1
|
Baindara P, Jana A, Dinata R, Mandal SM. Heatstroke-Induced Inflammatory Response and Therapeutic Biomarkers. Biomedicines 2025; 13:261. [PMID: 40002675 PMCID: PMC11852420 DOI: 10.3390/biomedicines13020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/01/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
In recent years, heatstroke has become one of the most dangerous illnesses associated with hyperthermia. Hyperthermia is described as an increased body temperature, where there is more heat accrual than dissipation, which happens during environmental heat stress conditions or exhaustive exercise and subsequently leads to heatstroke. Heatstroke is characterized as a dysfunction of the central nervous system (CNS), associated with neuroinflammation, including utmost hyperthermia, which eventually leads to multiorgan failure. Heatstroke-related fatalities have rapidly increased in the recent past; however, there is still a gap in the understanding of heatstroke and associated outcomes during heatstroke. Especially of note, early diagnosis of heatstroke-related complications is one of the important aspects that need to be addressed. This article reviewed current knowledge about heatstroke and associated inflammatory responses, including neuroinflammation and other clinical complications. Using molecular dynamics simulation analysis of triose phosphate isomerase (a housekeeping enzyme) at different temperatures, we demonstrated how protein structures, and thus their functions, can be varied with temperature increases. Additionally, we discussed therapeutically relevant biomarkers of heatstroke which might be helpful in the early detection of heatstroke possibilities and candidate drug targets to control or minimize heatstroke events.
Collapse
Affiliation(s)
- Piyush Baindara
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO 65201, USA
| | - Aritra Jana
- Whitney M. Young Magnet High School Chicago, Chicago, IL 60607, USA;
| | - Roy Dinata
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India;
| | - Santi M. Mandal
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, CA 92093, USA;
| |
Collapse
|
2
|
Zhang Z, Wu X, Zou Z, Shen M, Liu Q, Zhangsun Z, Zhao H, Lei W, Wang Z, Dong Y, Yang Y. Heat stroke: Pathogenesis, diagnosis, and current treatment. Ageing Res Rev 2024; 100:102409. [PMID: 38986844 DOI: 10.1016/j.arr.2024.102409] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Recently, the incidence of heat-related illnesses has exhibited a steadily upward trend, which is closely associated with several environmental factors such as climate change and air pollution. The progression of heat-related illnesses is a continuous process and can progress to the terminal period when it transforms into heat stroke, the most severe form. Heat stroke is markedly by a core body temperature above 40°C and central nervous system dysfunction. Current knowledge suggests that the pathogenesis of heat stroke is complex and varied, including inflammatory response, oxidative stress, cell death, and coagulation dysfunction. This review consolidated recent research progress on the pathophysiology and pathogenesis of heat stroke, with a focus on the related molecular mechanisms. In addition, we reviewed common strategies and sorted out the drugs in various preclinical stages for heat stroke, aiming to offer a comprehensive research roadmap for more in-depth researches into the mechanisms of heat stroke and the reduction in the mortality of heat stroke in the future.
Collapse
Affiliation(s)
- Zhe Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Zou
- Department of Neurosurgery, The General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of Chinese PLA General Hospital, 80 Jianglin Road, Hainan, 572013, China
| | - Qiong Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Ziyin Zhangsun
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Airforce Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Yushu Dong
- Department of Neurosurgery, The General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China.
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
3
|
Wu X, Qian J, He S, Shi X, Chen R, Chen H, Wang L, Wang F, Yang J, Peng N, Tong H. Prediction of in-hospital mortality in patients with exertional heatstroke: a 13-year retrospective study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2451-2462. [PMID: 37694573 DOI: 10.1080/09603123.2023.2253765] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Hyperactivity of coagulation is common in exertional heatstroke (EHS). Disseminated intravascular coagulation (DIC) is the most severe form of coagulation dysfunction and associated with poor outcome. DIC, temperature and Glasgow coma scale score were identified as independent risk factors for in-hospital mortality by multivariate logistic regression analysis, and we developed a nomogram for predicting in-hospital mortality in a 13-year EHS patient cohort. The nomogram was assessed by calibration curves and bootstrap with 1,000 resamples. The receiver operating characteristic curve was constructed, and the area under the curve (AUC) was compared. Two hundred and ten patients were included. The in-hospital mortality was 9.0%, and the incidence of DIC was 17.6%. The AUC of the nomogram was 0.897 (95% CI 0.848-0.935, p < .0001) and was non-inferior to SOFA and APACHE II scores but superior to SIRS score, which were widely-used score systems of disease severity. The nomogram contributed to the adverse outcome prediction of EHS.
Collapse
Affiliation(s)
- Xinghui Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jing Qian
- Graduate school, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Songbin He
- Department of Intensive Care Unit, Huizhou First People's Hospital, Huizhou, China
| | - Xuezhi Shi
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Ronglin Chen
- Department of Intensive Care Unit, Longgang Central Hospital of Shenzhen, Shenzhen, China
| | - Huaisheng Chen
- Department of Critical Care Medicine, Shenzhen People's Hospital, Shenzhen, China
| | - LuLu Wang
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Fanfan Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiale Yang
- Graduate school, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Na Peng
- Department of Emergency Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Huasheng Tong
- Department of Emergency Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| |
Collapse
|
4
|
Lin G, Xu C, Wu J, Peng H, Liu A, He X, Chen W, Hou X, Wen Q, Pan Z. Risk factors for and outcomes of heatstroke-related intracerebral hemorrhage. Medicine (Baltimore) 2024; 103:e37739. [PMID: 38640294 PMCID: PMC11030006 DOI: 10.1097/md.0000000000037739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 04/21/2024] Open
Abstract
Some patients with heatstroke also experience intracerebral hemorrhage (ICH). However, clinical case reports of heatstroke-induced ICH are rare. The risk factors for cerebral hemorrhage after heatstroke remain unknown. The present study evaluated the clinical characteristics and risk factors of patients with heatstroke-related ICH. In this retrospective observational study, we collected data on all ICHs after heatstroke occurred between 2012 and 2022. The characteristics of patients with heatstroke-induced ICH were described. The risk factors for cerebral hemorrhage after heatstroke were examined using logistic regression analysis. In total, 177 patients were included in this study, and 11 patients with ICH secondary to heatstroke were identified. Variables with P values of <.05 in univariate models, comparing the cerebral hemorrhage and control groups, included heatstroke cause, temperature, heart rate, respiratory rate, vasopressor use, mechanical ventilation use, Acute Physiology and Chronic Health Evaluation II, total bilirubin, creatinine, platelet count, prothrombin time, procalcitonin, creatine kinase, disseminated intravascular coagulation (DIC) occurrence, and DIC score. Multivariate logistic regression showed that heatstroke patients with higher DIC scores (odds ratio, 18.402, 95% confidence interval, 1.384-244.763, P = .027) and higher creatine kinase levels (odds ratio, 1.021, 95% confidence interval, 1.002-1.041, P = .033) were at a higher risk of developing ICH. The death rate was higher in the cerebral hemorrhage group than in the control group (P = .042). Heatstroke-related cerebral hemorrhage may be associated with elevated creatinine levels and DIC severity (International Society on Thrombosis and Hemostasis score) after heatstroke, and heatstroke with cerebral hemorrhage may accelerate death.
Collapse
Affiliation(s)
- Guodong Lin
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chongxiao Xu
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jieyi Wu
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Hailun Peng
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Anwei Liu
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Xuan He
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Wenda Chen
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Xiaogan Hou
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Qiang Wen
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Zhiguo Pan
- Department of Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| |
Collapse
|
5
|
Peng N, Geng Y, Ouyang J, Liu S, Yuan F, Wan Y, Chen W, Yu B, Tang Y, Su L, Liang H, Wang JH, Liu J. Endothelial glycocalyx injury is involved in heatstroke-associated coagulopathy and protected by N-acetylcysteine. Front Immunol 2023; 14:1159195. [PMID: 37350963 PMCID: PMC10283401 DOI: 10.3389/fimmu.2023.1159195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Damage to endothelial glycocalyx (EGCX) can lead to coagulation disorders in sepsis. Heat stroke (HS) resembles sepsis in many aspects; however, it is unclear whether EGCX injury is involved in its pathophysiology. The purpose of this study was to examine the relationship between the damage of EGCX and the development of coagulation disorders during HS. Methods We retrospectively collected 159 HS patients and analyzed coagulation characteristics and prognosis of HS patients with or without disseminated intravascular coagulation (DIC). We also replicated a rat HS model and measured coagulation indexes, pulmonary capillary EGCX injury in HS rats. Finally, we evaluated the effect of the antioxidant N-acetylcysteine (NAC) on HS-initiated EGCX injury and coagulation disorders. Results Clinical data showed that HS patients complicated with DIC had a higher risk of death than HS patients without DIC. In a rat HS model, we found that rats subjected to heat stress developed hypercoagulability and platelet activation at the core body temperature of 43°C, just before the onset of HS. At 24 h of HS, the rats showed a consumptive hypo-coagulation state. The pulmonary capillary EGCX started to shed at 0 h of HS and became more severe at 24 h of HS. Importantly, pretreatment with NAC substantially alleviated EGCX damage and reversed the hypo-coagulation state in HS rats. Mechanically, HS initiated reactive oxidative species (ROS) generation, while ROS could directly cause EGCX damage. Critically, NAC protected against EGCX injury by attenuating ROS production in heat-stressed or hydrogen peroxide (H2O2)-stimulated endothelial cells. Discussion Our results indicate that the poor prognosis of HS patients correlates with severe coagulation disorders, coagulation abnormalities in HS rats are associated with the damage of EGCX, and NAC improves HS-induced coagulopathy, probably through its protection against EGCX injury by preventing ROS generation.
Collapse
Affiliation(s)
- Na Peng
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Emergency Medicine, General Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Yan Geng
- Department of Gastroenterology, 923 Military Hospital of China, Nanning, Guangxi, China
| | - Jiafu Ouyang
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shuai Liu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangfang Yuan
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yantong Wan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenda Chen
- Department of Emergency Medicine, General Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Baojun Yu
- Department of Intensive Care Unit, Affiliated Baoan Hospital of Shenzhen, Southern Medical University, Shenzhen, Guangdong, China
| | - Youqing Tang
- Department of Emergency Medicine, General Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Lei Su
- Department of Intensive Care Unit, General Hospital of Southern Theater Command, Guangzhou, Guangdong, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, China
| | - Jiang Huai Wang
- Department of Academic Surgery, University College Cork, Cork University Hospital, Cork, Ireland
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Heterogeneity in the reported values and methodologies for detecting plasma D-Dimer in rat models: A systematic review. THROMBOSIS UPDATE 2023. [DOI: 10.1016/j.tru.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
|
7
|
Jacobs PJ, Finn KT, van Vuuren AKJ, Suess T, Hart DW, Bennett NC. Defining the link between oxidative stress, behavioural reproductive suppression and heterothermy in the Natal mole-rat (Cryptomys hottentotus natalensis). Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110753. [PMID: 35537667 DOI: 10.1016/j.cbpb.2022.110753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/31/2022]
Abstract
Sub-lethal effects, such as oxidative stress, can be linked to various breeding and thermophysiological strategies, which themselves can be linked to seasonal variability in abiotic factors. In this study, we investigated the subterranean, social living Natal mole-rat (Cryptomys hottentotus natalensis), which, unlike other social mole-rat species, implements heterothermy seasonally in an attempt to avoid exercise-induced hyperthermia and relies solely on behavioural reproductive suppression to maintain reproductive skew in colonies. Subsequently, we investigated how oxidative stress varied between season, sex and breeding status in Natal mole-rats. Oxidative markers included total oxidant status (TOS measure of total peroxides present), total antioxidant capacity (TAC), OSI (oxidative stress index) and malondialdehyde (MDA) to measure oxidative stress. Breeding and non-breeding mole-rats of both sexes were captured during the summer (wet season) and winter (dry season). Seasonal environmental variables (air temperature, soil temperature and soil moisture) had a significant effect on TOS, OSI and MDA, where season affected each sex differently. Unlike other social mole-rat species that use both physiological and behavioural means of reproductive suppression, no oxidative costs to reproduction were present in the Natal mole-rats. Males had significantly higher MDA than females, which was most apparent in summer (wet season). We conclude that the significant oxidative damage in males is a consequence of exercise-induced oxidative stress, exacerbated by increased burrow humidities and poorer heat dissipation abilities as a function of body mass. This study highlights the importance of both breeding and thermophysiological strategies in affecting oxidative stress.
Collapse
Affiliation(s)
- Paul J Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa.
| | - Kyle T Finn
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Andries Koch Janse van Vuuren
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Tobias Suess
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Daniel William Hart
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Nigel Charles Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
8
|
Inhalation of 2% Hydrogen Improves Survival Rate and Attenuates Shedding of Vascular Endothelial Glycocalyx in Rats with Heat Stroke. Shock 2021; 56:593-600. [PMID: 34524269 DOI: 10.1097/shk.0000000000001797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ABSTRACT Heat stroke is characterized by excessive oxidative stress and inflammatory responses, both of which are implicated in vascular endothelial glycocalyx shedding and heat-stroke mortality. Although molecular hydrogen has antioxidation and anti-inflammatory potency, its effect on the vascular endothelial glycocalyx in heat stroke has not been examined. Therefore, the aim of this study was to investigate the influence of hydrogen inhalation on the survival and thickness of the vascular endothelial glycocalyx of rats subjected to heat stroke. Altogether, 98 Wistar rats were assigned to the experiments. A heat-controlled chamber set at 40°C temperature and 60% humidity was used to induce heat stroke. After preparation, the anesthetized rats that underwent the heating process were subjected to an hour of stabilization in which 0%, 2%, or 4% hydrogen gas was inhaled and maintained until the experiment ended. In addition to survival rate assessments, blood samples and left ventricles were collected to evaluate the thickness of the vascular endothelial glycocalyx and relevant biomarkers. The results showed that 2% hydrogen gas significantly improved survival in the heat-stroked rats and partially preserved the thickness of the endothelial glycocalyx. In addition, serum levels of endotoxin, syndecan-1, malondialdehyde, and tumor necrosis factor-α decreased, whereas superoxide dismutase levels increased, indicating that inhalation of 2% hydrogen attenuated the damage to the vascular endothelial glycocalyx through its antioxidative and anti-inflammatory effects.
Collapse
|
9
|
Zhang ZT, Gu XL, Zhao X, He X, Shi HW, Zhang K, Zhang YM, Su YN, Zhu JB, Li ZW, Li GB. NLRP3 ablation enhances tolerance in heat stroke pathology by inhibiting IL-1β-mediated neuroinflammation. J Neuroinflammation 2021; 18:128. [PMID: 34092247 PMCID: PMC8182902 DOI: 10.1186/s12974-021-02179-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Patients with prior illness are more vulnerable to heat stroke-induced injury, but the underlying mechanism is unknown. Recent studies suggested that NLRP3 inflammasome played an important role in the pathophysiology of heat stroke. Methods In this study, we used a classic animal heat stroke model. Prior infection was mimicked by using lipopolysaccharide (LPS) or lipoteichoic acid (LTA) injection before heat stroke (LPS/LTA 1 mg/kg). Mice survival analysis curve and core temperature (TC) elevation curve were produced. NLRP3 inflammasome activation was measured by using real-time PCR and Western blot. Mice hypothalamus was dissected and neuroinflammation level was measured. To further demonstrate the role of NLRP3 inflammasome, Nlrp3 knockout mice were used. In addition, IL-1β neutralizing antibody was injected to test potential therapeutic effect on heat stroke. Results Prior infection simulated by LPS/LTA injection resulted in latent inflammation status presented by high levels of cytokines in peripheral serum. However, LPS/LTA failed to cause any change in animal survival rate or body temperature. In the absence of LPS/LTA, heat treatment induced heat stroke and animal death without significant systemic or neuroinflammation. Despite a decreased level of IL-1β in hypothalamus, Nlrp3 knockout mice demonstrated no survival advantage under mere heat exposure. In animals with prior infection, their heat tolerance was severely impaired and NLRP3 inflammasome induced neuroinflammation was detected. The use of Nlrp3 knockout mice enhanced heat tolerance and alleviated heat stroke-induced death by reducing mice hypothalamus IL-1β production with prior infection condition. Furthermore, IL-1β neutralizing antibody injection significantly extended endotoxemic mice survival under heat stroke. Conclusions Based on the above results, NLRP3/IL-1β induced neuroinflammation might be an important mechanistic factor in heat stroke pathology, especially with prior infection. IL-1β may serve as a biomarker for heat stroke severity and potential therapeutic method.
Collapse
Affiliation(s)
- Zi-Teng Zhang
- Department of Hepato-Biliary Surgery, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, No.29 Bulan Road, Longgang District, Shenzhen, 518055, China
| | - Xiao-Lei Gu
- Department of Pharmacy, The Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Xin Zhao
- Department of Hepato-Biliary Surgery, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, No.29 Bulan Road, Longgang District, Shenzhen, 518055, China
| | - Xian He
- School of Pharmacy, Dali University, Dali, 671000, China.,Fifth Medical Center of PLA General Hospital, Beijing, 100000, China
| | - Hao-Wei Shi
- Department of Neurosurgery, Hebei Provincial People's Hospital, Shijiazhuang, 050051, China
| | - Kun Zhang
- Department of Hepato-Biliary Surgery, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, No.29 Bulan Road, Longgang District, Shenzhen, 518055, China
| | - Yi-Ming Zhang
- Department of Hepato-Biliary Surgery, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, No.29 Bulan Road, Longgang District, Shenzhen, 518055, China
| | - Yi-Nan Su
- Department of Hepato-Biliary Surgery, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, No.29 Bulan Road, Longgang District, Shenzhen, 518055, China
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Navy Medicine, Navy Medical University, Shanghai, 200433, China
| | - Zhi-Wei Li
- Department of Hepato-Biliary Surgery, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, No.29 Bulan Road, Longgang District, Shenzhen, 518055, China.
| | - Guo-Bao Li
- Department of Lung Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, No.29 Bulan Road, Longgang District, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Sharma N, Shin EJ, Pham DT, Sharma G, Dang DK, Duong CX, Kang SW, Nah SY, Jang CG, Lei XG, Nabeshima T, Bing G, Jeong JH, Kim HC. GPx-1-encoded adenoviral vector attenuates dopaminergic impairments induced by methamphetamine in GPx-1 knockout mice through modulation of NF-κB transcription factor. Food Chem Toxicol 2021; 154:112313. [PMID: 34082047 DOI: 10.1016/j.fct.2021.112313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023]
Abstract
We suggested that selenium-dependent glutathione peroxidase (GPx) plays a protective role against methamphetamine (MA)-induced dopaminergic toxicity. We focused on GPx-1, a major selenium-dependent enzyme and constructed a GPx-1 gene-encoded adenoviral vector (Ad-GPx-1) to delineate the role of GPx-1 in MA-induced dopaminergic neurotoxicity. Exposure to Ad-GPx-1 significantly induced GPx activity and GPx-1 protein levels in GPx-1-knockout (GPx-1-KO) mice. MA-induced dopaminergic impairments [i.e., hyperthermia; increased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) DNA-binding activity; and decreased dopamine levels, TH activity, and behavioral activity] were more pronounced in GPx-1-KO mice than in WT mice. In contrast, exposure to Ad-GPx-1 significantly attenuated MA-induced dopaminergic loss in GPx-1-KO mice. The protective effect exerted by Ad-GPx-1 was comparable to that exerted by pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor against MA insult. Consistently, GPx-1 overexpression significantly attenuated MA dopaminergic toxicity in mice. PDTC did not significantly impact the protective effect of GPx-1 overexpression, suggesting that interaction between NF-κB and GPx-1 is critical for dopaminergic protection. Thus, NF-κB is a potential therapeutic target for GPx-1-mediated dopaminergic protective activity. This study for the first time demonstrated that Ad-GPx-1 rescued dopaminergic toxicity in vivo following MA insult. Furthermore, GPx-1-associated therapeutic interventions may be important against dopaminergic toxicity.
Collapse
Affiliation(s)
- Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Duc Toan Pham
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea
| | - Duy-Khanh Dang
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Chu Xuan Duong
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Sang Won Kang
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake, 470-1192, Japan
| | - Guoying Bing
- Anatomy and Neurobiology, University of Kentucky Medical Center, Medical Center MN208 800 Rose Strees, Lexington, KY, 40536, USA
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, South Korea.
| |
Collapse
|
11
|
Jacobs PJ, Oosthuizen MK, Mitchell C, Blount JD, Bennett NC. Oxidative stress in response to heat stress in wild caught Namaqua rock mice, Micaelamys namaquensis. J Therm Biol 2021; 98:102958. [PMID: 34016369 DOI: 10.1016/j.jtherbio.2021.102958] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022]
Abstract
Modelling of anthropogenic induced climate suggests more frequent and severe heatwaves in the future, which are likely to result in the mass die-off of several species of organisms. Oxidative stress induced by severe heat stress has previously been associated with a reduction in animal cognitive performance, depressed reproduction and lower life expectancy. Little is known about the non-lethal consequences of species should they survive extreme heat exposure. We investigated the oxidative stress experienced by the Namaqua rock mouse, a nocturnal rodent, using two experimental heat stress protocols, a 6 hour acute heat stress protocol without access to water and a 3-day heatwave simulation with ad libitum water. Oxidative stress was determined in the liver, kidney and brain using malondialdehyde (MDA) and protein carbonyl (PC) as markers of oxidative damage, and superoxide dismutase (SOD) and total antioxidant capacity (TAC) as markers of antioxidant defence. Incubator heat stress (heat and dehydration stress) was brought about by increasing the body temperatures of animals to 39-40.8 °C for 6 hours. Following incubator heat stress, significantly higher levels of MDA were observed in the liver. Dehydration did not explain the variation in oxidative markers and is likely a combined effect of thermal and dehydration stress. Individual body mass was significantly negatively correlated to kidney SOD and lipid peroxidation. A heatwave was simulated using a temperature cycle that would naturally occur during a heatwave in the species' local habitat, with a maximal ambient temperature of 38 °C. Following the simulated heatwave, SOD activity of the kidney demonstrated significantly lowered activity suggesting oxidative stress. Current heat waves in this species have the potential of causing oxidative stress. Heat and dehydration stress following exacerbated temperatures are likely to incur significant oxidative stress in multiple tissues demonstrating the importance of water availability to allow for rehydration to prevent oxidative stress.
Collapse
Affiliation(s)
- Paul J Jacobs
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa.
| | - M K Oosthuizen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa.
| | - C Mitchell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| | - J D Blount
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK.
| | - N C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
12
|
Marants R, Qirjazi E, Lai KB, Szeto CC, Li PKT, Li F, Lee TY, McIntyre CW. Exploring the Link Between Hepatic Perfusion and Endotoxemia in Hemodialysis. Kidney Int Rep 2021; 6:1336-1345. [PMID: 34013112 PMCID: PMC8116762 DOI: 10.1016/j.ekir.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 01/18/2023] Open
Abstract
Introduction The liver receives gut-derived endotoxin via the portal vein, clearing it before it enters systemic circulation. Hemodialysis negatively impacts the perfusion and function of multiple organs systems. Dialysate cooling reduces hemodialysis-induced circulatory stress and protects organs from ischemic injury. This study examined how hemodialysis disrupts liver hemodynamics and function, its effect on endotoxemia, and the potential protective effect of dialysate cooling. Methods Fifteen patients were randomized to receive either standard (36.5°C dialysate temperature) or cooled (35.0°C) hemodialysis first in a two-visit crossover trial. We applied computed tomography (CT) liver perfusion imaging to patients before, 3 hours into and after each hemodialysis session. We measured hepatic perfusion and perfusion heterogeneity. Hepatic function was measured by indocyanine green (ICG) clearance. Endotoxin levels in blood throughout dialysis were also measured. Results During hemodialysis, overall liver perfusion did not significantly change, but portal vein perfusion trended towards increasing (P = 0.14) and perfusion heterogeneity significantly increased (P = 0.038). In addition, ICG clearance decreased significantly during hemodialysis (P = 0.016), and endotoxin levels trended towards increasing during hemodialysis (P = 0.15) and increased significantly after hemodialysis (P = 0.037). Applying dialysate cooling trended towards abrogating these changes but did not reach statistical significance compared to standard hemodialysis. Conclusion Hemodialysis redistributes liver perfusion, attenuates hepatic function, and results in endotoxemia. Higher endotoxin levels in end-stage renal disease (ESRD) patients may result from the combination of decreased hepatic clearance function and increasing fraction of liver perfusion coming from toxin-laden portal vein during hemodialysis. The protective potential of dialysate cooling should be explored further in future research studies.
Collapse
Affiliation(s)
- Raanan Marants
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Elena Qirjazi
- The Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada.,Division of Nephrology, Alberta Health Sciences, Calgary, Alberta, Canada
| | - Ka-Bik Lai
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Cheuk-Chun Szeto
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Philip K T Li
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Fiona Li
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| | - Ting-Yim Lee
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| | - Christopher W McIntyre
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,The Lilibeth Caberto Kidney Clinical Research Unit, London Health Sciences Centre, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada.,Division of Nephrology, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
13
|
Kim B, Ahn JH, Kim DW, Lee TK, Kim YS, Shin MC, Cho JH, Kim YM, Park JH, Kang IJ, Lee JC, Won MH. Transient forebrain ischemia under hyperthermic condition accelerates memory impairment and neuronal death in the gerbil hippocampus by increasing NMDAR1 expression. Mol Med Rep 2021; 23:256. [PMID: 33537826 PMCID: PMC7893780 DOI: 10.3892/mmr.2021.11895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/30/2020] [Indexed: 12/22/2022] Open
Abstract
Altered expression levels of N‑methyl‑D‑aspartate receptor (NMDAR), a ligand‑gated ion channel, have a harmful effect on cellular survival. Hyperthermia is a proven risk factor of transient forebrain ischemia (tFI) and can cause extensive and severe brain damage associated with mortality. The objective of the present study was to investigate whether hyperthermic preconditioning affected NMDAR1 immunoreactivity associated with deterioration of neuronal function in the gerbil hippocampal CA1 region following tFI via histological and western blot analyses. Hyperthermic preconditioning was performed for 1 h before tFI, which was developed by ligating common carotid arteries for 5 min. tFI‑induced cognitive impairment under hyperthermia was worse compared with that under normothermia. Loss (death) of pyramidal neurons in the CA1 region occurred fast and was more severe under hyperthermia compared with that under normothermia. NMDAR1 immunoreactivity was not observed in the somata of pyramidal neurons of sham gerbils with normothermia. However, its immunoreactivity was strong in the somata and processes at 12 h post‑tFI. Thereafter, NMDAR1 immunoreactivity decreased with time after tFI. On the other hand, NMDAR1 immunoreactivity under hyperthermia was significantly increased in the somata and processes at 6 h post‑tFI. The change pattern of NMDAR1 immunoreactivity under hyperthermia was different from that under normothermia. Overall, accelerated tFI‑induced neuronal death under hyperthermia may be closely associated with altered NMDAR1 expression compared with that under normothermia.
Collapse
Affiliation(s)
- Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Yoon Sung Kim
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24289, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
14
|
Jacobs PJ, Oosthuizen MK, Mitchell C, Blount JD, Bennett NC. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One 2020; 15:e0242279. [PMID: 33186409 PMCID: PMC7665817 DOI: 10.1371/journal.pone.0242279] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/29/2020] [Indexed: 01/22/2023] Open
Abstract
Heat waves are known for their disastrous mass die-off effects due to dehydration and cell damage, but little is known about the non-lethal consequences of surviving severe heat exposure. Severe heat exposure can cause oxidative stress which can have negative consequences on animal cognition, reproduction and life expectancy. We investigated the current oxidative stress experienced by a mesic mouse species, the four striped field mouse, Rhabdomys dilectus through a heat wave simulation with ad lib water and a more severe temperature exposure with minimal water. Wild four striped field mice were caught between 2017 and 2019. We predicted that wild four striped field mice in the heat wave simulation would show less susceptibility to oxidative stress as compared to a more severe heat stress which is likely to occur in the future. Oxidative stress was determined in the liver, kidney and brain using malondialdehyde (MDA) and protein carbonyl (PC) as markers for oxidative damage, and superoxide dismutase (SOD) and total antioxidant capacity (TAC) as markers of antioxidant defense. Incubator heat stress was brought about by increasing the body temperatures of animals to 39-40.8°C for 6 hours. A heat wave (one hot day, followed by a 3-day heatwave) was simulated by using temperature cycle that wild four striped field mice would experience in their local habitat (determined through weather station data using temperature and humidity), with maximal ambient temperature of 39°C. The liver and kidney demonstrated no changes in the simulated heat wave, but the liver had significantly higher SOD activity and the kidney had significantly higher lipid peroxidation in the incubator experiment. Dehydration significantly contributed to the increase of these markers, as is evident from the decrease in body mass after the experiment. The brain only showed significantly higher lipid peroxidation following the simulated heat wave with no significant changes following the incubator experiment. The significant increase in lipid peroxidation was not correlated to body mass after the experiment. The magnitude and duration of heat stress, in conjunction with dehydration, played a critical role in the oxidative stress experienced by each tissue, with the results demonstrating the importance of measuring multiple tissues to determine the physiological state of an animal. Current heat waves in this species have the potential of causing oxidative stress in the brain with future heat waves to possibly stress the kidney and liver depending on the hydration state of animals.
Collapse
Affiliation(s)
- Paul J. Jacobs
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - M. K. Oosthuizen
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| | - C. Mitchell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Jonathan D. Blount
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Nigel C. Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Zhang Y, Deng Z, Li Y, Yuan R, Yang M, Zhao Y, Wang L, Zhou F, Kang H. Mesenchymal Stem Cells Provide Neuroprotection by Regulating Heat Stroke-Induced Brain Inflammation. Front Neurol 2020; 11:372. [PMID: 32477247 PMCID: PMC7232542 DOI: 10.3389/fneur.2020.00372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
Heat stroke (HS) is the most acute type of heat illness accompanied with serious central nervous system (CNS) dysfunction. Despite the pathological process being clearly studied, effective treatment is deficient. Currently, mesenchymal stem cells (MSCs) have been demonstrated to have neuroprotective effects as there are no old ones. Thus, the purpose of the present study was to explore the neuroprotective effects and mechanisms of MSCs against HS-induced CNS injury. HS in rat models was induced by a high-temperature environment and treated with MSCs via the tail vein. The results demonstrated that MSC injection significantly reduced the mortality and inhibited the circulation inflammatory response. Moreover, the HS-induced neurological deficit and neuronic damage of the hippocampus were significantly ameliorated by MSC administration. In addition, MSC administration significantly restored astrocytes and inhibited cerebral inflammatory response. These results indicate that MSC infusion has therapeutic effects in HS of rats by regulating the circulation and cerebral inflammatory response. Moreover, astrocytes increased in MSC-treated HS rats when compared with the untreated ones. This may suggest a potential mechanism for HS prevention and therapy through MSC administration.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Zihui Deng
- Biochemistry Department of Graduate School, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Yun Li
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Rui Yuan
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Mengmeng Yang
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Yan Zhao
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, General Hospital of the Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
16
|
Duan Y, Wu D, Huber M, Shi J, An H, Wei W, He X, Ding Y, Ji X. New Endovascular Approach for Hypothermia With Intrajugular Cooling and Neuroprotective Effect in Ischemic Stroke. Stroke 2020; 51:628-636. [PMID: 31884905 DOI: 10.1161/strokeaha.119.026523] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background and Purpose—
Induction of hypothermia as a stroke therapy has been limited by logistical challenges. This study was designed to determine the hypothermic and neuroprotective efficacy of infusing cold saline directly into the internal jugular (IJ) vein and compare the effects of IJ hypothermia to those achieved by intracarotid artery hypothermia in an ischemic stroke model.
Methods—
The right middle cerebral artery was occluded in rats using an intraluminal filament. Immediately following reperfusion, hypothermia was achieved by infusing isotonic saline through microcatheter into the right IJ or right intracarotid over 30 minutes. Infarct sizes, neurological deficits, blood-brain barrier damage, edema volume, blood-brain barrier associated molecules (MMP-9 [matrix metallopeptidase 9] and AQP-4 [aquaporin 4]), and apoptosis-associated proteins (Bcl-2 and cleaved Caspase-3) were measured.
Results—
We found that both IJ- and intracarotid-based infusion cooled the brain robustly with a minimal effect on rectal temperatures. This brain cooling led to significantly reduced infarct volumes at 24 hours after reperfusion, as well as decreased expression of the proapoptotic protein cleaved Caspase-3 and increased expression of the antiapoptotic protein Bcl-2. Intracarotid and IJ cooling also aided in blood-brain barrier maintenance, as shown by decreased edema volumes, reduced Evans Blue leakage, and decreased expression of edema-facilitating proteins (MMP-9 and AQP-4). Both cooling methods then translated to preserved neurological function as determined by multiple functional tests over a 28-day observation period. Most importantly, the cooling and neuroprotective efficacy of IJ cooling was comparable to intracarotid cooling by almost every metric evaluated.
Conclusions—
Compared with intracarotid infusion, IJ infusion conferred a similar degree of hypothermia and neuroprotection following ischemic stroke. Given the ease of establishing vascular access via the internal jugular vein and the powerful neuroprotection that hypothermia provides, IJ brain cooling could be used as a promising hypothermia-induction modality going forward.
Collapse
Affiliation(s)
- Yunxia Duan
- From the Department of Neurology, China-America Institute of Neuroscience (Y. Duan, D.W., J.S., H.A., W.W., X.H., Y. Ding, X.J.), Xuanwu Hospital, Capital Medical University, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine (Y. Duan, D.W., X.J.), Xuanwu Hospital, Capital Medical University, China
- Center of Stroke, Beijing Institute for Brain Disorders, China (Y. Duan., D.W., X.J.)
| | - Di Wu
- From the Department of Neurology, China-America Institute of Neuroscience (Y. Duan, D.W., J.S., H.A., W.W., X.H., Y. Ding, X.J.), Xuanwu Hospital, Capital Medical University, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine (Y. Duan, D.W., X.J.), Xuanwu Hospital, Capital Medical University, China
- Center of Stroke, Beijing Institute for Brain Disorders, China (Y. Duan., D.W., X.J.)
| | - Mitchell Huber
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI (M.H., Y. Ding.)
| | - Jingfei Shi
- From the Department of Neurology, China-America Institute of Neuroscience (Y. Duan, D.W., J.S., H.A., W.W., X.H., Y. Ding, X.J.), Xuanwu Hospital, Capital Medical University, China
| | - Hong An
- From the Department of Neurology, China-America Institute of Neuroscience (Y. Duan, D.W., J.S., H.A., W.W., X.H., Y. Ding, X.J.), Xuanwu Hospital, Capital Medical University, China
| | - Wenjing Wei
- From the Department of Neurology, China-America Institute of Neuroscience (Y. Duan, D.W., J.S., H.A., W.W., X.H., Y. Ding, X.J.), Xuanwu Hospital, Capital Medical University, China
| | - Xiaoduo He
- From the Department of Neurology, China-America Institute of Neuroscience (Y. Duan, D.W., J.S., H.A., W.W., X.H., Y. Ding, X.J.), Xuanwu Hospital, Capital Medical University, China
| | - Yuchuan Ding
- From the Department of Neurology, China-America Institute of Neuroscience (Y. Duan, D.W., J.S., H.A., W.W., X.H., Y. Ding, X.J.), Xuanwu Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI (M.H., Y. Ding.)
| | - Xunming Ji
- From the Department of Neurology, China-America Institute of Neuroscience (Y. Duan, D.W., J.S., H.A., W.W., X.H., Y. Ding, X.J.), Xuanwu Hospital, Capital Medical University, China
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine (Y. Duan, D.W., X.J.), Xuanwu Hospital, Capital Medical University, China
- Center of Stroke, Beijing Institute for Brain Disorders, China (Y. Duan., D.W., X.J.)
| |
Collapse
|
17
|
Li R, Smith A, Tadinada H, Hovet S, Tse ZTH. Heatguard: An ultra-low-cost three-dimensional-printed sensor for skin temperature alert and reporting system. Proc Inst Mech Eng H 2019; 233:525-534. [PMID: 30880571 DOI: 10.1177/0954411919837305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A heatstroke is one of the most serious forms of heat injury and is classified as a medical emergency. It is characterized by an elevated core body temperature along with the failed body cooling mechanism in response to the sudden heat-up. People vulnerable to a heatstroke are children, elders and sports professionals. Previous efforts have emphasized exercise adjustments and post-treatments, such as environmental-based activity modification and cold-water immersion. However, the general public, especially elders, will have difficulty to conduct such adjustments by themselves. Moreover, few studies have been conducted on the early preventive measurement stage. A wearable three-dimensional-printed thermochromic device proposed here can warn the people of a sudden rise in skin temperature and can advise them to take quick action. Combined with the smartphone applications, for both the android and iPhone platform, the device is able to monitor real-time skin temperature and alerts the people who are vulnerable to a heatstroke. The three-dimensional printable resin developed can change color at a specific activation temperature. The device has undergone a series of performance tests in order to optimize the color transition rate and stability of color change. The accuracy of our device is compared to the conventional thermometer; the regression analysis shows the R2 value is 0.7599 and the average error is 1.3 °C. Future work will be to mitigate the surrounding lighting effects on the smartphone camera and further improve our device accuracy.
Collapse
Affiliation(s)
- Rui Li
- 1 College of Engineering, University of Georgia, Athens, GA, USA
| | - Aaron Smith
- 1 College of Engineering, University of Georgia, Athens, GA, USA
| | - Harshitha Tadinada
- 2 Department of Computer Science, University of Georgia, Athens, GA, USA
| | - Sierra Hovet
- 3 Medical Robotics Laboratory, University of Georgia, Athens, GA, USA
| | - Zion Tsz Ho Tse
- 4 University of Georgia, Athens, GA, USA.,5 Thermochrome, Athens, GA, USA
| |
Collapse
|
18
|
Kim DW, Cho JH, Cho GS, Kim IH, Park JH, Ahn JH, Chen BH, Shin BN, Tae HJ, Hong S, Cho JH, Kim YM, Won MH, Lee JC. Hyperthermic preconditioning severely accelerates neuronal damage in the gerbil ischemic hippocampal dentate gyrus via decreasing SODs expressions. J Neurol Sci 2015; 358:266-75. [DOI: 10.1016/j.jns.2015.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/24/2015] [Accepted: 09/02/2015] [Indexed: 12/17/2022]
|
19
|
|
20
|
Girisgin AS, Kalkan E, Ergin M, Keskin F, Dundar ZD, Kebapcioglu S, Kocak S, Cander B. An experimental study: does the neuroprotective effect increase when hypothermia deepens after traumatic brain injury? IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e21233. [PMID: 26023335 PMCID: PMC4443303 DOI: 10.5812/ircmj.17(4)2015.21233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/16/2014] [Accepted: 11/09/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Experimental approaches have been promising with the use of therapeutic hypothermia after Traumatic Brain Injury (TBI) whereas clinical data have not supported its efficacy. OBJECTIVES This study aimed to investigate whether using selective deeper brain cooling correlates with a more neuroprotective effect on Intracranial Pressure (ICP) increments following TBI in rats. MATERIALS AND METHODS Adult male Sprague-Dawley rats (mean weight = 300 g; n = 25) were subjected to brain injury using a modified Marmarou method. Immediately after the onset of TBI, rats were randomized into three groups. Selective brain cooling was applied around the head using ice packages. Intracranial Temperature (ICT) and ICP were continuously measured at 0, 30, 60, 120, and 180 minutes and recorded for all groups. Group 1 (n = 5) was normothermia and was assigned as the control group. Group 2 (n = 10) received moderate hypothermia with a target ICT of between 32°C - 33°C and Group 3 (n = 10) was given a deeper hypothermia with a target ICT of below 32°C. RESULTS All subjects reached the target ICT by the 30th minute of hypothermia induction. The ICT was significantly different in Group 2 compared to Group 1 only at the 120th minute (P = 0.017), while ICP was significantly lower starting from the 30th minute (P = 0.015). The ICT was significantly lower in Group 3 compared to Groups 1 and 2 starting from the 30th minute (P = 0.001 and P = 0.003, respectively). The ICP was significantly lower in Group 3 compared to Group 1 starting from 30th minute (P = 0.001); however, a significant difference in ICP between Group 3 and Group 2 was observed only at the 180th minute (P = 0.047). CONCLUSIONS Results of this study indicate that selective brain cooling is an effective method of decreasing ICP in rats; however, the deeper hypothermia caused a greater decrease in ICP three hours after hypothermia induction.
Collapse
Affiliation(s)
- Abdullah Sadik Girisgin
- Department of Emergency Medicine, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Erdal Kalkan
- Department of Neurosurgery, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Ergin
- Department of Emergency Medicine, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Fatih Keskin
- Department of Neurosurgery, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Zerrin Defne Dundar
- Department of Emergency Medicine, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Sedat Kebapcioglu
- Department of Emergency Medicine, Medicine Faculty, Mevlana University, Konya, Turkey
| | - Sedat Kocak
- Department of Emergency Medicine, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Basar Cander
- Department of Emergency Medicine, Meram Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
21
|
Tu WZ, Cheng RD, Hu J, Wang JZ, Lin HY, Zou EM, Wang WS, Lou XF, Jiang SH. Combination treatment with Gua Sha and Blood-letting causes attenuation of systemic inflammation, activated coagulation, tissue ischemia and injury during heatstroke in rats. Chin J Integr Med 2014; 21:610-7. [PMID: 25098257 DOI: 10.1007/s11655-014-1816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Gua Sha and Blood-letting at the acupoints were Chinese traditional therapies for heatstroke. The purpose of present study was to assess the therapeutic effect of Gua Sha on the DU Meridian and Bladder Meridian combined with Blood-letting acupoints at Shixuan (EX-UE 11) and Weizhong (BL 40) on heatstroke. METHODS Anesthetized rats, immediately after the onset of heatstroke, were divided into four major groups: Gua Sha group, Blood-letting group, Gua Sha combined with Blood-letting group and model group. They were exposed to ambient temperature of 43 °C to induce heatstroke. Another group of rats were exposed to room temperature (26 °C) and used as normal control group. Their survival times were measured. In addition, their physiological and biochemical parameters were continuously monitored. RESULTS When rats underwent heatstroke, their survival time values were found to be 21-25 min. Treatment of Gua Sha combined with Bloodletting greatly improved the survival time (230±22 min) during heatstroke. All heatstoke animals displayed and activated coagulation evidenced by increased prothrombin time (PT), activated partial thromboplastin time (aPTT), D-dimer, and decreased platelet count, protein C. Furthermore, the animals displayed systemic inflammation evidenced by increased the serum levels of cytokines interleukin-1ß (IL-1ß), tumor necrosis factor α (TNF-α) and malondialdehyde (MDA). Biochemical markers evidenced by cellular ischemia and injury/dysfunction included increased plasma levels of blood urea nitrogen (BUN), creatinine, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), and alkaline phosphatase (ALP) were all elevated during heatstroke. Core temperatures (Tco) were also increased during heatstroke. In contrast, the values of mean arterial pressure were signifificantly lower during heatstroke. These heatstroke reactions were all signifificantly suppressed by treatment of Gua Sha and Blood-letting, especially the combination therapy. CONCLUSION Gua Sha combined with Blood-letting after heatstroke may improve survival by ameliorating systemic inflflammation, hypercoagulable state, and tissue ischemia and injury in multiple organs.
Collapse
Affiliation(s)
- Wen-zhan Tu
- Department of Physical Medicine and Rehabilitation, the Second Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang Province, 325027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen CW, Puvanesarajah V, Lo SFL, Cheng TJ, Cheng CY, Lim M, Lin HJ. Selective cerebral hypothermia induced via hypothermic retrograde jugular vein saline flush in a porcine model. Neurol Res 2014; 36:897-902. [PMID: 24725291 DOI: 10.1179/1743132814y.0000000374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Multiple methods of selective brain cooling have been used to prevent cerebral ischemia secondary to trauma and pathological or iatrogenic cerebral blood flow restriction. In this study, we tested the efficacy of hypothermic retrograde jugular vein flush (HRJVF) in eliciting selective brain hypothermia in a porcine model. METHODS Twelve swine were divided into two groups: retrograde jugular vein infusion (RJVI) with cold saline (4°C RJVI, n = 6) and with room temperature saline (24°C RJVI, n = 6). For 90 minutes, the following parameters were measured: brain parenchymal temperature, rectal temperature, intracranial pressure (ICP), mean arterial pressure, and heart rate (HR). RESULTS Swine receiving 4°C RJVI experienced a drop in mean brain parenchymal temperature of 1·1 ± 0·1°C, compared to 0·1 ± 0·1°C in swine receiving 24°C RJVI. At 90 minutes, mean brain parenchymal temperature in the 4°C RJVI treatment group was 35·5 ± 0·2°C, as compared to 37·1 ± 0·2°C in the 24°C RJVI treatment group (P < 0·001). In the 4°C RJVI group, the brain-systemic temperature gradient peaked 10 minutes after initiation of cooling and remained significantly different when comparing the two experimental groups (P < 0·001) throughout the duration of the 90 minutes experiment. Of note, ICP, mean arterial pressure, and HR remained constant without any significant changes or differences between treatment groups. DISCUSSION These results suggest that HRJVF is an effective method for selective brain hypothermia in a large animal model. Clinical application may prove effective in delaying neural ischemia.
Collapse
|
23
|
ou Zhou R, Liu JW, Zhang D, Zhang Q. Heatstroke model for desert dry-heat environment and observed organ damage. Am J Emerg Med 2014; 32:573-9. [PMID: 24666742 DOI: 10.1016/j.ajem.2014.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Heatstroke is one of the most common clinical emergencies. Heatstroke that occurred in a dry-heat environment such as desert is usually more seriously effective and often leads to death. However, the report of the pathophysiologic mechanisms about heatstroke in dry-heat environment of desert has not been seen. OBJECTIVES Our objectives are to establish a rat model of heatstroke of dry-heat environment of desert, to assess the different degrees of damage of organ, and to preliminarily discuss the mechanism of heatstroke in dry-heat environment of desert. METHODS The first step, we have established a rat heatstroke model of dry heat environment of desert. The second step, we have accessed changes in morphology and blood indicators of heatstroke rats in dry-heat environment of desert. RESULTS The heatstroke rats have expressed the changing characteristics of mean arterial pressure, core temperature, and heart rate. The organ damage changed from mild to serious level, specifically in the morphology and blood enzymology parameters such as alanine aminotransferase, aspartate aminotransferase, creatinine, urea, uric acid, creatine kinase-MB, creatine kinase, and blood gas parameters such as base excess extracellular fluid and bicarbonate ions (HCO3-). CONCLUSIONS We have successfully established the rat heatstroke model of dry-heat environment of desert. We have identified heatstroke rats that presented changing characteristics on physiological indicators and varying degrees of organ damage, which are aggravated by the evolution of heatstroke in dry-heat environment of desert. We have preliminarily discussed the mechanism of heatstroke in dry-heat environment of desert.
Collapse
Affiliation(s)
- Ren ou Zhou
- Department of Hepatobiliary Surgery, Urumqi General Hospital of Lanzhou Military Region of PLA, Urumqi 830000, PR China; Medical College of Shihezi University, Shihezi 832000, PR China
| | - Jiang Wei Liu
- Department of Hepatobiliary Surgery, Urumqi General Hospital of Lanzhou Military Region of PLA, Urumqi 830000, PR China.
| | - Dong Zhang
- Department of Hepatobiliary Surgery, Urumqi General Hospital of Lanzhou Military Region of PLA, Urumqi 830000, PR China
| | - Qiong Zhang
- Department of Hepatobiliary Surgery, Urumqi General Hospital of Lanzhou Military Region of PLA, Urumqi 830000, PR China
| |
Collapse
|
24
|
Wang CC, Chen YS, Lin BS, Chio CC, Hu CY, Kuo JR. The neuronal protective effects of local brain cooling at the craniectomy site after lateral fluid percussion injury in a rat model. J Surg Res 2013; 185:753-62. [DOI: 10.1016/j.jss.2013.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/08/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
|
25
|
Effects and mechanisms of chinese herbal medicine in ameliorating myocardial ischemia-reperfusion injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:925625. [PMID: 24288571 PMCID: PMC3833114 DOI: 10.1155/2013/925625] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 02/08/2023]
Abstract
Myocardial ischemia-reperfusion (MIR) injury is a major contributor to the morbidity and mortality associated with coronary artery disease, which accounts for approximately 450,000 deaths a year in the United States alone. Chinese herbal medicine, especially combined herbal formulations, has been widely used in traditional Chinese medicine for the treatment of myocardial infarction for hundreds of years. While the efficacy of Chinese herbal medicine is well documented, the underlying molecular mechanisms remain elusive. In this review, we highlight recent studies which are focused on elucidating the cellular and molecular mechanisms using extracted compounds, single herbs, or herbal formulations in experimental settings. These studies represent recent efforts to bridge the gap between the enigma of ancient Chinese herbal medicine and the concepts of modern cell and molecular biology in the treatment of myocardial infarction.
Collapse
|
26
|
Chen SH, Lin MT, Chang CP. Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke. Curr Neuropharmacol 2013; 11:129-40. [PMID: 23997749 PMCID: PMC3637668 DOI: 10.2174/1570159x11311020001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/12/2012] [Accepted: 12/14/2012] [Indexed: 12/11/2022] Open
Abstract
The hypothalamus may be involved in regulating homeostasis, motivation, and emotional behavior by controlling autonomic and endocrine activity. The hypothalamus communicates input from the thalamus to the pituitary gland, reticular activating substance, limbic system, and neocortex. This allows the output of pituitary hormones to respond to changes in autonomic nervous system activity. Environmental heat stress increases cutaneous blood flow and metabolism, and progressively decreases splanchnic blood flow. Severe heat exposure also decreases mean arterial pressure (MAP), increases intracranial pressure (ICP), and decreases cerebral perfusion pressure (CPP = MAP - ICP), all of which lead to cerebral ischemia and hypoxia. Compared with normothermic controls, rodents with heatstroke have higher hypothalamic values of cellular ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and damage (e.g., glycerol) markers, pro-oxidant enzymes (e.g., lipid peroxidation and glutathione oxidation), proinflammatory cytokines (e.g., interleukin-1β and tumor necrosis factor-α), inducible nitric oxide synthase-dependent nitric oxide, and an indicator for the accumulation of polymorphonuclear leukocytes (e.g., myeloperoxidase activity), as well as neuronal damage (e.g., apoptosis, necrosis, and autophagy) after heatstroke. Hypothalamic values of antioxidant defenses (e.g., glutathione peroxidase and glutathione reductase), however, are lower. The ischemic, hypoxic, and oxidative damage to the hypothalamus during heatstroke may cause multiple organ dysfunction or failure through hypothalamic-pituitary-adrenal axis mechanisms. Finding the link between the signaling and heatstroke-induced hypothalamic oxidative and ischemic damage might allow us to clinically attenuate heatstroke. In particular, free radical scavengers, heat shock protein-70 inducers, hypervolemic hemodilution, inducible nitric oxide synthase inhibitors, progenitor stem cells, flutamide, estrogen, interleukin-1 receptor antagonists, glucocorticoid, activated protein C, and baicalin mitigate preclinical heatstroke levels.
Collapse
Affiliation(s)
- Sheng-Hsien Chen
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Tainan, Taiwan ; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | | | | |
Collapse
|
27
|
Wang CC, Lin KC, Lin BS, Chio CC, Kuo JR. Resuscitation from experimental traumatic brain injury by magnolol therapy. J Surg Res 2013; 184:1045-52. [PMID: 23721932 DOI: 10.1016/j.jss.2013.04.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/08/2013] [Accepted: 04/24/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND The purpose of the present study was to determine whether magnolol, a free radical scavenger, mitigates the deleterious effects of traumatic brain injury (TBI). MATERIAL AND METHODS Traumatic brain injuries were induced in anesthetized male Sprague-Dawley rats using fluid percussion, and the rats were divided into groups treated with magnolol (2 mg/kg, intravenously) or vehicle. A group of rats that did not undergo TBI induction was also studied as controls. Biomarkers of TBI, including glycerol and 2,3-dihydroxybenzoic acid, were evaluated by microdialysis. Infraction volume, extent of neuronal apoptosis, and antiapoptosis factor transforming growth factor β1 (TGF-β1) were also measured. Functional outcomes were assessed by motor assays. RESULTS Compared with the rats without TBI, the animals with TBI exhibited higher hippocampal glycerol and 2,3-dihydroxybenzoic acid. Relative to the vehicle-treated group, the magnolol-treated group showed decreased hippocampal levels of glycerol and hydroxyl radical levels. The magnolol-treated rats also exhibited decreased cerebral infarction volume and neuronal apoptosis and increased antiapoptosis-associated factor TGF-β1 expression. These effects were translated into improved motor function post TBI. CONCLUSIONS Our results suggest that intravenous magnolol injection mitigates the deleterious effects of TBI in rats based on its potent free radical scavenging capability, and the mechanism of anti-neuronal apoptosis is partly due to an increase in TGF-β1 expression in the ischemic cortex.
Collapse
Affiliation(s)
- Che-Chuan Wang
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Institute of Imaging and Biomedical Photonics, National Chiao-Tung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Ares-Santos S, Granado N, Moratalla R. The role of dopamine receptors in the neurotoxicity of methamphetamine. J Intern Med 2013; 273:437-53. [PMID: 23600399 DOI: 10.1111/joim.12049] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice.
Collapse
Affiliation(s)
- S Ares-Santos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid, Spain
| | | | | |
Collapse
|
29
|
Moghimpour Bijani F, Vallejo JG, Rezaei N. Toll-like receptor signaling pathways in cardiovascular diseases: challenges and opportunities. Int Rev Immunol 2013; 31:379-95. [PMID: 23083347 DOI: 10.3109/08830185.2012.706761] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs), a family of surface molecules, are involved in innate immune responses. Recent studies indicated that TLRs play a critical role in inflammatory responses to exogenous and endogenous triggers. This article focuses on probable effects of TLRs in the morbidity of cardiovascular events, e.g., ischemic reperfusion (I/R) injury and atherosclerosis. TLR2 and TLR4 have been shown to have the most fundamental role in promoting cytokine production and subsequent inflammatory damages in these states. Blockade of these receptors may be beneficial in both preventing the occurrence and decreasing the complications in cardiovascular events. However, controversies exist on the certainty of this beneficial effect; therefore, additional studies are needed.
Collapse
Affiliation(s)
- Faezeh Moghimpour Bijani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
30
|
Successful treatment of severe heat stroke with selective therapeutic hypothermia using an automated surface cooling device. Resuscitation 2013; 84:e77-8. [PMID: 23499854 DOI: 10.1016/j.resuscitation.2013.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/23/2013] [Indexed: 11/23/2022]
|
31
|
Pu J, Niu X, Zhao J. Excitatory amino acid changes in the brains of rhesus monkeys following selective cerebral deep hypothermia and blood flow occlusion. Neural Regen Res 2013; 8:143-8. [PMID: 25206484 PMCID: PMC4107508 DOI: 10.3969/j.issn.1673-5374.2013.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/22/2012] [Indexed: 11/18/2022] Open
Abstract
Selective cerebral deep hypothermia and blood flow occlusion can enhance brain tolerance to ischemia and hypoxia and reduce cardiopulmonary complications in monkeys. Excitotoxicity induced by the release of a large amount of excitatory amino acids after cerebral ischemia is the major mechanism underlying ischemic brain injury and nerve cell death. In the present study, we used selective cerebral deep hypothermia and blood flow occlusion to block the bilateral common carotid arteries and/or bilateral vertebral arteries in rhesus monkey, followed by reperfusion using Ringer's solution at 4°C. Microdialysis and transmission electron microscope results showed that selective cerebral deep hypothermia and blood flow occlusion inhibited the release of glutamic acid into the extracellular fluid in the brain frontal lobe and relieved pathological injury in terms of the ultrastructure of brain tissues after severe cerebral ischemia. These findings indicate that cerebral deep hypothermia and blood flow occlusion can inhibit cytotoxic effects and attenuate ischemic/hypoxic brain injury through decreasing the release of excitatory amino acids, such as glutamic acid.
Collapse
Affiliation(s)
- Jun Pu
- Department of Neurosurgery, Beijing Tiantan Hospital of Capital Medical University, Beijing 100065, China
| | - Xiaoqun Niu
- Department of Respiratory Medicine, Second Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital of Capital Medical University, Beijing 100065, China
| |
Collapse
|
32
|
Wang CT, Lin HJ, Cheng BC, Lin MT, Chang CP. Attenuating systemic inflammatory markers in simulated high-altitude exposure by heat shock protein 70-mediated hypobaric hypoxia preconditioning in rats. J Formos Med Assoc 2013; 114:328-38. [PMID: 25839766 DOI: 10.1016/j.jfma.2012.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/22/2012] [Accepted: 11/23/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND/PURPOSE The primary goal of this study was to test whether high-altitude exposure (HAE: 0.9% O(2) at 0.47 ATA for 24 hours) was capable of increasing the systemic inflammatory markers as well as the toxic organ injury indicators in rats, with a secondary goal to test whether preinduction of heat shock protein (HSP) 70 by hypobaric hypoxia preconditioning (HHP: 18.3% O(2) at 0.66 ATA for 5 h/day on 5 days consecutively for 2 weeks) attenuated the proposed increased serum levels of both the systemic inflammatory markers and the toxic organ injury indicators. METHODS Rats were assigned to: (1) non-HHP (21% O(2) at 1.0 ATA)+non-HAE (21% O(2) at 1.0 ATA) group; (2) non-HHP+HAE group; (3) HHP+non-HAE group; (4) HHP+HAE group; and (5) HHP+HSP70 antibodies (Ab)+HAE group. For the HSP70Ab group, a neutralizing HSP70Ab was injected intravenously at 24 hours prior to HAE. All the physiological and biochemical parameters were obtained at the end of HAE or the equivalent time period of non-HAE. Blood samples were obtained for determination of both the systemic inflammatory markers (e.g., serum tumor necrosis factor-α, interleukin-1β, E-selectin, intercellular adhesion molecule-1, and liver myeloperoxidase activity) and the toxic organ injury indicators (e.g., nitric oxide metabolites, 2,3-dihydroxybenzoic acid, and lactate dehydrogenase). RESULTS HHP, in addition to inducing overexpression of tissue HSP70, significantly attenuated the HAE-induced hypotension, bradycardia, hypoxia, acidosis, and increased tissue levels of both the systemic inflammatory markers and the toxic organ injury indicators. The beneficial effects of HHP in inducing tissue overexpression of HSP70 as well as in preventing the HAE-induced increased levels of the systemic inflammatory markers and the toxic organ injury indicators could be significantly reduced by HSP70Ab preconditioning. CONCLUSION These results suggest that HHP may downgrade both the systemic inflammatory markers and the toxic organ injury indicators in HAE by upregulating tissue HSP70.
Collapse
Affiliation(s)
- Chia-Ti Wang
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Bor-Chih Cheng
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan; Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| |
Collapse
|
33
|
Wang LC, Chang CP, Chio CC, Wu MH, Lee YS, Huang CY, Tsai KJ. Hypobaric hypoxia preconditioning attenuates experimental heatstroke syndromes via preinduction of heat shock protein 70. Am J Med Sci 2012; 344:383-90. [PMID: 22245947 DOI: 10.1097/maj.0b013e31824314fe] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Heatstroke has been defined as a form of hyperthermia associated with a systemic inflammatory response that leads to multiple organ dysfunction syndrome (MODS). It has also been documented that heat shock protein 70 (HSP70) preconditioning is able to induce thermotolerance. Here, the authors further investigated whether hypobaric hypoxia preconditioning (HHP) improved the MODS in heatstroke by up-regulation of HSP70. METHODS Anesthetized rats were randomly assigned to (a) non-HHP + nonheated group, (b) non-HHP + heated group, (c) HHP + heated group and (d) HHP + HSP70 antibodies (Abs) + heated groups. All heated groups were exposed to heat stress (43°C, 70 minutes) to induce heatstroke. For HHP, animals were exposed to 0.66 atmosphere absolute (18.3% O2) for 5 hours daily for consecutive 5 days per week for 2 weeks before the start of heat exposure. RESULTS HHP significantly (i) attenuated hypotension, (ii) reduced plasma index of the toxic oxidizing radicals and the organ injury indicator, (iii) attenuated plasma systemic inflammatory response molecules, (iv) reduced an index of infiltration of polymorphonuclear neutrophils in the lung like myeloper-oxidase activity, (v) promoted plasma levels of an anti-inflammatory cytokine, interleukin-10, (vi) promoted the survival time to fourfold compared with non-HHP group and (vii) promoted the overexpression of HSP70 in different organs (eg, the lung) during heatstroke. The beneficial effects of HHP could be significantly attenuated by HSP70 Ab preconditioning. CONCLUSION Our results show that HHP protects rats from heat-induced MODS via up-regulating HSP70. Thus, HHP could be a novel strategy for the prevention of heatstroke animals or patients before heat exposure.
Collapse
Affiliation(s)
- Liang-Chao Wang
- Institute of Clinical Medicine, Department of Surgery, National Cheng-Kung University Hospital, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Facts and fiction: the impact of hypothermia on molecular mechanisms following major challenge. Mediators Inflamm 2012; 2012:762840. [PMID: 22481864 PMCID: PMC3316953 DOI: 10.1155/2012/762840] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/02/2012] [Indexed: 01/02/2023] Open
Abstract
Numerous multiple trauma and surgical patients suffer from accidental hypothermia. While induced hypothermia is commonly used in elective cardiac surgery due to its protective effects, accidental hypothermia is associated with increased posttraumatic complications and even mortality in severely injured patients. This paper focuses on protective molecular mechanisms of hypothermia on apoptosis and the posttraumatic immune response. Although information regarding severe trauma is limited, there is evidence that induced hypothermia may have beneficial effects on the posttraumatic immune response as well as apoptosis in animal studies and certain clinical situations. However, more profound knowledge of mechanisms is necessary before randomized clinical trials in trauma patients can be initiated.
Collapse
|
35
|
Hong JY, Lai YC, Chang CY, Chang SC, Tang GJ. Successful treatment of severe heatstroke with therapeutic hypothermia by a noninvasive external cooling system. Ann Emerg Med 2011; 59:491-3. [PMID: 21982153 DOI: 10.1016/j.annemergmed.2011.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 09/13/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
Heatstroke is a life-threatening disease; however, no pharmacologic treatment has proven to be effective. In severe cases with multiple organ dysfunction, the mortality remains high and many patients inevitably develop permanent neurologic damage. We report a near-fatal case of exertional heatstroke with multiple organ dysfunction, including generalized convulsions, acute lung injury, and disseminated intravascular coagulation, successfully treated with induced therapeutic hypothermia (33°C [91.4°F]) by a noninvasive external cooling system. After treatment, the patient completely recovered, without any neurologic sequelae during 1 year of follow-up. To our knowledge, this is the first reported case of using therapeutic hypothermia in heatstroke.
Collapse
Affiliation(s)
- Jen-Yee Hong
- Department of Internal Medicine, National Yang-Ming University Hospital, Yilan City, Taiwan
| | | | | | | | | |
Collapse
|
36
|
Hypobaric hypoxia preconditioning attenuates acute lung injury during high-altitude exposure in rats via up-regulating heat-shock protein 70. Clin Sci (Lond) 2011; 121:223-31. [PMID: 21599636 DOI: 10.1042/cs20100596] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HHP (hypobaric hypoxia preconditioning) induces the overexpression of HSP70 (heat-shock protein 70), as well as tolerance to cerebral ischaemia. In the present study, we hypothesized that HHP would protect against HAE (high-altitude exposure)-induced acute lung injury and oedema via promoting the expression of HSP70 in lungs prior to the onset of HAE. At 2 weeks after the start of HHP, animals were exposed to a simulated HAE of 6000 m in a hypobaric chamber for 24 h. Immediately after being returned to ambient pressure, the non-HHP animals had higher scores of alveolar oedema, neutrophil infiltration and haemorrhage, acute pleurisy (e.g. increased exudate volume, increased numbers of polymorphonuclear cells and increased lung myeloperoxidase activity), increased pro-inflammatory cytokines [e.g. TNF-α (tumour necrosis factor-α), IL (interleukin)-1β and IL-6], and increased cellular ischaemia (i.e. glutamate and lactate/pyruvate ratio) and oxidative damage [glycerol, NOx (combined nitrate+nitrite) and 2,3-dihydroxybenzoic acid] markers in the BALF (bronchoalveolar fluid). HHP, in addition to inducing overexpression of HSP70 in the lungs, significantly attenuated HAE-induced pulmonary oedema, inflammation, and ischaemic and oxidative damage in the lungs. The beneficial effects of HHP in preventing the occurrence of HAE-induced pulmonary oedema, inflammation, and ischaemic and oxidative damage was reduced significantly by pretreatment with a neutralizing anti-HSP70 antibody. In conclusion, HHP may attenuate the occurrence of pulmonary oedema, inflammation, and ischaemic and oxidative damage caused by HAE in part via up-regulating HSP70 in the lungs.
Collapse
|
37
|
Shin EJ, Duong CX, Nguyen XKT, Bing G, Bach JH, Park DH, Nakayama K, Ali SF, Kanthasamy AG, Cadet JL, Nabeshima T, Kim HC. PKCδ inhibition enhances tyrosine hydroxylase phosphorylation in mice after methamphetamine treatment. Neurochem Int 2011; 59:39-50. [PMID: 21672585 PMCID: PMC3959171 DOI: 10.1016/j.neuint.2011.03.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 03/22/2011] [Indexed: 11/26/2022]
Abstract
The present study was designed to evaluate the specific role of protein kinase C (PKC) δ in methamphetamine (MA)-induced dopaminergic toxicity. A multiple-dose administration regimen of MA significantly increases PKCδ expression, while rottlerin, a PKCδ inhibitor, significantly attenuates MA-induced hyperthermia and behavioral deficits. These behavioral effects were not significantly observed in PKCδ antisense oligonucleotide (ASO)-treated- or PKCδ knockout (-/-)-mice. There were no MA-induced significant decreases of dopamine (DA) content or tyrosine hydroxylase (TH) expression in the striatum in rottlerin-treated-, ASO-treated- or PKCδ (-/-)-mice. The administration of MA also results in a significant decrease of TH phosphorylation at ser 40, but not ser 31, while the inhibition of PKCδ consistently and significantly attenuates MA-induced reduction in the phosphorylation of TH at ser 40. Therefore, these results suggest that the MA-induced enhancement of PKCδ expression is a critical factor in the impairment of TH phosphorylation at ser 40 and that pharmacological or genetic inhibition of PKCδ may be protective against MA-induced dopaminergic neurotoxicity in vivo.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Chu Xuan Duong
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Xuan-Khanh Thi Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Guoying Bing
- Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jae-Hyung Bach
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Dae Hun Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | - Keiichi Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Syed F. Ali
- Division of Neurotoxicology, National Center of Toxicological Research, FDA, Jefferson, Arkansas 72079, USA
| | - Anumantha G. Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Jean L. Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, Baltimore, MD 21224, USA
| | - Toshitaka Nabeshima
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| |
Collapse
|
38
|
Attenuation of brain nitrostative and oxidative damage by brain cooling during experimental traumatic brain injury. J Biomed Biotechnol 2011; 2011:145214. [PMID: 21318143 PMCID: PMC3034961 DOI: 10.1155/2011/145214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 12/16/2010] [Accepted: 01/04/2011] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to ascertain whether brain cooling causes attenuation of traumatic brain injury by reducing brain nitrostative and oxidative damage. Brain cooling was accomplished by infusion of 5 mL of 4°C saline over 5 minutes via the external jugular vein. Immediately after the onset of traumatic brain injury, rats were randomized into two groups and given 37°C or 4°C normal saline. Another group of rats were used as sham operated controls. Behavioral and biochemical assessments were conducted on 72 hours after brain injury or sham operation. As compared to those of the sham-operated controls, the 37°C saline-treated brain injured animals displayed motor deficits, higher cerebral contusion volume and incidence, higher oxidative damage (e.g., lower values of cerebral superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, but higher values of cerebral malondialdehyde), and higher nitrostative damage (e.g., higher values of neuronal nitric oxide synthase and 3-nitrotyrosine). All the motor deficits and brain nitrostative and oxidative damage were significantly reduced by retrograde perfusion of 4°C saline via the jugular vein. Our data suggest that brain cooling may improve the outcomes of traumatic brain injury in rats by reducing brain nitrostative and oxidative damage.
Collapse
|
39
|
Hsi-Hsing Y, Ching-Ping C, Juei-Tang C, Lin MT. Inhibition of acute lung inflammation and injury is a target of brain cooling after heatstroke injury. ACTA ACUST UNITED AC 2010; 69:805-12. [PMID: 20400921 DOI: 10.1097/ta.0b013e3181cb43fd] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although brain cooling has recently been reported as effective in improving the survival after heatstroke generation in rats, the mechanisms underlying the therapeutic effects of brain cooling are not fully elucidated. This study was conducted to test whether the acute lung inflammation and damage that might occur during heatstroke could be affected by brain cooling. METHODS Anesthetized rats were randomized into four groups as follows: (a) normothermic controls (n = 8); (b) heatstroke rats without saline delivery (n = 8); (c) heatstroke rats treated with 36°C saline via retrograde jugular vein (n = 8); and (d) heatstroke rats treated with 4°C saline via retrograde jugular vein (n = 8). Heatstroke was induced by putting the animals in a folded heating pad of 42°C for 68 minutes controlled by circulating hot water. The core temperatures of normothermic groups were maintained at about 36°C. The cardiovascular parameters and core temperatures were monitored for all experiments. Bronchoalveolar lavage (BAL) was done in the left lung 20 minutes after termination of heat stress for determination of cellular ischemia markers (e.g., glutamate, lactate-to-pyruvate ratio), proinflammatory cytokines (interleukin-1, tumor necrosis factor-alpha), and nitric oxide metabolites. Parts of the right lung were excised for meloperoxidase measurement, whereas the rest was collected for lung damage score assessments. RESULTS When compared with those of normothermic controls, untreated or 36°C saline-treated heatstroke rats had higher values of BAL fluid levels of cellular ischemia markers, proinflammatory cytokines, nitric oxide metabolites, lung meroperoxidase activity, lung damage score, and neutrophil infiltration. Brain cooling causes by 4°C saline infusion significantly reduced the heat-induced increased BAL levels of cellular ischemia markers, proinflammatory cytokines, and nitric oxide metabolites, and reduced lung damage score and neutrophil infiltration. CONCLUSIONS These experimental data indicate that acute lung inflammation and damage is a target of brain cooling after heatstroke injury.
Collapse
Affiliation(s)
- Yang Hsi-Hsing
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|
40
|
Yang TH, Shih MF, Wen YS, Ho WY, Leu KL, Wang MY, Liu CC. Attenuation of circulatory shock and cerebral ischemia injury in heat stroke by combination treatment with dexamethasone and hydroxyethyl starch. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2010; 2:19. [PMID: 20937119 PMCID: PMC2959042 DOI: 10.1186/2040-7378-2-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 10/11/2010] [Indexed: 11/17/2022]
Abstract
BACKGROUND Increased systemic cytokines and elevated brain levels of monoamines, and hydroxyl radical productions are thought to aggravate the conditions of cerebral ischemia and neuronal damage during heat stroke. Dexamethasone (DXM) is a known immunosuppressive drug used in controlling inflammation, and hydroxyethyl starch (HES) is used as a volume-expanding drug in cerebral ischemia and/or cerebral injury. Acute treatment with a combined therapeutic approach has been repeatedly advocated in cerebral ischemia experiments. The aim of this study is to investigate whether the combined agent (HES and DXM) has beneficial efficacy to improve the survival time (ST) and heat stroke-induced cerebral ischemia and neuronal damage in experimental heat stroke. METHODS Urethane-anesthetized rats underwent instrumentation for the measurement of colonic temperature, mean arterial pressure (MAP), local striatal cerebral blood flow (CBF), heart rate, and neuronal damage score. The rats were exposed to an ambient temperature (43 degrees centigrade) to induce heat stroke. Concentrations of the ischemic and damage markers, dopamine, serotonin, and hydroxyl radical productions in corpus striatum, and the serum levels of interleukin-1 beta, tumor necrosis factor-alpha and malondialdehyde (MDA) were observed during heat stroke. RESULTS After heat stroke, the rats displayed circulatory shock (arterial hypotension), decreased CBF, increased the serum levels of cytokines and MDA, increased cerebral striatal monoamines and hydroxyl radical productions release, and severe cerebral ischemia and neuronal damage compared with those of normothermic control rats. However, immediate treatment with the combined agent at the onset of heat stroke confers significant protection against heat stroke-induced circulatory shock, systemic inflammation; cerebral ischemia, cerebral monoamines and hydroxyl radical production overload, and improves neuronal damage and the ST in rats. CONCLUSIONS Our results suggest that the combination of a colloid substance with a volume-expanding effect and an anti-inflammatory agent may provide a better resuscitation solution for victims with heat stroke.
Collapse
Affiliation(s)
- Tsai-Hsiu Yang
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Mei-Fen Shih
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Yi-Szu Wen
- Department of Emergency medicine, Taipei Veterans General Hospital, Taipei 11267, Taiwan
| | - Wen-Yueh Ho
- Department and Institute of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Kuen-Lin Leu
- Department and Institute of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Mei-Ying Wang
- Department and Institute of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chia-Chyuan Liu
- Department and Institute of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| |
Collapse
|
41
|
Liu Z, Vuohelainen V, Tarkka M, Tenhunen J, Lappalainen RS, Narkilahti S, Paavonen T, Oksala N, Wu Z, Mennander A. Glutamate release predicts ongoing myocardial ischemia of rat hearts. Scandinavian Journal of Clinical and Laboratory Investigation 2010; 70:217-24. [PMID: 20233036 DOI: 10.3109/00365511003663655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Glutamate metabolism is associated with myocardial ischemia-reperfusion, but it is not clear whether glutamate reveals ongoing ischemia (OI). We evaluated whether microdialysis would detect OI induced by coronary artery ligation in a rat cardiac transplantation model. MATERIAL AND METHODS A total of 24 Fischer 344 rats underwent syngeneic heterotopic cardiac transplantation. Of these, 16 rats underwent ligation of the left anterior coronary artery (LAD) of the heart to induce ongoing ischemia (OI), of which eight grafts received intra-aortally Gabapentin (12 mg/graft), a glutamate-release inhibitor and eight grafts with transplantation only served as the control. With a microdialysis catheter samples for glucose, lactate, pyruvate, glutamate, and glycerol were analysed spectrophotometrically. Histology and aquaporin 7 evaluations were performed after graft harvesting. RESULTS Glutamate was elevated after 15 min of reperfusion in OI as compared with Control (14.31 +/- 5.03 microM vs 6.75 +/- 2.21 microM, p = 0.05), respectively. Glycerol remained high in OI (61.89 +/- 46.13 microM to 15.84 +/- 0.85 microM, p = ns) and low in Control (12.33 +/- 3.36 microM to 5.52 +/- 0.25 microM, p = ns). Gabapentin decreased glutamate release from 7.32 +/- 1.57 microM to 2.71 +/- 0.64 microM, (p < 0.05) and resulted in decrease of glycerol levels from 24.64 +/- 4.03 microM to 10.43 +/- 2.49 microM, (p < 0.05) in OI. The expression of aquaporin 7 and histology confirmed OI. CONCLUSIONS We suggest that glutamate release may be used as an early indicator of OI after cardiac arrest.
Collapse
Affiliation(s)
- Ziyou Liu
- Heart Center, Heart Research, Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Todani M, Fujita M, Tsuruta R, Nakahara T, Yagi T, Oshima C, Igarashi M, Takahashi K, Kasaoka S, Yuasa M, Maekawa T. Moderate hypothermia suppressed excessive generation of superoxide anion radical and inflammatory reactions in blood and liver in heatstroke: Laboratory study in rats. Free Radic Res 2010; 44:462-72. [DOI: 10.3109/10715761003610752] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Zhao YQ, Gao JT, Liu SH, Wu Y, Lin MT, Fan M. Geranylgeranylacetone preconditioning may attenuate heat-induced inflammation and multiorgan dysfunction in rats. J Pharm Pharmacol 2010; 62:99-105. [DOI: 10.1211/jpp.62.01.0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Objectives
Geranylgeranylacetone, an acyclic isoprenoid, is a non-toxic inducer of heat shock protein (HSP)70. HSP70 overproduction is associated with heat tolerance in rats. This study aimed to investigate whether geranylgeranylacetone preconditioning of rats reduced heat-induced inflammation and multiple organ dysfunction.
Methods
Anaesthetised rats were given vehicle or geranylgeranylacetone (800 mg/kg) orally. After 48 h they were exposed to ambient temperature of 43°C for 70 min to induce heatstroke. Another group of rats kept at room temperature were used as normothermic controls.
Key findings
Vehicle-treated rats all succumbed to heat stress; their survival time was 25 ± 4 min. Pretreatment with geranylgeranylacetone significantly increased survival time to 92 ± 15 min. Compared with normothermic controls, all vehicle-treated heatstroke rats displayed hepatic and renal dysfunction (e.g. increased plasma levels of serum urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase) and active inflammation (e.g. increased plasma and brain levels of interleukin-1β, tumour necrosis factor-α and interleukin-6). These heat-stress response indicators were all significantly suppressed by geranylgeranylacetone pretreatment. In addition, the plasma and brain levels of interleukin-10 (an anti-inflammatory cytokine) and brain levels of HSP70 were significantly increased after geranylgeranylacetone preconditioning during heatstroke.
Conclusions
Geranylgeranylacetone preconditioning attenuates heat-induced inflammation and multiorgan dysfunction in rats.
Collapse
Affiliation(s)
- Yong-Qi Zhao
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jun-Tao Gao
- Department of Physiology, Jilin Medical College, Jilin, 132013, China
| | - Shou-Hong Liu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yan Wu
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan, China
| | - Ming Fan
- Department of Brain Protection and Plasticity, Institute of Basic Medical Sciences, Beijing, 100850, China
| |
Collapse
|
44
|
Yang HH, Chang CP, Cheng RT, Lin MT. Attenuation of acute lung inflammation and injury by whole body cooling in a rat heatstroke model. J Biomed Biotechnol 2009; 2009:768086. [PMID: 20037732 PMCID: PMC2796336 DOI: 10.1155/2009/768086] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 09/25/2009] [Accepted: 10/01/2009] [Indexed: 12/21/2022] Open
Abstract
Whole body cooling is the current therapy of choice for heatstroke because the therapeutic agents are not available. In this study, we assessed the effects of whole body cooling on several indices of acute lung inflammation and injury which might occur during heatstroke. Anesthetized rats were randomized into the following groups and given (a) no treatment or (b) whole body cooling immediately after onset of heatstroke. As compared with the normothermic controls, the untreated heatstroke rats had higher levels of pleural exudates volume and polymorphonuclear cell numbers, lung myloperoxidase activity and inducible nitric oxide synthase expression, histologic lung injury score, and bronchoalveolar proinflammatory cytokines and glutamate, and PaCO2. In contrast, the values of mean arterial pressure, heart rate, PaO2, pH, and blood HCO3(-) were all significantly lower during heatstroke. The acute lung inflammation and injury and electrolyte imbalance that occurred during heatstroke were significantly reduced by whole body cooling. In conclusion, we identified heat-induced acute lung inflammation and injury and electrolyte imbalance could be ameliorated by whole body cooling.
Collapse
Affiliation(s)
- Hsi-Hsing Yang
- Institute of Pharmacology, National Cheng Kung University Medical School, Tainan 701, Taiwan
- Department of Internal Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ching-Ping Chang
- Department of Biotechnology, Southern Taiwan University, Tainan 710, Taiwan
| | - Ruei-Tang Cheng
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| |
Collapse
|
45
|
Lin XJ, Li YL, Mei GP, Zou F, He DD, Liu XQ, Li YJ, Zhao TB, Lin MT. ACTIVATED PROTEIN C CAN BE USED AS A PROPHYLACTIC AS WELL AS A THERAPEUTIC AGENT FOR HEAT STROKE IN RODENTS. Shock 2009; 32:524-9. [DOI: 10.1097/shk.0b013e3181a1a75d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Abstract
Ischemia-reperfusion (I/R) injuries are implicated in a large array of pathological conditions such as myocardial infarction, cerebral stroke, and hepatic, renal, and intestinal ischemia, as well as following cardiovascular and transplant surgeries. The hallmark of these pathologies is excessive inflammation. Toll-like receptors (TLRs) are recognized as one of the main contributors to pathogen-induced inflammation and, more recently, injury-induced inflammation. Endogenous ligands such as low-molecular hyaluronic acid, fibronectin, heat shock protein 70, and heparin sulfate were all found to be cleaved in the inflamed tissue and to activate TLR2 and TLR4, initiating an inflammatory response even in the absence of pathogens and infiltrating immune cells. In this review, we discuss the contribution of TLR activation in hepatic, renal, cerebral, intestinal, and myocardial I/R injuries. A greater understanding of the role of TLRs in I/R injuries may aid in the development of specific TLR-targeted therapeutics to treat these conditions.
Collapse
|
47
|
Oku T, Fujii M, Tanaka N, Imoto H, Uchiyama J, Oka F, Kunitsugu I, Fujioka H, Nomura S, Kajiwara K, Fujisawa H, Kato S, Saito T, Suzuki M. The influence of focal brain cooling on neurophysiopathology: validation for clinical application. J Neurosurg 2009; 110:1209-17. [DOI: 10.3171/2009.1.jns08499] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Focal brain cooling has been recognized to have a suppressive effect on epileptiform discharges or a protective effect on brain tissue. However, the precise influence of brain cooling on normal brain function and histology has not yet been thoroughly investigated. The aim of this study was to investigate the neurophysiopathological consequences of focal cooling and to detect the threshold temperature that causes irreversible histological change and motor dysfunction.
Methods
The experiments were performed in adult male Sprague-Dawley rats (weighing 250–350 g) after induction of halothane anesthesia. A thermoelectric chip (6 × 6 × 2 mm) was used as a cooling device and was placed on the surface of the sensorimotor cortex after a 10 × 8–mm craniotomy. A thermocouple was placed between the chip and the brain surface. Focal cooling of the cortex was performed at the temperatures of 20, 15, 10, 5, 0, and −5°C for 1 hour (5 rats in each group). Thereafter, the cranial window was repaired. Motor function was evaluated using the beam-walking scale (BWS) every day for 7 days. The rats were killed 7 days after the operation for histological examination with H & E, Klüver-Barrera, glial fibrillary acidic protein, and terminal deoxynucleotidyl transferasemediated deoxyuridine triphosphate nick-end labeling stainings. The authors also euthanized some rats 24 hours after cooling and obtained brain sections by the same methods.
Results
The BWS score was decreased on the day after cooling only in the −5°C group (p < 0.05), whereas the score did not change in the other temperature groups. Histologically, the appearance of cryoinjury such as necrosis, apoptosis, loss of neurons, and marked proliferation of astrocytes at the periphery of the lesion was observed only in the −5°C group, while no apparent changes were observed in the other temperature groups.
Conclusions
The present study confirmed that the focal cooling of the cortex for 1 hour above the temperature of 0°C did not induce any irreversible histological change or motor dysfunction. These results suggest that focal brain cooling above 0°C has the potential to be a minimally invasive and valuable modality for the treatment of severe brain injury or to assist in the examination of brain function.
Collapse
Affiliation(s)
| | | | | | | | - Joji Uchiyama
- 3Applied Medical Engineering Science, Graduate School of Medicine Yamaguchi University, Ube, Yamaguchi, Japan
| | | | | | | | | | | | | | | | - Takashi Saito
- 3Applied Medical Engineering Science, Graduate School of Medicine Yamaguchi University, Ube, Yamaguchi, Japan
| | | |
Collapse
|
48
|
Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. BRAIN RESEARCH REVIEWS 2009; 60:379-407. [PMID: 19328213 PMCID: PMC2731235 DOI: 10.1016/j.brainresrev.2009.03.002] [Citation(s) in RCA: 433] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/16/2009] [Indexed: 12/11/2022]
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is widely abused in the world. Several lines of evidence suggest that chronic METH abuse leads to neurodegenerative changes in the human brain. These include damage to dopamine and serotonin axons, loss of gray matter accompanied by hypertrophy of the white matter and microgliosis in different brain areas. In the present review, we summarize data on the animal models of METH neurotoxicity which include degeneration of monoaminergic terminals and neuronal apoptosis. In addition, we discuss molecular and cellular bases of METH-induced neuropathologies. The accumulated evidence indicates that multiple events, including oxidative stress, excitotoxicity, hyperthermia, neuroinflammatory responses, mitochondrial dysfunction, and endoplasmic reticulum stress converge to mediate METH-induced terminal degeneration and neuronal apoptosis. When taken together, these findings suggest that pharmacological strategies geared towards the prevention and treatment of the deleterious effects of this drug will need to attack the various pathways that form the substrates of METH toxicity.
Collapse
Affiliation(s)
- Irina N Krasnova
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD 21224, USA
| | | |
Collapse
|
49
|
Abstract
The present study was conducted to assess whether Premarin, a water-soluble estrogen sulfate, can act via estrogen receptors (ERs) to rescue mice from heat-induced lethality. Unanesthetized, unrestrained mice were exposed to ambient temperature of 42.4 degrees C to induce heatstroke (HS). Another group of mice was exposed to room temperature (24 degrees C) and used as normothermic controls. They were given isotonic sodium chloride solution, Premarin (0.1 - 1.0 mg/kg of body weight, i.p.), or Premarin (1 mg/kg of body weight, i.p.) plus the nonselective ER antagonist ICI 182, 780 (0.25 mg/kg of body weight, i.p.) 1 h after the termination of heat stress. Their physiologic and biochemical parameters were continuously monitored. Mice that survived on day 4 of heat treatment were considered survivors. When the vehicle-treated mice underwent heat, the fraction survival and core temperature at +4 h of body heating were found to be 0 of 12 and 34.4 degrees C +/- 3 degrees C, respectively. Administration of Premarin (1 mg/kg) 1 h after the cessation of heat stress rescued the mice from heat-induced death (fraction survival, 12/12) and reduced the hypothermia (core temperature, 37.3 degrees C). The beneficial effects of Premarin in ameliorating lethality and hypothermia can be abolished by simultaneous administration of ICI 182, 780. Both IL-10 (an anti-inflammatory cytokine) and estradiol in the serum were increased significantly in heat-stressed mice administered Premarin compared with vehicle-treated HS group. Heat-induced apoptosis, as indicated by terminal deoxynucleotidyl-transferase-mediated alpha UDP-biotin nick end-labeling staining, in the spleen, liver, and kidney were significantly reduced by Premarin. The increased levels of cellular ischemia (e.g., glutamate, lactate-to-pyruvate ratio, and nitrite) and damage (e.g., glycerol) markers and iNOS expression in the hypothalamus during HS were decreased significantly by Premarin therapy. The levels of proinflammatory cytokines (e.g., IL-1 beta and TNF-alpha) and renal and hepatic dysfunction markers in plasma that are up-regulated in heat stressed mice were significantly lower in Premarin-administered mice. The data indicate that Premarin may act via ERs to rescue mice form HS-induced lethality.
Collapse
|
50
|
|