) or without (n=19) low-dose aspirin medication (100 mg/day) prior to endarterectomy. RESULTS We found no differences concerning expression of CD68, indicating that aspirin did not influence macrophage content within atherosclerotic plaques. However, aspirin increased the expression of SR-BI protein in the analyzed specimens. In human THP-1-derived macrophages, induction of SR-BI protein by aspirin was abrogated by concomitant pharmacological inhibition of nuclear factor-kappa B (NF-kappaB). In in vitro experiments employing cultured primary macrophages from NF-kappaB/p50 KO mice, aspirin was not able to influence SR-BI expression. Additionally, no considerable effects on SR-BI expression were observed in vivo in resident macrophages of NF-kappaB/p50 KO mice orally treated with low or high doses of aspirin, respectively. CONCLUSIONS We suggest that aspirin treatment might lead to enhanced expression of SR-BI in human plaque macrophages and that this effect is dependent on the presence of NF-kappaB.
Collapse
Affiliation(s)
- Andreas Wehinger
- Department of Internal Medicine, Innsbruck Medical University, Anichstrasse 35, Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fenske SA, Yesilaltay A, Pal R, Daniels K, Barker C, Quiñones V, Rigotti A, Krieger M, Kocher O. Normal hepatic cell surface localization of the high density lipoprotein receptor, scavenger receptor class B, type I, depends on all four PDZ domains of PDZK1. J Biol Chem 2008; 284:5797-806. [PMID: 19116202 DOI: 10.1074/jbc.m808211200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PDZK1 is a four PDZ domain-containing scaffold protein that binds to scavenger receptor class B, type I (SR-BI), the high density lipoprotein receptor, by its first PDZ domain (PDZ1). PDZK1 knock-out mice exhibit a >95% decrease in hepatic SR-BI protein and consequently an approximately 70% increase in plasma cholesterol in abnormally large high density lipoprotein particles. These defects are corrected by hepatic overexpression of full-length PDZK1 but not the PDZ1 domain alone, which partially restores SR-BI protein abundance but not cell surface expression or function. We have generated PDZK1 knock-out mice with hepatic expression of four PDZK1 transgenes encoding proteins with nested C-terminal truncations: pTEM, which lacks the three C-terminal residues (putative PDZ-binding motif), and PDZ1.2, PDZ1.2.3, or PDZ1.2.3.4, which contain only the first two, three, or four N-terminal PDZ domains, respectively, but not the remaining C-terminal sequences. Hepatic overexpression of pTEM restored normal hepatic SR-BI abundance, localization, and function. Hepatic overexpression of PDZ1.2 or PDZ1.2.3 partially restored SR-BI abundance ( approximately 12 or approximately 30% of wild type, respectively) but did not (PDZ1.2) or only slightly (PDZ1.2.3) restored hepatic SR-BI cell surface localization and function. Hepatic overexpression of PDZ1.2.3.4 completely restored SR-BI protein abundance, cell surface expression, and function (normalization of plasma cholesterol levels). Thus, all four PDZ domains in PDZK1, but not PDZ1-3 alone, are sufficient for its normal control of the abundance, localization, and therefore function of hepatic SR-BI, whereas the residues C-terminal to the PDZ4 domain, including the C-terminal putative PDZ-binding domain, are not required.
Collapse
Affiliation(s)
- Sara A Fenske
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tachibana K, Anzai N, Ueda C, Katayama T, Yamasaki D, Kirino T, Takahashi R, Ishimoto K, Komori H, Tanaka T, Hamakubo T, Ueda Y, Arai H, Sakai J, Kodama T, Doi T. Regulation of the human PDZK1 expression by peroxisome proliferator-activated receptor alpha. FEBS Lett 2008; 582:3884-8. [PMID: 18955051 DOI: 10.1016/j.febslet.2008.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 09/30/2008] [Accepted: 10/03/2008] [Indexed: 11/28/2022]
Abstract
Although PDZK1 is a well-known adaptor protein, the mechanisms for its role in transcriptional regulation are largely unknown. The peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcription factor that plays an important role in the regulation of lipid homeostasis. Previously, we established a tetracycline-regulated human cell line that can be induced to express PPARalpha and identified candidate target genes, one of which was PDZK1. In this study, we cloned and characterized the promoter region of the human pdzk1 gene and determined the PPAR response element. Finally, we demonstrate that endogenous PPARalpha regulates PDZK1 expression.
Collapse
Affiliation(s)
- Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Robichaud JC, Francis GA, Vance DE. A role for hepatic scavenger receptor class B, type I in decreasing high density lipoprotein levels in mice that lack phosphatidylethanolamine N-methyltransferase. J Biol Chem 2008; 283:35496-506. [PMID: 18842588 DOI: 10.1074/jbc.m807433200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylethanolamine N-methyltransferase (PEMT) is a liver-specific enzyme that converts phosphatidylethanolamine to phosphatidylcholine (PC). Mice that lack PEMT have reduced plasma levels of PC and cholesterol in high density lipoproteins (HDL). We have investigated the mechanism responsible for this reduction with experiments designed to distinguish between a decreased formation of HDL particles by hepatocytes or an increased hepatic uptake of HDL lipids. Therefore, we analyzed lipid efflux to apoA-I and HDL lipid uptake using primary cultured hepatocytes isolated from Pemt(+/+) and Pemt(-/-) mice. Hepatic levels of the ATP-binding cassette transporter A1 are not significantly different between Pemt genotypes. Moreover, hepatocytes isolated from Pemt(-/-) mice released cholesterol and PC into the medium as efficiently as did hepatocytes from Pemt(+/+) mice. Immunoblotting of liver homogenates showed a 1.5-fold increase in the amount of the scavenger receptor, class B, type 1 (SR-BI) in Pemt(-/-) compared with Pemt(+/+) livers. In addition, there was a 1.5-fold increase in the SR-BI-interacting protein PDZK1. Lipid uptake experiments using radiolabeled HDL particles revealed a greater uptake of [(3)H]cholesteryl ethers and [(3)H]PC by hepatocytes derived from Pemt(-/-) compared with Pemt(+/+) mice. Furthermore, we observed an increased association of [(3)H]cholesteryl ethers in livers of Pemt(-/-) compared with Pemt(+/+) mice after tail vein injection of [(3)H]HDL. These results strongly suggest that PEMT is involved in the regulation of plasma HDL levels in mice, mainly via HDL lipid uptake by SR-BI.
Collapse
Affiliation(s)
- Julie C Robichaud
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
31
|
Fenske SA, Yesilaltay A, Pal R, Daniels K, Rigotti A, Krieger M, Kocher O. Overexpression of the PDZ1 domain of PDZK1 blocks the activity of hepatic scavenger receptor, class B, type I by altering its abundance and cellular localization. J Biol Chem 2008; 283:22097-104. [PMID: 18544532 DOI: 10.1074/jbc.m800029200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PDZK1 is a four-PDZ domain-containing scaffold protein that, via its first PDZ domain (PDZ1), binds to the C terminus of the high density lipoprotein (HDL) receptor scavenger receptor, class B, type I (SR-BI). Abolishing PDZK1 expression in PDZK1 knock-out (KO) mice leads to a post-transcriptional, tissue-specific decrease in SR-BI protein level and an increase in total plasma cholesterol carried in abnormally large HDL particles. Here we show that, although hepatic overexpression of PDZK1 restored normal SR-BI protein abundance and function in PDZK1 KO mice, hepatic overexpression of only the PDZ1 domain was not sufficient to restore normal SR-BI function. In wild-type mice, overexpression of the PDZ1 domain overcame the activity of the endogenous hepatic PDZK1, resulting in a 75% reduction in hepatic SR-BI protein levels and intracellular mislocalization of the remaining SR-BI. As a consequence, the plasma lipoproteins in PDZ1 transgenic mice resembled those in PDZK1 KO mice (hypercholesterolemia due to large HDL). These results indicate that the PDZ1 domain can control the abundance and localization, and therefore the function, of hepatic SR-BI and that structural features of PDZK1 in addition to its SR-BI-binding PDZ1 domain are required for normal hepatic SR-BI regulation.
Collapse
Affiliation(s)
- Sara A Fenske
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Cui H, Hayashi A, Sun HS, Belmares MP, Cobey C, Phan T, Schweizer J, Salter MW, Wang YT, Tasker RA, Garman D, Rabinowitz J, Lu PS, Tymianski M. PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J Neurosci 2007; 27:9901-15. [PMID: 17855605 PMCID: PMC6672641 DOI: 10.1523/jneurosci.1464-07.2007] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In neuronal synapses, PDZ domains [postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1] of PSD-95 proteins interact with C termini of NMDA receptor [NMDAR (NR)] subunits, linking them to downstream neurotoxic signaling molecules. Perturbing NMDAR/PSD-95 interactions with a Tat peptide comprising the nine C-terminal residues of the NR2B subunit (Tat-NR2B9c) reduces neurons' vulnerability to excitotoxicity and ischemia. However, NR subunit C termini may bind many of >240 cellular PDZs, any of which could mediate neurotoxic signaling independently of PSD-95. Here, we performed a proteomic and biochemical analysis of the interactions of all known human PDZs with synaptic signaling proteins including NR1, NR2A-NR2D, and neuronal nitric oxide synthase (nNOS). Tat-NR2B9c, whose interactions define PDZs involved in neurotoxic signaling, was also used. NR2A-NR2D subunits and Tat-NR2B9c had similar, highly specific, PDZ protein interactions, of which the strongest were with the PSD-95 family members (PSD-95, PSD-93, SAP97, and SAP102) and Tax interaction protein 1 (TIP1). The PSD-95 PDZ2 domain bound NR2A-NR2C subunits most strongly (EC50, approximately 1 microM), and fusing the NR2B C terminus to Tat enhanced its affinity for PSD-95 PDZ2 by >100-fold (EC50, approximately 7 nM). IC50 values for Tat-NR2B9c inhibiting NR2A-NR2C/PSD-95 interactions (approximately 1-10 microM) and nNOS/PSD-95 interactions (200 nM) confirmed the feasibility of such inhibition. To determine which of the PDZ interactions of Tat-NR2B9c mediate neuroprotection, one of PSD-95, PSD-93, SAP97, SAP102, TIP1, or nNOS expression was inhibited in cortical neurons exposed to NMDA toxicity. Only neurons lacking PSD-95 or nNOS but not PSD-93, SAP97, SAP102, or TIP1 exhibited reduced excitotoxic vulnerability. Thus, despite the ubiquitousness of PDZ domain-containing proteins, PSD-95 and nNOS above any other PDZ proteins are keys in effecting NMDAR-dependent excitotoxicity. Consequently, PSD-95 inhibition may constitute a highly specific strategy for treating excitotoxic disorders.
Collapse
Affiliation(s)
- Hong Cui
- NoNO Inc., Toronto, Ontario, Canada M8X 1R5
| | - Amy Hayashi
- Toronto Western Hospital Research Institute, Toronto, Ontario, Canada M5T 2S8
| | - Hong-Shuo Sun
- Toronto Western Hospital Research Institute, Toronto, Ontario, Canada M5T 2S8
| | | | | | - Thuymy Phan
- Arbor Vita Corporation, Sunnyvale, California 94085
| | | | - Michael W. Salter
- NoNO Inc., Toronto, Ontario, Canada M8X 1R5
- Programme in Brain and Behaviour, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | - Yu Tian Wang
- Brain Research Center and Department of Medicine, Vancouver Hospital and Health Sciences Center, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3, and
| | - R. Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - David Garman
- Arbor Vita Corporation, Sunnyvale, California 94085
| | - Joshua Rabinowitz
- Lewis Sigler Institute for Integrative Genomics and Departments of Molecular Biology and Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Peter S. Lu
- Arbor Vita Corporation, Sunnyvale, California 94085
| | - Michael Tymianski
- Toronto Western Hospital Research Institute, Toronto, Ontario, Canada M5T 2S8
- NoNO Inc., Toronto, Ontario, Canada M8X 1R5
| |
Collapse
|
33
|
Parathath S, Darlington YF, de la Llera Moya M, Drazul-Schrader D, Williams DL, Phillips MC, Rothblat GH, Connelly MA. Effects of amino acid substitutions at glycine 420 on SR-BI cholesterol transport function. J Lipid Res 2007; 48:1386-95. [PMID: 17372332 DOI: 10.1194/jlr.m700086-jlr200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI) facilitates the uptake of HDL cholesteryl esters (CEs) in a two-step process involving binding of HDL to its extracellular domain and transfer of HDL core CEs to a metabolically active membrane pool, where they are subsequently hydrolyzed by a neutral CE hydrolase. Recently, we characterized a mutant, G420H, which replaced glycine 420 in the extracellular domain of SR-BI with a histidine residue and had a profound effect on SR-BI function. The G420H mutant receptor exhibited a reduced ability to mediate selective HDL CE uptake and was unable to deliver HDL CE for hydrolysis, despite the fact that it retained the ability to bind HDL. This did not hold true if glycine 420 was replaced with an alanine residue; G420A maintained wild-type HDL binding and cholesterol transport activity. To further understand the role that glycine 420 plays in SR-BI function and why there was a disparity between replacing glycine 420 with a histidine versus an alanine, we generated a battery of point mutants by substituting glycine 420 with amino acids possessing side chains that were charged, hydrophobic, polar, or bulky and tested the resulting mutants for their ability to support HDL binding, HDL cholesterol transport, and delivery for hydrolysis. The results indicated that substitution with a negatively charged residue or a proline impaired cell surface expression of SR-BI or its interaction with HDL, respectively. Furthermore, substitution of glycine 420 with a positively charged residue reduced HDL CE uptake as well as its subsequent hydrolysis.
Collapse
Affiliation(s)
- Saj Parathath
- Department of Pharmacological Sciences, University Medical Center, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yesilaltay A, Kocher O, Pal R, Leiva A, Quiñones V, Rigotti A, Krieger M. PDZK1 Is Required for Maintaining Hepatic Scavenger Receptor, Class B, Type I (SR-BI) Steady State Levels but Not Its Surface Localization or Function. J Biol Chem 2006; 281:28975-80. [PMID: 16867981 DOI: 10.1074/jbc.m603802200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PDZK1 is a multi-PDZ domain-containing adaptor protein that binds to the C terminus of the high density lipoprotein receptor, scavenger receptor, class B, type I (SR-BI), and controls the posttranscriptional, tissue-specific expression of this lipoprotein receptor. In the absence of PDZK1 (PDZK1(-/-) mice), murine hepatic SR-BI protein levels are very low (<5% of control). As a consequence, abnormal plasma lipoprotein metabolism ( approximately 1.5-1.7-fold increased total plasma cholesterol carried in both normal size and abnormally large high density lipoprotein particles) resembles, but is not as severely defective as, that in SR-BI(-/-) mice. Here we show that the total plasma cholesterol levels and size distribution of lipoproteins are virtually identical in SR-BI(-/-) and SR-BI(-/-)/PDZK1(-/-) mice, indicating that most, if not all of the effects of PDZK1 on lipoprotein metabolism are likely because of the effects of PDZK1 on SR-BI. Hepatic overexpression of wild-type SR-BI in PDZK1(-/-) mice restored near or greater than normal levels of cell surface-expressed, functional SR-BI protein levels in the livers of SR-BI(-/-)/PDZK1(-/-) mice and consequently restored apparently normal lipoprotein metabolism in the absence of PDZK1. Thus, PDZK1 is important for maintaining adequate steady state levels of SR-BI in the liver but is not essential for cell surface expression or function of hepatic SR-BI.
Collapse
Affiliation(s)
- Ayce Yesilaltay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Tancevski I, Wehinger A, Schgoer W, Eller P, Cuzzocrea S, Foeger B, Patsch JR, Ritsch A. Aspirin regulates expression and function of scavenger receptor‐BI in macrophages: studies in primary human macrophages and in mice. FASEB J 2006; 20:1328-35. [PMID: 16816107 DOI: 10.1096/fj.05-5368com] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Scavenger receptor class B type I (SR-BI) has been shown to be expressed in human atherosclerotic plaque macrophages, where it is believed to reduce atherosclerosis by promoting cholesterol efflux. In this study we investigated the influence of aspirin and other NSAIDs on SR-BI expression and function in cultured human macrophages as well as in different mouse strains. Incubation of human macrophages with 0.5 mmol/l aspirin resulted in increased SR-BI protein expression and increased uptake of HDL-associated [3H]cholesteryl oleate without changes of SR-BI mRNA levels. In contrast, using 5 mmol/l of aspirin, SR-BI expression and function were significantly decreased. Sodium salicylate exerted similar effects on SR-BI expression, whereas no effects were observed using known COX1/2 inhibitors ibuprofen and naproxen, respectively. In in vivo studies low-dose aspirin treatment (6 mg/kg.day) induced SR-BI expression in wild-type and PPAR-alpha knockout mice, respectively, whereas the opposite effect was observed upon high-dose aspirin treatment (60 mg/kg.day) in these animals. We could show that COX-independent effects of aspirin were able to enhance expression of SR-BI in macrophages in a post-transcriptional, PPAR-alpha independent way, suggesting a novel pharmacologic effect of aspirin.
Collapse
Affiliation(s)
- Ivan Tancevski
- Department of Internal Medicine, Innsbruck Medical University, Anichstrasse 35, Innsbruck 6020, Austria
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yesilaltay A, Morales MG, Amigo L, Zanlungo S, Rigotti A, Karackattu SL, Donahee MH, Kozarsky KF, Krieger M. Effects of hepatic expression of the high-density lipoprotein receptor SR-BI on lipoprotein metabolism and female fertility. Endocrinology 2006; 147:1577-88. [PMID: 16410302 DOI: 10.1210/en.2005-1286] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The etiology of human female infertility is often uncertain. The sterility of high-density lipoprotein (HDL) receptor-negative (SR-BI(-/-)) female mice suggests a link between female infertility and abnormal lipoprotein metabolism. SR-BI(-/-) mice exhibit elevated plasma total cholesterol [with normal-sized and abnormally large HDL and high unesterified to total plasma cholesterol (UC:TC) ratio]. We explored the influence of hepatic SR-BI on female fertility by inducing hepatic SR-BI expression in SR-BI(-/-) animals by adenovirus transduction or stable transgenesis. For transgenes, we used both wild-type SR-BI and a double-point mutant, Q402R/Q418R (SR-BI-RR), which is unable to bind to and mediate lipid transfer from wild-type HDL normally, but retains virtually normal lipid transport activities with low-density lipoprotein. Essentially wild-type levels of hepatic SR-BI expression in SR-BI(-/-) mice restored to nearly normal the HDL size distribution and plasma UC:TC ratio, whereas approximately 7- to 40-fold overexpression dramatically lowered plasma TC and increased biliary cholesterol secretion. In contrast, SR-BI-RR overexpression had little effect on SR-BI(+/+) mice, but in SR-BI(-/-) mice, it substantially reduced levels of abnormally large HDL and normalized the UC:TC ratio. In all cases, hepatic transgenic expression restored female fertility. Overexpression in SR-BI(-/-) mice of lecithin:cholesterol acyl transferase, which esterifies plasma HDL cholesterol, did not normalize the UC:TC ratio, probably because the abnormal HDL was a poor substrate, and did not restore fertility. Thus, hepatic SR-BI-mediated lipoprotein metabolism influences murine female fertility, raising the possibility that dyslipidemia might contribute to human female infertility and that targeting lipoprotein metabolism might complement current assisted reproductive technologies.
Collapse
Affiliation(s)
- Ayce Yesilaltay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Trigatti BL. Hepatic high-density lipoprotein receptors: roles in lipoprotein metabolism and potential for therapeutic modulation. Curr Atheroscler Rep 2006; 7:344-50. [PMID: 16105476 DOI: 10.1007/s11883-005-0045-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
High-density lipoprotein (HDL) plays an important role in protection against atherosclerosis. A major part of HDL's antiatherogenic role is through mediating reverse cholesterol transport from peripheral cells, such as macrophages and other cells in the artery wall, to the liver. Hepatic HDL receptors should, therefore, play an important role in either mediating or modulating HDL-dependent reverse cholesterol transport. The scavenger receptor class B type I (SR-BI) was first identified as a hepatic HDL receptor almost 10 years ago and is well characterized at the molecular level. This review highlights recent studies that provide insight into the cellular pathways involved in SR-BI-mediated lipid transfer between bound lipoproteins and cells, supports a role for this receptor in reverse cholesterol transport and protection against experimental atherosclerosis in mice, and explores the consequences of sequence variations in the gene encoding SR-BI in humans.
Collapse
Affiliation(s)
- Bernardo L Trigatti
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, West Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
38
|
Harder CJ, Vassiliou G, McBride HM, McPherson R. Hepatic SR-BI-mediated cholesteryl ester selective uptake occurs with unaltered efficiency in the absence of cellular energy. J Lipid Res 2005; 47:492-503. [PMID: 16339112 DOI: 10.1194/jlr.m500444-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI) plays a critical role in the delivery of HDL cholesterol and cholesteryl esters (CEs) to liver and steroidogenic tissues by a selective process that does not result in significant degradation of HDL protein. Recently, SR-BI-mediated endocytosis and recycling of HDL have been demonstrated. However, it remains unclear whether efficient SR-BI-mediated selective uptake occurs strictly at the plasma membrane or at additional sites along its endocytic itinerary. To examine the requirement for SR-BI endocytosis in HDL selective uptake, we determined the effects of energy depletion on the levels of cell-associated HDL protein and CE in primary mouse hepatocytes. Compared with CHO cells, we observed a much larger energy-dependent effect on CE uptake in primary mouse hepatocytes. Although varying the levels of caveolin-1 and carboxyl ester lipase altered the efficiency of selective uptake, neither was able to account for the energy-dependent component of HDL-CE uptake. Finally, we demonstrate that the hepatocyte-specific, energy-dependent effects on HDL-apolipoprotein A-I and -CE uptake are independent of SR-BI and are not required to achieve efficient SR-BI-mediated selective uptake of CE. Together, these data support the conclusion that neither the intracellular trafficking of HDL nor any energy-dependent cellular process affects the ability of the cell to maximally acquire CE through SR-BI-mediated selective uptake from HDL.
Collapse
Affiliation(s)
- Chris J Harder
- Lipoprotein and Atherosclerosis Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | | | | | | |
Collapse
|